

�

Fault Model and Test Synthesis for RISC-Processors

R. Ubar, A. Markus, G. Jervan, J. Raik

Tallinn Technical University

Ehitajate tee 5, EE0026, Tallinn, ESTONIA, e-mail: raiub@pld.ttu.ee

�
Abstract. A general fault model on alternative graphs (AG) was developed to cover traditional functional and gate-level fault models for digital systems. The advantage of the new approach is that a uniform fault activating procedures on AG-s are applicable for different types of traditional faults. Also, it is not needed to represent functional faults explicitly by fault lists, the faults can be derived implicitly from the system description given by AG-s. A hierarchical AG-based ATPG for a restricted class of digital systems (for RISC-processor type systems) was developed to carry out experiments for showing the adequacy of the AG-based fault model used in this ATPG against the gate-level stuck-at fault model.

1. Introduction

Test generation for digital systems encompasses three activities: selecting a description method, developing a fault model and generating tests to detect the faults covered by the fault model. The efficiency of test generation (quality, speed) is highly depending on the description method and fault models which have been chosen. As the complexity of digital systems continues to increase, the gate level test generation methods have become obsolete. Promising approaches are hierarchical methods which use multi-level descriptions of systems. However, the drawback lies in the need of different languages and models for different levels.

In this approach, a method for describing digital systems and for modeling faults based on of alternative graphs (AG) (1(is used. AGs serve as a basis for a general theory of test design for mixed-level representations of systems, similarly as we have the Boolean algebra for the plain logical level. The fault model defined on AGs represents a generalization of the classical gate-level stuck-at fault model - the latter was defined for literals in Boolean expressions whereas the former is defined for nodes in AGs.

2. State-of-the art

For high-level test generation, different functional fault models have been introduced. In the case of microprocessors, individual functional fault models and corresponding test strategies have been developed for different function classes like register decoding, instruction decoding, control, data storage, data transfer,

data manipulation etc. (2(. The main disadvantage of this approach is that only microprocessors are handled and the results obtained cannot be extended to cover the general digital systems test problem. When using register transfer languages (RTL-approach), a formal definition of a RTL statement is defined and nine categories of functional faults for components of RTL statements are identified (3(. Some attempts to develop special functional fault models for different data-flow network units like decoders, multiplexers, memories, PLAs etc. are described in (4(. In the last period, a lot of attention has been devoted for generating tests directly from descriptions in high level languages (5,6(. All the listed approaches lead to using different mathematics and procedures for each fault model. The diversity of fault types makes it difficult to develop uniform test generation algorithms with possibility to treat all faults by standard procedures as in the case of stuck-at faults at the gate-level approach. Test synthesis based on a lot of different types of fault models will be more complicated compared to the case when only one generic fault model is used.

3. Fault model

The main purpose of this concept is to develop a fault model that will be related to nodes of alternative graphs, in the similar way as logical level faults stuck-at-1 and stuck-at-0 are related to Boolean variables (or literals) in the corresponding logical expressions. In the simplest case, on the logical level, this goal is easy to reach. Each node in logical level AGs is labelled by a Boolean variable and, therefore, is related to stuck-at faults s-a-1 and s-a-0 of this variable (1(. As we see below, this relationship between nodes in AGs and faults in digital circuits and systems can be generalized into more broad case compared to the Boolean level.

In developing the fault model for digital systems represented by alternative graphs we will, at first, proceed from the uniform fault model defined on AGs and, secondly, to extend it by needed atributes to cover the fault cases taking place in real cases. To be really useful and viable, the fault model has to be open for possible further refinements and improvements.

3.1. Definition of the fault model for AGs

Each path in an AG describes the behavior of the system represented by AGs in a specific mode of operation. The faults having effect on the behavior can be associated with nodes along the given path. A fault causes an incorrect leaving the path activated by a test. From this point of view we introduce the following abstract fault model for nodes m with node variables z(m) in AG-representations of digital systems:

1. 	the output branch at z(m) = i of a node m is always

	activated; notation: z(m)/ -> I;

2.	the branch at z(m) = i of a node m is broken;

	notation: z(m)/ i -> *;

3.	instead of the given branch at z(m) = i of a node m,

	another branch at z(m) = j or a set of branches { j } 	is activated; notation: z(m)/ i -> { j }.

The fault model defined on AGs is directly related to the nodes and describes clearly the faulty behavior of the system in terms of the model. In this fault model, at first, the situation how an AG is activated is described (a value of the node variable or node function is given), and, secondly, the new faulty activated situation is described.

Different fault models for different representation levels of digital systems can be covered by this uniform node fault model defined on AGs. The physical meaning of faults associated with a particular node depends on the meaning of the node. Depending on the adequacy of representing the structure of the system, the fault model proposed for AGs can cover a wide class of structural and functional faults introduced for digital circuits and systems (2-6(. For example, the fault model for nodes labelled by Boolean variables z({0,1} covers the classical stuck-at fault model z/0 (z/1) in the gate-level representations. As another example, the fault model for nodes labelled by integer variables can represent widely spread functional fault models for decoders, multiplexers, instruction decoding units of microprocessors (2-4(, case constructions in procedural models of systems (5-6(etc.

From above it follows that the fault model defined on AGs can be regarded as a generalization of the classical gate-level stuck-at fault model for more higher level representations of digital systems. The stuck-at fault model is defined for Boolean variables (literals), whereas the generalized new fault model is defined for nodes of AGs. As nodes with Boolean labels represent only a special class of nodes in AGs, the logical level stuck-at fault model represents also only a special class of faults in AGs. In the following we consider how the different fault classes in digital systems can be represented uniformly using alternative graphs.

3.2. General notation of the model

Let us now redefine the fault model for AGs in another form which gives more freedom in the fault description and interpretation.

Denote each fault Fi in a digital system represented by AGs as a quadruple: Fi = (G,N,C,V) where

- G is the graph where the fault is defined;

- N is the node affected by the fault;

- C is a condition needed for activating the fault (not always formally derivable from the AG-model itself), and

- V is the action of the fault, i.e. the identication of the faulty activation of outputs of the node.

For example, the faults in an AG G at a node m, defined in the section 3.1. will have the following new notation:

	z(m)/ -> i: 	(G, m, { z(m) = * }, i);

 	z(m)/ i -> *: 	(G, m, { z(m) = i }, *);

 	z(m)/ i -> {j}: 	(G, m, { z(m) = i }, {j}).

The meaning of the components of this fault model and the idea and the goal of the definition consist in the following.

l. The parameters G and N determine the coordinates of the location (a particular node) in the AG-model where a fault is taking place. The nodes in AGs are closely related to the structure of the system and we can easily establish the physical meaning of faults at given nodes.

2. The parameter V directly shows what happens in the model if the fault will take place. Knowing the value of V for the given fault Fi, we can both simulate the faulty behavior of the system, and generate tests to distinguish the normal behavior from the faulty one in the case of the fault Fi. Different possibilities can be used to define the value of V - through the value of the variable (or function) at the node or through the identification of the activated faulty output of the node or through the description of the set of simultaneously activated faulty outputs of the node. The last description way is the most general form. To raise the efficiency of algorithms in fault simulation, the other more simpler description arts in a lot of cases can be also used.

 3. The parameter C determines the expected behavior of the node - the value of the variable (or function) at a node needed for carry out the particular test case. The meaning of the parameter C can be very broad: on one side, in the minimum case it will define only the value of one particular variable (in the case of stuck-at-value faults), on the other side, in the maximum case, the parameter C could mean the whole test pattern or test sequence (i.e. the test for the given fault, entirely). The last case (maximum case) has a practical meaning from the point of view of the hierarchical approach. A test case entirely defined for a module at a lower level of hierarchy can serve as the value of the parameter C while defining and activating faults at a higher level of the hierarchy.

The parameter C has a complex meaning. Generally, we can distinguish in C two parts: the implicitly given part which can be formally generated from the AG-model during the test generation process, and the explicitly described part as a list of additional conditions needed for activating the given fault.

Different classes of faults are characterized by the parameter C differently. In some cases, the fault class is defined only by the implicit part. This is valid, for example, for stuck-at faults s-a-1 and s-a-0. The class of faults where the parameter C includes only the implicit part is in case of AGs larger than, for example, when gate-level descriptions or Boolean expressions are used. In other fault classes (bridging faults, functional faults), only the explicit part is used. In general, both parts could be involved in the fault definition.

The parameter C has a very important meaning as it will allow us to adjust the abstract and formal fault model of AGs to represent different real fault cases. The existence of this parameter makes the fault model introduced open to a wide field of practical cases. Examples of representing different well known fault classes from different description levels on AGs are given in [1].

3.3. Example

In Fig.l., examples of some typical faults in a digital circuit and in the corresponding AG-model are depicted. For these faults, the following notation will be used: graph, node, condition, and action of the fault - faulty value of the node variable.

� EMBED CorelDRAW.Graphic.6 ���

� EMBED CorelDRAW.Graphic.6 ���

Fig.1. Representing faults of a digital system in the AG

1. A stuck-at fault at a line xl in the circuit: (OUT,5, x1= 0,1). For this class of faults, it is not needed to give the list of faults explicitly. The fault model will be generated automatically from the AG.

2. A bridging fault between leads x2 and x3: (OUT,8,{x3=1,x2=0},0), or (OUT,6,{x3=0,x2=1},0). The condition C (the values of x3 and x2) is needed to reveal the bridge by observing the signal value on one of the two leads involved in the fault. These conditions can be automatically generated from the layout of the design where the possible bridges can be determined.

3. A functional fault in the decoder (because of the fault instead of the active output 2, two outputs 2 and 3 are simultaneously active): (OUT,2,I=2,{2,3}). This fault can be caused, for example, by a bridge or crosstalk between the leads 2 and 3 at the output of the decoder. This type of fault has been also introduced as a functional fault for decoders as high-level primitives in [4]. In the case of microprocessors, a similar class of functional faults has been introduced for functions like instruction decoding, source and destination register decoding in [2] .

4. Another type of functional faults is considered at the high-level primitive block F (in the role of ALU) that is related to the hierarchical approach in test generation: (OUT,3,{R=76,IN = 4},*). The condition {R =76, IN=4} in this notation, represents a local (individual) test pattern for the block F itself, generated, for example, at a lower level representation of F. Asterisk * in the place of the value of V means that faulty value in the output of F is not determined. In this case, the fault propagation, typically, is carried out in the symbolic way.

4. Experimental data

To reach a high efficiency of algorithms when generating tests for complex digital systems, it is important to try to work at a level as high as possible. In the same time, the fault class accepted in test generation, has to cover realistic faults determined by implementation details. Therefore, in developing the higher level fault models, it is important to proceed from implementation details. On the other side, the way of decomposition of the whole set of functions and the structure in digital system into control part, data part, high level primitives and a combinational part gives us additional possibilities for taking into account special features of these parts to develop a comprehensive fault model.

Table 1

�
Cir_4�
Cir_8�
Cir_16�
Cir_32�
�
Functional high level test generation�
�
Test length�
126�
126�
126�
126�
�
Fault coverage (%)�
99,86�
99,93�
99,96�
99,98�
�
Test gener. time (s)�
0,1�
0,4�
1,2�
4,3�
�
Number of faults�
2728�
5360�
10624�
21152�
�
Structural gate-level test generation (SAG)�
�
Test length�
111�
140�
169�
274�
�
Fault coverage (%)�
99,93�
99,97�
99,98�
99,99�
�
Test gener. time (s)�
31,1�
109,8�
440,0�
2584,6�
�
Number of faults�
1522�
2970�
5866�
11657�
�

With the goal to investigate the adequacy of the mixed-level fault model defined for AGs and to investigate the possibility to reach high quality gate-level tests by using high-level descriptions only, experiments were carried out with a restricted class of digital systems - with benchmarks based on a family of n-bit simplified RISC processors Cir_n. Only arithmetical and logical operations were implemented and only combinational parts of processors were examined. Circuits were synthesized by CADENCE and two AG-models for each circuit were created - compressed SAGs for tree-like subcircuits (for structural gate-level test generation) and high-level AGs (for functional high level test generation). The results of test generation experiments are shown in the Table 1.

5. Conclusions

The results we have got in this section, can be formulated in the concise form as follows. Different fault models for different representation levels of digital systems can be replaced on alternative graphs by the uniform node fault model. For developing the general functional fault model F, a fault collapsing technique can be used which gives a possibility to cross the fault representation level boundaries. By this technique, it is possible to represent groups of structural faults through groups of functional faults. As the result, the complexity of fault representation can be reduced, and the fault simulation level (together with simulation speed) can be raised. Depending on the adequacy of representing the structure of the system, the fault model proposed for AGs can cover a wide class of structural and functional faults introduced for digital systems. The fault model on AGs can be regarded as a generalization of the classical gate-level stuck-at fault model for higher level representations of digital systems. The stuck-at fault model is defined for Boolean variables (literals), the generalized new fault model is defined for nodes of AGs.

References

[1] Ubar R. Test Synthesis with alternative graphs. IEEE Design & Test of Computers. Spring 1996, pp.48-57.

[2] Thatte S., Abraham J. Test generation for microprocessors. IEEE Trans. on Comp., June, 1980, pp.429-441.

[3] Su S.Y.H., Lin T. Functional testing techniques for digital LSI/VLSI systems. 21st Design. Automation. Conference, 1984, pp. 517-528.

[4] Abraham J.A. Fault modeling in VLSI. VLSI testing. North-Holland 1986, pp.1-27.

[5] Ward P.C., Armstrong J.R. Behavioral fault simulation in VHDL. ACM/IEEE 27th Design Automation Conference, 1990, pp. 587-593.

[6] Giambiasi N. et. al. Test pattern generation for behavioral descriptions in VHDL. Proc. of the VHDL conference, Stockholm, 1991, pp. 228-234.

�PAGE �2�

