
21.03.2014

Gert Jervan, TTÜ/ATI 1

©
G

er
t

Je
rv

an

IAF0530/IAF9530

Dependability and fault tolerance

Lecture 6
Redundancy (Software and Information)

Gert Jervan
gert.jervan@ati.ttu.ee

©
G

er
t

Je
rv

an
©

G
er

t
Je

rv
an

Important!

• No lecture on March 28!

• April 4:
 Draft of the report (by e-mail)

• Abstract, outline, main references, ca. 1 page

 Introductory presentation (max. 5 min,
max 2-3 slides).

2

©
G

er
t

Je
rv

an
©

G
er

t
Je

rv
an

Single- and multi-version

• Software fault-tolerance techniques can
be divided into two groups:
 single-version
 multi-version

• Single version techniques aim to
improve fault tolerant capabilities of a
single software module
 fault detection, containment and recovery

mechanisms
• Multi-version techniques employ

redundant software modules, developed
following design diversity rules

3 ©
G

er
t

Je
rv

an
©

G
er

t
Je

rv
an

Single-Version (Dynamic) Techniques
• Dynamic redundancy kicks in only when

an error is detected.
• Four phases

 1. Error detection:
fault tolerance techniques effective only when
an error is detected

 2. Damage assessment and containment:
to what extent the “damage” has spread
because of the delay between a fault and its
manifestation/detection?

 3. Error recovery:
techniques to reach from a corrupted to a
safe state

 4. Fault treatment and continued service:
error correction.

4

©
G

er
t

Je
rv

an
©

G
er

t
Je

rv
an

1 - Error Detection

• The goal is to determine that a fault has
occurred within a system.

• Various types of acceptance tests are
used to detect faults
 the result of a program is subjected to a

test
 if the result passes the test, the program

continues its execution
 a failed test indicates a fault

5 ©
G

er
t

Je
rv

an
©

G
er

t
Je

rv
an

Acceptance Test

• Acceptance test is most effective if it
can be calculated in a simple way and if
it is based on criteria that can be
derived independently of the program
application.

• The existing techniques include
 timing checks
 coding checks
 reversal checks
 reasonableness checks
 structural checks
 replication checks
 dynamic reasonableness checks

6

21.03.2014

Gert Jervan, TTÜ/ATI 2

©
G

er
t

Je
rv

an
©

G
er

t
Je

rv
an

2 - Damage Assessment &
Containment
• Necessary due to the delay between

fault and error
• Goal of containment is to minimize

damage caused by a faulty component
 “firewalling”

• Assessment closely related to
containment techniques used

• Techniques for fault containment:
 modularization
 partitioning
 system closure
 atomic actions

7 ©
G

er
t

Je
rv

an
©

G
er

t
Je

rv
an

3 Fault Recovery

• Once a fault is detected and contained,
a system attempts to recover from the
faulty state and regain operational
status
 If fault detection and containment

mechanisms are implemented properly, the
effects of the faults are contained within a
particular set of modules at the moment of
fault detection.

• The knowledge of fault containment
region is essential for the design of
effective fault recovery mechanism

8

©
G

er
t

Je
rv

an
©

G
er

t
Je

rv
an

Recovery

• Forward or Backward
• Forward: continues from an erroneous

state by making selective corrections to
the system state
 includes making safe the controlled

environment which may be hazardous or
damaged because of failure

 system specific and depends upon
accurate predictions

 e.g., redundant pointers in data
structures, self-correcting codes

9 ©
G

er
t

Je
rv

an
©

G
er

t
Je

rv
an

Recovery

• Backward: relies on restoring the
system to a previous safe state and
executing an alternative section of the
program
 safe functionality but different algorithm
 the point to which a process is restored is

called a recovery point and the act of
establishing it is called checkpointing.

 BER can be used to recover from
unanticipated faults including design errors.

 State restoration is not always possible in
(real-time) embedded systems.

10

©
G

er
t

Je
rv

an
©

G
er

t
Je

rv
an

4 - Fault Treatment and
Continued Service
• Even with recovery, the error may recure. Need

to eradicate the fault from the system
• Automatic treatment of faults is very application

specific
• Make some assumptions. For instance:

 all faults are transient
• Fault treatment in two stages

 Fault location
 System repair

• Fault location
 use error detection techniques to trace a fault

to a component (hardware or software)
 System repair

• sometimes it has to be done while the system is in
operation.

11 ©
G

er
t

Je
rv

an
©

G
er

t
Je

rv
an

Multi-Version Techniques

• Multi-version techniques use two or
more versions the same software
module, which satisfy design diversity
requirements.
 different teams, different coding

languages or different algorithms can be
used to maximize the probability that all
the versions do not have common faults

12

21.03.2014

Gert Jervan, TTÜ/ATI 3

©
G

er
t

Je
rv

an
©

G
er

t
Je

rv
an

Design Diversity

• Higher cost

13 ©
G

er
t

Je
rv

an
©

G
er

t
Je

rv
an

SFT Techniques Using Design
Diversity

Techniques Abbr. Error Processing

Recovery Blocks RcB Error detection by AT
and backward recovery

N-Version
Programming NVP Vote

N Self-Checking
Programming NSCP Error detection by AT

and forward recovery

14
AT – Acceptance Test

©
G

er
t

Je
rv

an
©

G
er

t
Je

rv
an

Recovery Blocks

• Combines checkpoint and restart
approach with standby sparing
redundancy scheme

• n different implementations of the same
program
 Only one of the versions is active
 If an error if detected by the acceptance test,

a retry signal is sent to the switch
 The system in rolled back to the state stored

in the checkpoint memory and the execution
is switched to another module

15 ©
G

er
t

Je
rv

an
©

G
er

t
Je

rv
an

Recovery Blocks

16

©
G

er
t

Je
rv

an
©

G
er

t
Je

rv
an

Recovery Blocks

Method Recovery block

Error Processing
Technique

Error detection by AT and backward
recovery

Criteria of Accepting
Result

Absolute, with respect to specification

Execution Scheme Sequential

Consistency of Input
Data

Implicit, from backward recovery
principle

17 ©
G

er
t

Je
rv

an
©

G
er

t
Je

rv
an

Recovery Blocks

• A language level support for backward error recovery
 blocks in the normal programming language

sense, but
 at the entrance to the block is an automatic

recovery point and
 at the exit an acceptance test to test that the

system is an an acceptable state
 if the acceptance test fails, the program is

restored to the recovery point at the beginning of
the block and an alternative module is executed

 repeat this process with alternative modules
 if all fail, recovery must take place at a higher

level
• In terms of four phases of software fault tolerance

 Error detection <-> acceptance test
 Damage assessment <-> not needed due to BER
 Fault treatment <-> stand-by spare code 18

21.03.2014

Gert Jervan, TTÜ/ATI 4

©
G

er
t

Je
rv

an
©

G
er

t
Je

rv
an

Recovery Blocks

• Similarly to cold and hot standby
sparing, different version can be
executed either serially, or concurrently
 Serial execution may require the use of

checkpoints to reload the state before the
next version is executed

 The cost in time of trying multiple versions
serially may be too expensive, especially for a
real-time system.

 A concurrent system requires n redundant
hardware modules, a communications
network to connect them and the use of input
and state consistency algorithms.

19 ©
G

er
t

Je
rv

an

Syntax of Recovery Blocks

• Recovery blocks can be
nested

• If all alternatives in a
nested recovery block
fail the acceptance test,
the outer level recovery
point will be restored
 (and an alternative

module to that block will
be executed).

20

©
G

er
t

Je
rv

an
©

G
er

t
Je

rv
an

N-Version Programming

• Resembles N-modular hardware
redundancy

• N different software implementations of
a module are executed concurrently.

• The selection algorithm (voter) decides
which of the answers is correct
 a voter is application independent
 this is an advantage over recovery block fault

detection mechanism, requiring application
dependent acceptance tests

21 ©
G

er
t

Je
rv

an
©

G
er

t
Je

rv
an

NVP

22

Selection
Algorithm

©
G

er
t

Je
rv

an
©

G
er

t
Je

rv
an

N-version Programming

Method N-version programming

Error Processing
Technique

Vote

Criteria of Accepting
Result

Relative, on variant results

Execution Scheme Parallel

Consistency of Input
Data

Explicit by dedicated mechanisms

23 ©
G

er
t

Je
rv

an
©

G
er

t
Je

rv
an

N-Version Programming

• Consists of independent generation of N (>2)
functionally equivalent programs from same
initial specifications
 Design Diversity, Different Programming

Language, Methods..
• Programs execute concurrently, results are

arrived at by consensus (majority voting).
• Questions

 How are results compared? How is voting
conducted?

• NVP depends upon
 good initial specification, independence of effort,

abundance of effort.
• NVP can be taken further

 compiling, processing, ...

24

21.03.2014

Gert Jervan, TTÜ/ATI 5

©
G

er
t

Je
rv

an
©

G
er

t
Je

rv
an

NVP

• Controlled by a driver process
 invokes each of the versions
 waiting for the versions to complete
 comparing and acting on the results

• Problem: assumes programs run to completion!
 So the versions must actually interact (with the

driver program)
• Comparison Points: points in the versions when

programs must communicate their votes to the
driver process

• Defines granularity of the fault tolerance
 How the versions communicate and synchronize

depend upon the programming language used, its
model of concurrency

25 ©
G

er
t

Je
rv

an
©

G
er

t
Je

rv
an

Vote Comparison in NVP

• Efficiency of vote comparison is critical
• Complicated by comparison procedure

 Not all results are single numeric values
 The “consistent comparison problem”

• When using “thresholds” for comparison the
errors can stack up, resulting different
execution paths in all versions.

26

Two sequential thresholding lead
to different execution paths in all
three versions.

The problem will reappear even
when using inexact comparison
(just have to be near a threshold
value).

And what happens when there are
multiple solutions?

©
G

er
t

Je
rv

an
©

G
er

t
Je

rv
an

NVP versus RB
• NVP is static where as RB is dynamic redundancy
• Both have design overheads

 alternative algorithms
 NVP requires a driver
 RB requires an acceptance test

• Runtime overheads
 NV requires more resources
 RB requires establishing recovery points

• Both susceptible to errors in requirements
• Error detection

 vote comparison (NVP) versus acceptance test
(RB)

• Atomicity requirement
 NV vote before it outputs to the environment, RB

must output only following the passing of the
acceptance test.

27 ©
G

er
t

Je
rv

an
©

G
er

t
Je

rv
an

N Self-Checking Programming

• N self-checking programming combines
recovery block concept with N version
programming

• The checking is performed either by
using acceptance tests, or by using
comparison.

• Examples of applications of N self-
checking programming:
 Lucent ESS-5 phone switch
 Airbus A-340 airplane

28

©
G

er
t

Je
rv

an
©

G
er

t
Je

rv
an

NSCP

29 ©
G

er
t

Je
rv

an
©

G
er

t
Je

rv
an

NSCP

Method N self-checking programming

Error Processing
Technique

Error detection and result switching
Then, Detection by comparison or by
AT(s)

Criteria of Accepting
Result

Relative, on variant results or Absolute
with respect to specification

Execution Scheme Parallel

Consistency of Input
Data

Explicit, by dedicated mechanisms

30

21.03.2014

Gert Jervan, TTÜ/ATI 6

©
G

er
t

Je
rv

an
©

G
er

t
Je

rv
an

Comparison

• N self-checking programming using
acceptance tests
 The use of separate acceptance test for

each version is the main difference of this
technique from recovery blocks

• N self-checking programming using
comparison
 resembles triplex-duplex hardware

redundancy
 An advantage over N self-checking

programming using acceptance tests is
that the application independent decision
algorithm is used for fault detection

31 ©
G

er
t

Je
rv

an
©

G
er

t
Je

rv
an

Data Diversity

• To complement design diversity
• Using data re-expression algorithms

(DRA) to obtain logically equivalent
variants of the input data

32
Data re-expression via decomposition and recombination

©
G

er
t

Je
rv

an
©

G
er

t
Je

rv
an

SFT Techniques Using Data
Diversity

SFT Techniques Abbr. Error Processing

Retry Blocks RtB Acceptance test and
Backward recovery

N-Copy Programming NCP Run the same process
concurrently or
sequentially

33 ©
G

er
t

Je
rv

an
©

G
er

t
Je

rv
an

Retry Blocks

34

©
G

er
t

Je
rv

an
©

G
er

t
Je

rv
an

Retry Blocks

Method Retry blocks

Error Processing
Technique

Error detection by AT and backward
recovery by DRA

Criteria of Accepting
Result

Absolute, with respect to specification

Execution Scheme Sequential

Consistency of Input
Data

Implicit, from backward retry principle

35 ©
G

er
t

Je
rv

an
©

G
er

t
Je

rv
an

NCP

36

21.03.2014

Gert Jervan, TTÜ/ATI 7

©
G

er
t

Je
rv

an
©

G
er

t
Je

rv
an

N-copy Programming

Method N-copy programming

Error Processing
Technique

Decision mechanism (DM) and
forward recovery

Criteria of Accepting
Result

Relative, on variant results

Execution Scheme Parallel

Consistency of Input
Data

Explicit by dedicated mechanisms

37 ©
G

er
t

Je
rv

an
©

G
er

t
Je

rv
an

Design Diversity

• The most critical issue in multi-version
software fault tolerance techniques is
assuring independence between the
different versions of software through
design diversity

• Software systems are vulnerable to
common design faults if they are
developed by the same design team, by
applying the same design rules and
using the same software tools

38

©
G

er
t

Je
rv

an
©

G
er

t
Je

rv
an

Design Diversity

• Decision to be made when developing a
multiversion software system include
 which modules are to be made redundant

• usually less reliable modules are chosen

 the level of redundancy
• procedure, process, whole system

 the required number of redundant
versions

 the required diversity
• diverse specification, algorithm, code,

programming language, testing technique

 rules of isolation between the
development teams

39 ©
G

er
t

Je
rv

an
©

G
er

t
Je

rv
an

Environment Diversity

• To diversify the software operating
circumstance temporarily.

• The typical examples of environment
diversity technique are progressive
retry, rollback rollforward recovery with
checkpointing, restart, hardware reboot,
etc.

40

©
G

er
t

Je
rv

an
©

G
er

t
Je

rv
an

An Adaptive Approach for n-
Version Systems
• Model and manage different quality

levels of the versions by introducing an
individual weight factor to each version
of the n-version system.

• This weight factor is then included in the
voting procedure, i.e. the voting is
based on a weighted counting.

41 ©
G

er
t

Je
rv

an
©

G
er

t
Je

rv
an

Why Fuzzy Voting

• In traditional voting, equality relation
regards two real numbers as equal if
their difference is smaller than fixed
tolerance ε. For different version
outputs that are “closer” to each other
than the fixed threshold there is no
gradual comparison. As a result, certain
interconnection of faults could incur
incorrect selection.

• Fuzzy equivalence relation results in
more reliable systems

42

21.03.2014

Gert Jervan, TTÜ/ATI 8

©
G

er
t

Je
rv

an
©

G
er

t
Je

rv
an

Fuzzy Equality Equation

• Traditional Equality Equation

• Fuzzy Equality Equation

43 ©
G

er
t

Je
rv

an
©

G
er

t
Je

rv
an

Output of Fuzzy Sets (Triangular
Shape)
• The fuzzy logic maps the input vector

into an output nonlinearly

44

©
G

er
t

Je
rv

an
©

G
er

t
Je

rv
an

Software Aging

• When software application executes continuously
for long periods of time, some of the faults cause
software appear to age due to the error
conditions that accrue with time and/or load.
This phenomenon is called software aging which
is reported in
 Telecommunication billing application over time

experiences a crash or a hang failure.
 A telecommunication switching software
 Netscape and xrn
 Safety critical systems Patriot missile’s software,

where the accumulated errors led to a failure that
resulted in loss of human lives.

45 ©
G

er
t

Je
rv

an
©

G
er

t
Je

rv
an

Discussion

• Each software fault tolerance technique
need to be tailored to particular
applications.

• This should also be based on the cost of
the fault tolerance effort required by the
customer. The differences between each
technique provide some flexibility of
application.

46

©
G

er
t

Je
rv

an
©

G
er

t
Je

rv
an

A summary chart of all techniques

47 ©
G

er
t

Je
rv

an
©

G
er

t
Je

rv
an

Information redundancy

• Definition
 Information redundancy is the addition of

redundant information to data to allow fault
detection, fault masking or possibly fault
tolerance.

• Error detecting and correcting codes
(EDC codes)
 Encoding of information for transmission in

noisy environments
 Later for dependability: communications,

memory, storage, etc.

48

21.03.2014

Gert Jervan, TTÜ/ATI 9

©
G

er
t

Je
rv

an
©

G
er

t
Je

rv
an

Error Model

• Functional faults
• Technological faults
• Disruptions due to the environment

49

T

Error Model E

U Z

©
G

er
t

Je
rv

an
©

G
er

t
Je

rv
an

Error Classes

• An error is single when it only affects a
single bit of the output Z

• An error is multiple of order p when it
affects at most p bits of Z

• Burst error – the errorneous bits of Z
are within an l-distance neighbourhood

50

©
G

er
t

Je
rv

an
©

G
er

t
Je

rv
an

Code

• Code of length n is a set of n-tuples
satisfying some well-defined set of rules

• Binary code uses only 0 and 1 symbols
 binary coded decimal

(BCD) code
• uses 4 bits for

each decimal digit

51

0000 0
0001 1
0010 2
...
1001 9

©
G

er
t

Je
rv

an
©

G
er

t
Je

rv
an

Code Word

• A code word is a collection of symbols
used to represent a particular piece of
data based on specified code

• A word is an n-tuple not satisfying the
rules of the code

• Codewords should be a subset of all
possible 2n binary tuples to make error
detection/correction possible
 BCD: 0110 valid; 1110 invalid
 any binary code: 2013 invalid

• The number of codewords in a code C is
called the size of C

52

©
G

er
t

Je
rv

an
©

G
er

t
Je

rv
an

Encoding vs. decoding

• The encoding process is the process of
determining the corresponding code
word for a particular data item.
 Example: given the decimal 9, encoding

determines the BCD representation of 1001.

• The decoding process is the process of
recovering the original data from the
code word.
 Example: decoding transforms the BCD code

0011 into the decimal 3

53 ©
G

er
t

Je
rv

an
©

G
er

t
Je

rv
an

Encoding/decoding

• 2 scenario if errors affect codeword:
 correct codeword → another codeword
 correct codeword → word

54

21.03.2014

Gert Jervan, TTÜ/ATI 10

©
G

er
t

Je
rv

an
©

G
er

t
Je

rv
an

Error Detection

• We can define a code so that errors
introduced in a codeword force it to lie
outside the range of codewords
 Basic principle of error detection

55 ©
G

er
t

Je
rv

an
©

G
er

t
Je

rv
an

Error Detection

• Error detection: code word is invalid

56

©
G

er
t

Je
rv

an
©

G
er

t
Je

rv
an

Error Correction

• We can define a code so that it is
possible to determine the correct code
word from the erroneous codeword
 Basic principle of error correction

57 ©
G

er
t

Je
rv

an
©

G
er

t
Je

rv
an

Error Correction

• Error correction: correct word can be
identified from the corrupted word

58

©
G

er
t

Je
rv

an
©

G
er

t
Je

rv
an

EDC/ECC

• Error Detecting and Correcting Codes

• Separable/non-separable codes
 Separable: original information is

appended with new information

59

T

Error Model E

U ZCoding
Decoding

Detection/
Correction

Error

©
G

er
t

Je
rv

an
©

G
er

t
Je

rv
an

EDC/ECC

• Characterized by the number of bits that can be
corrected
 double-bit detecting code can detect two

single-bit errors
 single-bit correcting code can correct one

single-bit error

• Hamming distance gives a measure of error
detecting/correcting capabilities of a code
 Number of bit positions in which the two

words differ
• Hamming distance of 1: 0000 to 0001; 2: 0000 to

0101

 Code distance:
• Minimum Hamming distance between any two valid

code words
60

21.03.2014

Gert Jervan, TTÜ/ATI 11

©
G

er
t

Je
rv

an

3-dimensional space (3-bit words)

61 ©
G

er
t

Je
rv

an

Error Detection

• If codewords are on distance ≥ 2, we
can detect single-bit errors

62

©
G

er
t

Je
rv

an

Error Correction

• If codewords are on distance ≥ 3, we
can correct single-bit errors

63

©
G

er
t

Je
rv

an
©

G
er

t
Je

rv
an

Code Distance

Cd = 2 code detects all single-bit errors
code: 00, 11
invalid code words: 01 or 10

Cd = 3 code corrects all single-bit errors
code: 000, 111
invalid code words: 001, 010, 100,

101, 011, 110

64

• Code distance is the minimum Hamming
distance between any two distinct
codewords

©
G

er
t

Je
rv

an
©

G
er

t
Je

rv
an

Code Capabilities

• To correct ε-bit errors a code should
have the code distance Cd ≥ 2ε +1

• To be able to detect ε-bit errors a code
should have the code distance Cd ≥ ε
+1

• A code can correct up to c bit errors and
detect up to d additional bit errors if and
only if:

2c + d + 1 ≤ Cd

65 ©
G

er
t

Je
rv

an
©

G
er

t
Je

rv
an

Separable/non-separable code

• Separable code
 codeword = data + check bits
 e.g. parity: 11011 = 1101 + 1

• Non-separable code
 codeword = data mixed with check bits
 e.g. cyclic: 1010001 -> 1101

• Decoding process is much easier for
separable codes (remove check bits)

66

21.03.2014

Gert Jervan, TTÜ/ATI 12

©
G

er
t

Je
rv

an
©

G
er

t
Je

rv
an

Information Rate

• The ratio k/n, where
 k is the number of data bits
 n is the number of data + check bits

is called the information rate of the code

• Example: a code obtained by repeating
data three times has the information
rate 1/3

67 ©
G

er
t

Je
rv

an
©

G
er

t
Je

rv
an

Code Characterization

• Cost: number of bits n that it needs
• Power of expression (cardinality):

number of codewords N that it is able to
represent

• Error model: defining the errors
detected and/or corrected
 Redundancy rate: rr=r/k (r: added bits)
 Density of a code: d=N/2n
 Coverage rate

68

©
G

er
t

Je
rv

an
©

G
er

t
Je

rv
an

Information redundancy

• Use of parity
 very effective single error detection
 encoding and decoding cost is low
 commonly used in memories,

transmission over short reliable channels
 limitations

• unable to detect common multiple errors
• can not be used in data transformation - for

example addition does not preserve parity

69 ©
G

er
t

Je
rv

an
©

G
er

t
Je

rv
an

Information redundancy

• Error correcting codes
 triplication
 Hamming code
 byte error detection/correction
 cyclic code

• m-out-of-n codes
 encode each word (data/control) such

that the coded word is of length n and
each coded word has exactly m 1’s in it
• can detect all single errors
• can detect all unidirectional multiple errors

70

©
G

er
t

Je
rv

an
©

G
er

t
Je

rv
an

Information redundancy

• Berger codes
 n information bits are encoded into an

n+k bit code word. The k check bits are
binary encoding of the number of 1’s (or
0’s) in the n information bits
• can detect all single errors
• can detect all unidirectional multiple errors if

carefully designed

• Arithmetic codes
 AN code

• used for arithmetic function unit designs
• each data word is multiplied by a constant A
• makes use of the identity A(N+M) = AN + AM
• choice of A is important

71 ©
G

er
t

Je
rv

an
©

G
er

t
Je

rv
an

Information redundancy

• Arithmetic codes (Contd.)
 Residue code

• makes use of the fact
(M+N) mod k = (M mod k + N mod k) mod k

 Checksums
• data is sent/stored with a checksum and when

used the checksum is regenerated and
compared to the a priory known checksum

• functions used for checksum
• add, exclusive-OR (bit wise), end with end

around carry, LFSR, …
• limitation

• can only perform (normally) error detection

72

21.03.2014

Gert Jervan, TTÜ/ATI 13

©
G

er
t

Je
rv

an
©

G
er

t
Je

rv
an

Reed-Solomon Code

• Reed-Solomon (RS) codes are a class of
separable cyclic codes used to correct
errors in a wide range of applications
including
 storage devices (tapes, compact disks, DVDs,

bar-codes)
 wireless communication (cellular telephones,

microwave links)
 satellite communication, digital television,

high-speed modems (ADSL, xDSL)

73 ©
G

er
t

Je
rv

an
©

G
er

t
Je

rv
an

Example: RS(255,223) code

• A popular Reed-Solomon code is
RS(255,223)
 symbols are a byte (8-bit) long
 each codeword contains 255 bytes, of

which 223 bytes are data and 32 bytes
are check symbols

 n = 255, k = 223, this code can correct
up to 16 bytes containing errors

 each of these 16 bytes can have multiple
bit errors.

74

