
THE INCREASING COMPLEXITY
of digital circuits renders classical

gate level test generation impracti-

cal, and researchers have devoted

much effort to developing an alter-

native field of functional testing that

decreases test generation complex-

ity.1-3 However, estimating fault cov-

erage at the functional level is

difficult because the accuracy of

functional fault models is unproven

and gate level models better char-

acterize physical faults.

A solution to these shortcomings,

hierarchical test generation, ap-

peared in the last decade.4,5 It in-

corporates the benefits of functional

testing yet retains the accuracy of

gate level fault models.

However, representing digital

systems at various levels (behavioral,

procedural, functional, or gate) usual-

ly needs different mathematical tools

for each level. For example, for systems

represented as a composition of con-

trol and data parts, we use different ap-

proaches, tools, and fault models to

handle each part. This increases CAD

system costs because we must purchase

and develop many design tools. Also, it

is difficult to integrate test generation

tools for systems represented at mixed

levels simultaneously.

The lack of a general theory for

mixed-level representations (analogous

to Boolean algebra for the gate level)

makes it difficult to define and correct-

ly solve problems related to test syn-

thesis and analysis, fault masking, and

test quality for complex digital systems.

Different test design tools (test genera-

tion, two- or multivalued simulation, test

quality analysis, statistical fault grading,

testability analysis, and so on) need dif-

ferent models to represent design com-

ponents. These tools represent

components as functions, algorithms,

operators, or rules (given in different

languages) for solving corresponding

component test design subtasks.

Consequently, we have to develop

many component model libraries

to support various test design tools.

Purchasing or updating these li-

braries adds to CAD system costs.

I propose a new approach based

on using alternative graphs (AGs) to

create tools for computer-aided test

design of digital systems. AGs serve

as a mathematical basis for solving

a wide spectrum of test design tasks

using a single model base and a re-

stricted set of procedures (horizon-

tal or cross-task universality of AGs).

Figure 1 depicts AND gate models

for different test design tasks; each

task requires different component

libraries. In contrast, a single library

of AGs will suffice for all these tasks.

Unlike analog binary decision dia-

grams,6-9 AGs represent, in a compressed

form, the topology of gate level circuits.

They therefore directly support test de-

sign for gate level structural faults with-

out representing them explicitly. Binary

decision diagrams do not represent the

topology and therefore using them leads

to functional tests that may not ade-

quately detect structural faults.

In addition, AGs support a uniform

approach to digital test design at sever-

al system levels (vertical or cross-level

universality of AGs), whereas binary de-

cision diagrams support only the

Boolean level. I earlier proposed the

Test Synthesis with
Alternative Graphs

F U N C T I O N A L T E S T I N G

48 0740-7475/96/$05.00 © 1996 IEEE IEEE DESIGN & TEST OF COMPUTERS

Alternative graphs provide an
efficient, uniform model describing
the structure, functions, and faults
in a wide class of digital circuits
and for different representation

levels. For test pattern generation,
they provide a general theoretical

basis for combining high-level
approaches, symbolic techniques

based on binary decision
diagrams, and traditional
topological algorithms.

RAIMUND UBAR

Tallinn Technical University

SPRING 1996 49

use of AGs for test generation in digital

circuits10 and later formulated a gener-

alized approach for high-level tests.11-13

Model
AGs may represent a set of digital

(Boolean or integer) functions y = F(X)

of components or subcircuits in digital

systems. Here, y is an output variable,

and X is a vector of input variables of

the component or subcircuit.

Definition 1. In the general case, an

AG that represents function y = F(X) is

a directed, noncyclic graph Gy =

(M,Γ,X) with set of nodes M, single root

node m0 ∈ M, and relation Γ in M,

where Γ(m) ⊂ M denotes the set of suc-

cessor nodes of m. Nonterminal nodes

m for Γ(m) ≠ ∅ have variables xi ∈ X as

labels. Terminal nodes m for Γ(m) = ∅
have variables xi, functional subex-

pressions of F(X), or constants as labels.

Let x(m) be the label of node m. In

graph Gy, for all nonterminal nodes m

for which Γ(m) ≠ ∅ , a one-to-one cor-

respondence exists between the values

of label variable x(m) and the succes-

sors, mk ∈ Γ (m) of m.

Representing Boolean functions.

Consider a special case of AGs that rep-

resent Boolean functions and digital cir-

cuits at the logical level.

Definition 2. An AG that represents a

Boolean function y = f(X) = f(x1, x2, ...,

xn) is a binary decision diagram in

which (inverted or noninverted)

Boolean variables xi, (i = 1, 2, ..., n) label

nonterminal nodes, and constants 0 or

1 label terminal nodes.

Let m0 ∈ Γ (m) denote the successor

of m that corresponds to value x(m) = 0

and m1 ∈ Γ (m) denote the successor

that corresponds to value x(m) = 1.

Definition 3. We call an output edge

from m to me, e ∈ {0,1}, activated when

label variable x(m) has value e. A path

in an AG is activated if all the edges

forming this path are activated. An AG

is activated to the value 0 (or 1) if there

exists an activated path that includes

both the root node and the terminal

node labeled by the constant 0 (or 1).

Definition 4. AG Gy with nodes la-

beled by variables x1, x2, ..., xn represents

Boolean function y = f(X) = f(x1, x2, ...,

xn), if for each pattern for X, the AG will

be activated to the value that equals y.

Using definitions 3 and 4, we can cal-

culate y with graph Gy. For that pur-

pose, we trace a path in the AG

Observability

calculation

Oa = Oc + Cb(1) + 1

Controllability

calculation

Cc(0) = min [Ca(0), Cb(0) + 1]

Statistical

fault grading

Pc(0) = 1 − Pa(1) Pb(1)

Deductive

fault analysis

Lc = (La & Lb) V c/1

Multivalued

simulation

AG model

Test

generation

Fault

simulation

Test

simulation

Test design tools

Component

Traditional case New approach

Many component

model libraries

c = a AND b

a
b c

Delay

fault analysis

0

0

0

0

0

0

0

1

e

h

x

1

0

1

e

h

x

e

0

e

e

x

x

h

0

h

x

h

x

x

0

x

x

x

x

b

1

d

d

a

d

1

d

c

d

d

d

c a b

One

library

Figure 1. Horizontal (cross-task) universality of AGs.

About Estonia

Capital: Tallinn
Area: 45,100 km2

Population: 1,625,399
Chief of state:President Lennart Meri

In 1918, original course offerings at
Tallinn Technical University (http://
zaphod.cc.ttu.ee/) included mechani-
cal, electrical, civil, and hydraulic engi-
neering; shipbuilding; and architecture.

Today, economics, information technol-
ogy, and mechanical engineering are
the most popular majors.

F U N C T I O N A L T E S T I N G

50 IEEE DESIGN & TEST OF COMPUTERS

activated by values of x ∈ X and find

this path’s terminal node. The constant

at this node is the value of y.

Structural AGs. Consider a digital

system as a network of components,

each of which executes one or more

Boolean functions. Consequently, we

can represent a digital system by a set

of corresponding AGs. For a gate level

description, the number of AGs equals

the number of gates in the circuit.

However, we can decompose a given

gate level circuit into subcircuits and

represent subcircuit functions by AGs,

thus obtaining a compressed AG de-

scription of the circuit.

Example 1. Figures 2b and 2c show

two AG representations of a combina-

tional circuit (Figure 2a). The labels

x(m) ≡ i inside nodes denote input vari-

ables i of the circuit. For simplicity,

Figures 2b and 2c omit activating val-

ues of variables on edges (by conven-

tion, the activation value for leaving a

node to the right is 1; downward, 0). It

also omits terminal nodes with con-

stants 0 and 1. (By a similar convention,

leaving the AG node to the right corre-

sponds to y = 1; from the bottom, y = 0.)

To create AGs that satisfy these con-

ventions, we may use inverted vari-

ables as node labels.

To generate structural AGs, consider

the following procedure for superposition

of graphs analogous to superposition of

functions. If label variable x(m) of node

m in G is a function represented by an-

other AG, Gx(m), we can replace node m

with graph Gx(m).
10 By starting from the AG

of the output gate in a gate level AG de-

scription and iteratively using this super-

position procedure, we can compress the

circuit’s AG representation. (Each substi-

tution reduces the model by one node

and one AG.) It is evident that we may not

compress the model beyond fan-out

points. Therefore, to maximize AG mod-

el compression, we should only generate

AGs by superposition for treelike subcir-

cuits. That is, we stop the superposition

procedure at nodes labeled by fan-out

variables that correspond to the original

circuit’s fan-out nodes. AGs created by su-

perposition are structural AGs.

Structural AGs have an important

property:10 Each node m in a structural

AG G that describes treelike subnet-

work SG of circuit S represents a signal

path Lm in SG. The one-to-one corre-

spondence between nodes m and

paths Lm results from superposition. Let

us show it recursively. For structural AG

G (as just described), all label variables

x(m) in G correspond to inputs of SG,

and Lm denotes the path in SG from in-

put x(m) to the output of SG. Suppose

variable x(m) is an output variable of

component Kx(m) in S. Superposition of

node m in G with graph Gx(m) means in-

cluding Kx(m) into tree SG and extending

path Lm by inputs x(m*) of Kx(m) for all

new nodes m* in G labeled x(m*).

The nodes of a structural AG corre-

spond one to one with the paths in the

associated subnetwork. Thus it follows

that the number of all nodes in the set of

structural AGs representing a given cir-

cuit equals the number of paths in all

the circuit’s treelike subnetworks.

Using structural AGs, it becomes pos-

sible to rise from the gate level descrip-

tion of a digital circuit to a higher level

of compressed structural description

and accurately represent gate level

stuck-at faults. In fact, all gate level faults

along signal path Lm will collapse

through superposition to the two rep-

resentative faults of label x(m) at node

m. Hence, we can simulate structural,

stuck-at faults in the path of a gate level

circuit by simulating faults at a node in

the structural AG.

Example 2. Figure 2b depicts an ex-

ample structural AG for the circuit in

Figure 2a. Node m = 4 (labeled by the

variable x(4) ≡ 2
--
) represents the lower

path in the original circuit (indicated

by heavyweight lines). The path ex-

tends from 22 (which denotes the lower

branch at input 2) to circuit output y: L4

= (22,9,12,14,16,y). Node 3 in the struc-

tural AG (labeled x(3) ≡ 2) represents

6
8�

1

9�

7�

16�

y�

14�

15�

17�

10�

11�

13�

12�

2

4

5

3

1�

1�

1�

(a)

y�

y = 0�

y = 1�

4�

2�

1�

1�

3�

5�

(c)

3�

3�

2�

4�

(b)

y�

4�

1�

2�

1�

2�

3�

3�

1�

4�

6�

7�

8�

y = 0�

4�

5�

9�

10�

2�

4�

5�

 y = 1�

3�

(d)

12345

1001-�

y

1�

Figure 2. Combinational circuit (a), corresponding structural AG (b), and functional AG (c) with example test pattern (d).

SPRING 1996 51

the path from upper branch 21 of input

2 to output y: L3 = (21,8,14,16,y).

Functional AGs. Another way to

generate logical-level AGs uses imple-

mentation-free descriptions of digital de-

vices (Boolean expressions, truth tables,

and so on). In this case, we can use the

methods developed for binary decision

diagram synthesis.6,7 Since we do not de-

rive these graphs from the structure and

they represent only the circuit’s func-

tion, we call them functional AGs.

Unlike structural AGs, there is no one-to-

one correspondence between the AG

nodes and paths in a circuit.

Example 3. Figure 2c depicts an ex-

ample of a functional AG for the given

circuit. Node 3 in the functional AG (la-

beled x(3) ≡ 2) does not represent any

path of the original circuit. Hence, in

general, functional AGs do not repre-

sent structural faults inside circuits.

However, we may use them to obtain

concise functional descriptions.

Dynamic combination of functional

and structural AGs can contribute to ef-

ficient test generation or fault simulation

for large digital circuits. In general, func-

tional AGs afford a more concise de-

scription than structural AGs. We can

therefore use them to solve justification

tasks or generate sensibility conditions

for fault propagation between inputs and

outputs in black-box components.

Structural AGs represent implementa-

tion-dependent faults in components or

subcircuits. State transition and output

functions represent sequential parts in

digital circuits. We may in turn represent

such parts of circuits with either struc-

tural or functional AGs.

ATPG. A promising trend in automatic

test pattern generation combines sym-

bolic techniques based on binary deci-

sion diagrams and traditional topological

algorithms.14 The AG approach provides

a uniform theoretical basis for that

methodology. In such a case, we should

base topological algorithms on structur-

al AGs and use functional AGs to support

the symbolic technique. The experi-

mental results presented later show that

topological ATPG based on structural

AGs is about two to five times more effi-

cient than using a gate level topology.

General case of AGs. Consider a

digital system as a dynamic system S =

(Z,F). Here Z is a set of digital variables

z (the numbers V(z) of possible values

for z ∈ Z are finite), and F is a set of dig-

ital functions on Z. An AG model rep-

resents system S such that for each

function zk = fk(Zk), zk ∈ Z, fk ∈ F, and Zk

⊂ Z, there exists an AG, Gk. Depending

on the class of digital system (or level

of its representation), we may develop

various AGs in which nodes have dif-

ferent interpretations and relationships

to the system structure. These relation-

ships directly influence the potential for

representing high-level (functional)

faults of systems using AGs.

In Boolean representations, Boolean

variables, expressions, or constants la-

bel all AG nodes. In structural AGs, each

node represents a signal path in the cor-

responding logic circuit. In register

transfer level (RTL) descriptions, we

usually decompose digital systems into

control and data parts. State and output

variables of the control part serve as ad-

dresses and control words, and the vari-

ables in the data part serve as data

words. High-level data word variables

describe RTL component functions in

data parts. We can transform RTL func-

tions zk = fk(Zk), where zk and z ∈ Zk are

either Boolean or integer variables, into

AGs.

For example, either Boolean variables

(representing logical conditions) or in-

teger variables (representing current

states) label nonterminal nodes in AGs

that represent state transition functions

of control parts. On the other hand, in-

teger constants (next states or address-

es) or expressions for calculating next

states label the terminal nodes. In AGs

that represent components or subcir-

cuits of data parts, Boolean variables rep-

resenting 1-bit control signals or integer

variables representing control words or

fields of control words label the nonter-

minal nodes. Terminal nodes carry inte-

ger constants, integer data variables, or

subexpressions of functions zk = fk(Zk) as

labels. These subexpressions represent

microoperations or operations.

In general, terminal nodes in AGs la-

beled by expressions represent data

manipulation functions and the corre-

sponding subcircuits of the data part.

Terminal nodes labeled by variables

represent buses or registers. AG sub-

graphs consisting of nonterminal nodes

represent control functions, whereas

nonterminal nodes labeled by Boolean

variables represent signal paths in the

control circuit (in structural AGs).

Nonterminal nodes labeled by integer

variables represent decoders.

Example 4. Figure 3b (next page) de-

picts an example AG for a digital circuit

(Figure 3a) with function Out repre-

sented at mixed gate and register trans-

fer levels:

if x4 = 1 then

if I = 1 then F(R,In)

else if I = 2 then R

else if I = 3 then

if (x1 AND x2) ∨ (¬x1 AND

x3) = 1 then In

else 0

else 0

else 0

Here x1, x2, x3, and x4 denote Boolean

variables; In (input data), R (register

data), and Out (output data) are inte-

ger variables; F(R,N) represents an RTL

data manipulation expression or

subexpression.

For nodes with Boolean variables,

Figure 3b (next page) omits edge val-

ues and uses the same convention as

Figures 2b and 2c (see Example 1). It

also omits terminal nodes with integer

F U N C T I O N A L T E S T I N G

52 IEEE DESIGN & TEST OF COMPUTERS

constants 0. The graph allows easy sim-

ulation of circuit behavior. For exam-

ple, in the case of mixed-value pattern

1,1,0,1,3,47 (x1, x2, x3, x4, I, In), Out

equals 47, and simulation will trace ac-

tivated path L = (1,2,5,6,7).

Circuit structure is also easy to see in

the AG representation. For example,

node 6 (labeled x2) represents a signal

path from input x2 to output Out of the

circuit. The AG collapses stuck-at faults

along this path into the two representa-

tive faults at node 6. Node 2 (labeled I)

represents decoder DC with all the sig-

nal paths from DC to Out. The AG col-

lapses all the decoding faults and

stuck-at faults in this part of the circuit

into the faults at node 2.

Hierarchical descriptions. We may

easily produce hierarchical AG-based

descriptions, since low-level AGs can

be derived and represent implementa-

tion details for functions given as labels

of high-level AG nodes. This also allows

us to easily move from level to level.

Two means of descending from higher

to lower levels exist.12

First, we represent integer variable

I(m) in nonterminal node m with N =

Γ (m) output edges as a concatena-

tion of subvariables Ii. In this case, we

exchange node m for a decision tree

with nodes labeled by subvariables Ii

that have the same number, N, of out-

put edges. For example, we can ex-

change node m with N output edges

labeled by an n-bit variable for a binary

tree with N output edges. For another

example, we can split instruction word

I into subfields I1, ..., Ik and represent

nodes labeled I using a decision tree

with nodes labeled I1, ..., Ik.

Second, the concatenation of N 1-bit

subexpressions can replace the N-bit ex-

pression in a terminal node. In this case,

we can exchange the terminal node

with a tree that has N terminal nodes la-

beled by 1-bit expressions. Lower-level

graphs that more precisely represent im-

plementation details of corresponding

functions can also replace terminal

nodes.

Fault models. In AGs, a uniform

fault model replaces fault models de-

fined at different digital system repre-

sentation levels. The uniform model

covers the following faulty cases

■ the edge of a node is always acti-

vated

■ the edge of a node is broken

■ instead of the given edge, another

edge or set of edges of a node is

activated

This model leads to exhaustive testing of

a node’s functionality. Model complex-

ity depends on the level of system rep-

resentation—that is, on the functionality

of a node. Each path in an AG describes

the system behavior in a specific opera-

tion mode. Faults affecting the behavior

relate to nodes along the given path and

cause an erroneous change in the path

activated by the test. The physical mean-

ing of faults associated with node out-

puts depends on the relationship

between the node and circuit.12

Depending on the adequacy of the sys-

tem structure representation, the pro-

posed fault model can cover a wide class

of structural and functional faults. We

can regard the fault model defined for

AGs as a generalization of the classical

gate level stuck-at fault model. Fault ob-

jectives for the classical case are Boolean

variables (or literals); fault objectives for

the AG approach are AG nodes.

Let us interpret some well-known low-

and high-level fault models using AG no-

tation. We treat the gate level stuck-at

fault model at the logical level as a spe-

cial case of faults in AGs: those at nodes

labeled by Boolean variables. (In struc-

tural AGs, these faults represent a whole

class of faults along corresponding sig-

nal paths in circuits.) AGs represent RTL

statement faults—such as label, timing

or logical condition, register or function

decoding, and control faults1—as faults

at nonterminal nodes with correspond-

ing labels, conditions, decoding vari-

ables, or control variables. Faults in AGs

at terminal nodes with register variables

or data manipulation expressions repre-

sent RTL statement faults such as data

storage, transfer, and manipulation

faults.1 A single class of faults defined for

an AG node uniformly represents the

fault classes introduced by Thatte and

Abraham1 for microprocessors.

Representing bridging and cross-talk

faults in AGs is also possible. However

such representations will only be as ac-

curate as the level of detail supported

by the AG notation. For example, if

1�

R�

F�

DC�

F(R,IN)�

321�

1�

x1
x2

x3

x4
IN

OUT

OUT

I

F2: bridging fault

F1: x1 stuck-at-1 fault

F3: decoding fault

F3
F4

F1

F2F4: high-level primitive functional fault

1�

x4

2�

2�

3�

5�

6�

7�

8�

4�

3�

1�

I

R

INx1

x3

x2

(a) (b)

Figure 3. Digital circuit (a) and corresponding mixed-level AG representation (b).

SPRING 1996 53

nodes m1 and m2 in the AG represent

paths Lm1 and Lm2 in the circuit, then we

simulate cross-talk or bridging faults be-

tween these paths by values of variables

x(m1) and x(m2). Since AG nodes rep-

resent signal paths in treelike subcir-

cuits, we may also use AGs to simulate

and analyze delay faults in these paths.

Example 5. In Figure 3b, the F1 fault

of node 5 represents the stuck-at-1 faults

of input x1 in Figure 3a. Since node 6 rep-

resents the path from x2 to Out in the cor-

responding circuit (Figure 3a), both of

the node 6 stuck-at faults represent all

the stuck-at faults of this path in the cir-

cuit. Choosing different values for x2 and

x3 activates the F2 bridging fault be-

tween input leads x2 and x3. We may ob-

serve the fault as a change in one of

these values; for example, x3. In Figure

3b, then, F2 would affect node 8 (la-

beled x3). Moreover, for AGs, since

nodes 6 and 8 represent the circuit paths

from x2 and x3 to Out, the AG represents

a whole set of bridging faults between

these paths simultaneously.

The F3 faults of node I in the AG

(Figure 3b) represent decoder DC’s

functional faults and stuck-at faults on

the paths from DC to Out. F4 faults at

node 3 represent faults in block F. As the

representation includes no more details

of function F(R,In), we require an ex-

haustive test for it. To use a hierarchical

test approach, we exchange node 3 for

a structural AG of block F and, instead of

an exhaustive test, may derive a shorter

test from the structural AG.

In Figure 2b, structural AG fault 4/1

(a stuck-at-1 fault at node 4) represents

a class of faults (22/0, 9/1, 12/1, 14/1,

16/1, and y/1) along the bold path of the

corresponding circuit. Testing node 4

in this structural AG is equivalent to test-

ing all the faults in this class of gate lev-

el faults. For functional AGs as well as

binary decision diagrams, in general, it

is impossible to find relationships be-

tween faults in the graph and faults in

the circuit (except for input faults).

Test pattern design
The AG model is well suited to solving

a set of test design tasks: test generation

(fault propagation, line justification, im-

plication), test analysis (simulation, fault

cover calculation, multivalued simula-

tion), testability calculation, and so on.

All these tasks reduce to using a few,

standard path-tracing procedures on

AGs. Traditionally, we had to create dif-

ferent component model libraries to

solve these tasks. As an example, Figure

1 depicts models of AND gates used for

different test design tasks. Using the AG

approach, we need only one AG library.

Simulation (logical level). Test pat-

tern simulation on AGs is equivalent to

tracing paths on graphs according to

variable values for a given test pattern.

As a result of path tracing in Gy, we cal-

culate the y that equals the the label

function value at the terminal node. For

example (Figure 2b) for test pattern

1001- (1,2,3,4,5), we trace the path

through nodes 1, 2, 4, and 5 in the struc-

tural AG (or nodes 1, 3, and 4 in the

functional AG) that yields y = 1.

As initially presented, we may only

analyze faults inside a circuit using

structural AGs (and not arbitrary binary

decision diagrams). Now, let l(m) be

the activated path in the AG from the

root node to node m; l(m,1) or l(m,0)

be the activated path from node m to

the terminal node labeled by constants

1 or 0; and m1 or m0 be the successor of

node m for x(m) = 1 or x(m) = 0. Use the

notation l(m) = 1 or l(m,e) = 1 if a path

l(m) or l(m,e) exists where e ∈ {0,1};

otherwise, l(m) = 0 or l(m,e) = 0.

We may regard fault analysis as the

process of calculating the values of

Boolean derivatives: dy/dx = 1 indicates

that a fault at x is detected at y. For AGs,

dy/dx(m) = 1 is equivalent to either

l(m) ∧ l(m1,1) ∧ l(m0,0) = 1 or (1)

l(m) ∧ l(m1,0) ∧ l(m0,1) = 1 (2)

In other words, dy/dx(m) = 1 is equiva-

lent to the existence of three simultane-

ously activated paths: l(m), l(m1,1) or

l(m1,0), and l(m0,0) or l(m0,1). Let us de-

note dy/dx(m) for simplicity by dy/dm.

For example, for the pattern in Figure

2d, dy/d4 equals 1 for the structural AG

(Figure 2b), since the following three

paths are activated: l(4) = (1,2,4), l(5,1)

= (5,1), l(6,0) = (6,7,9,0), fulfilling the

condition of Equation 1. (In this nota-

tion, boldface numbers are constants

rather than node numbers.) To calcu-

late the faults detected by a given test

pattern, the simulation procedure traces

activated path l in the structural AG from

the root node to a terminal node. We

then calculate Boolean derivative val-

ues for each node on this path.

Example 6. The test pattern in Figure

2d activates structural AG path l =

(1,2,4,5). For node 2, we have dy/d2 =

0, because the pattern does not fulfill ei-

ther Equation 1 or 2: l(m) = l(2) = 1,

l(m1,1) = l(3,1) = 1, and l(m0,0) = l(4,0)

= 0. For other nodes m in this path, we

have dy/dm = 1 (each of these nodes ful-

fills Equation 1). Hence, the test pattern

detects 1/0, 4/0, and 5/0 faults on the

structural AG. These faults represent the

following fault classes: (41/0, 16/0, y/0),

(22/1, 9/0, 12/0, 14/0, 16/0, y/0), and

(71/0, 12/0, 14/0, 16/0, y/0). The inter-

section of the three classes is the set of

gate level faults detected by the pattern.

Here, the subscript at fan-out variables

denotes the number of the fan-out

branch, with branches enumerated

from the top (branch 1) to the bottom.

In the same way, for the functional

AG, we detected 3/1 and 4/0 faults,

which correspond to faults 2/1, 3/1, and

7/0 on the circuit inputs. As the func-

tional AG represents only the circuit

function, it is not possible to detect in-

ternal faults by simulating test patterns

on it. On the other hand, faults at fan-out

inputs in the circuit manifest themselves

as multiple faults on the structural AG.

For example, circuit fault 4/1 is equiva-

lent to multiple fault (1/1, 8/1, 9/0).

F U N C T I O N A L T E S T I N G

54 IEEE DESIGN & TEST OF COMPUTERS

Thus, functional AGs are useful for

simulating faults at fan-out nodes and

for propagating fault effects through

subcircuits. Structural AGs are appro-

priate for representing, collapsing, and

simulating gate level faults inside cor-

responding subcircuits. We have im-

plemented fault analysis methods such

as deductive analysis and parallel, crit-

ical-path tracing12 based on AGs.

Methods and algorithms based on AGs

also exist and for fault diagnosis.15

Pattern generation (logical level).

Line justification is a subtask of test pat-

tern generation and a reversal of the sim-

ulation procedure. To justify line y to

value D, we must solve a corresponding

equation y = F(X) = D. Using the AG mod-

el, line justification becomes a graph (or

path) activation task. To solve y = D in

graph Gy, we must activate Gy to value D.

That is, we create a pattern that activates

a path in the graph from the root node

to a terminal node with a label function

(or constant) equaling D.

Path activation procedures form the

basis for test pattern generation on AGs.

To generate a test for node m, we must

solve one of the conditions of Equations

1 and 2 (that is, simultaneously activate

three nonoverlapping paths).

Example 7. In Figure 2b, to test faults

at node 4, we activate paths l(m) =

(1,2,4), l(m1,1) = (5,1), and l(m0,0) =

(6,7,9,0). This yields test pattern 1D01-

(1,2,3,4,5), where D = 0 for stuck-at-1

faults, and D = 1 for stuck-at-0 faults. We

activated the paths and generated the

pattern without backtracking. For the

structural AG in Figure 2b, we find pat-

terns for testing nodes 1 to 6 and 10 also

without backtracking. When determin-

ing the pattern for fault 7/1, we carry out

the following path activation procedure

(path tracing) and only backtrack once.

In the path-tracing notation, the numbers

in parentheses indicate the node, node

variable, and chosen variable value for a

step. If the value of the variable is already

set, we indicate only the node. Symbol ∅
indicates an inconsistency between the

constant reached by the path and the

constant desired at a terminal node.

■ To detect 7/1, we set label variable

¬1 to 0.

■ Then, for l(m) = l(7) , we trace

(1,4,0) → (6, ¬ 3,1) → 7, and in-

clude node 1 in the backtrack list.

■ For l(m1,1) = l(8,1), we trace 8 →
9 → (10,5,1) → 1. For l(m0,0) =

l(9,0), we trace 9 → 10 → 1∅ .

■ Because no solution exists, we

backtrack to node 1 and for l(m) =

l(7) trace (1,4,1) → 2 → (4, ¬2,0)

→ (6, ¬3,1) → 7. We include node

4 in the backtrack list.

■ For l(m1,1) = l(8,1), we trace 8 →
1. For l(m0,0) = l(9,0), we trace 9

→ 0; which is consistent. The test

pattern is then 1101- (1,2,3,4,5).

The number of variables to be set

during the test generation procedure

determines the search space in which

backtracking occurs. For structural AGs,

we use fewer variables than in the gate

level case; hence, the search space and

amount of backtracking also decrease.

Fault propagation. This process is anal-

ogous to that for test generation, but in-

stead of structural AGs, we may use more

compact functional AGs. For example,

to propagate faults at input 2 through the

circuit in Figure 2a, we generate a test

pattern for node 3 by activating paths

l(m) = (1,3), l(m0,1) = (4,1), and l(m1,0)

= (5,0). The functional AG in Figure 2c

does not require backtracking.

Test generation on higher levels.

Path activation principles also form the

basis for test generation in the general

case of AGs. Consider an AG, G, repre-

senting function zk = fk(Zk) in which la-

bels of nonterminal nodes are Boolean

or integer variables. Either integer vari-

ables or subexpressions of zk = fk(Zk) la-

bel terminal nodes.

Conformity test. Let l(mi,mT,i) denote

the activated path from node mi to ter-

minal node mT,i. To generate a test for

nonterminal node m, we must

1. find a symbolic test pattern by si-

multaneously activating nonover-

lapping paths l(m) and l(mi,mT,i)

for all values i ∈ V[z(m)] of vari-

able z(m), and

2. find data values by solving one of

the following equations (depend-

ing on the technology used) for

each bit of data words:

∀ i,j ∈ V[z(m)] (j≠i):

¬z(mT,i) ∧ z(mT,j) = 1 or (3)

z(mT,i) ∧ ¬ z(mT,j) = 1 (4)

Fulfilling these conditions guarantees

that deviation from the path activated

by the test pattern produces another

path. This path has a new terminal node

with a label function value that differs

from what we expect from the test pat-

tern. If node m represents a decoder, the

test produced by solving Equations 3

and 4 will detect functional faults in the

decoder and stuck-at faults on the de-

coder’s control leads. In general, solv-

ing Equation 3 or 4 may require several

sets of data operands for each value of

i. We test node m using the symbolic test

pattern generated by substituting the

symbolic value of z(m) by all i ∈
V[z(m)]. We also repeat this test for all

data that are solutions of Equations 3 or

4. Such testing, called conformity test-

ing, aims to detect control faults.

Scan test. To generate a test for ter-

minal node m labeled by a data variable

or subexpression of function zk = fk(Zk),

we must again create a symbolic test

pattern. We do this by activating a path

from the root node to terminal node m

(step 1). Here, values of data z ∈ Zk are

symbols. Step 2 generates test values for

z ∈ Zk based on function fk(Zk) or on a

lower-level implementation of fk(Zk). We

repeat the symbolic test pattern of step

SPRING 1996 55

1 for all operand values found in step 2.

Such testing, called scan testing, aims to

detect faults in the data part.

Example 8. To test node m = 2 in

Figure 3b, we activate paths l(m) = (1,2),

l(m1,mT,1) = (3), l(m2,mT,2) = (4),

l(m3,mT,3) = (5,6,7). Solving Equation 3

for F(R,In), R, and In of terminal nodes,

for each bit of data words yields the pat-

tern 1,1,1,R*,In* (x1,x2,x4,R,In). Solving

the equation yields R* and In*. We must

repeat this pattern for all values of I =

1,2,3. This test detects functional faults

in the DC decoder and stuck-at faults on

paths between it and Out.

Other literature11,12 discusses the de-

tails of fault propagation, line justifica-

tion, and test generation at various

system representation levels.

Implementation results
On the mathematical basis of AGs, my

colleagues and I developed computer-

aided tools for solving different test de-

sign tasks. Test design software for digital

networks at the gate level16 consists of

tools for test generation, fault coverage

analysis, multivalued simulation (for

hazard and dynamic test analysis), fault

detection probability, and testability

analysis. The fault classes considered in-

clude stuck-at and transition faults (de-

lay and stuck open). Our software

requires an IBM PC or PC-compatible

computer, runs on MS-DOS (version 3.3

or higher), and also executes in an MS

Windows environment. The system sup-

ports designs from various CAD envi-

ronments, including those of Synopsys,

Cadence, OrCAD, and ViewLogic (or

packages such as Asyl+ and Dixi-CAD).

Table 1 lists a comparison of test gen-

eration efficiency for ISCAS85 bench-

marks using gate and macro level AGs.

(These benchmarks are from the 1985

International Symposium on Circuits

and Systems.) Because of fault collaps-

ing and model compressing, the num-

ber of target faults decreases 1.4 to 1.8

times, and test generation time decreas-

es 2.6 to 5.1 times. These results are for a

compressed AG model in which struc-

tural AGs represent treelike subcircuits,

and we obtain them using an IBM PC

486, 66-MHz platform.

AG-based ATPG for functional testing

of microprocessors (Figure 4) consists of

an AG synthesizer, symbolic test pattern

generator, and test program compiler

(Figure 5, next page). Starting with an

RTL description of the instruction list, the

synthesizer creates an AG model of the

processor. The ATPG system allows test

engineers to manually write symbolic

subroutine templates (in an automatic

test equipment language) to apply test

patterns.

The system will exchange symbols in

these subroutines for the real test data it

generates. Each symbolic test pattern

Table 1. Comparison of test generation efficiency for gate and macro level AGs.

Fault coverage (%)
No. of CPU No. of Gate Macro

Circuit Level target faults time (s) patterns level level

c499 Macro 1,202 131 106 99.6 99.3
Gate 2,194 662 109 99.5 —

c880 Macro 994 46 112 98.6 98.6
Gate 1,550 119 101 98.1 —

c1355 Macro 1,618 278 105 99.6 99.5
Gate 2,194 953 107 99.5 —

c1908 Macro 1,732 219 169 99.0 98.5
Gate 2,788 743 160 99.0 —

Multiplexer

ALUA

Instruction

list

System block diagram

IN

PC

R

I

OUT

AG model

PC 2,7,8,9
I

A 1.6
I IN

R
I

R

2
A

5
IN

R1

A

1,3-6

1

010
7

8

9

OUT
I

A

3
R

4
A

System description

$INPUT IN(7:0), I(3:0);

$OUTPUT OUT(7:0);

$REGISTER A(7:0), R(7:0), PC(7:0);

$FUNCTION ADD, OR, NOT;

$BEGIN

 SWITCH (I) (

 CASE 1: A=IN, PC=ADD(PC,2);

 CASE 2: R=A, PC=ADD(PC,1);

 CASE 3: OUT=R,PC=ADD(PC,2);

 CASE 4: OUT=A,PC=ADD(PC,2);

 CASE 5: R=IN, PC=ADD(PC,2);

 CASE 6: A=IN, PC=ADD(PC,2);

 CASE 7: A=A+R,PC=ADD(PC,1);

 CASE 8: A=AVR,PC=ADD(PC,1);

 CASE 9: A=A−R,PC=ADD(PC,1);

 CASE 10: IF R(1)=1, THEN PC=A

 ELSE PC=PC+1;

$END

AG model generation

PC + 1

PC + 2 A + R

AVR

A − R

Figure 4. AG generation for a hypothetical microprocessor.

F U N C T I O N A L T E S T I N G

56 IEEE DESIGN & TEST OF COMPUTERS

tests an AG node, and we divide test pat-

terns into conformity and scanning pat-

terns. Conformity tests apply to internal

AG nodes that represent the control part

of the system, whereas scanning tests

apply to terminal AG nodes that repre-

sent the data part. Figure 5 gives an ex-

ample of conformity test generation for

node I in graph A. (This tests the in-

struction decoder in the data manipu-

lation block by observing register A).

Our experience using this ATPG sys-

tem showed that high-level test design

for Intel 8080, 8086, and 8286 micro-

processors takes about one man-month

(including the time to describe the

processor). Automated test generation

for the Intel 8080 took about 2 CPU min-

utes on an IBM PS/2. The 573-pattern test

included data arrays with a total length

of 3,412 words. Due to our technique’s

compact data representation, memory

space was 67.5 times less than that re-

quired for conventional representations.

This ATPG covers the fault classes

proposed by Thatte and Abraham.1 We

were unable to evaluate test quality for

gate level fault detection because of the

absence of gate level descriptions.

We also investigated the adequacy of

high-level fault models defined for AGs

and the potential for high-quality gate

level tests using only high-level descrip-

tions. Experiments for a restricted class

of digital systems used benchmarks

based on a family of 4-, 8-, 16-, and 32-bit

simplified RISC processors. We imple-

mented only arithmetical (based on

adders) and logical operations (a total

of 8 instructions or 512 working modes)

and examined only the RISC processors’

combinational parts. Table 2 summa-

rizes the structural characteristics for

four benchmark circuits.

We created two AG models for each

circuit: compressed structural AGs for

treelike subcircuits (for structural, gate

level test generation) and high-level

AGs (for functional, high-level test gen-

eration). Table 3 lists the results of test

generation experiments. The number

of functional test patterns was inde-

pendent of the processor’s word length

since we based the arithmetical part of

the ALU on a ripple-carry adder. Both

structural and functional test generation

cases failed to detect only two redun-

dant faults in the control part.

TESTING AND DIAGNOSIS of digital

electronic systems face many problems

that result mainly from system com-

plexity. One solution is to hierarchi-

cally test systems, which reduces the

complexity of the task. Hierarchical

testing, however, lacks a general theo-

ry for diagnosing systems by uniform

methods on various levels. AGs provide

a way of representing diagnostic infor-

mation uniformly for different system

levels. They serve as a basis for a gen-

eral theory of test design and fault di-

agnosis for mixed-level digital systems.

We can simultaneously regard AGs as

a procedural notation (a program), a

data structure (decision tree) to be

processed, a representation of diagnos-

tic knowledge, or as a compact way to

Test execution

Symbolic

test pattern

Initialization

templates

A: 01 (MVI A)

VALUE_A

R: 05 (MVI R)

VALUE_R

IN

00

I

VAR

A

55

R

39

OUT

REF

Test data

VAR

1

8

9

A

REF

00

7E

1C

55

Symbolic

test program

01

55

05

39

VAR

04

REF

Current

test iteration

01

55

05

39

8

04

7E

55

Input

Observation

templates

A: 04 (MOV M,A)

VALUE_A

R: 03 (MOV M,R)

VALUE_R

Input

Output

VAR

7E

8

REF

39

Test pattern generation AG model
A 1.6

I IN

7

8

9

A

A + R

AVR

A − R

Test program compilation

… …

Figure 5. Test pattern generation for part of a hypothetical microprocessor.

Table 2. Structural characteristics of benchmark circuits.

No. of No. of No. of No. of No. of
Circuit gates inputs outputs fan-outs target faults

4 603 42 5 879 2,728
8 1,195 74 9 1,711 5,360

16 2,379 138 17 3,375 10,624
32 4,747 266 33 6,703 21,152

SPRING 1996 57

represent all possible test modes for the

system. The various interpretation pos-

sibilities allow the use of AGs in many

applications related to digital design,

test synthesis, fault diagnosis, test knowl-

edge compression, and test processing.

A promising trend in ATPG is joining

symbolic techniques based on BDDs

and traditional topological algorithms.

AGs offer a uniform theoretical basis for

such an approach. Combining symbol-

ic and topological techniques with

high-level functional approaches while

using a common mathematical basis

would increase ATPG efficiency.

Acknowledgments
The Estonian Science Foundation (un-

der Grant 1433) and the European

Community (under Copernicus JEP 9624

and ESPRIT III basic research JEP 6575) sup-

ported this work. I thank my colleagues E.

Ivask, G. Jervan, A. Markus, P. Paomets, and

J. Raik, who participated in developing the

software and conducting experiments.

References
1. S.M. Thatte and I.A. Abraham, “Test Genera-

tion for Microprocessors,” IEEE Trans. Com-

puters, Vol. 29, 1980, pp. 429-441.

2. A.G. Gupta and J.R. Armstrong, “Functional

Fault Modeling and Simulation for VLSI De-

vices,” Proc. ACM/IEEE 22nd Design Automa-

tion Conf., IEEE Computer Society Press, Los

Alamitos, Calif., 1985, pp. 720-726.

3. W. Geiselhardt, W. Mohrs, and U. Moeller,

“FUNTEST-Functional Test Generation for

VLSI-Circuit and Systems,” Microelectronics Re-

liability, Vol. 29, No. 3, Mar. 1989, pp. 357-364.

4. D. Bhattacharya and J.P. Hayes, “A Hierar-

chical Test Generation Methodology for Digi-

tal Circuits,” JETTA: Theory and Application,

Vol. 1, 1990, pp. 103-123.

5. J. Lee and J.H. Patel, “Hierarchical Test Gen-

eration Under Intensive Global Functional

Constraints,” Proc. 29th ACM/IEEE Design Au-

tomation Conf., IEEE CS Press, 1992, pp. 261-

266.

6. C.Y. Lee, “Representation of Switching Circuits

by Binary Decision Diagrams,” Bell System

Technology J., Vol. 38, No. 7, July 1959, pp.

985-999.

7. S.B. Akers, “Binary Decision Diagrams,” IEEE

Trans. Computers, Vol. 27, No. 6, July 1978, pp.

509-516.

8. R.E. Bryant, “Graph-Based Algorithms for

Boolean Function Manipulation,” IEEE Trans.

Computers, Vol. C-35, No. 8, Aug. 1986, pp. 667-

690.

9. B. Becker and R. Drechsler, “How Many De-

composition Types Do We Need?” Proc. Eu-

ropean Design and Test Conf., IEEE CS Press,

1995, pp. 438-443.

10. R. Ubar, “Test Generation for Digital Circuits

Using Alternative Graphs,” (in Russian), Proc.

Tallinn Technical Univ., No. 409, Tallinn Tech-

nical Univ., Tallinn, Estonia, 1976, pp. 75-81.

11. R. Ubar, “Test Pattern Generation for Digital

Systems on the Vector AG-Model,” Proc. 13th

Int’l Symp. Fault-Tolerant Computing, IEEE CS

Press, 1983, pp. 347-351.

12. R. Ubar, “Alternative Graphs and Technical

Diagnosis of Digital Devices,” (in Russian),

Electronic Technique, Vol. 8, No. 5, May 1988,

pp. 33-57.

13. Fehler in automaten, [Faults in Automata], D.

Bochmann and R. Ubar, eds., VEB Verlag

Technik, Berlin, 1989.

14. F. Corno et al., “Improving Topological ATPG

with Symbolic Techniques,” Proc. IEEE VLSI

Test Symp., IEEE CS Press, 1995, pp. 338-343.

15. R. Ubar, “Fault Diagnosis in VLSI Devices,”

Proc. Estonian Acad. of Sciences, Engineering,

No. 1, Estonian Acad. of Sciences, Tallinn, Es-

tonia, 1995, pp. 51-67.

16. R. Ubar et al., “A PC-Based CAD System for

Training Digital Test,” Proc. Fifth Eurochip

Workshop on VLSI Design Training, CMP/Eu-

rochip, Grenoble, 1994, pp. 152-157.

Raimund Ubar is a professor of computer

engineering and head of the Electronics

Competence Centre at Tallinn Technical

University (TTU) in Estonia. His research in-

terests include computer diagnostics, test pat-

tern generation for digital systems, fault

simulation, design for testability, and built-in

self-test. Ubar received his MS in control en-

gineering from TTU and PhD in computer en-

gineering from Moscow Technical University.

He is a member of the IEEE, Gesellschaft der

Informatik (Information Society, Germany),

European Test Technology Technical Com-

mittee, and Estonian Academy of Sciences.

He chairs the Estonian Science Foundation.

Address questions or comments about

this article to the author at Tallinn Techni-

cal University, Computer Engineering Dept.,

Ehitajate tee 5, EE-0026 Tallinn, Estonia;

raiub@pld.ttu.ee.

Table 3. Functional (high-level) and structural (gate level) test generation results.

No. of Fault Test generation No. of
Circuit Level test patterns coverage (%) time (s) target faults

4 High 126 99.86 0.1 2,728
8 126 99.93 0.4 5,360

16 126 99.96 1.2 10,624
32 126 99.98 4.3 21,152
4 Gate 111 99.93 31.1 1,522
8 140 99.97 109.8 2,970

16 169 99.98 440.0 5,866
32 274 99.99 2,584.6 11,657

