

Test Generation for Finite State Machines

R. Ubar, M. Brik

Tallinn Technical University

Ehitajate tee 5, EE0026, Tallinn, ESTONIA, e-mail: raiub@pld.ttu.ee

�Abstract. In this paper, a new multi-level technique, based on alternative graphs, with uniform procedu-res at each level for test generation in finite state machines (FSM) is presented. For the description of function (behavior), structure and faults in FSM, three levels are used: functional (state transition diagrams), signal path and gate level. In test genera-tion, simultaneously all levels are used. Faults from different classes are inserted and activated at diffe-rent levels by uniform procedures. State initialization and fault propagation are carried out only at the functional level. Backtracking will not cross level borders, hence, the high efficiency of test generation can be reached.

l. Introduction

The difficulty in generating tests for FSMs lies basically in 1) setting states of flip-flops into a certain combina-tion so that the fault under test was activated, and, 2) propagating the fault effect to primary outputs [1]. An input sequence is usually required in both cases. The longer the length of the shortest input sequence needed, the more difficult it is to find an input sequence to test the circuit. Deterministic structural approaches [1] are ineffective because no a priori knowledge of the length of the test is available: a large amount of effort may be wasted in trying to find short sequence tests for faults that require long ones. Random testing [2] can be very time consuming for "hard" faults that have only few long test sequences. Functional approaches based on branch testing [3] are more efficient than structural approaches, however the fault coverage in relation to structural faults remains open.

In this paper, we use alternative graphs (AG) [4] as a model for systematic multi-level solution of test genera-tion in FSMs. For describing the function (behavior), structure and faults in FSMs, three levels are used: functional (state transition diagrams), logical or signal-path and gate levels. For all these levels, a uniform model of FSM in the form of AGs is proposed. The uniformity of the model allows to use the same technique for all levels. Different fault classes have been proposed, which traditionally are specified at different FSM representation levels, e.g. gate-level stuck-at faults, STD-level transition (branch) faults. In this paper, the faults are activated on the level where they are specified. State initialization and fault propagation are carried out only at the functional level. Inconsistencies in signal assignment are solved inside the level they were assigned and backtracking will not cross the level borders. This helps to reduce search area during test generation.

2. Representation of FSMs by alternative graphs

To simplify further considerations, let us assume some restrictions about the class of FSMs considered without loss of generality of the approach. We assume the FSM is synchronous and free of races under simple design rules Moore machine. We also assume there is a reset state, all other states are reachable from the reset state, and memory elements such as D flip-flops are identified and represented as logical primitives to facilitate loop cutting and representing the FSM as an iterative array of combinational circuits.

There are two ways of representing FSMs: 1) structural way by a circuit which can be decomposed into combi-national and memory parts, and 2) functional way by STDs. In the first case, there is no principal difference in using AGs for representing FSMs compared to the case of combinational circuits [4]. The output and transition functions of the FSM are Boolean and therefore can be represented by AGs for Boolean functions (or BDDs [5]). For the second case, we use integer variables for representing inputs, outputs and internal states of the FSM. A FSM is represented by AGs [4] for describing, correspondingly, the transition and output behaviors of the machine. By introducing complex variables and representing the FSM by a single complex function q.y = f(q',x), where state variable q and output variable y are concatenated, we can represent a FSM by a single AG. As an example, in Fig.1 two representations of a FSM by a STD and by an AG are depicted. AG represents the complex behavior function of the FSM q.y = F(q', Res, xl, x2) where q.y is the concatenation of the integer state variable q (with possible values 1,2,3,4,5,6 for repre-senting states) and the binary output variable y. Input of the FSM is structured and represented by three Boolean variables Res, xl and x2. By q' we denote the previous state variable. Terminal nodes of the AG are labelled by complex (concatenated) constants which represent the new state of the FSM and the value of the output variable y at the new state. Differently from the usual form of STD, to be able formally to model the faulty behavior of the FSM, we have to specify in AGs if possible, also the behavior of FSM at illegal states, denoted by q = *. In the example In Fig.1, for illegal states, it has been assumed that y = 0.

�

�

Fig.1. FSM representations by a STD and a functional level AG.

�3. Fault model

The faults of the FSM circuitry can be divided into the following fault classes: a) transition faults that effect on transition conditions, b) input faults that effect on the input, and c) state faults that effect on the state.

The class of transition faults is related exclusively to the circuitry which calculates the transition condition effect, provided that all condition signals are fault free. These faults are difficult to define at the functional level because of the implementation dependency. Assume that all the next-state ciruits for different flip-flops are disjoint. If it is not the case, the faults in joint parts of the logic shared for different flip-flops will be handled in the same way as input and state faults. It is easy to notice that in the assumed case the transition faults influence always only on a single transition condition and therefore they cannot mask themselves as long the same transition will not be repeated. It means that as long not yet tested loops are not containing in test sequences, these faults manifest himself as single faults in the whole iterative array related to the test sequence. This property gives the possibility to carry out the test synthesis on different levels without crossing the level borders if backtracking is needed. Particularly, the fault activization will be carried out on the gate level where the faults are specified, whereas the signal justification (state initialization) and the fault propagation can be carried out on the functional level given by STDs. Transition faults can be concisely represented in structural AGs of the next-state logic.

Input faults in FSMs are related to the input lines and, in general case, they affect on more than one transition conditions during the test sequence. Hence, a single structural fault manifests himself as a multiple fault in the iterative array, which results in difficulties of test generation at the structural level. From the other point of view, input faults are easily to be specified, activated and propagated at the functional level.

State faults in FSMs are related to the memory flip-flops and, at the functional level, they could be related also to the state decoder, if the latter is a part of the next-state logic or if it is used for implementing output functions. For flip-flops, the stuck-at-0 (1) fault model can be used. For the state decoder, at the functional level, a more general functional fault model is used: stuck-at-0 (1) on outputs and the faults "instead of given output, another output is active". For the given example, the latter case is represented by faults at the node q’ in Fig.1. The state faults affect upon more than one transition conditions and represent also the multiple fault case for the iterative array model. To simplify the test synthesis, these faults should be processed only at the functional level represented by STD i.e. by corresponding AGs.

For efficient test generation, a multi-level approach is advisable, where different faults are processed at diffe-rent levels. Traditionally, different levels imply the use of many models and algorithms. Introducing AGs as a model for FSMs allows to remove this drawback.

4. Test sequence generation

The test sequence for a single fault consists of three subsequences: initialization, activation and fault propa-gation sequences. From above it follows that creation of these subsequences can be carried out at the functional level, except only the fault activation stage for transition faults in the current time frame, which has to be processed at the structural level. However, also for transition faults, after they are activated at the structural level, the results can be easily transformed as well to the functional level by specifying the internal and input states needed for fault activation.

�

�

Fig.2. Test generation procedure for the current time frame (current state of the FSM)

�Test sequences for different faults will be automatically pipelined (overlapped) if we organize the test procedure by moving and activating faults along paths in the STD rather than by generating tests for different faults separately. The necessary but not sufficient condition to create a test is traversing a set of paths that contains all branches in the STD. If not all faults are yet tested by this sequence, we have to find a set of branches needed for activating the remaining faults, and to traverse a new set of paths that contain all these branches. This procedure has to be repeated until all the faults in FSM will have a test sequence. In this procedure, at each current step we have the following information: the current state q' reached by traversing the STD, and the list Q'(q') = { qk' (F)} of faulty states qk' for faults f (F activated, but not yet detected, and propagated up to this step (for all qk' : y(qk') = y(q') is valid); the faults f are needed to be indicated at the related faulty state only if they manifest himself as multiple faults.

The operations to be carried out at the current step of the test generation procedure are as follows (Fig.2):

a) For the structural level: 1) the current state q is decoded into state signals of flip-flops Ti; 2) fault activation is carried out and input pattern is generated for not yet tested structural faults, or the test pattern is analysed for faults detected, if it is already available; 3) the results are transformed into the functional level (input pattern is transformed into input state, and for each detected fault, a faulty next state is calculated and included into Q);

b) For the functional level: 1) fault activation is carried out and input pattern (input state) is generated for not yet tested functional faults, or the test pattern is analysed for faults detected, if it is already available); 2) for each detected fault, a faulty next state is calculated and included into Q; 3) the next state q for the current q' is calculated; 4) for all current faulty states qk' (Q', faulty next states are calculated and included into Q; 5) for all faulty next states qk (Q', the following analysis is carried out: if y(qk) (y(q) then, the faults, related to qk, are detected; qk is excluded from Q, else if y(qk) = y(q) then the faults related to qk, are not detected and they are propagated into the next time frame.

Fault activation (or test analysis) at both, structural and functional levels are carried out by uniform procedures using corresponding structural or functional AGs. Also next state calculation and fault detectability analysis are carried out on AGs which represent STDs.

5. Experimental results

A multi-level test generation system CPTEST [5], was implemented at the Tallinn Technical University. The FSMs considered as examples for experimental research are those of MCNC standard benchmarks for synthesis. For our experiments, the gate-level implementations were synthesized by Synopsys. Test generation results for 15 FSM’s are described in the table. On the left side, the length of test needed in order to have traversed throughout all branches in STG each at least once, the fault coverage achieved by traversing all branches, and the time required for that on a PC 486 66MHz are shown. On the right side, the length of test, total number of faults, the numbers of activated and detected faults, fault coverage, and the time are given. In the present version of CPTEST, for searching the target state (when activating a target fault), and for searching the state where the activated fault can be detected, the random path traversing technique is used. Also, in this version nonefficient traversing cycles which do not increase the fault coverage are not excluded from the total test sequence. A new technique is currently under development which is expected to increase the efficiency of the tool in reducing the test length, test generation time and increasing the fault coverage.

�

FSM�Test length�Coverage, %�Time, min�Test length�Total�Ins.

Faults�Detected faults�Coverage,%�Time, min��lion9�33�91.96 �0.00,42�37�112�112�112�100.00�0.00,45��bbara�93�91.58�0.02,60�144�202�194�193�95.54�0.03,18��cse�222�92.78�0.21,70�615�540�538�527�98.70�0.43,44��sand�345�96.40�0.52,84�767�1140�1119�1119�98.16�1.22,09��planet�417�97.20�0.45,92�900�1070�1058�1058�98.88�1.22,07��vtiidec�38�93.33�0.01,02�823�210�207�207�98.57�0.12,58��log�53�94.71�0.11,64�399�378�367�367�97.09�0.40,70��s27�53�100�0.00,38�48�60�60�60�100.00�0.00,36��beecount�49�90.48�0.01,47�150�126�126�120�95.24�0.02,70��mul8x8�40�89.36�0.00,54�313�94�94�93�98.94�0.01,76��

�6. Conclusions

We have introduced AGs as a model for multi-level test generation in FSMs. For describing functions, structure and faults in FSMs, three levels are used: functional (STD), logical or signal-path and gate levels. For all levels, uniform language, fault model and uniform procedures for test synthesis were developed. The uni-formity allows easily to move and carry partial results from level to level when generating tests. From the more general point of view, the uniformity of the model allows to generalize methods, developed earlier for the logical level, to higher functional levels as well. The fault model for AGs can be regarded as a generalization of the classical gate-level stuck-at fault model for higher level representations of systems. In test generation, simultaneously all levels are used. One part of faults are specified at the gate level, however, for further proces-sing, the gate� level fault model is replaced by a more concise signal-path fault model. Another part of faults are specified at the functional level. State initialization and fault propagation are carried out only at the functio-nal level. The approach allows to solve inconsistencies by backtracking on the level where signals were assigned, without crossing level borders. This helps to reduce the search area during test generation, i.e. the complexity of test generation for sequential circuits is reduced to the one of the combinational parts.

References

[1] Ghosh A., Devadas S., Newton A.R. Sequential logic testing and verification. Kluwer Acad. Publish.,1992,214 p.

[2] Agrawal, W.D. When to use random testing. IEEE Trans. on Computers, vol. C-27, Nov.1978, pp.1054-1055.

[3] Cheng, K.-T., Jou J.-Y. Functional test generation for FSMs. IEEE Int. Test Conference. 1990, pp.162-168.

[4] Ubar R. Test Synthesis with alternative graphs. IEEE Design & Test of Computers. Spring 1996, pp.48-57.

[5] Minato S. Binary Decision Diagrams and Applications for VLSI CAD. Kluwer Academic Publish.,1996, 141 p.

�

�PAGE �4�

�PAGE �1�

