

	Current Situation	
	 Soft errors induced the highest failure rate of all other reliability mechanisms combined 	
	Rober Baumann, TI	
BAIR VIDO O		29

	Measuring	
	 The rate at which SEUs (single-event-upsets) occure is given as SER, measured in FITs (failures in time) 	
	 1 FIT = 1 failure in 1 billion device-operation hours 	
	 1000 FIT ≈ MTTF 114 years 	
		30

	Failures
	 Crash Failure: After an error has been detected, the component stops silently.
	• Omission Failure: Sometimes a result is missing; when result is available, it is correct.
	Consistent Failure: If there are multiple receivers, all see the same erroneous result.
	 Byzantine (Malicious, Asymmetric) Failure: Different receivers see differing results.
uer	
© Gert Jerv	32

35

Fault Tolerance

- Fault detection is the process of recognizing that a fault has occurred. Fault detection is often required before any recovery procedure can be initiated. The techniques include error detection codes, self-checking/failsafe logic, watchdog timers, and others.
- **Fault location** is the process of determining where a fault has occurred so that an appropriate recovery can be initiated.

	Dependability	
	 Property of a computing system which allows reliance to be justifiably placed on the service it delivers 	
	 Dependability = reliability + availability + safety + security + 	
	 Reliability → continuity of correct service Availability → readiness of usage 	
	 Safety → no catastrophic consequences 	
ervan	Security → prevention of unauthorized access	
© Gert J		38

	Reliability	
	 A measure of an it performing its intended function satisfactorily for a prescribed time and under given environment conditions. 	
	 Probability that system will survive to time t In aerospace industry the requirement is that failure probability is 10-9 (one failure over 109 hours (114 000 years) of operation) 	
	Time To Failure (TTF)	
	40	

	Maintainability
	 <i>M</i>(<i>t</i>) is the probability that a failed system will be restored within a specified period of time <i>t</i>. Restoration process: locating problem, e.g. via diagnostics physically repairing system bringing system back to its operational condition
© Gert Jervan	43

	Graceful Degradation
	 The ability of system to automatically decrease its level of performance to compensate for hardware failure and software errors.
© Gert Jervan	44

Nines	Availability	Downtime per year	Downtime per week	Example
2 nines	99%	3.65 days	1.7 hours	General web site
3 nines	99.9%	8.75 hours	10.1 min	E-commerce site
4 nines	99.99%	52.5 min	1.0 min	Enterprise mail server
5 nines	99.999%	5.25 min	6.0 s	Telephone system
6 nines	99.9999%	31.5 s	0.6 s	Carrier-grade network switch

	Historical Evaluation	
	Mean Time Between Failures:	
	MTBF = MTTR + MTTF	
	 ENIAC. MTBF: 7 minutes (18000 vacum tubes) ENIAC → TX-2 interactive computer (MIT) → web F-8 Crusader - first fly-by-wire, 375 hours → 750 hours (IBM AP-101) MD-11 	
	A320 family Patriot missile defence system	
Van	 1/3 sec in 100 hours, targeting error: 600 m Needed reboot after 8 hours, was learned in hard way 	
er ver re		46

Safety
 Attribute of a system which either operates correctly or fails in a safe manner
 Freedom from expose to danger, or exemption from hurt, injury or loss.
"Fail-safe": traffic lights start to blink yellow
Degrees of safety
Closely related to risk
52

	Questions?
	Gert Jervan

	Administrative issues		
	www.pld.ttu.ee/IAF0530		
	Gert Jervan		
	ICT-527 620 2261		
	gert.jervan@ttu.ee		
	www.pld.ttu.ee/~gerje		
an	Case Studies Presentation + report		
© Gert Jerv	• Exam	57	