
7.03.2014

Gert Jervan, TTÜ/ATI 1

©
G

er
t

Je
rv

an

IAF0530/IAF9530

Dependability and fault tolerance

Lectures 5 and 6
Redundancy (Hardware and software)

Gert Jervan
gert.jervan@ati.ttu.ee

©
G

er
t

Je
rv

an
©

G
er

t
Je

rv
an

Lecture Outline

2

 Introduction

 Hardware Redundancy

 Information Redundancy

 Time Redundancy

Some materials from:
Kewal Saluja
Hongyu Sun
Zaipeng Xie
Meng-Lai Yin
Rajesh Gupta
Elena Dubrova

 Software Redundancy

©
G

er
t

Je
rv

an
©

G
er

t
Je

rv
an

Fault Tolerance

• A fault-tolerant system is one that can continue
to correctly perform its specified tasks in the
presence of hardware failures and/or software
errors.

• Fault tolerance is the attribute that enables a
system to achieve fault-tolerant operation.

• Fault tolerance is not a new field:
 1949, the EDVAC computer duplicated the ALU

and compare the results
 1955, the UNIVAC computer incorporated parity

check for data transfers
 1952, John von Neumann, lectures on the use of

replicated logic modules to improve system
reliability,

 etc.

3 ©
G

er
t

Je
rv

an

System Design & Evaluation Top-
Level View

System Requirements

System Design System Evaluation

Fault Avoidance Fault Tolerance

• System level analysis
• Subsystem level

analysis
• Module/Component

level analysis

Possible Techniques
• FMEA
• FTA
• RBD
• Markov
• Petri net

Possible techniques
• Redundancy (Hardware,

Software, Information,
Time)

• Fault detection
• Fault masking
• Fault containment
• Reconfiguration

Possible techniques
• Parts selection
• Design reviews
• Quality control
• Design

Methodology
• Documentation

©
G

er
t

Je
rv

an

Hardware Redundancy

©
G

er
t

Je
rv

an
©

G
er

t
Je

rv
an

Hardware Redundancy

• 3 basic forms: passive, active, and
hybrid
 Passive: Mask faults rather than detect

faults without requiring any system or
operator action

 Active: Fault has to be detected before it
can be tolerated. Actions: location,
containment, recovery (for component
removal)

6

7.03.2014

Gert Jervan, TTÜ/ATI 2

©
G

er
t

Je
rv

an
©

G
er

t
Je

rv
an

Passive Hardware Redundancy

• Use fault masking to hide the
occurrence of faults and prevent the
faults from resulting in errors

• Mask faults rather than detect faults
• Achieve fault tolerance without requiring

any system or operator action
• Voting mechanisms, majority voting
• Do not need fault detection or

reconfiguration
• Many drawbacks

7 ©
G

er
t

Je
rv

an
©

G
er

t
Je

rv
an

Passive Hardware Redundancy

• N-Modular Redundancy (generalization
of TMR or Triple Modular Redundancy)

• TMR: Triplicate the hardware and
perform a majority vote to determine
the output of the system
 If one of the modules becomes faulty, the

2 remaining fault-free modules mask the
results of the faulty module when the
majority vote is performed

8

©
G

er
t

Je
rv

an
©

G
er

t
Je

rv
an

TMR Technique

9

Module 1

Module 2

Module 3

Voter

Tolerates N/2 faults

©
G

er
t

Je
rv

an
©

G
er

t
Je

rv
an

TMR/Voter Structures

10

©
G

er
t

Je
rv

an
©

G
er

t
Je

rv
an

Fault-Tolerance Capability

 Assuming perfect voter, how many module faults can the
TMR technique tolerate?

 What if 2 modules fail the same way?
 Does TMR technique provide fault detection capability?
 How about imperfect voter?
 Performance impacts from the voter in the TMR

technique

11

Module 1

Module 2

Module 3

Voter

Single Point of Failure

©
G

er
t

Je
rv

an
©

G
er

t
Je

rv
an

Reliability of a TMR System

12

7.03.2014

Gert Jervan, TTÜ/ATI 3

©
G

er
t

Je
rv

an

Reliability of a TMR System

13

MTTF=1/

©
G

er
t

Je
rv

an

TMR with Triplicated Voters

14

Module 1

Module 2

Module 3

Voter

Voter

Voter

©
G

er
t

Je
rv

an

Cascading TMR modules

15 ©
G

er
t

Je
rv

an
©

G
er

t
Je

rv
an

Passive hardware redundancy

• Types of voting
 Majority

• in many practical situations it is meaningless

 Average
• can have poor performance if a sensor always

provide very low value

 Mid value
• a good choice - can be very costly to

implement in HW

16

©
G

er
t

Je
rv

an
©

G
er

t
Je

rv
an

Passive Hardware Redundancy

• Comparison between hw and sw voter
schemes

HW SW
cost high low
flexibilty inflex flex
synch. tightly loosely
perform. high low

(fast) (slow)

types of majority diff
voting (others costly) (no extra cost)

17 ©
G

er
t

Je
rv

an
©

G
er

t
Je

rv
an

Example Systems Using TMR
Technique
• JPL STAR (Self-Testing And Repairing

computer)

18

7.03.2014

Gert Jervan, TTÜ/ATI 4

©
G

er
t

Je
rv

an
©

G
er

t
Je

rv
an

Example Systems Using TMR
Technique
• FAA WAAS (Wide Area Augmentation

System)

19 ©
G

er
t

Je
rv

an

WAAS Block Diagram

20

Wide-area Reference
Station (WRS), 1 of 25

Ground Earth
Station (GES)

WAN

WRE

WRE

WRE

O & M

Corr-1 GUS

GUS

Wide-area Master
Station (WMS), (1 of 2)

Separate GES

GUS

GUS

Corr-2 Safety
Monitor

Safety
Monitor

WAN

C
o
m
p

©
G

er
t

Je
rv

an
©

G
er

t
Je

rv
an

Active Hardware Redundancy

• Achieve fault tolerance by detecting the
existence of faults and performing some
action to remove the faulty parts

• Require the system be reconfigured to
tolerate faults

• 3 steps: fault detection, fault location,
and fault recovery

21 ©
G

er
t

Je
rv

an

Active Hardware Redundancy

22

©
G

er
t

Je
rv

an
©

G
er

t
Je

rv
an

Dynamic Redundancy

• Uses Extra Components
• Only 1 Copy Operates At A Times

 Fault Detection
 Fault Recovery

• Spares Are On “Standby”
 Hot Spares
 Cold Spares

23 ©
G

er
t

Je
rv

an
©

G
er

t
Je

rv
an

Duplication with Comparison

• Both modules perform the same computations in
parallel and compare the results

• An error message is generated if the two results
disagree

• Only fault detection, no fault tolerance
• Can be used as a fundamental fault detection

technique in active redundancy approach, for
example, the pair-and-a-spare technique

24

Module 1

Module 2

Comparator
Input

Output

Agree/Disagree

7.03.2014

Gert Jervan, TTÜ/ATI 5

©
G

er
t

Je
rv

an
©

G
er

t
Je

rv
an

Reliability of duplication with
comparison

25 ©
G

er
t

Je
rv

an
©

G
er

t
Je

rv
an

Duplication with Comparison

• Problems:
 if there is a fault on input line, both

modules will receive the same erroneous
signal and produce the erroneous result

 comparator may not be able to perform
an exact comparison
• synchronisation
• no exact matching

 comparator is a single point of failure

26

©
G

er
t

Je
rv

an
©

G
er

t
Je

rv
an

Implementation of comparator

• In hardware, a bit-by-bit comparison
can be done using two-input exclusive-
or gates

• In software, a comparison can be
implemented with a COMPARE
instruction
 commonly found in instruction sets of

almost all microprocessors

27 ©
G

er
t

Je
rv

an

Standby Sparing

28

©
G

er
t

Je
rv

an
©

G
er

t
Je

rv
an

Spares

• Hot spares
 all modules are powered up
 spares can be switched into use immediately

after the primary module becomes failed
• Cold spares

 the primary modules are powered up
 the spares are powered down, which are

powered up and switched into use when the
primary modules fail

• Warm spares

29 ©
G

er
t

Je
rv

an
©

G
er

t
Je

rv
an

Standby Sparing (standby
replacement)
• Active hardware redundancy
• One module is operational and one or

more modules serve as standbys (or
spares)

• Various fault detection or error detection
schemes are used to determine whether
a module has become faulty

• Fault location is used to determine
exactly which module, if any, is faulty.

30

7.03.2014

Gert Jervan, TTÜ/ATI 6

©
G

er
t

Je
rv

an
©

G
er

t
Je

rv
an

Standby Sparing (standby
replacement)
• If a fault is detected and located, then

the faulty module is removed from
operation and replaced with a spare

• The reconfiguration can be viewed as a
switch.

• Can bring a system back to full
operation after the occurrence of a fault.

• Require momentary disruption in
performance when reconfiguration is
performed.

31 ©
G

er
t

Je
rv

an
©

G
er

t
Je

rv
an

Hot Standby Sparing

• In hot standby sparing spares operate in
synchrony with on-line module and are
prepared to take over any time

32

©
G

er
t

Je
rv

an
©

G
er

t
Je

rv
an

Cold Standby Sparing

• In cold standby sparing spares are
unpowered until needed to replace a
faulty module

33 ©
G

er
t

Je
rv

an
©

G
er

t
Je

rv
an

Hot & Cold Standby Sparing

• Hot standby sparing can minimize the
performance disruption. The spares
operate in synchrony with the on line
modules and are prepared to take over
at any time.

• In cold standby sparing, the spares are
unpowered until needed to replace a
faulty module. Hence extra time is
required to bring the module back to
operation. The advantage is that spares
do not consume power until needed.
Satellite application is a good example
for cold standby sparing.

34

©
G

er
t

Je
rv

an
©

G
er

t
Je

rv
an

Pair-and-a-spare Technique

• Combine the features in standby sparing
and duplication with comparison

• 2 modules are operated in parallel at all
times and their results are compared to
provide the error protection capability

• The error signal from the comparison is
used to initiate the reconfiguration
process (switch) that removes faulty
modules and replaces them with spares

35 ©
G

er
t

Je
rv

an

Pair-and-a-spare scheme

36

Module 1a

Module 1b

Module 2a

Module 2b

Comparator

Comparator

switch

http://www.stratus.com/

7.03.2014

Gert Jervan, TTÜ/ATI 7

©
G

er
t

Je
rv

an
©

G
er

t
Je

rv
an

Example Systems

• Apollo telescope mount pointing
computer

• Saturn 5 LVDC memory section
• Compaq Himalaya architecture

37 ©
G

er
t

Je
rv

an
©

G
er

t
Je

rv
an

Types of Redundancy

NASA Office of Logic Design - klabs.org

• Classified on how the redundant elements are
introduced into the circuit

• Choice of redundancy type is application specific
• Active or Static Redundancy

 External components are not required to perform
the function of detection, decision and switching
when an element or path in the structure fails.

• Standby or Dynamic Redundancy
 External elements are required to detect, make a

decision and switch to another element or path as
a replacement for a failed element or path.

38

©
G

er
t

Je
rv

an
©

G
er

t
Je

rv
an

Redundancy Techniques

39

(7) (8)

(6)

(1) (2) (3)

(4) (5)

Redundancy Techniques

Active Standby

Parallel Voting Non-Operating Operating

Majority Vote Gate Connector

Simple Duplex Bimodal

Simple Adaptive

©
G

er
t

Je
rv

an
©

G
er

t
Je

rv
an

Hybrid Hardware Redundancy

• Hybrid:
 combine the attractive features of both

the passive and active approaches
• fault masking
• fault detection
• fault location
• recovery

40

©
G

er
t

Je
rv

an
©

G
er

t
Je

rv
an

Self-Purging Redundancy

41
Can mask n-2 module faults

©
G

er
t

Je
rv

an
©

G
er

t
Je

rv
an

Self Purging Redundancy

• Initially start with NMR
• Purge one unit at at time till arrive at

TMR
 can tolerate more faults initially

compared to NMR with spare
 cost of the switch - higher?

42

7.03.2014

Gert Jervan, TTÜ/ATI 8

©
G

er
t

Je
rv

an
©

G
er

t
Je

rv
an

Basic Structure of a Switch

• If output of a module disagrees with the
output of the system, its contribution to
the voter is forced to be 0 (threshold
voter)

43 ©
G

er
t

Je
rv

an

Reliability of Self-Purging System

44

©
G

er
t

Je
rv

an
©

G
er

t
Je

rv
an

N-Modular Redundancy with
Spares
• Most hybrid redundancy are based on

the concept of N-modular redundancy
(NMR) with spares

• The idea is to provide N modules
arranged in a voting configuration

• Spares are provided to replace failed
modules

• The advantage of NMR with spares is
that a voting configuration can be
restored after a fault has occurred

45 ©
G

er
t

Je
rv

an

N-Modular Redundancy with
Spares

46

©
G

er
t

Je
rv

an
©

G
er

t
Je

rv
an

NMR with Spares

• System remains in the basic NMR
configuration until the disagreement
vector determines a fault

• The output of the voter is compare to
the individual outputs of the modules

• Module which disagrees is labeled as
faulty and removed from the NMR core

• Spare is switched to replace it

47 ©
G

er
t

Je
rv

an
©

G
er

t
Je

rv
an

NMR with Spares

• The reliability is maintained as long as
the pool of spares is not exhausted

• 3-modular redundancy with 1 spare can
tolerate 2 faults

• To do it in a passive approach, we would
need to have 5 modules

48

7.03.2014

Gert Jervan, TTÜ/ATI 9

©
G

er
t

Je
rv

an

Triplex-duplex Redundancy

49 ©
G

er
t

Je
rv

an
©

G
er

t
Je

rv
an

Triplex-duplex Redundancy

• TMR allows faults to be masked
 performance without interruption

• Duplication with comparison allows
faults to be detected and faulty module
removed form voting
 removal of faulty module allows to

tolerate future faults
• Two module faults can be tolerated

50

©
G

er
t

Je
rv

an

Software Fault Tolerance

©
G

er
t

Je
rv

an
©

G
er

t
Je

rv
an

Introduction

• Less understood and less mature than in
hardware

• Software does not degrade over time
• Design faults
• Environment

52

©
G

er
t

Je
rv

an
©

G
er

t
Je

rv
an

Introduction

• Many current techniques for software
fault tolerance attempt to leverage the
experience of hardware redundancy
schemes
 software N-version programming closely

resembles hardware N-modular
redundancy

 recovery blocks use the concept of
retrying the same operation in
expectation that the problem is resolved
after the second try.

53 ©
G

er
t

Je
rv

an
©

G
er

t
Je

rv
an

Problems

• Traditional hardware fault tolerance
techniques were developed to fight
 permanent components faults primarily
 transient faults caused by environmental

factors secondarily.
• They do not offer sufficient protection

against design and specification faults,
which are dominant in software.

54

7.03.2014

Gert Jervan, TTÜ/ATI 10

©
G

er
t

Je
rv

an
©

G
er

t
Je

rv
an

Concepts for Traditional SFT

• Software design and implementation
errors cannot be detected by simple
replication of identical software units,
assuming the same inputs are provided
to each copy.

• Some form of diversity must accompany
the redundancy
 Software redundancy  Design diversity
 Information or data redundancy  Data

diversity
 Temporal redundancy  Temporal diversity
 Environment diversity
 Hardware redundancy

55 ©
G

er
t

Je
rv

an
©

G
er

t
Je

rv
an

Single- and multi-version

• Software fault-tolerance techniques can
be divided into two groups:
 single-version
 multi-version

• Single version techniques aim to
improve fault tolerant capabilities of a
single software module
 fault detection, containment and recovery

mechanisms
• Multi-version techniques employ

redundant software modules, developed
following design diversity rules

56

©
G

er
t

Je
rv

an
©

G
er

t
Je

rv
an

Redundancy Allocation

• A number of possibilities have to be examined:
 at which level the redundancy need to be provided

• Redundancy can be applied to a procedure, or to
a process, or to the whole software system
 which modules are to be made redundant

• Usually, the components which have high
probability of faults are chosen to be made
redundant.

• The increase in complexity caused by
redundancy can be quite severe and may
diminish the dependability improvement

57 ©
G

er
t

Je
rv

an
©

G
er

t
Je

rv
an

Single-Version (Dynamic) Techniques
• Dynamic redundancy kicks in only when

an error is detected.
• Four phases

 1. Error detection:
fault tolerance techniques effective only when
an error is detected

 2. Damage assessment and containment:
to what extent the “damage” has spread
because of the delay between a fault and its
manifestation/detection?

 3. Error recovery:
techniques to reach from a corrupted to a
safe state

 4. Fault treatment and continued service:
error correction.

58

©
G

er
t

Je
rv

an
©

G
er

t
Je

rv
an

1 - Error Detection

• The goal is to determine that a fault has
occurred within a system.

• Various types of acceptance tests are
used to detect faults
 the result of a program is subjected to a

test
 if the result passes the test, the program

continues its execution
 a failed test indicates a fault

59 ©
G

er
t

Je
rv

an
©

G
er

t
Je

rv
an

Acceptance Test

• Acceptance test is most effective if it
can be calculated in a simple way and if
it is based on criteria that can be
derived independently of the program
application.

• The existing techniques include
 timing checks
 coding checks
 reversal checks
 reasonableness checks
 structural checks
 replication checks
 dynamic reasonableness checks

60

7.03.2014

Gert Jervan, TTÜ/ATI 11

©
G

er
t

Je
rv

an
©

G
er

t
Je

rv
an

Timing Checks

• Timing checks are applicable to system
whose specification include timing
constrains

• Based on these constrains, checks are
developed to indicate a deviation from
the required behavior.
 Watchdog timer is an example of a timing

check
 Watchdog timers are used to monitor the

performance of a system and detect lost
or locked out modules.

61 ©
G

er
t

Je
rv

an
©

G
er

t
Je

rv
an

Coding Checks

• Coding checks are applicable to system
whose data can be encoded using
information redundancy techniques

• Usually used in cases when the
information is merely transported from
one module to another without changing
it content.
 Arithmetic codes can be used to detect

errors in arithmetic operations

62

©
G

er
t

Je
rv

an
©

G
er

t
Je

rv
an

Reversal Checks

• In some system, it is possible to reverse
the output values and to compute the
corresponding input values.

• A reversal checks compares the actual
inputs of the system with the computed
ones.
 a disagreement indicates a fault.

63 ©
G

er
t

Je
rv

an
©

G
er

t
Je

rv
an

Reasonableness Checks

• Reasonableness checks use semantic
properties of data to detect fault.
 a range of data can be examined for

overflow or underflow to indicate a
deviation from system's requirements

• Maximum withdrawal sum in bank’s
teller machine

• Address generated by a computer
should lie inside the range of available
memory

64

©
G

er
t

Je
rv

an
©

G
er

t
Je

rv
an

Structural Checks

• Structural checks are based on known
properties of data structures
 a number or elements in a list can be

counted, or links and pointer can be
verified

• Structural checks can be made more
efficient by adding redundant data to a
data structure,
 attaching counts on the number of items

in a list, or adding extra pointers

65 ©
G

er
t

Je
rv

an
©

G
er

t
Je

rv
an

2 - Damage Assessment &
Containment
• Necessary due to the delay between

fault and error
• Goal of containment is to minimize

damage caused by a faulty component
 “firewalling”

• Assessment closely related to
containment techniques used

• Techniques for fault containment:
 modularization
 partitioning
 system closure
 atomic actions

66

7.03.2014

Gert Jervan, TTÜ/ATI 12

©
G

er
t

Je
rv

an
©

G
er

t
Je

rv
an

Modularization

• Software system is divided into modules
with few or no common dependencies
between them

• Modularization attempts to prevent the
propagation of faults
 by limiting the amount of communication

between modules to carefully monitored
messages

 by eliminating shared resources

67 ©
G

er
t

Je
rv

an
©

G
er

t
Je

rv
an

Partitioning

• Modular hierarchy of a software
architecture is partitioned in horizontal
or vertical dimensions

• Horizontal partitioning separates the
major software functions into
independent branches
 The execution of the functions and the

communication between them is done using
control modules

• Vertical partitioning distributes the
control and processing function in a top-
down hierarchy.
 High-level modules normally focus on control

functions, while low-level modules perform
processing 68

©
G

er
t

Je
rv

an
©

G
er

t
Je

rv
an

System Closure

• System closure technique is based on a
principle that no action is permissible
unless explicitly authorized

• In an environment with many
restrictions and strict control all the
interactions between the elements of
the system are visible
 prison

• It is easier to locate and disable any
fault.

69 ©
G

er
t

Je
rv

an
©

G
er

t
Je

rv
an

Atomic Action

• An atomic action among a group of
components in an activity in which the
components interact exclusively with
each other.
 no interaction with the rest of the system

• Two possible outcomes of an atomic
action:
 it terminates normally
 it is aborted upon a fault detection

• Fault containment area is defined and
fault recovery is limited to atomic action
components

70

©
G

er
t

Je
rv

an
©

G
er

t
Je

rv
an

3 Fault Recovery

• Once a fault is detected and contained,
a system attempts to recover from the
faulty state and regain operational
status
 If fault detection and containment

mechanisms are implemented properly, the
effects of the faults are contained within a
particular set of modules at the moment of
fault detection.

• The knowledge of fault containment
region is essential for the design of
effective fault recovery mechanism

71 ©
G

er
t

Je
rv

an
©

G
er

t
Je

rv
an

Exception Handling

• Exception handling is the interruption of
normal operation to handle abnormal
responses

• Possible events triggering the
exceptions:
 Interface exceptions

• signaled by a module when it detects an invalid
service request

 Local exceptions
• signaled by a module when its fault detection

mechanism detects a fault
 Failure exceptions

• signaled by a module when it has detected that
its fault recovery mechanism is enable to
recover successfully

72

7.03.2014

Gert Jervan, TTÜ/ATI 13

©
G

er
t

Je
rv

an
©

G
er

t
Je

rv
an

Recovery

• Forward or Backward
• Forward: continues from an erroneous

state by making selective corrections to
the system state
 includes making safe the controlled

environment which may be hazardous or
damaged because of failure

 system specific and depends upon
accurate predictions

 e.g., redundant pointers in data
structures, self-correcting codes

73 ©
G

er
t

Je
rv

an
©

G
er

t
Je

rv
an

Recovery

• Backward: relies on restoring the
system to a previous safe state and
executing an alternative section of the
program
 safe functionality but different algorithm
 the point to which a process is restored is

called a recovery point and the act of
establishing it is called checkpointing.

 BER can be used to recover from
unanticipated faults including design errors.

 State restoration is not always possible in
(real-time) embedded systems.

74

©
G

er
t

Je
rv

an
©

G
er

t
Je

rv
an

Backward Recovery

75

 Attempts to return the system to a correct or
error-free state.

 For transient faults
 Example:

recovery blocks
(RcB)

©
G

er
t

Je
rv

an
©

G
er

t
Je

rv
an

Static Checkpoints

• A static checkpoint takes a single
snapshot of the system state at the
beginning of the program execution and
stores it in the memory.
 If a fault is detected, the system returns

to this state and starts the execution
from the beginning.

 Fault detection checks are placed at the
output of the module

76

©
G

er
t

Je
rv

an
©

G
er

t
Je

rv
an

Dynamic Checkpoints

• Dynamic checkpoints are created
dynamically at various points during the
execution
 If a fault is detected, the system returns

to the last checkpoint and continues the
execution.

 Fault detection checks need to be
embedded in the code and executed
before the checkpoints are created

77 ©
G

er
t

Je
rv

an
©

G
er

t
Je

rv
an

Static vs. Dynamic

• In static approach, the expected time to
complete the execution grows
exponentially with the execution
requirements.
 static checkpointing is effective only if the

processing requirement is relatively small.
• In dynamic approach, it is possible to

achieve linear increase in execution time
as the processing requirements grow

78

7.03.2014

Gert Jervan, TTÜ/ATI 14

©
G

er
t

Je
rv

an
©

G
er

t
Je

rv
an

Strategies for dynamic
checkpointing
• Equidistant

 places checkpoints at deterministic fixed
time intervals

 the time between checkpoints is chosen
depending on the expected fault rate

• Modular
 places checkpoints at the end of the sub-

modules in a module, after the fault
detection checks for the submodule are
completed

 the execution time depends on the
distribution of the sub-modules and
expected fault rate

• Random 79 ©
G

er
t

Je
rv

an
©

G
er

t
Je

rv
an

Advantages

• Conceptually simple
• Independent of the damage caused by a

fault
• Applicable to unanticipated faults
• General enough to be used at multiple

levels in a system

80

©
G

er
t

Je
rv

an
©

G
er

t
Je

rv
an

Problems

• Non-recoverable actions exist in some systems
 these actions cannot be compensated by simply

reloading the state and restarting the system
• firing a missile
• soldering a pair of wires

• The recovery from such actions can be done
 by compensating for their consequences

• undoing a solder
 by delaying their output until after additional

confirmation checks are completed
• do a friend-or-foe confirmation before firing

81 ©
G

er
t

Je
rv

an
©

G
er

t
Je

rv
an

Forward Recovery

• Attempts to find a new state from which
the system can continue operation.

• Utilize error compensation based on
redundancy to select or derive the
correct answer or an acceptable answer.

• Example: N-version programming
(NVP), N-copy programming (NCP), and
the distributed recovery block (DRB)

82

©
G

er
t

Je
rv

an
©

G
er

t
Je

rv
an

Forward Recovery

• Efficient for predictable errors

83 ©
G

er
t

Je
rv

an
©

G
er

t
Je

rv
an

4 - Fault Treatment and
Continued Service
• Even with recovery, the error may recure. Need

to eradicate the fault from the system
• Automatic treatment of faults is very application

specific
• Make some assumptions. For instance:

 all faults are transient
• Fault treatment in two stages

 Fault location
 System repair

• Fault location
 use error detection techniques to trace a fault

to a component (hardware or software)
 System repair

• sometimes it has to be done while the system is in
operation.

84

