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Lecture Outline
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 Introduction

 Hardware Redundancy

 Information Redundancy

 Time Redundancy

Some materials from: 
Kewal Saluja
Hongyu Sun
Zaipeng Xie
Meng-Lai Yin
Rajesh Gupta
Elena Dubrova

 Software Redundancy

©
G

er
t 

Je
rv

an
©

G
er

t 
Je

rv
an

Fault Tolerance

• A fault-tolerant system is one that can continue
to correctly perform its specified tasks in the 
presence of hardware failures and/or software 
errors.

• Fault tolerance is the attribute that enables a 
system to achieve fault-tolerant operation.

• Fault tolerance is not a new field:
 1949, the EDVAC computer duplicated the ALU 

and compare the results
 1955, the UNIVAC computer incorporated parity 

check for data transfers
 1952, John von Neumann, lectures on the use of 

replicated logic modules to improve system 
reliability,

 etc.
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System Design & Evaluation Top-
Level View

System Requirements

System Design System Evaluation

Fault Avoidance Fault Tolerance

• System level analysis
• Subsystem level 

analysis
• Module/Component

level analysis

Possible Techniques
• FMEA
• FTA
• RBD
• Markov 
• Petri net

Possible techniques
• Redundancy (Hardware, 

Software, Information, 
Time)

• Fault detection
• Fault masking
• Fault containment
• Reconfiguration 

Possible techniques
• Parts selection
• Design reviews
• Quality control
• Design 

Methodology
• Documentation
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Hardware Redundancy
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Hardware Redundancy  

• 3 basic forms: passive, active, and 
hybrid
 Passive: Mask faults rather than detect 

faults without requiring any system or 
operator action

 Active: Fault has to be detected before it 
can be tolerated. Actions: location, 
containment, recovery (for component 
removal)
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Passive Hardware Redundancy

• Use fault masking to hide the 
occurrence of faults and prevent the 
faults from resulting in errors

• Mask faults rather than detect faults
• Achieve fault tolerance without requiring 

any system or operator action
• Voting mechanisms, majority voting
• Do not need fault detection or 

reconfiguration
• Many drawbacks
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Passive Hardware Redundancy

• N-Modular Redundancy (generalization 
of TMR or Triple Modular Redundancy)

• TMR: Triplicate the hardware and 
perform a majority vote to determine 
the output of the system
 If one of the modules becomes faulty, the 

2 remaining fault-free modules mask the 
results of the faulty module when the 
majority vote is performed 
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TMR Technique
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Module 1

Module 2

Module 3

Voter

Tolerates N/2 faults
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TMR/Voter Structures
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Fault-Tolerance Capability

 Assuming perfect voter, how many module faults can the 
TMR technique tolerate?

 What if 2 modules fail the same way?
 Does TMR technique provide fault detection capability?
 How about imperfect voter?
 Performance impacts from the voter in the TMR 

technique
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Module 1

Module 2

Module 3

Voter

Single Point of Failure
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Reliability of a TMR System
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Reliability of a TMR System
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MTTF=1/
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TMR with Triplicated Voters
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Module 1

Module 2

Module 3

Voter

Voter

Voter
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Cascading TMR modules
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Passive hardware redundancy

• Types of voting
 Majority

• in many practical situations it is meaningless

 Average
• can have poor performance if a sensor always 

provide very low value

 Mid value
• a good choice - can be very costly to 

implement in HW
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Passive Hardware Redundancy

• Comparison between hw and sw voter 
schemes

HW SW
cost high low
flexibilty inflex flex
synch. tightly loosely
perform. high low

(fast) (slow)

types of majority diff 
voting (others costly) (no extra cost)
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Example Systems Using TMR 
Technique
• JPL STAR (Self-Testing And Repairing 

computer)

18
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Example Systems Using TMR 
Technique
• FAA WAAS (Wide Area Augmentation 

System) 
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WAAS Block Diagram
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Wide-area Reference 
Station (WRS), 1 of 25

Ground Earth 
Station (GES)

WAN

WRE

WRE

WRE

O & M

Corr-1 GUS

GUS

Wide-area Master 
Station (WMS), (1 of 2)

Separate GES

GUS

GUS

Corr-2 Safety 
Monitor

Safety 
Monitor

WAN

C
o
m
p
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Active Hardware Redundancy

• Achieve fault tolerance by detecting the 
existence of faults and performing some 
action to remove the faulty parts

• Require the system be reconfigured to 
tolerate faults

• 3 steps: fault detection, fault location, 
and fault recovery
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Active Hardware Redundancy
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Dynamic Redundancy

• Uses Extra Components
• Only 1 Copy Operates At A Times

 Fault Detection
 Fault Recovery

• Spares Are On “Standby”
 Hot Spares
 Cold Spares
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Duplication with Comparison

• Both modules perform the same computations in 
parallel and compare the results

• An error message is generated if the two results 
disagree

• Only fault detection, no fault tolerance
• Can be used as a fundamental fault detection 

technique in active redundancy approach, for 
example, the pair-and-a-spare technique

24

Module 1

Module 2

Comparator
Input

Output

Agree/Disagree
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Reliability of duplication with 
comparison
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Duplication with Comparison

• Problems: 
 if there is a fault on input line, both 

modules will receive the same erroneous 
signal and produce the erroneous result 

 comparator may not be able to perform 
an exact comparison 
• synchronisation
• no exact matching 

 comparator is a single point of failure 
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Implementation of comparator

• In hardware, a bit-by-bit comparison 
can be done using two-input exclusive-
or gates 

• In software, a comparison can be 
implemented with a COMPARE 
instruction 
 commonly found in instruction sets of 

almost all microprocessors 
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Standby Sparing
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Spares

• Hot spares
 all modules are powered up 
 spares can be switched into use immediately 

after the primary module becomes failed
• Cold spares

 the primary modules are powered up
 the spares are powered down, which are 

powered up and switched into use when the 
primary modules fail

• Warm spares
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Standby Sparing (standby 
replacement)
• Active hardware redundancy
• One module is operational and one or 

more modules serve as standbys (or 
spares)

• Various fault detection or error detection 
schemes are used to determine whether 
a module has become faulty

• Fault location is used to determine 
exactly which module, if any, is faulty.
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Standby Sparing (standby 
replacement)
• If a fault is detected and located, then 

the faulty module is removed from 
operation and replaced with a spare

• The reconfiguration can be viewed as a 
switch.

• Can bring a system back to full 
operation after the occurrence of a fault.

• Require momentary disruption in 
performance when reconfiguration is 
performed.
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Hot Standby Sparing

• In hot standby sparing spares operate in 
synchrony with on-line module and are 
prepared to take over any time 
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Cold Standby Sparing

• In cold standby sparing spares are
unpowered until needed to replace a 
faulty module
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Hot & Cold Standby Sparing

• Hot standby sparing can minimize the 
performance disruption.  The spares 
operate in synchrony with the on line 
modules and are prepared to take over 
at any time.

• In cold standby sparing, the spares are 
unpowered until needed to replace a 
faulty module.  Hence extra time is 
required to bring the module back to 
operation.  The advantage is that spares 
do not consume power until needed.  
Satellite application is a good example 
for cold standby sparing.
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Pair-and-a-spare Technique

• Combine the features in standby sparing 
and duplication with comparison

• 2 modules are operated in parallel at all 
times and their results are compared to 
provide the error protection capability

• The error signal from the comparison is 
used to initiate the reconfiguration 
process (switch) that removes faulty 
modules and replaces them with spares
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Pair-and-a-spare scheme

36

Module 1a

Module 1b

Module 2a

Module 2b

Comparator

Comparator

switch

http://www.stratus.com/
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Example Systems

• Apollo telescope mount pointing 
computer

• Saturn 5 LVDC memory section
• Compaq Himalaya architecture
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Types of Redundancy

NASA Office of Logic Design - klabs.org

• Classified on how the redundant elements are 
introduced into the circuit

• Choice of redundancy type is application specific
• Active or Static Redundancy

 External components are not required to perform 
the function of detection, decision and switching 
when an element or path in the structure fails.

• Standby or Dynamic Redundancy
 External elements are required to detect, make a 

decision and switch to another element or path as 
a replacement for a failed element or path.
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Redundancy Techniques
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(7) (8)

(6)

(1) (2) (3)

(4) (5)

Redundancy Techniques

Active Standby

Parallel Voting Non-Operating Operating

Majority Vote Gate Connector

Simple Duplex Bimodal

Simple Adaptive
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Hybrid Hardware Redundancy

• Hybrid:
 combine the attractive features of both 

the passive and active approaches
• fault masking
• fault detection
• fault location
• recovery  
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Self-Purging Redundancy

41
Can mask n-2 module faults
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Self Purging Redundancy

• Initially start with NMR
• Purge one unit at at time till arrive at 

TMR
 can tolerate more faults initially 

compared to NMR with spare
 cost of the switch - higher?
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Basic Structure of a Switch

• If output of a module disagrees with the
output of the system, its contribution to 
the voter is forced to be 0 (threshold 
voter)

43 ©
G

er
t 

Je
rv

an

Reliability of Self-Purging System
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N-Modular Redundancy with 
Spares
• Most hybrid redundancy are based on 

the concept of N-modular redundancy 
(NMR) with spares

• The idea is to provide N modules 
arranged in a voting configuration

• Spares are provided to replace failed 
modules

• The advantage of NMR with spares is 
that a voting configuration can be 
restored after a fault has occurred
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N-Modular Redundancy with 
Spares

46
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NMR with Spares

• System remains in the basic NMR 
configuration until the disagreement 
vector determines a fault 

• The output of the voter is compare to 
the individual outputs of the modules 

• Module which disagrees is labeled as 
faulty and removed from the NMR core 

• Spare is switched to replace it 
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NMR with Spares

• The reliability is maintained as long as 
the pool of spares is not exhausted 

• 3-modular redundancy with 1 spare can 
tolerate 2 faults 

• To do it in a passive approach, we would 
need to have 5 modules 
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Triplex-duplex Redundancy
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Triplex-duplex Redundancy

• TMR allows faults to be masked 
 performance without interruption 

• Duplication with comparison allows 
faults to be detected and faulty module 
removed form voting 
 removal of faulty module allows to 

tolerate future faults 
• Two module faults can be tolerated 
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Software Fault Tolerance
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Introduction

• Less understood and less mature than in 
hardware

• Software does not degrade over time
• Design faults
• Environment

52
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Introduction

• Many current techniques for software 
fault tolerance attempt to leverage the 
experience of hardware redundancy 
schemes
 software N-version programming closely 

resembles hardware N-modular 
redundancy

 recovery blocks use the concept of
retrying the same operation in 
expectation that the problem is resolved
after the second try.
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Problems

• Traditional hardware fault tolerance 
techniques were developed to fight
 permanent components faults primarily
 transient faults caused by environmental 

factors secondarily.
• They do not offer sufficient protection 

against design and specification faults, 
which are dominant in software.
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Concepts for Traditional SFT

• Software design and implementation 
errors cannot be detected by simple 
replication of identical software units, 
assuming the same inputs are provided 
to each copy.

• Some form of diversity must accompany 
the redundancy 
 Software redundancy  Design diversity
 Information or data redundancy  Data 

diversity
 Temporal redundancy  Temporal diversity 
 Environment diversity
 Hardware redundancy

55 ©
G

er
t 

Je
rv

an
©

G
er

t 
Je

rv
an

Single- and multi-version

• Software fault-tolerance techniques can 
be divided into two groups:
 single-version
 multi-version

• Single version techniques aim to 
improve fault tolerant capabilities of a 
single software module
 fault detection, containment and recovery 

mechanisms
• Multi-version techniques employ 

redundant software modules, developed 
following design diversity rules
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Redundancy Allocation

• A number of possibilities have to be examined:
 at which level the redundancy need to be provided

• Redundancy can be applied to a procedure, or to 
a process, or to the whole software system
 which modules are to be made redundant

• Usually, the components which have high 
probability of faults are chosen to be made 
redundant.

• The increase in complexity caused by
redundancy can be quite severe and may
diminish the dependability improvement
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Single-Version (Dynamic) Techniques
• Dynamic redundancy kicks in only when 

an error is detected.
• Four phases 

 1. Error detection: 
fault tolerance techniques effective only when 
an error is detected

 2. Damage assessment and containment: 
to what extent the “damage” has spread 
because of the delay between a fault and its 
manifestation/detection?

 3. Error recovery: 
techniques to reach from a corrupted to a 
safe state

 4. Fault treatment and continued service: 
error correction.
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1 - Error Detection

• The goal is to determine that a fault has 
occurred within a system.

• Various types of acceptance tests are 
used to detect faults
 the result of a program is subjected to a 

test
 if the result passes the test, the program 

continues its execution
 a failed test indicates a fault
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Acceptance Test

• Acceptance test is most effective if it 
can be calculated in a simple way and if 
it is based on criteria that can be 
derived independently of the program 
application.

• The existing techniques include
 timing checks
 coding checks
 reversal checks
 reasonableness checks
 structural checks
 replication checks
 dynamic reasonableness checks
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Timing Checks

• Timing checks are applicable to system 
whose specification include timing 
constrains

• Based on these constrains, checks are 
developed to indicate a deviation from 
the required behavior.
 Watchdog timer is an example of a timing 

check
 Watchdog timers are used to monitor the 

performance of a system and detect lost 
or locked out modules.
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Coding Checks

• Coding checks are applicable to system 
whose data can be encoded using 
information redundancy techniques

• Usually used in cases when the 
information is merely transported from 
one module to another without changing 
it content.
 Arithmetic codes can be used to detect 

errors in arithmetic operations
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Reversal Checks

• In some system, it is possible to reverse 
the output values and to compute the 
corresponding input values.

• A reversal checks compares the actual 
inputs of the system with the computed 
ones.
 a disagreement indicates a fault.
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Reasonableness Checks

• Reasonableness checks use semantic 
properties of data to detect fault.
 a range of data can be examined for 

overflow or underflow to indicate a 
deviation from system's requirements

• Maximum withdrawal sum in bank’s 
teller machine

• Address generated by a computer 
should lie inside the range of available 
memory
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Structural Checks

• Structural checks are based on known 
properties of data structures
 a number or elements in a list can be 

counted, or links and pointer can be 
verified

• Structural checks can be made more 
efficient by adding redundant data to a 
data structure,
 attaching counts on the number of items 

in a list, or adding extra pointers
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2 - Damage Assessment & 
Containment
• Necessary due to the delay between 

fault and error
• Goal of containment is to minimize 

damage caused by a faulty component
 “firewalling”

• Assessment closely related to 
containment techniques used

• Techniques for fault containment:
 modularization
 partitioning
 system closure
 atomic actions

66
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Modularization

• Software system is divided into modules 
with few or no common dependencies 
between them

• Modularization attempts to prevent the
propagation of faults
 by limiting the amount of communication 

between modules to carefully monitored 
messages

 by eliminating shared resources
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Partitioning

• Modular hierarchy of a software 
architecture is partitioned in horizontal 
or vertical dimensions

• Horizontal partitioning separates the 
major software functions into 
independent branches
 The execution of the functions and the 

communication between them is done using 
control modules

• Vertical partitioning distributes the 
control and processing function in a top-
down hierarchy.
 High-level modules normally focus on control 

functions, while low-level modules perform 
processing 68
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System Closure

• System closure technique is based on a 
principle that no action is permissible 
unless explicitly authorized

• In an environment with many 
restrictions and strict control all the 
interactions between the elements of 
the system are visible
 prison

• It is easier to locate and disable any 
fault.
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Atomic Action

• An atomic action among a group of 
components in an activity in which the 
components interact exclusively with 
each other.
 no interaction with the rest of the system

• Two possible outcomes of an atomic 
action:
 it terminates normally
 it is aborted upon a fault detection

• Fault containment area is defined and 
fault recovery is limited to atomic action 
components
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3 Fault Recovery

• Once a fault is detected and contained, 
a system attempts to recover from the 
faulty state and regain operational 
status
 If fault detection and containment 

mechanisms are implemented properly, the 
effects of the faults are contained within a 
particular set of modules at the moment of 
fault detection.

• The knowledge of fault containment 
region is essential for the design of 
effective fault recovery mechanism
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Exception Handling

• Exception handling is the interruption of 
normal operation to handle abnormal 
responses

• Possible events triggering the 
exceptions:
 Interface exceptions

• signaled by a module when it detects an invalid 
service request

 Local exceptions
• signaled by a module when its fault detection 

mechanism detects a fault
 Failure exceptions

• signaled by a module when it has detected that 
its fault recovery mechanism is enable to 
recover successfully
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Recovery

• Forward or Backward
• Forward: continues from an erroneous 

state by making selective corrections to 
the system state
 includes making safe the controlled 

environment which may be hazardous or 
damaged because of failure

 system specific and depends upon 
accurate predictions

 e.g., redundant pointers in data 
structures, self-correcting codes
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Recovery

• Backward: relies on restoring the 
system to a previous safe state and 
executing an alternative section of the 
program
 safe functionality but different algorithm
 the point to which a process is restored is 

called a recovery point and the act of 
establishing it is called checkpointing.

 BER can be used to recover from 
unanticipated faults including design errors.

 State restoration is not always possible in 
(real-time) embedded systems.

74

©
G

er
t 

Je
rv

an
©

G
er

t 
Je

rv
an

Backward Recovery

75

 Attempts to return the system to a correct or 
error-free state. 

 For transient faults 
 Example: 

recovery blocks 
(RcB)
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Static Checkpoints

• A static checkpoint takes a single 
snapshot of the system state at the 
beginning of the program execution and 
stores it in the memory.
 If a fault is detected, the system returns 

to this state and starts the execution 
from the beginning.

 Fault detection checks are placed at the 
output of the module
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Dynamic Checkpoints

• Dynamic checkpoints are created 
dynamically at various points during the 
execution
 If a fault is detected, the system returns 

to the last checkpoint and continues the 
execution.

 Fault detection checks need to be 
embedded in the code and executed 
before the checkpoints are created
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Static vs. Dynamic

• In static approach, the expected time to 
complete the execution grows 
exponentially with the execution 
requirements.
 static checkpointing is effective only if the 

processing requirement is relatively small.
• In dynamic approach, it is possible to 

achieve linear increase in execution time 
as the processing requirements grow

78



7.03.2014

Gert Jervan, TTÜ/ATI 14

©
G

er
t 

Je
rv

an
©

G
er

t 
Je

rv
an

Strategies for dynamic 
checkpointing
• Equidistant

 places checkpoints at deterministic fixed 
time intervals

 the time between checkpoints is chosen 
depending on the expected fault rate

• Modular
 places checkpoints at the end of the sub-

modules in a module, after the fault 
detection checks for the submodule are 
completed

 the execution time depends on the 
distribution of the sub-modules and 
expected fault rate
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Advantages

• Conceptually simple
• Independent of the damage caused by a 

fault
• Applicable to unanticipated faults
• General enough to be used at multiple 

levels in a system
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Problems

• Non-recoverable actions exist in some systems
 these actions cannot be compensated by simply

reloading the state and restarting the system
• firing a missile
• soldering a pair of wires

• The recovery from such actions can be done
 by compensating for their consequences

• undoing a solder
 by delaying their output until after additional

confirmation checks are completed
• do a friend-or-foe confirmation before firing
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Forward Recovery

• Attempts to find a new state from which 
the system can continue operation.

• Utilize error compensation based on 
redundancy to select or derive the 
correct answer or an acceptable answer.  

• Example: N-version programming 
(NVP), N-copy programming (NCP), and 
the distributed recovery block (DRB) 
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Forward Recovery

• Efficient for predictable errors 
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4 - Fault Treatment and 
Continued Service
• Even with recovery, the error may recure. Need 

to eradicate the fault from the system
• Automatic treatment of faults is very application 

specific
• Make some assumptions. For instance:

 all faults are transient
• Fault treatment in two stages

 Fault location
 System repair

• Fault location
 use error detection techniques to trace a fault 

to a component (hardware or software)
 System repair

• sometimes it has to be done while the system is in 
operation.
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