
International Conference on Computer Systems and Technologies - CompSysTech’2002

A Decomposition Procedure

for Register-Transfer Level Power Management

Elena Fomina, Andres Keevallik, Margus Kruus, and Alexander Sudnitson

Abstract: Power dissipation has become one of the most important constraints in the design of
integrated circuits. This work describes a decomposition based approach for power reduction using dynamic
power management. The problem of low power synthesis corresponds to an optimal multiple decomposition
of a finite state machine. A decomposition procedure that enables the distribution of primary controller inputs
among components is elaborated. The technique for decomposition is based on quantitative modeling
through entropic relationships. The presented technique leads to a general low power design methodology
targeting selective disabling of a subset of primary inputs.

Key words: Finite State Machine, Low Power Design, Decomposition

INTRODUCTION
With increasing sizes of design and a need for low power applications, in addition to

timing and area, power is another optimization constraint that has become critical for very
large scale integration circuits. The drive towards a system on a chip has accelerated the
significance of a low power design methodology. In the last ten years, research on the
techniques for low power at various levels of design has intensified and the area of power
consumption estimation and optimization has been covered by many authors as reviewed
in [1]. Current research in low-power design focuses on the techniques on the reduction of
dynamic power dissipation of the circuit. The work presented in this paper uses a
fundamental source of power reduction – shutting down useless parts of a circuit. This
idea is known as power management. Power management can be applied at different
levels of the design process of digital circuits and systems. The main feature at the register
transfer level and at the logic level power management is that the shutdown of hardware is
decided on every clock cycle, hence the name dynamic power management.

With regard to the analysis of different techniques for dynamic power management,
our work proceeds from the fact that a detection on a per-clock-cycle basis the parts of
design which are idle is a substantial problem of design. We consider this problem as a
particular task of the decomposition of FSM and apply the guarded evaluation style of
implementation [1]. To avoid unnecessary switching activity we partition original FSM into
the network of component FSM with a restricted number of binary inputs and place guards
at the inputs of those parts of the network that need to be selectively turned off.

Various techniques have been developed to enhance the capability and efficiency of
decomposition, and they fall broadly into two categories: those based on the algebraic
theory [2] and those based on the factorization or on the identification in the state transition
graph of subroutines [3]. In the last ten years, research on decomposition techniques for
low power have intensified and a range of techniques has been proposed for the register-
transfer level optimization of circuits for low power using the second approach [4]-[6]. As
distinct from previous work in this paper conceptually more general algebraic theoretical
background for decomposition is presented. Our reasoning proceeds from the premise that
the solution of the problem of FSM synthesis for low power can be reduced to the FSM
decomposition with distributed primary input/output variables and appropriate synthesis of
FSM network.

Our work proceeds from the fact that the principal NP-complete problem of FSM
decomposition is searching a set of partitions on the set of states of source FSM. As in [2],
only such sets of partitions may be used for FSM decomposition. Because of lack of
methodology of searching of these partitions the application of the powerful algebraic
decomposition theory is substantially limited in practice. We attempt to surmount this
obstacle.

- -

International Conference on Computer Systems and Technologies - CompSysTech’2002

DECOMPOSITION MODEL
Formally, the FSM is defined as a quintuple < S, X, Y,δ, λ >, where

 S={s1, s2, …, sM} is a set of states,
 Χ={x1, x2, …, xL} is a set of binary input variables,
 Υ={y1, y2, …, yT} is a set of binary output variables,
 δ: D(δ)→S is a multiple valued next state function with a domain D(δ)=D1×…×DL×S and
codomain S,
 Di={0, 1} represents a set of values (symbols) each input variable xi may assume,
 λ: D(λ)→R(λ) is an output function with a domain D(λ)=D(δ) and codomain
R(λ)=E1×…×ET,
 Ei={0, 1} represents a set of values each output variable yi may assume.

The behaviour of a controller can be described by state transition graph or,
equivalently, by presentation by the list of transitions.

Table 1. An example FSM

Present state
sp

Input condition
αpq

Next state
sq

Output signal
βpq

x2 1 y1 1
^x2 2 y1 y2 y7
x1 1 y1

^x1 & x3 3 y2 y5

2
^x1 & ^x3 5 y1 y2 y6

x2 ∨ ^x2 & ^x4 3 y3 y7
3 ^x2 & x4 4 y3

x4 1 y5 y6 4
^x4 2 y3 y5

x2 3 y4 y7 5
^x2 4 y4

In this table, input condition is a Boolean function, αtq, which is equal to 1 when the

controller makes the transition from the state st to state sq. Output signal is a
microinstruction, βtq, the list of output signals which are equal to 1 on the transition of the
FSM from st to sq. The search for the next state and the corresponding output means the
evaluation of the Boolean functions α on the Boolean space {0, 1}L.

Our decomposition procedure is based on the general form of decomposition without
the restriction on their interconnection (Figure 1). Informally, the essence of the
decomposition task could be described as follows. Given a prototype FSM description of a
desired terminal behavior, the decomposition problem is to find sub-machines which, when
interconnected in a prescribed way, will display that terminal behavior. Our procedure of
decomposition is based on the general form of decomposition without the restriction on
their interconnection. Each sub-FSM corresponds to a partition on the set of states (a
partition π on the set of states, S, in a machine is a collection of disjoint subsets of states
whose set union is S). In general decomposition, each partitioned machine has information
about the current state of the others.

The state behavior of the FSM network forms the basis of the decomposition model.
The state behavior of the prototype machine is formally described by the network of state
machines Ai=<Xi , Si , δi> where Si is the set of states which correspond to blocks of
partition πI, Xi=Zi∪Ei, where Zi is a set of internal symbolic variables (state variables) and
Ei⊆X is a set of external inputs. Each of the sub-machines receives, as inputs, not only the

- -

International Conference on Computer Systems and Technologies - CompSysTech’2002

primary inputs and their own state variables, but also the state variables of the other sub-
machine. δi: D(δi)→Si, is a transition function.

 Y

X

Y1 Y2

E2E1

Z1

Z2

sub-FSM_2sub-FSM_1

 Fig. 1: Structure of decomposed machine

Our approach to the decision of partition choice problem is based on the new notion

of partition with Don’t Care’s and its relation to pair algebra.
To distribute input variables among component FSMs, we introduce the notion of α-

partition with Don’t Care’s.
A partition with Don’t Care's (PDC) ρ of a set S is a collection of disjoint nonempty

subsets of S.
The disjoint subsets are called blocks of ρ and their set union is equal to Sd ⊆ S. The

set difference S \ Sd is the Don’t Care's area of the PDC and we can consider it as some
distinguished (special) block which may be empty.

In our reasoning for partitions search, we proceed from information theoretic
concepts, which are rationalized on the basis of algebraic structure theory of sequential
machine. In the following, we assume that the state lines of the FSM are modeled as a
Markov chain. Entropy is related to switching activity, that is if the signal switching is high,
it is likely that entropy is also high. Theoretically confirmed the high correlation proves that
partition entropy is suitable for estimating corresponding sub-machines, which makes it a
good measure for partition choice for appropriate decomposition.

DECOMPOSITION PROCEDURE
The idea of partition for low power here is that in behavioral descriptions of hardware,

a small set of computation (computational kernel) often accounts for most of the
computational complexity as well as power dissipation [5]. We extract a computational
kernel during the decomposition process. It enables us then to simplify the computational
kernel in a stand alone manner to achieve power savings. To find kernel, primary inputs
with high probability have to be selected. So, we decompose the example prototype
machine into network of two sub-FSMs. The procedure of decomposition is divided into six
phases.

1) Finding of primary α-partitions.
We use the representation of Boolean functions with complexes of cubes [7]. Two

products (cubes) C and C' are in the relation of consensus (C con C') if and only if they
have opposite values (0 and 1) exactly in one bound component. Two covers K1 and K2
are in consensus if and only if there are C∈ K1 and C'∈ K2, which are in consensus.

For every x∈X, we define such symmetric binary relation ω on S that sp ω sq (p≠q) if
and only if for some st exist transitions 〈st, sp, αtp〉 and 〈st, sq,αtq〉 such that the
correspondent input conditions αtp and αtq are in consensus. As a result of transitive
closure operation of relation ω we will receive symmetric and transitive relation on S which
we represent as PDC and call it primary α-partition on S.

- -

International Conference on Computer Systems and Technologies - CompSysTech’2002

Let x∈X and α(x) is PDC of S, then if both sI and sj are contained in the same
nonspecial block of α(x), si and sj are “indistinguishable” by the input variable (channel) x.
According to the definition of the primary α-partition for the fixed binary input it is a such
partition on the set of states that the work of corresponding component FSM does not
depend on the chosen binary input.

In our example, we have four primary α-partitions: α(x1)= {{1, 3, 5}, <2, 4>}, α(x2) =
{{1, 2}, {3, 4}, <5>}, α(x3)= {{3, 5}, <1, 2, 4>}, and α(x4) = {{1, 2}, <3, 4, 5>}.

2) Constructing of the α-partition.
The PDC ρ in reality defines a set of conventional partitions, denoted by G(ρ),

generated by distributing the elements of the distinguished block over the other blocks of
the PDC and over new created blocks in all possible ways.
The next affirmation is important for receiving of decomposition with the distribution of the
inputs. Let α(X*) be the sum of all α -partitions α(xi) such that xi ∈ X* and Ai a component
FSM constructed in accordance with some partition πi from G(α (X*)), then the behavior of
Ai does not depend on all binary inputs of from X*.

To meet the demand that selection logic, depending on the input patterns, selects
either the kernel or the rest of the circuit (in a mutually exclusive fashion) the restriction is
that for all states st∈S, X(st) ⊆ Xc or X(st) ⊆X*. Here, X(st) is the set of inputs essentially
determining the transition (next state) from the state st. We sum the primary α-partitions
with the greatest entropy to receive the computational kernel (the first sub-FSM). In the
following, we assume that as result of selection the set Xc={x1, x3} is selected.

In this step we generated the first partition. For every input variable x∈ X*={x2, x4}
which must to be excluded generate α(x). By summing of PDCs corresponding to
elements of X*, we construct the new partition: α(x2, x4) =α(x2) + α(x4) ={{1, 2}, {3,4}, <5>}

3) Determining of the complete set of partitions.
Generate the partitions π1 and π2 such that π1∈ G(α(x2, x4)) and their product is

zero-partition, π1 • π2 = 0.
In our example, π1 = {{1, 2}, {3, 4}, {5}}; π2 = {{1, 3, 5}, {2, 4}}.
4) Coding of the network.
The coding of global states of the network gives us a set of internal binary variables

of the network Z. Consider a set of states S and an encoding function e: S→{0, 1}c, for a
given c (encoding length), that to each symbol s∈S a code, i.e., a binary vector of length c.
A necessary requirement is that different symbols are mapped to different binary vectors.
Given a set of symbols S, a face constraint is a block B⊆S in the partition specifying that
the symbols in B are to be assigned to one face (or sub-cube) of a binary c-dimensional
cube, without any other symbol sharing the same face. So, face constraints are generated
by step of partition search, c is the number of internal binary variables of the net, |Z|. Every
variable z∈Z corresponds to some two-block partition on S. Let the binary internal state
variable zi

j be produced by the sub-machine Ai. Then zi
j is a state variable of sub-machine

Ai and corresponds to the two-block partition hi
j. One of the blocks of hi

j is coded by 0, the
other one by 1. In this step we decide an combinatorial problem called face hypercube
embedding [7], to find the minimum c and related e: S→{0, 1}c such that face constraints
are satisfied i.e., hij≤πi.

In our example, corresponding two-block partitions and internal binary variables are:
 z1 ~ h1

1 = {{1, 2, 5}, {3, 4}}; z2 ~ h1
2 = {{1, 2}, {3, 4, 5}}; z3 ~ h2

1= {{1, 3, 5}, {2, 4}}.
5) Determining of the structure of the network.
For a subset B of S, we define δ(B,σ)={s | s=δ(t, σ), t∈B } and we say that the state

subset B goes into set B’ under input σ if and only if δ(B, σ)⊆ B’. Pair (π1,π2) is a state-state
pair if and only if π1 and π2 are partitions of S and for all inputs σ, s ~ t (π1) implies δ(s, σ) ~
δ(t, σ) (π2). Thus (π1, π2) is a partition pair on A if and only if the blocks of π1 are mapped

- -

International Conference on Computer Systems and Technologies - CompSysTech’2002

into the blocks of π2 by A. That is, for every input σ and Bπ1∈π1, there exists a Bπ2∈π2 such
that δ(Bπ1,σ)⊆Bπ2. In other words, if we only know the block of π1 which contains the state
of A, then we can compute for every input the block of π2 to which this state is transferred
by A. For any partition π on S of A we define the operator: M(π)=Σ{πi | (πi, π) is a partition
pair on A}. The operator M(π) gives the maximum front partition of partition pair. M(πi)
defines the information received from the other components of the net sufficient for the
sub-machine Ai to compute its next state and output [5].

M(π1) = {{1, 4}, {2}, {3, 5}}; M(π1) ≤ h1
2 • h2

1.
M(π2) = {{1, 5}, {2}, {3}, {4}}; M(π2) ≤ h1

1 • h2
1.

It means that state variable of the first machine z1, corresponding to h1
1, is the internal

input of the second component machine. The variable z2 is the state variable and z3 is
input variable for the first sub-machine. The sub-FSMs network of our examle
decomposition is presented in Figure 2.

z3

z1

y7y5y4y1

x4x2x3 x1

Sub_FSM_2Sub_FSM_1

Figure 2: Example FSM

6) Defining of the basic of the network.
The set of states of component FSM Ai is equal to the set of blocks of partition πI:

{1, 2} ~ a1, {3, 4} ~ a2, {5} ~ a3 The internal inputs of component machines are defined in
the previous step of the procedure.

Synthesize the sub-FSMs corresponding to partitions π1 and π2. The transition table of
the first sub-FSM is presented in Table 2.

Table 2. The first sub-FSM transition table
Present state Input condition Next state Output signal

^z3 a1 y1
x1 & z3 a1 y1

^x1 & x3 & z3 a2 y2

a1

^x1 & ^x3 & z3 a3 y1 y2
^z3 a2 y3 a2
z3 a1 y3

a3 1 a2 y4

EXPERIMENTAL RESULTS AND CONCLUSIONS
Our reasoning proceeds from the premise that the solution of the problem of FSM

synthesis for low power can be reduced to the FSM decomposition with distributed primary
input variables and appropriate synthesis of FSM network. In the next section we apply the
developed concepts to finding corresponding decomposition partitions of prototype FSM.

WWW-based system is developed [8]. Experiments have been carried out on the set of
well-known FSM benchmarks [9] to certify the viability of our concepts. Preliminary results
confirmed that it is possible to significantly reduce switching activity of implementation and
that significant reduction in power consumption could be achieved.

- -

International Conference on Computer Systems and Technologies - CompSysTech’2002

The developed Web-based design system can be considered as a research tool that

we use to carry out experiments guided to further development of decomposition
synthesis.

Table 3: Results and comparison of implementations
Circuit State

Inputs

Total

states #
of sub-
FSMs

Total
states #

(alternative
approach)

Max # of
sub-

FSMs
inputs

Area
noncombin

.
ratio

Area
combinat

.
ratio

log 17 9 12 19 5 0.75 0.85
dvram 35 8 14 37 5 0.50 0.52
nucpwr 29 13 15 31 8 0.68 0.67

sync 52 19 26 54 13 0.67 0.64
planet 48 7 24 50 5 0.59 0.56
ex6 8 5 9 10 3 1.14 1.09

opus 10 5 7 12 4 0.78 0.75
ex4 14 6 9 16 5 0.75 0.76
rie 29 9 15 31 5 0.66 0.64

Some results of experiments are presented in Table 3. The table contains the results

of comparative experiments of our decomposition technique and approach used in [4]-[6].
The area estimation was done using the commercial design frame (SYNOPSIS). This
parameter was chosen for complexity criteria for decomposition system.

ACKNOWLEDGEMENT
This work has been supported by the Estonian Science Foundation (under Grant

5643) and by EU V Framework projects IST-2001-37592 and IST-2000-30193.

REFERENCES
[1] Benini, L., De Michelli G., and E Macii. Designing Low-Power Circuits: Practical

Recipes. IEEE Circuits and Systems Magazine, pp. 7-25, Vol. 1, No. 1, 2001.
[2] Hartmanis J. and R. E. Stearns. Algebraic Structure Theory of Sequential

Machines. N.J.: Prentice-Hall, Englewood Cliffs, 1966.
[3] Ashar P., Devadas S., and A.R. Newton. Sequential Logic Synthesis, Boston:

Kluwer Academic Publishers, 1992.
[4] Hwang E., Vahid F., and Y.-C.Hsu. FSMD Functional Partitioning for Low Power.

Proc. DATE Conf. , pp.22-28, March 1999.
[5] Lee M.H., Hwang T.T., and S.-Y. Huang. Decomposition of extended finite state

machine for low power design. Proc. DATE Conf. , pp. 1152 – 1154, 2003.
[6] Monteiro J.C. and A.L.Oliveira. Implicit FSM decomposition applied to low-power

design. IEEE Trans. on VLSI Systems, vol.10, No. 5, pp.560-565, October 2002.
[7] De Micheli G., Synthesis and Optimization of Digital Circuits, N. Y.:McGraw-Hill,

1994.
[8] Decomposition Applets. Available: http://www.pld.ttu.ee/dildis/automata/applets
[9] K. McElvain, LGSynth’93 Benchmark Set: V. 4.0, 1993.

Available: http://www.cbl.ncsu.edu/benchmarks.

ABOUT THE AUTHOR

Ph.D. Student E. Fomina, Prof. A. Keevallik,
Ph. D., Assoc. Prof. M. Kruus, Ph.D., Assoc. Prof. A. Sudnitson, Ph.D.,
Department of Computer Engineering, Tallinn Technical University, Raja 15, 12617
Tallinn, Estonia, Phone: +372 620 2251, E-mail: alsu@cc.ttu.ee

- -

http://www.pld.ttu.ee/dildis/automata/applets

	INTRODUCTION
	DECOMPOSITION MODEL
	DECOMPOSITION PROCEDURE
	EXPERIMENTAL RESULTS AND CONCLUSIONS
	ACKNOWLEDGEMENT
	REFERENCES

