
0018-9162/97/$10.00 1997 IEEE April 1997 51

Toward Systematic
Design of Fault-
Tolerant Systems

A s computing and communications become
irreplaceable tools of modern society, one fun-
damental principle emerges: The greater the

benefits these systems bring to our well-being and
quality of life, the greater the potential for harm
when they fail to perform their functions or per-
form them incorrectly. Consider air, rail, and auto-
mobile traffic control; emergency response systems;
airline flight controls; nuclear power plant safety
systems; and most of all, our rapidly growing
dependence on health care delivery via high-per-
formance computing and communications. When
these systems fail, lives and fortunes may be lost.

At the same time, threats to dependable operation
are growing in scope and severity. Leftover design
faults (bugs and glitches) cause system crashes
during peak demand, resulting in service disruptions
and financial losses. Complex systems suffer stabil-
ity problems due to unforeseen interactions of over-
lapping fault events and mismatched defense
mechanisms. Hackers and criminally minded indi-
viduals invade systems, causing disruptions, misuse,
and damage. Accidents result in severed communi-
cation links, affecting entire regions. Finally, we face
the possibility of systems damage by “info-terrorists.”

Fault tolerance is our best guarantee that high-
confidence systems will not betray the intentions of
their builders and the trust of their users by suc-
cumbing to physical, design, or human-machine
interaction faults, or by allowing viruses and mali-
cious acts to disrupt essential services.

ORIGIN OF FAULT TOLERANCE
I originally formulated the concept of fault toler-

ance in 1967: “We say that a system is fault-tolerant
if its programs can be properly executed despite the
occurrence of logic faults.’’1 The fault tolerance con-

cept resulted from three converging developments.
First, the earliest use of computers made it apparent
that even with careful design and good components,
physical defects and design errors were unavoidable.
Thus, designers of early computers used practical
techniques to increase reliability: They used redun-
dant structures to mask failed components; error-
control codes and duplication or triplication with
voting to detect or correct information errors; diag-
nostic techniques to locate failed components; and
automatic switchovers to replace failed subsystems.2

Second, in parallel with these evolving engineer-
ing techniques, computing pioneers such as John von
Neumann3 and Edward F. Moore and Claude E.
Shannon4 addressed the general problem of build-
ing reliable systems from unreliable components.
William H. Pierce unified their theories of masking
redundancy and incorporated some others.5

Third, in 1958 NASA challenged Caltech’s Jet
Propulsion Laboratory to build unmanned space-
craft for interplanetary exploration. These missions
would last 10 years or more and require onboard
computing. The task of designing computers that
could survive a journey of several years and then
deliver peak performance deep in space was unprece-
dented. Existing studies indicated that providing a
large number of spare subsystems promised
longevity, if the spares could be employed in
sequence. JPL’s problem was to translate this ideal-
ized “spare replacement” system model into a flight-
worthy implementation of a spacecraft guidance and
control computer.

The proposal to do this, “A Self-Testing-and-
Repairing System for Spacecraft Guidance and
Control” (STAR), was presented in October 1961.2

With the support of JPL and NASA, eight years later
the effort (led by myself and five researchers: George

After 30 years of study and practice in fault tolerance, high-confidence
computing remains a costly privilege of several critical applications. It
is time to explore ways to deliver high-confidence computing to all users

Algirdas
Avizienis
University of
California,
Los Angeles;
Vytautas
Magnus
University

T
h

e
m

e
 F

e
a

tu
re

.

52 Computer

C. Gilley, Francis P. Mathur, David A. Rennels, John
A. Rohr, and David K. Rubin) culminated in a labo-
ratory model of the JPL-STAR computer.6 US Patent
No. 3,517,671 granted to me in 1970 and assigned
to NASA, validated the concept’s originality. A flight
model of the JPL-STAR was designed for a 10- to 15-
year space mission,6 but construction stopped when
NASA discontinued the Grand Tour mission.

Nevertheless, the project did afford the study of all
accessible engineering solutions and theory concern-
ing reliability. From a confusing variety of theories
and techniques2-5 emerged the unifying concept of
fault tolerance.1 And in 1971 JPL and the IEEE
Computer Society cosponsored the first International
Symposium on Fault-Tolerant Computing.

During the succeeding 25 years the set of faults that
fault-tolerant systems had to tolerate grew extensively.
The original concept dealt with transient and perma-
nent logic faults of physical origin. The increasing com-
plexity of software and VLSI chip logic emphasized the
impossibility of removing all design faults prior to oper-
ation. Thus, faults due to human design errors were
added to the demands of fault tolerance. Experience
also led to the addition of interaction faults—those
faults inadvertently introduced by humans during com-
puter operation or maintenance. Finally, consequences
of malicious actions intended to alter or interrupt ser-
vice were recognized as intentional design faults. This
concept established a common ground for the unified
treatment of security and fault tolerance concerns in
system design. Assuring full compatibility and inte-
gration of security and fault tolerance techniques is a
major challenge for contemporary designers.

The possible causes of faults, then, include natural
phenomena of internal or external origin and acci-
dental or intentional human actions. In either case,
faults will cause errors. If error detection and recov-
ery do not take place in a timely manner, a failure will
occur that will be manifested by the denial or an unde-
sirable change of service.

There are two ways to build a fault-tolerant sys-
tem. The bottom-up approach entails designing an
infrastructure of autonomously fault-tolerant sub-
systems (microprocessors, memories, sensors, dis-
plays, and so on) and integrating this infrastructure
with global fault tolerance functions such as recon-
figuration and externally supported recovery. The top-
down approach allows a system to be built using
existing (off-the-shelf) subsystems that may have lit-
tle or no fault tolerance at all. A global monitoring
function is then implemented to provide fault toler-
ance. Top-down design is the prevailing practice.

An examination of both approaches clearly makes
a case for the long-range merits of the bottom-up tech-
nique. Moreover, similarities between fault tolerance

and the human immune system suggest an analogy
that offers developers and users of high-confidence
systems a greater understanding and acceptance of
bottom-up fault tolerance.

DESIGN PARADIGM FOR
FAULT-TOLERANT SYSTEMS

Building the JPL-STAR computer involved much
improvisation and experimentation with design alter-
natives. It became apparent that the lessons learned
could serve as the foundation for a more orderly
approach that would guide designers in treating fault
tolerance as a systematic issue.

My 1967 paper1 was followed by publications over
the next 25 years that formulated an evolving view of
how to systematically introduce fault tolerance in
hardware, software, communication, and man-
machine-interface subsystems and how to integrate
these elements during design.2 The appearance of new,
successful fault-tolerant systems offered additional
design insights and more operational experience.

Here I summarize the most mature version of the
guidelines for bottom-up fault tolerance. An abstrac-
tion of observed design processes in which steps often
overlap, it is offered as a way to minimize the proba-
bility of oversights, mistakes, and inconsistencies that
may occur during the implementation of fault toler-
ance. The first three steps—specification, implemen-
tation, and evaluation—deal with the building of a
new system. Implementation and evaluation are con-
current. Step four—modification—addresses the
repair or augmentation of an existing design.

Specification
System requirements that describe the services to be

delivered in terms of functionality and performance
are the starting point in specifying fault tolerance.

Mission phases. First we identify different phases,
characterized by different environments and opera-
tion conditions during the system’s lifetime or mission.

Dependability conditions. Then we identify four
dependability conditions for each phase:

• Fault classes. I have already summarized the
potential fault classes to be tolerated. Environ-
mental conditions and operating interfaces will
affect the expected fault classes. Each mission
phase may encounter internal faults that arise
within the system and external faults that intro-
duce errors into the system via the interfaces: I/O
links, external fault tolerance support, and
human-machine interaction.

• External support. Here we determine the avail-
ability of repair by external agents and the form
of this support (on-demand or periodic) as well as

The possible
causes of
faults
include
natural
phenomena
of internal
or external
origin, and
accidental
or intentional
human
actions.

.

the availability of remote support for fault toler-
ance functions (for example, external diagnosis
and software reloading).

• Service modes. Here we determine the accept-
ability of different modes of service (full, reduced,
degraded, emergency, safe shutdown, and so on)
for each phase and establish each mode’s required
service level.

• Dependability goals. Here we determine each
phase’s requirements for system availability, reli-
ability, maintainability, and safety, as well as
potentially varying criticality of service delivery
and system security goals during different phases.

Evaluation methods. Now we choose how we are
going to evaluate the likelihood that the design will
meet the dependability goals. We must also agree upon
and specify independent means of validating the eval-
uation and define fault- and error-occurrence scenar-
ios to enable evaluation. For example, how will the
system respond to two or more independent, near-
coincident faults with overlapping effects? How will
it respond to latent errors?

Resource allocation. Finally, since the resources for
making a system dependable are limited, we must
decide before implementation begins how much to
spend on fault tolerance versus fault avoidance dur-
ing implementation.

Implementation
Fault tolerance is implemented through the

sequence of system partitioning, subsystem design,
and systemwide integration.

System partitioning. System partitioning is the defi-
nition of system structure, expressed by the intercon-
nection of its building blocks and communication
links. Functionality, performance, and fault tolerance
requirements, available technologies, and past expe-
rience all affect the choice of the hardware, software,
communication, and interface (I/O) subsystems that
constitute the system being designed. For fault toler-
ance, partitioning defines potentially replaceable units
and their error containment boundaries, which are
intended to ensure failure independence and the
absence of erroneous outputs for individual subsys-
tems. Partitioning involves three major decisions:

• Fault tolerance hierarchy. Here we define a sys-
temwide strategy for coordinated error detection
and recovery. We may define detection and recov-
ery functions for an individual subsystem (local),
to be shared by a set of identical subsystems or
extended over a group of diverse subsystems
(intermediate), or to be systemwide (global). A
hierarchy of three or all four approaches may be

used in larger systems. At this time we define spe-
cialized support subsystems for fault tolerance
(for example, service processors, software mon-
itors, and dedicated communication links) and
add them to the system structure.

• Redundancy methods. We can incorporate
redundant subsystems into a design using multi-
ple-channel computation (duplex, triplex, and so
on), spare subsystems, or degradation by exclu-
sion of failed subsystems. Or we can combine
these approaches (for example, hybrid redun-
dancy). Time redundancy (repetition of compu-
tations) is another option.

• Design diversity. Now we must decide if design
diversity7 (diverse hardware and software in each
channel) is to be implemented. Design diversity
is an effective way to ensure safety in critical
applications and to protect the most vital sub-
systems of complex systems and networks
against design faults.

Once these decisions have been made, every sub-
system is characterized by its own error-containment
requirements and its participation in set, group,
and/or global detection and recovery functions is
determined. Then we can apportion the system-level
goals for availability, reliability, maintainability, safety,
and security among the sets of subsystems that con-
stitute the system.

Subsystem design. In a subsystem, fault tolerance is
implemented in two parts: local error detection and
recovery and support for higher level (intermediate,
global) error detection and recovery. The adequacy of
the chosen local detection and recovery methods is
assessed by evaluations that occur during subsystem
design and often lead to modification of initial choices.
Both parts of the fault tolerance implementation entail
the following steps:

• Error detection. Errors are undesired states
caused by active faults and may lead to subsystem
failure. Error detection is either concurrent with
delivery of service or preemptive, in which case
service delivery is suspended. Error-detecting
codes are an example of the former method; BIST
(built-in self-test) exemplifies the latter. Error
detection methods must be able to detect errors
produced by faults in the fault tolerance mecha-
nisms themselves. Furthermore, they must be able
to check spare subsystems for dormant faults and
detect latent errors in stored information that is
not subject to other forms of error detection.

• Recovery. An error signal invokes a recovery
procedure, which attempts to restore the system
to a valid state. Recovery is either backward—

How will the
system
respond to
two or more
independent,
near-
coincident
faults with
overlapping
effects?

April 1997 53

.

54 Computer

returning the system to a previous, error-free
state—or forward—constructing a valid, error-
free new state from existing (usually redundant)
information. A recovery sequence includes fault
diagnosis and removal, error elimination, state
restoration, and recovery validation. When diag-
nosis identifies a permanently faulty subsystem,
fault removal is performed by either substituting
a good spare subsystem or reconfiguring the sys-
tem to function without the faulty subsystem.
Error elimination and state restoration complete
the recovery. Independent validation of success-
ful recovery is desirable for every subsystem. Two
special cases of recovery are error correction,
which allows a subsystem (for example, mem-
ory) to continue with a permanent fault, and
masking redundancy (for example, triple modu-
lar redundancy with voting), which masks a
fault’s presence without further recovery action.

Systemwide integration. The desired result of system
partitioning and subsystem design is an integrated set
of local, intermediate, and global fault tolerance func-
tions that serve as a protective infrastructure to ensure
the timely and correct delivery of system services.

A systematically designed infrastructure is au-
tonomous; that is, it does not depend on other parts
of the system (operating system, applications, per-
sonnel, and so on) for support. It is also distributed
and fault tolerant itself. It has dedicated communica-
tion links and can also use the main links. And it is
managed by a highly protected “hard core” subsystem
(or a hierarchy of such subsystems) that executes
global decisions to assure system recovery. These
properties are analogous to those of the human
immune system.

This phase has two major goals: to verify the infra-
structure’s completeness and consistency and to eval-
uate its ability to handle two or more nearly
concurrent fault manifestations. To accomplish these
goals, we need in-depth analysis and experimental
fault injection, using the fault and error scenarios
developed during specification.

Evaluation
Evaluation of fault tolerance is continuous during

system partitioning, subsystem design, and system
integration. At each step evaluation is an important
design tool that facilitates the choices between fault
tolerance techniques and assesses the likelihood of
meeting the dependability goals. Successful comple-
tion of design requires a convincing verification of the
design’s completeness and its potential to meet the
dependability goals. Verification consists of two dis-
tinct evaluations: first qualitative, then quantitative.

Qualitative evaluation generates deterministic pre-
dictions. It must be satisfied prior to quantitative eval-
uation, which generates probabilistic predictions.
Otherwise, the evaluation may generate unreasonably
optimistic predictions of availability and reliability
because unjustified simplifications will go unnoticed.

Qualitative evaluation: Deterministic goals. The out-
come of qualitative evaluation is a yes/no conclusion
with respect to four goals:

• Fault tolerance completeness and consistency.
This evaluation is part of systemwide integration.
Here we use checklists of questions derived from
the design paradigm, and experimental fault
injection using worst-case scenarios.

• Absolute tolerance. This evaluates whether the sys-
tem can survive one (or more than one) fault from
a specified set and then execute a safe shutdown,
usually stated as fail operational/fail safe. A detailed
design analysis is needed to prove this property.

• Absence of design faults. Here formal and heuris-
tic methods such as proof of correctness, testing,
and experimentation are applicable.

• System security goals. To evaluate deterministic
security requirements, we use the same tools used
to evaluate the absence of design faults.

Quantitative evaluation: Probabilistic goals. This
evaluation requires three steps:

• Describe the design using a system evaluation
model that is characterized by sets of physical,
structural, repair, fault tolerance, and perfor-
mance parameters for every subsystem.

• Obtain coverage and execution-time parameters
for all local, intermediate, and global detection
and recovery functions. Fault injection experi-
ments are essential for this task.

• Use the model to predict system reliability, avail-
ability, maintainability, and safety. The existence
of multiple service modes necessitates the pre-
diction of mean time between mode reductions
and duration of mode reduction in suitable mea-
sures (mean, 99th percentile, and so on) instead
of a single availability prediction.

Modification
An existing system is modified for repair—the

removal of newly discovered faults—or for augmen-
tation of functionality, performance, and/or fault tol-
erance. In both cases subsystems are modified or new
subsystems are added. When this happens, it is essen-
tial to modify the specification first and then reimple-
ment the subsystems with a complete reexamination
and reevaluation of detection and recovery functions.

A system-
atically
designed
infrastructure
is autono-
mous: It
does not
depend on
other parts
of the system
for support.

.

Failure to return to the specification may cause gaps
in fault tolerance protection.

NASA experienced such a gap on April 10, 1981. A
timely synchronization check was omitted after the
addition of an alternate reentry program. As a result,
the first flight of the US space shuttle program was
aborted 19 minutes before launch.

OFF-THE-SHELF APPROACH
The bottom-up approach of the design paradigm

results in fault-tolerant systems that are composed of
an integrated set of fault-tolerant subsystems.
However, development time and cost constraints often
lead developers to use off-the-shelf subsystems—
including microprocessors, operating systems, and
applications—as building blocks in the design of sys-
tems that are expected to be highly dependable. OTS
items usually have few fault tolerance functions—
sometimes none at all.

Pentium Pro limitations
To illustrate the nature of fault tolerance functions

in, for example, OTS microprocessors, let’s consider
the Intel Pentium Pro.8 Compared with Sun UltraSparc
II, MIPS 10000, HP PA-8000, DEC Alpha 21164, and
IBM/Apple/Motorola PowerPC 620 microprocessors,
the Pentium Pro appears to have the most complete
set of fault tolerance functions among contemporary
microprocessors.

An ancestor of the Pentium Pro, Intel’s 486, pro-
vided parity checking for data bytes. The Pentium
added address parity and introduced parity checks for
cache, translation lookaside buffer, and microcode
storage arrays; it also introduced a Machine Check
Exception with address and type registers. In addi-
tion, the Pentium reintroduced the master/checker
duplexing (functional redundancy checking) option
that Intel pioneered in the 432 processor chips.

The Pentium Pro integrates five Pentium compo-
nents into a single component. It retains all Pentium
fault tolerance techniques, replacing data-byte parity
with eight ECC (error-correcting code) bits for
SEC/DED (single-error correction/double-error detec-
tion) operations. It uses two parity bits and provides
a retry for the address bus, and it includes parity bits
for two groups of control signals. The Machine Check
Exception is generalized into a Machine Check
Architecture with three global control registers and
five banks of four error-reporting registers each.8

We can see that as chip complexity increases, more
fault tolerance functions are added; however, major
OTS drawbacks remain in the Pentium Pro:

• Protection by parity and ECC is limited to stor-
age arrays and communication links, which are

easy to check. The more complex data- and
instruction-processing logic remains unchecked.

• The extensive system developer’s documentation8

(more than 1,400 pages) commingles error han-
dling with all other information. There is no com-
prehensive top-down view of the fault tolerance
techniques and their interrelationships. Manag-
ement of most error conditions is relegated to a
“central agent,” which remains unexplained.
Developers run a significant risk of overlooking
or misinterpreting the details of error handling.

• Use of the Machine Check Architecture is
optional and must be enabled by software. This
leaves open the possibility of its accidental or
malicious disabling during operation. The
Machine Check Exception Handler software
merely logs machine status and error informa-
tion and then shuts down the system, since there
are no on-chip recovery procedures to invoke.

• The master/checker duplexing is a throwaway
solution at twice the cost of one microprocessor.
Error detection is delayed until the error reaches
the component’s output; by then, shutdown,
BIST, and restart is the only recovery option left,
even if the cause was only a soft error that a local
retry could eliminate.

Retrofit solutions
Systems built from OTS subsystems are very diffi-

cult to retrofit for fault tolerance. The absence of OTS
hardware support for fault tolerance means that the
only solution is to build a software monitor subsystem
(such as the Pentium Pro’s Machine Check Exception
Handler) that resides and executes on the OTS hard-
ware elements. A software monitor tries to check all
subsystems for indications of failure and records
abnormal symptoms. When necessary, it initiates shut-
downs, BIST, and restarts. This approach has two
weaknesses: The monitor software itself is unpro-
tected because it resides and executes on an OTS
processor, and it limits recovery handling to on/off.

A costly but effective method for building high-con-
fidence systems with OTS subsystems is to employ
multiple-channel computation with diverse hardware
and software in each channel.7 Variations of this
design diversity approach have been used successfully
in safety-critical systems, such as flight control and
rail transportation, that use well-defined cyclic con-
trol algorithms.

However, cost and application complexity preclude
this solution in most distributed, heterogeneous sys-
tems with OTS components. A potential retrofit solu-
tion is to implement a small, highly fault-tolerant
hardware subsystem that monitors the system’s oper-
ation, ensures data integrity, and manages recovery

April 1997 55

Systems
built from
OTS
subsystems
are very
difficult
to retrofit
for fault
tolerance.

.

56 Computer

by switching in spare resources or reconfiguring the
system. An excellent example of a hardware monitor
is the IBM ES/9000 Type 9021’s processor controller.9

A hardware monitor’s effectiveness is limited
entirely by the nature of the OTS elements being mon-
itored; for example, a Machine Check Exception mes-
sage from a Pentium Pro means that the processor
must be shut down, even if the Machine Check
Exception indicates only a soft error due to an SEU
(single-event upset). More survivable OTS-based sys-
tems can be built only when the OTS subsystems
themselves are fault tolerant.

AAS experience
The difficulties encountered in the OTS approach

are illustrated by the Advanced Automation System
(AAS) for air traffic control in the US,10 in which fault
tolerance was explicitly required as the means to
assure very high availability. After a 42-month design
competition, in 1988 the US Federal Aviation
Administration awarded a $4.8-billion contract to
IBM Federal Systems. The design used IBM RISC
System/6000 processors as the basic subsystem, inter-
connected by a redundant token ring local commu-
nication network. Fault tolerance was attained by
software-implemented Group and Global Service
Availability Management.11

But in 1994 the FAA canceled the procurement of
23 large (up to 400 processors each) Area Control
Computer Complex facilities and of the smaller
Terminal AAS systems. Building was to continue on
the less complex Tower CCC, and software for the
Initial Sector Suite System, which had already cost
more than $1 billion, was to be “analyzed to deter-
mine whether it can be operated and maintained.”
This failure of the world’s most ambitious and costly
attempt to build highly available systems using OTS
processors and software-implemented fault tolerance
attributes is disappointing—and potentially instruc-
tive. We can only hope that sufficient information on
the successes and failures of the fault tolerance imple-
mentation will be made available soon to help
builders of future systems.

HIGH-CONFIDENCE COMPUTING FOR ALL
The complexity of modern systems is already com-

parable to that of some living organisms. However,
life forms and computing systems evolved with dif-
ferent priorities. For living organisms, survival of indi-
viduals and species came first; higher cognitive
functions evolved gradually over billions of years, cul-
minating in the emergence of Homo sapiens.
Computers, on the other hand, were built to emulate
human intellectual functions. Survival mechanisms,
such as error detection and redundancy, came later.

These mechanisms had to be introduced in early com-
puters because vacuum tubes, relays, and other com-
ponents frequently malfunctioned. A few years later,
much more reliable transistors and magnetic cores
were introduced, and second-generation hardware
(IBM 7090, CDC 6600, and so on) dropped all check-
ing except for some parity and error codes for storage
tapes. This proved inadequate, however, and check-
ing of general-purpose machines gradually returned
with the third generation, culminating in some excel-
lent contemporary designs, such as the IBM 9021.9

Another setback for high-confidence computing
The advent of the microprocessor has again caused

a setback to the confidence level of general-purpose
computing. The Pentium Pro falls short of the check-
ing provided in the 1960s by the IBM System/360 and
its contemporaries. The explosive growth in com-
plexity, speed, and performance of single-chip proces-
sors has not led to proportional growth of on-chip
error detection and recovery features.

Successful fault tolerance is evident in the control of
high-speed transportation and in systems for depend-
able transaction processing. Yet on-chip checking of
today’s high-performance microprocessors is clearly in
the pre–fault-tolerance age. At last year’s Comdex,
Intel’s CEO Andy Grove predicted a chip with a billion
transistors running at 10 gigahertz by the year 2011,
but he did not mention the issue of high confidence.

Why do the most prevalent microprocessors remain
low-confidence chips when high-confidence systems
are flying our airliners and dispensing our cash? The
answer has two parts:

• Reasonably high-confidence systems can be built
from contemporary low-confidence chips when
specific applications justify the high cost, and the
presently small market does not motivate the pro-
duction of fault-tolerant chips.

• Consumers and end users, who would benefit
most from inexpensive high-confidence comput-
ing, generally are not aware of the advantages of
making a commodity microprocessor a self-
contained fault-tolerant system, so manufactur-
ers aren’t motivated to provide such chips.

Fault-tolerant microprocessors for all
High-confidence computing will be affordable for

all users when every microprocessor is a self-contained
fault-tolerant system as well as a building block for
a fault-tolerant multichip system. To secure fault-
tolerant microprocessors, we need to determine

• what technical know-how makes a microproces-
sor fault tolerant and

The
complexity
of modern
systems is
already
comparable
to that of
some living
organisms.

.

• what will motivate the major chip makers to
build fault-tolerant chips.

This article has already answered the first question:
We must treat a single chip as a self-contained system
and apply the design paradigm to the chip’s subsys-
tems. At the same time, we must view the chip as a
subsystem of a multichip system and design it to both
provide and receive support for global fault tolerance
functions at a higher level.

For example, a fault-tolerant Pentium Pro would
remain functionally equivalent to the present imple-
mentation, except that it would invoke the external
Exception Handler only in the rare cases when a fault
has permanently damaged the chip or caused a large
number of simultaneous errors. The chip would be
able to handle common soft errors due to transient
faults (such as SEUs) and participate in exception han-
dling for other chips in the system. Further extensions,
such as on-chip redundancy to handle permanent
faults and design diversity to protect the chip’s hard
core against design faults, could be introduced.

The second question can be restated as, what would
motivate Intel’s Andy Grove to predict a tenfold (or
maybe a hundredfold?) growth in the confidence we
will be able to justifiably place in his billion-transistor,
10-gigahertz chips, compared with the Pentium Pro?
To make this happen we must communicate the nature
and the advantages of on-chip fault tolerance to the
community of users who would benefit from high-con-
fidence communications and computing. Customer
demand is what will motivate microprocessor manu-
facturers to postpone the race for more functions,
speed, and storage capacity in order to introduce
autonomous chip-level fault tolerance. The resulting
components will serve to build affordable high-confi-
dence systems that do not rely on software alone to
ensure the delivery of continuous and error-free service.

Challenge of a conceptual model
The human body’s defenses—the immune system,

the sense of pain, and the healing processes—could
serve as a conceptual model for high-confidence sys-
tems in which fault tolerance is an integral attribute of
every hardware element.

The body is analogous to hardware, and the cogni-
tive processes supported by the body are analogous
to software. Upon execution, software delivers the
required high-confidence services for which the sys-
tem is programmed.

Four fundamental attributes of the immune system12

are particularly relevant:

• It functions continuously and autonomously,
independent of cognition.

• Its elements (lymph nodes, other lymphoid
organs, and lymphocytes) are distributed
throughout the body to serve all of its organs.

• It has its own communication links—the network
of lymphatic vessels.

• Its elements (organs and vessels) are themselves
redundant and in some cases diverse.

These four attributes would also characterize a sys-
tematically designed fault-tolerant microprocessor or
some other hardware element, as well as a network
of such elements. Indeed, systemwide integration of
fault tolerance is one attribute of the design paradigm.

The body’s sense of pain is analogous to messages
from the hardware fault tolerance infrastructure to
the fault management software, which may take fur-
ther action (just as the mind may decide to invoke
higher level defenses such as medication or physical
therapy). Most of today’s computing subsystems lack
sufficient local error detection and recovery attributes;
thus, as in the Pentium Pro, external software must
be involved in managing most of their fault condi-
tions. This is like expecting cognition to compensate
for the absence of immunity or a missing sense of pain.
It’s a risky substitution in a computing system, just as
it would be in the human body.

The body’s sophisticated healing processes lack a
parallel in electronics. A rough analogy is with auto-
matic repair by the use of spares or by switch-out of
failed elements, at both on-chip and complete-chip
levels.

In addition to in-body diversity like that found in
the immune system, there is the attribute of diversity
in a species that protects it against extinction due to
genetic defects in individual members. Moreover,
diversity among species ensures the continuity of life
on Earth. Likewise, the use of hardware and software
design diversity in fault-tolerant systems helps toler-
ate design faults in a chip’s subsystems as well as at
the complete-chip level.

How can the model help?
Is the proposed model likely to result in better fault-

tolerant systems? There are three reasons to hope that
it will. First, it sets up an analogy with the most
dependable information processing systems in exis-
tence—the various species of living creatures that have
survived and evolved over millions of years on our
continually changing planet. Second, because it does
not require knowledge of computer science or an
a priori belief in the benefits of fault tolerance, the
analogy should appeal to a wide spectrum of intelligent
people and raise the expectation of affordable high-
confidence computing for all. Third, the model will stim-
ulate the imaginations of the coming generation

The body
is analogous
to hardware,
and the
cognitive
processes
supported by
the body are
analogous to
software.

April 1997 57

.

58 Computer

of system builders and lead to solutions that will far
surpass today’s best efforts.

This model may strike some as too ambitious a
goal, but it will prove its usefulness if it helps counter
the trend toward faster and ever more complex low-
confidence chips.

T he speed of computing will ultimately be limited
by the laws of physics, but the demand for afford-
able high-confidence computing will continue as

long as people use computers to enhance the quality of
their lives. Eventually, one enterprising chip builder
will deliver the first fault-tolerant microprocessor at a
competitive price, and soon thereafter fault tolerance
will be considered as indispensable to computers as
immunity is to humans. The remaining manufactur-
ers will follow suit or go the way of the dinosaurs.
Once again, Darwin will be proven right. ❖

Acknowledgments
In the 42 years I have worked on system depend-

ability, I have been fortunate to work with and learn
from many colleagues at the University of Illinois,
Caltech’s Jet Propulsion Laboratory, and the UCLA
Computer Science Department. University of Illinois
professors James E. Robertson and David E. Muller
were mentors and role models for my academic career.
Work with my friends in the Computer Society’s
Technical Committee on Fault-Tolerant Computing
and the IFIP Working Group 10.4 on Dependable
Computing and Fault Tolerance has been rewarding
and a source of inspiration for this article. Yutao He
contributed valuable assistance in the survey of micro-
processors and in the preparation of this text.

References
1. A. Avizienis, “Design of Fault-Tolerant Computers,”

Proc. 1967 Fall Joint Computer Conf., AFIPS Conf.
Proc., Vol. 31, Thompson Books, Washington, D.C.,
1967, pp. 733-743.

2. The Evolution of Fault-Tolerant Computing, A. Avizie-
nis, H. Kopetz, and J.-C. Laprie, eds., Springer-Verlag,
New York, 1987.

3. J. von Neumann, “Probabilistic Logics and the Synthe-
sis of Reliable Organisms from Unreliable Compo-
nents,” Automata Studies, C.E. Shannon and J.
McCarthy, eds., Annals of Math Studies, No. 34, Prince-
ton Univ. Press, Princeton, N.J., 1956, pp. 43-98.

4. E.F. Moore and C.E. Shannon, “Reliable Circuits Using
Less Reliable Relays,” J. Franklin Institute, Vol. 262, (in
two parts), Sept./Oct. 1956, pp. 191-208 and 281-297.

5. W.H. Pierce, Failure-Tolerant Computer Design, Acad-
emic Press, New York, 1965.

6. A. Avizienis et al., “The STAR (Self-Testing-and-Repair-
ing) Computer: An Investigation of the Theory and Prac-
tice of Fault-Tolerant Computer Design,” IEEE Trans.
Computers, Nov. 1971, pp. 1,312-1,321.

7. A. Avizienis and J.-C. Laprie, “Dependable Computing:
from Concepts to Design Diversity,” Proc. IEEE, May
1986, pp. 629-638.

8. Pentium Pro Family Developer’s Manual, Vols. 1-3, Intel,
Mt. Prospect, Ill., 1996.

9. C.L. Chen et al., “Fault-Tolerance Design of the IBM
Enterprise System/9000 Type 9021 Processor,” IBM J.
Research and Development, July 1992, pp. 765-779.

10. “The FAA’s Advanced Automation Program,” V.R. Hunt
and G.V. Kloster, eds., special issue, Computer, Feb.
1987.

11. F. Cristian, R.D. Dancey, and J.D. Dehn, “Fault Toler-
ance in the Advanced Automation System,” Proc. 20th
Int’l Symp. Fault-Tolerant Computing, IEEE CS Press,
Los Alamitos, Calif., 1990, pp. 6-17.

12. G.J.V. Nossal, “Life, Death and the Immune System,”
Scientific Am., Sept. 1993, pp. 52-62.

Algirdas Avizienis is an emeritus professor at UCLA
and rector emeritus at Vytautas Magnus University in
Kaunas, Lithuania. As a senior research engineer at
Caltech’s Jet Propulsion Laboratory, he initiated
research on interplanetary spacecraft computers in
1961 and published the concept of fault tolerance in
1967. His teaching and research interests include
computer design, digital arithmetic, and fault-toler-
ant computing. He received a BS, an MS, and a PhD,
all in electrical engineering, from the University of Illi-
nois, Urbana-Champaign. A fellow of the IEEE and
a member of the Lithuanian Academy of Sciences, he
received the NASA Apollo Achievement Award, the
American Institute of Aeronautics and Astronautics
Information Systems Award, the NASA Exceptional
Service Medal, and the IFIP Silver Core, the computer
Society’s Technical Achievement award, and the
degree Docteur Honoris Causa’ from the Institut
National Polytechnique in Toulouse, France.

Contact Avizienis at the University of California, Los
Angeles, Computer Science Dept., Los Angeles, CA
90095; aviz@cs.ucla.edu.

.

