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Abstract: Power dissipation has become one of the most important constraints in the design of 
integrated circuits. This work describes a decomposition based approach for power reduction using dynamic 
power management. The problem of low power synthesis corresponds to an optimal multiple decomposition 
of a finite state machine. A decomposition procedure that enables the distribution of primary controller inputs 
among components is elaborated. The technique for decomposition is based on quantitative modeling 
through entropic relationships. The presented technique leads to a general low power design methodology 
targeting selective disabling of a subset of primary inputs.  
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INTRODUCTION 
With increasing sizes of design and a need for low power applications, in addition to 

timing and area, power is another optimization constraint that has become critical for very 
large scale integration circuits. The drive towards a system on a chip has accelerated the 
significance of a low power design methodology. In the last ten years, research on the 
techniques for low power at various levels of design has intensified and the area of power 
consumption estimation and optimization has been covered by many authors as reviewed 
in [1]. Current research in low-power design focuses on the techniques on the reduction of 
dynamic power dissipation of the circuit. The work presented in this paper uses a 
fundamental source of power reduction – shutting down useless parts of a circuit. This 
idea is known as power management. Power management can be applied at different 
levels of the design process of digital circuits and systems. The main feature at the register 
transfer level and at the logic level power management is that the shutdown of hardware is 
decided on every clock cycle, hence the name dynamic power management. 

With regard to the analysis of different techniques for dynamic power management, 
our work proceeds from the fact that a detection on a per-clock-cycle basis the parts of 
design which are idle is a substantial problem of design. We consider this problem as a 
particular task of the decomposition of FSM and apply the guarded evaluation style of 
implementation [1]. To avoid unnecessary switching activity we partition original FSM into 
the network of component FSM with a restricted number of binary inputs and place guards 
at the inputs of those parts of the network that need to be selectively turned off.  

Various techniques have been developed to enhance the capability and efficiency of 
decomposition, and they fall broadly into two categories: those based on the algebraic 
theory [2] and those based on the factorization or on the identification in the state transition 
graph of subroutines [3]. In the last ten years, research on decomposition techniques for 
low power have intensified and a range of techniques has been proposed for the register-
transfer level optimization of circuits for low power using the second approach [4]-[6]. As 
distinct from previous work in this paper conceptually more general algebraic theoretical 
background for decomposition is presented. Our reasoning proceeds from the premise that 
the solution of the problem of FSM synthesis for low power can be reduced to the FSM 
decomposition with distributed primary input/output variables and appropriate synthesis of 
FSM network. 

 

Our work proceeds from the fact that the principal NP-complete problem of FSM 
decomposition is searching a set of partitions on the set of states of source FSM. As in [2], 
only such sets of partitions may be used for FSM decomposition. Because of lack of 
methodology of searching of these partitions the application of the powerful algebraic 
decomposition theory is substantially limited in practice. We attempt to surmount this 
obstacle.  
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DECOMPOSITION MODEL 
Formally, the FSM is defined as a quintuple < S, X, Y,δ, λ >, where 

 S={s1, s2, …, sM} is a set of states,  
 Χ={x1, x2, …, xL} is a set of binary input variables,  
 Υ={y1, y2, …, yT} is a set of binary output variables, 
 δ: D(δ)→S is a multiple valued next state function with a domain D(δ)=D1×…×DL×S and 
codomain S, 
 Di={0, 1} represents a set of values (symbols) each input variable xi may assume, 
 λ: D(λ)→R(λ) is an output function with a domain D(λ)=D(δ) and codomain 
R(λ)=E1×…×ET,  
 Ei={0, 1} represents a set of values each output variable yi may assume. 

The behaviour of a controller can be described by state transition graph or, 
equivalently, by presentation by the list of transitions. 

 
Table 1. An example FSM 

Present state  
sp 

Input condition  
αpq 

Next state  
sq 

Output signal   
βpq 

x2 1 y1 1 
^x2 2 y1 y2 y7 
x1 1 y1  

^x1 & x3 3 y2  y5 
 

2 
^x1 & ^x3 5 y1 y2 y6 

x2 ∨ ^x2 & ^x4 3 y3  y7  
3 ^x2 & x4 4 y3 

x4 1 y5  y6 4 
^x4 2 y3  y5 

x2 3 y4 y7 5 
^x2 4 y4 

 
In this table, input condition is a Boolean function, αtq, which is equal to 1 when the 

controller makes the transition from the state st to state sq. Output signal is a 
microinstruction, βtq, the list of output signals which are equal to 1 on the transition of the 
FSM from st to sq. The search for the next state and the corresponding output means the 
evaluation of the Boolean functions α on the Boolean space {0, 1}L. 

Our decomposition procedure is based on the general form of decomposition without 
the restriction on their interconnection (Figure 1). Informally, the essence of the 
decomposition task could be described as follows. Given a prototype FSM description of a 
desired terminal behavior, the decomposition problem is to find sub-machines which, when 
interconnected in a prescribed way, will display that terminal behavior. Our procedure of 
decomposition is based on the general form of decomposition without the restriction on 
their interconnection. Each sub-FSM corresponds to a partition on the set of states (a 
partition π on the set of states, S, in a machine is a collection of disjoint subsets of states 
whose set union is S). In general decomposition, each partitioned machine has information 
about the current state of the others. 

The state behavior of the FSM network forms the basis of the decomposition model. 
The state behavior of the prototype machine is formally described by the network of state 
machines Ai=<Xi , Si , δi> where Si is the set of states which correspond to blocks of 
partition πI, Xi=Zi∪Ei,  where Zi is a set of internal symbolic variables (state variables) and 
Ei⊆X is a set of external inputs. Each of the sub-machines receives, as inputs, not only the 
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primary inputs and their own state variables, but also the state variables of the other sub-
machine. δi: D(δi)→Si, is a transition function. 

 Y

X 

Y1 Y2

E2E1

Z1

Z2

sub-FSM_2sub-FSM_1

 
 
 
 
 
 
 
 
 
 
 Fig. 1: Structure of decomposed machine 
 
Our approach to the decision of partition choice problem is based on the new notion 

of partition with Don’t Care’s and its relation to pair algebra. 
To distribute input variables among component FSMs, we introduce the notion of α-

partition with Don’t Care’s.  
A partition with Don’t Care's (PDC) ρ of a set S is a collection of disjoint nonempty 

subsets of S.  
The disjoint subsets are called blocks of ρ and their set union is equal to Sd ⊆ S. The 

set difference S \ Sd is the Don’t Care's area of the PDC and we can consider it as some 
distinguished (special) block which may be empty.  

In our reasoning for partitions search, we proceed from information theoretic 
concepts, which are rationalized on the basis of algebraic structure theory of sequential 
machine. In the following, we assume that the state lines of the FSM are modeled as a 
Markov chain. Entropy is related to switching activity, that is if the signal switching is high, 
it is likely that entropy is also high. Theoretically confirmed the high correlation proves that 
partition entropy is suitable for estimating corresponding sub-machines, which makes it a 
good measure for partition choice for appropriate decomposition. 

 
DECOMPOSITION PROCEDURE 
The idea of partition for low power here is that in behavioral descriptions of hardware, 

a small set of computation (computational kernel) often accounts for most of the 
computational complexity as well as power dissipation [5]. We extract a computational 
kernel during the decomposition process. It enables us then to simplify the computational 
kernel in a stand alone manner to achieve power savings. To find kernel, primary inputs 
with high probability have to be selected. So, we decompose the example prototype 
machine into network of two sub-FSMs. The procedure of decomposition is divided into six 
phases. 

1) Finding of primary α-partitions. 
We use the representation of Boolean functions with complexes of cubes [7]. Two 

products (cubes) C and C' are in the relation of consensus (C con C' ) if and only if they 
have opposite values (0 and 1) exactly in one bound component. Two covers K1 and K2 
are in consensus if and only if there are C∈ K1 and C'∈ K2, which are in consensus. 

For every x∈X, we define such symmetric binary relation ω on S that sp ω sq (p≠q) if 
and only if for some st exist transitions 〈st, sp, αtp〉 and 〈st, sq,αtq〉 such that the 
correspondent input conditions αtp and αtq are in consensus. As a result of transitive 
closure operation of relation ω we will receive symmetric and transitive relation on S which 
we represent as PDC and call it primary α-partition on S.  
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Let x∈X and α(x) is PDC of S, then if both sI and sj  are contained in the same 
nonspecial block of α(x), si and sj are “indistinguishable” by the input variable (channel) x. 
According to the definition of the primary α-partition for the fixed binary input it is a such 
partition on the set of states that the work of corresponding component FSM does not 
depend on the chosen binary input.  

In our example, we have four primary α-partitions: α(x1)= {{1, 3, 5}, <2, 4>}, α(x2) = 
{{1, 2}, {3, 4}, <5>}, α(x3)= {{3, 5}, <1, 2, 4>}, and  α(x4) = {{1, 2}, <3, 4, 5>}. 

2) Constructing of the α-partition.  
The PDC ρ in reality defines a set of conventional partitions, denoted by G(ρ), 

generated by distributing the elements of the distinguished block over the other blocks of 
the PDC and over new created blocks in all possible ways. 
The next affirmation is important for receiving of decomposition with the distribution of the 
inputs. Let α(X*) be the sum of all α -partitions α(xi) such that xi ∈ X* and Ai a component 
FSM constructed in accordance with some partition πi from G(α (X*)),  then the behavior of 
Ai does not depend on all binary inputs of from X*.  

To meet the demand that selection logic, depending on the input patterns, selects 
either the kernel or the rest of the circuit (in a mutually exclusive fashion) the restriction is 
that for all states st∈S, X(st) ⊆ Xc or X(st) ⊆X*. Here, X(st) is the set of inputs essentially 
determining the transition (next state) from the state st. We sum the primary α-partitions 
with the greatest entropy to receive the computational kernel (the first sub-FSM). In the 
following, we assume that as result of selection the set Xc={x1, x3} is selected. 

In this step we generated the first partition. For every input variable x∈ X*={x2, x4} 
which must to be excluded generate α(x). By summing of PDCs corresponding to 
elements of X*, we construct the new partition: α(x2, x4) =α(x2) + α(x4) ={{1, 2}, {3,4}, <5>} 

3) Determining of the complete set of partitions.  
Generate the partitions π1 and π2 such that π1∈ G( α(x2, x4) )  and their product is 

zero-partition, π1 • π2 = 0.  
In our example,  π1 = {{1, 2}, {3, 4}, {5}}; π2 = {{1, 3, 5}, {2, 4}}. 
4) Coding of the network.  
The coding of global states of the network gives us a set of internal binary variables 

of the network Z. Consider a set of states S and an encoding function e: S→{0, 1}c, for a 
given c (encoding length), that to each symbol s∈S a code, i.e., a binary vector of length c. 
A necessary requirement is that different symbols are mapped to different binary vectors. 
Given a set of symbols S, a face constraint is a block B⊆S in the partition specifying that 
the symbols in B are to be assigned to one face (or sub-cube) of a binary c-dimensional 
cube, without any other symbol sharing the same face. So, face constraints are generated 
by step of partition search, c is the number of internal binary variables of the net, |Z|. Every 
variable z∈Z corresponds to some two-block partition on S. Let the binary internal state 
variable zi

j be produced by the sub-machine Ai. Then zi
j is a state variable of sub-machine 

Ai and corresponds to the two-block partition hi
j. One of the blocks of hi

j is coded by 0, the 
other one by 1. In this step we decide an combinatorial problem called face hypercube 
embedding [7], to find the minimum c and related e: S→{0, 1}c such that face constraints 
are satisfied i.e., hij≤πi. 

In our example, corresponding two-block partitions and internal binary variables are: 
 z1 ~ h1

1 = {{1, 2, 5}, {3, 4}}; z2 ~  h1
2 = {{1, 2}, {3, 4, 5}}; z3 ~ h2

1= {{1, 3, 5}, {2, 4}}. 
5) Determining of the structure of the network.  
For a subset B of S, we define δ(B,σ)={s | s=δ(t, σ), t∈B } and we say that the state 

subset B goes into set B’ under input σ if and only if δ(B, σ)⊆ B’. Pair (π1,π2) is a state-state 
pair if and only if π1 and π2 are partitions of S and for all inputs σ, s ~ t (π1) implies δ(s, σ) ~ 
δ(t, σ) (π2). Thus (π1, π2) is a partition pair on A if and only if the blocks of π1 are mapped 
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into the blocks of π2 by A. That is, for every input σ and Bπ1∈π1, there exists a Bπ2∈π2 such 
that δ(Bπ1,σ)⊆Bπ2. In other words, if we only know the block of π1 which contains the state 
of A, then we can compute for every input the block of π2 to which this state is transferred 
by A. For any partition π on S of A we define the operator: M(π)=Σ{πi | (πi, π) is a partition 
pair on A}. The operator M(π) gives the maximum front partition of partition pair. M(πi) 
defines the information received from the other components of the net sufficient for the 
sub-machine Ai to compute its next state and output [5].  

M(π1) = {{1, 4}, {2}, {3, 5}}; M(π1) ≤ h1
2 • h2

1. 
M(π2) = {{1, 5}, {2}, {3}, {4}}; M(π2) ≤ h1

1 • h2
1. 

It means that state variable of the first machine z1, corresponding to h1
1, is the internal 

input of the second component machine. The variable z2 is the state variable and z3 is 
input variable for the first sub-machine. The sub-FSMs network of our examle 
decomposition is presented in Figure 2. 

 

z3

z1

y7y5y4y1

x4x2x3 x1 

Sub_FSM_2Sub_FSM_1

 
 
 
 
 
 
 
 

Figure 2: Example FSM  
 
6) Defining of the basic of the network.  
The set of states of component FSM Ai is equal to the set of blocks of partition πI:  

{1, 2} ~ a1, {3, 4} ~ a2, {5} ~ a3 The internal inputs of component machines are defined in 
the previous step of the procedure. 

Synthesize the sub-FSMs corresponding to partitions π1 and π2. The transition table of 
the first sub-FSM is presented in Table 2. 
 

Table 2. The first sub-FSM transition table 
Present state Input condition Next state Output signal 

^z3 a1 y1 
x1 & z3 a1 y1 

^x1 & x3 & z3 a2 y2 

 
a1 
 

^x1 & ^x3 & z3 a3 y1 y2 
^z3 a2 y3 a2 
z3 a1 y3 

a3 1 a2 y4 
 

EXPERIMENTAL RESULTS AND CONCLUSIONS  
Our reasoning proceeds from the premise that the solution of the problem of FSM 

synthesis for low power can be reduced to the FSM decomposition with distributed primary 
input variables and appropriate synthesis of FSM network. In the next section we apply the 
developed concepts to finding corresponding decomposition partitions of prototype FSM. 

WWW-based system is developed [8]. Experiments have been carried out on the set of 
well-known FSM benchmarks [9] to certify the viability of our concepts. Preliminary results 
confirmed that it is possible to significantly reduce switching activity of implementation and 
that significant reduction in power consumption could be achieved.  
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The developed Web-based design system can be considered as a research tool that 

we use to carry out experiments guided to further development of decomposition 
synthesis.  

Table 3: Results and comparison of implementations 
Circuit State 

# 
Inputs 

# 
Total 

states # 
of sub-
FSMs 

Total 
states # 

(alternative 
approach) 

Max # of 
sub-

FSMs 
inputs 

Area 
noncombin

. 
ratio 

Area 
combinat

. 
ratio 

log 17 9 12 19 5 0.75 0.85 
dvram 35 8 14 37 5 0.50 0.52 
nucpwr 29 13 15 31 8 0.68 0.67 

sync 52 19 26 54 13 0.67 0.64 
planet 48 7 24 50 5 0.59 0.56 
ex6 8 5 9 10 3 1.14 1.09 

opus 10 5 7 12 4 0.78 0.75 
ex4 14 6 9 16 5 0.75 0.76 
rie 29 9 15 31 5 0.66 0.64 
 
Some results of experiments are presented in Table 3. The table contains the results 

of comparative experiments of our decomposition technique and approach used in [4]-[6]. 
The area estimation was done using the commercial design frame (SYNOPSIS). This 
parameter was chosen for complexity criteria for decomposition system. 
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