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Abstract: Resent investigations have shown the very good results of digital systems and circuits optimization using 
integration of dynamic power management in the design flow. This approach proceed from detection periods of time 
during which parts of the circuit are not doing useful work and shut them down by either turning off the power supply 
or the clock signal. In this work, we take this approach to design at register transfer level. We consider the partition 
technique for controller and datapath simultaneously and develop a decomposition procedure for the finite state 
machines with datapath (FSMD) model. The proposed techniques leads to a general low power design methodology 
based on functional partitioning of FSMD. 
 
 
INTRODUCTION 
 
With increasing sizes of designs and the need for low 
power applications, power is another optimization 
constraint that has become critical in addition to timing 
and area for very large scale integration circuits. The 
drive towards system on a chip (SoC) has accelerated 
the significance of a low power design methodology. In 
the last ten years, research on techniques for low power 
at various levels of design have intensified and much 
work has been done in the area of power consumption 
estimation and optimization, as surveyed in [1].  
At the elementary transistor gate level (CMOS 
technology), we can formulate total power dissipation as 
the sum of three major components: switching loss, 
leakage, and short-circuit loss. 

PWdevice =(1/2) C Vdd
2 a f + Ileakage Vdd + Isc Vdd 

Here, C is the output capacitance, Vdd is the supply 
voltage, f is the chip clock frequency, and a is the 
activity factor (0 ≤ a ≤ 1) that determines the device 
switching frequency. Ileakage is the leakag current, and Isc 
is the average short-circuit current. Also for current 
ranges of Vdd (say, 1volts to 3 volts) switching loss or 
the power consumed in charging and discharging the 
load capacitance of a gate (dynamic power dissipation) 
(1/2) C Vdd

2a f remains the dominant component. So as 
a first-order approximation for the whole chip we may 
formulate the power dissipation as 

PWchip = =(1/2)[∑ Ci Vi
2 ai fi] 

Ci, Vi, ai, and fi are i-th unit or block-specific average 
values. The summation is taken over all blocks or units 
i, at the microarchitecture level [2]. 
A wide range of techniques has already been proposed 
for the optimization of circuits for low power. Current 
research in low-power design focuses on techniques to 
reduce dynamic power dissipation of the circuit. The 
work presented in this paper exploits a fundamental and 
important source of power reduction – shutting down 
useless parts of a circuit. This idea is known as power 

management. Power management can be applied on 
different levels of the design process of application 
specific integrated circuits. In this work we consider 
techniques for register-transfer level (RTL) power 
optimization. After behavioral synthesis each design 
consists of at least one control unit (or controller) and 
one datapath (or operative part of design). The main 
difference from system level power management is that 
the shutdown of hardware is decided on every clock 
cycle, hence the name dynamic power management [1]. 
Organizing the target architecture as a 
datapath/controller model is an invariant part for most 
behavioral synthesis tools. Functional partition 
technique at RTL targeted for low power has been 
recently proposed by Hwang et al. [3]. It was shown that 
power savings would increase appreciably if both the 
controller and the datapath were and if the techniques 
were applied on the complete circuit, rather than on 
individual blocks. In addition to reducing power, FSMD 
functional partitioning also provides solutions to a 
variety of synthesis problems. As distinct from previous 
work [3,4] in this article conceptually more general 
theoretical background for partition [5] is considered 
and procedure of partition is elaborated. 
 
BACKGROUND 
 
To begin with, we outline three techniques could be 
used for inserting dynamic power management 
mechanisms into RT-level designs. 
Precomputation relies on the idea of duplicating part of 
the logic with the purpose of precomputing the circuit 
output values one clock cycle before they are required, 
and then uses these values to reduce the total amount of 
switching in the circuit during the next clock cycle. In 
fact, knowing the output values one clock in advance 
allows the original logic to be turned off during the next 
time frame, thus eliminating any charging and 
discharging of the internal capcitances. It is shown [6] 



that it is important to resort to partial, rather than global, 
shutdown, i.e., to select for power management only a 
(possible small) subset of the circuit inputs. 
Another approach to RT-level dynamic power 
management, known as gated clocks, provides a way to 
selectively stop the clock, and thus force the original 
circuit to make no transitions, whenever the 
computation to be carried out at the next clock cycle is 
useless. In other words, the clock signal is disabled in 
accordance to the idle conditions of the logic network. 
Guarded evaluation [7] is the third popular RT-level 
shutdown technique. The distinctive feature of this 
solution is that, unlike precomputation and gated clocks, 
it does not require one to synthesise additional logic to 
implement the shutdown mechanism; rather it exploits 
existing signals in the original circuit. The approach is 
based on placing some guard logic, consisting of 
transparent latches with an enable signal, at the inputs of 
each block of the circuit that needs to be power 
managed. When the block must execute some useful 
computation in a clock cycle, the enable signal makes 
the latches transparent. Otherwise, the latches retain 
their previous state, thus blocking any transition within 
the logic block. In consequence of analysis of different 
techniques for dynamic power management at RT-level, 
our work proceeds from the fact that substantial 
problem is detection on a per-clock-cycle basis which 
parts of design is idle and integrate it in the synthesis 
procedures. 
Typically, the synthesized design from high level steps 
of synthesis (scheduling and allocation) consists of two 
modules (Figure 1): a control part (or controller) and an 
operative part (or datapath). The formal description of 
control unit is a Mealy state machine which generates 
control signals to activate the different operations in 
specific clock cycles. The datapath unit consists of 
instantiation of datapath components such as 
multipliers, adders, incrementers and multiplexors. 
Several different ways to specify register-transfer 
designs, including popular algorithmic-state machine 
(ASM) charts, and techniques for converting such an 
ASM chart into an design implementation consisting of 
a control unit and a datapath are presented in [5, 8]. 
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Figure 1: High-level block diagram 
 
To synthesize designs at RT-level the model of an 
FSMD is introduced by Gajski in [8]. The FSMD 
computes new values for variables stored in the data 
path and produces outputs.  

Our approach is based on the decomposition of FSMD. 
Informally the essence of the decomposition task could 
be described as follows. 
Given a prototype FSMD description of a desired 
terminal behavior, the decomposition problem is to find 
two or more machines which, when interconnected in a 
prescribed way, will display that terminal behavior. The 
individual machines that make up the overall realization 
are referred to as component FSMDs. Each submachine 
corresponds to a subset of the set of states of source 
FSMD. An FSMD is partitioned into the set of 
interconnected FSMDs targeting optimization by 
criteria of power consumption. Each of these component 
FSMDs is then synthesized to its own custom processor, 
having its own controller and datapath. The objective is 
to investigate decomposition techniques for reduction of 
power consumption using dynamic power management 
without increasing appreciable design effort. 
 
FSMD PARTITION 
 
FSMD model 
 
FSMD is an universal model that represents hardware 
design. The FSMD adds a datapath including variables, 
operators on communication to the classic FSM. To 
define FSMD formally, we must extend the definition of 
an FSM by introducing sets of datapath variables, 
inputs, and outputs that will complement the sets of 
FSM states, inputs and outputs. 
 
An FSMD is formulated as a quintuple: 
< S, I × SS, O × AS, δ, λ >, where 
• S is the set of states of the FSMD 
• I × SS is the set of inputs of the FSMD. Inputs 

extended with status expressions 
• O × AS is the set of outputs of the FSMD. Outputs 

extended with variable assignments 
• δ is the next state function, mapping  

S × (I × SS) → S 
• λ is the output function, mapping 

 S × (I × SS) → (O × AS) 
 
The controller implements the FSM. It computes the 
next state and the signals controlling the transfers in 
datapath according to primary control input lines, status 
lines and the present state. The extracted FSM is 
described as unit with the set of binary inputs (channels)  
X = {x1, … , xL} and the set of binary outputs (channels) 
Y = {y1, … , yT} (Figure 1). 
Let a microoperation be an elementary indivisible step 
of data processing in the datapath and let Y be a set of 
microoperations. Microoperations are induced by the 
binary signals y1, … ,yT from a controller. To perform 
the microoperation yi (i = 1, …, T) the signal yi = 1 has 
to appear at the output yi . A set of microoperations 
executed concurrently in the datapath is called a 
microinstruction. Thus if βh = {yh

1, … , yh
t} is 

microinstruction, then βh is represented as subset of Y 
and the microoperations yh

1, … , yh
t are executed at the 

same clock period of an FSMD. The Yt could be empty 
and we denote such an empty microinstruction Y0 (“-“). 
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The variables x1, … , xL are the input variables of the 
controller and they may be changed during the 
microinstruction implementation. We can consider X as 
the set of coding variables of the set (I × SS) that is the 
set of inputs of FSMD. Similarly Y ={y1, … ,yT} is the 
set of coding variables of the set  (O × AS) that is the set 
of outputs of FSMD. The set of states of controller is 
equal to the set of states of source FSMD. The 
controller is usually represented as FSM with binary 
inputs and outputs. Formally, the FSM is defined as a 
quintuple < S, X, Y, δ, λ >, where 
S = { s1, … , sM } is a set of states. 
Χ = {x1, … , xL } is a set of binary input variables 
(channels). 
Υ = {y1, … , yT} is a set of binary output variables 
(channels). 
δ: D(δ) → S is a multiple valued next state function 
with domain D(δ) = D1 × … × DL × S and codomain S. 
Di = {0, 1} represents a set of values (symbols) each 
input variable xi may assume. 
λ: D(λ) → R(λ) is an output function with domain  
D(λ) = D(δ) and codomain R(λ) =E1 × … × ET .  
Ei = {0, 1} represents a set of values each output 
variable yi may assume. 
The behavior of a controller can be described by state 
transition graph or, equivalently, by presentation by the 
list of transitions.  
For example of prototype FSMD control part behavior 
representation we refer to table 1.  
 

Present 
state 

si 

Next 
state 

sj 

Input 
condition 

αh 

Output 
signals 

βh 

 
h 
 

s1 x1 y7 1 s1 
s3 ^x1 - 2 

s2 s3 1 y2   y10 3 
s6 x7 y2  y10 4 
s8 ^x6 & x7 - 5 

 
s3 

s2 ^x6 & ^x7 y2  y5  y10 6 
s1 x1 & x2 y3  y4 7 
s3 x1 & ^x2 y1  y3  y4 8 
s5 ^x1 & x4 y6  y9 9 

 
s4 
 

s8 ^x1 & ^x4 y6  y8  y9 10 
s4 x3 & x4 y6  y9 11 
s5 x3 & ^x4 y6  y9 12 

 
s5 

s8 ^x3 y6  y8 13 
s2 x5 y2  y10 14 
s3 ^x5 & x7 y5 15 

 
s6 

s8 ^x5 & ^x7 y2  y10 16 
s7 s5 1 y1 17 

s8 x3 - 18 s8 
 s5 ^x3 y8  y9 19 

 
Table 1: Transition table of illustrative example  
 
We use the formal notion of generalized transition      
(g-transition).  
g-transition is quartuple < si , sj , αh , βh > where si is 
the present state, sj is the next state, αh is the input 

condition (Boolean function), βh is the output 
(microinstruction) of transition. 
In our example, every row of Table 1 defines one g-
transition from a source state to a destination state along 
with certain output microinstruction according to a 
certain input condition (term). 
If sp is the present state and { sr / r∈Rm ⊆ {1,...,M} } is 
the set of the next ones where transitions from sm are 
possible then there is the set of functions {αpr / r∈Rm}. 
The search for the next state means the evaluation of the 
Boolean functions. It is necessary to evaluate which of 
these functions has value “true” for a given input 
combination z from {0, 1}L. 
 
Controller Decomposition 
 
Decomposition model. A collection ϕ of nonempty 
subsets of a set S whose union is S (such that if Bi, Bj ∈ 
ϕ, then Bi ⊆ Bj implies i=j) is called a cover on S. The 
notion of cover s generalization of a partition, that is a 
collection of disjoint subsets of S whose set union is S. 
We refer to these subsets as blocks of the cover 
(partition). 
Let π = {Y1, … Yn} be the partition on the set of output 
variables Y. 
Let G = {g1, … gH} be the set of g-transitions in the 
transition table (in our example every g-transition 
corresponds to row in table 1), 
X(gh) and Y(gh) be the sets of essential input and output 
variables (microoperations) in the g-transition  
gh (h = 1, … H), 
X(si) and Y(si) be the sets of input and output variables 
at the transitions from the state si . 
On the set G we define relation ξ such that gi ξ gj if 
there is at least one common variable in the sets Y(gi) 
and Y(gj): 
gi ξ gj ⇔ Y(gi) ∩ Y(gj) ≠ ∅ 
This relation is symmetric and reflexive and induces the 
cover µ on the set Y. 
For every block Yp from partition π we put in 
accordance component FSM AP in the network N.  
Let us put the cover ϕ on the set of states S and the 
cover ψ on the set of g-transitions G of the transition 
table in accordance to the pair < C, π >: 
ϕ = {B1, … , Bn};     Bp ⊆ S,   s ∈ Bp ⇔ Y(s) ∩ Yp ≠ ∅; 
ψ = {G1, … , Gn};     Gp ⊆ G,    
g ∈ Gp ⇔ Y(m) ∩ Yp ≠ ∅. 
From above it follows that the state s will be in the 
block Bp of the cover ϕ, there is at least one output 
variable from the block Yp of the partition π at the 
transitions from this state s. It is also evident that the 
state s may be in several blocks of ϕ, for example, in Bp 
and Br, if Y(s) ∩ Yp ≠ ∅ and Y(s) ∩ Yr ≠ ∅, i. e. the 
output variables from Yp and Yr are produced at the 
transitions from state s.  
In exactly the same way, it follows that the g-transition 
gh will be in the block Gp of the cover ψ, if at least one 
output variable from the block Yp of the partition π is 
written in the row of transition table corresponding 
transition gh. Just as for ϕ, the same m will be in several 
blocks of ψ, for example, in Gp and Gr , if  



Y(m) ∩ Yp ≠ ∅ and Y(h) ∩ Yr ≠ ∅,  
i.e. the output variables from Yp and Yr are written in 
the row m. 
In our example (Table 1), 
µ={ {y7}, {y2, y5, y10}, {y1, y3, y4}, {y6, y8, y9} } 
ψ={{1, 2, 7, 8, 17}, {9, 10, 11, 12, 13, 18, 19},  
{3, 4, 5, 6, 14,15,16} } 
 
Affirmation 1. Given FSMD A and the partition π = 
{Yp |, i∈{1, … n}} on the set of output variables Y. Then 
there exists a network N of FSMDs with alternatively 
active datapath (datapath of only one component FSMD 
is active every clock period) that realizes A if and only 
if π ≥ µ. 
 
The choice is very important step of low power design 
and should be fulfilled with allocation at high level 
synthesis. It is not considered in this work. 
As an example, we will take partition 
π={ {y1, y3, y4, y7}, {y6, y8, y9 }, {y2, y5, y10} }, 
that satisfies the condition π≥µ..  
As an outcome of it, the datapath shutdown techniques 
could be applied, portions of the combinational logic in 
the datapath can be shut down for some cycles when 
those results are either precomputed or are not required.  
 
Affirmation 2. If decompositional partition π on Y is 
such that for all states si of FSMD A exists block Yj 
such that Y(si) ⊆ Yj than constructed network consists of 
multiple-exclusive communicating component FSMDs 
(only one pair controller/datapath is active). 
 
In the last case we are able to apply shutdown technique 
that considers both the controller and datapath 
simultaneously. We partition a digital system into 
multiple simpler communicating processors, and then 
shut down the inactive processors (i.e. the inactive 
controller/datapath pairs). 
The following procedure of decomposition show the 
evidence of affirmations. 
 
Decomposition procedure. Let us put the network N 
with n component FSMD  
Ap = < Sp, Xp, Vp, δp, λp >,    p = 1, … n,  
in accordance to triplet < A, π, ϕ , ψ>. The number of 
component machines is equal to the number of blocks in 
the partition π (or the cover ϕ and ψ). 
Further the steps of decomposition procedure are 
presented in formal way. 
 
1. Sp = Bp ∪ {bp} is the set of states in the component 

controller Cp , where Bp is the p-th block of the 
cover ϕ, and bp is additional state in Cp.  

2. Xp = X(Gp) ∪ Zx
p is the set of input variables in the 

component controller Cp. 
Here X(Gp) = ∪m∈G

p  X(gh) 
X(gh) is the set of essential input variables in the g-
transition gh of the controller C of the prototype 
FSMD;  
Gp is the p-th block of the cover ψ. 
Zx

p = {zt | δ(sj , αh) = st ; st ∈ Sp , sj ∉ Sp}.  

3. Vp = Yp ∪ Zy
p 

Zy
p = {zi | δ(st , αh) = sj ; st ∈ Sp , sj ∈ Sk, st ∉ Sk}. 

4. Assume that there is a g-transition < sj, st, αh, βh > 
in of prototype FSMD (the transition from sj to st 
with the input condition αh and the output βh in the 
controller C): 
δ(sj , αh) = st; λ(sj , αh) = βh . 
 
Define the corresponding transitions in component 
controller. 
Ωj be the set of component controllers with the state 
sj, 
Ωt be the set of component controllers with the state 
st, 

Ωjt = Ωj ∩ Ωt be the set of component controllers 
with the states sj and st  
If Ck ∈ Ωjt

 , then in Ck  
δk(sj , αh) = st. 
 
If Ap ∈ Ωj \ Ωjt

 , (si is the state of Cp and st is not the 
state of Cp ), then in Cp 

δp(sj ,α h) = bp . 
The output controlling datapath of qth component 
FSMD for controller Cq ∈ Ωj (si is the state of Cq 
and it is also possible that the next state st is the 
state of Cq ) is equal to βh ∩ Yq. In addition to 
controlling outputs one and only one controller 
from Ωj (say Cr), must generate the output signal 
which forces each controller from Cu ∈ Ωt \ Ωjt (if 
this set is not empty) to transit from the additional 
(idle) state bu to st and in Cq 
λr ( sj, αh ) = βh ∩ Yu ∪ {zt} . 
If Cu ∈ Ωt \ Ωjt (st is the state of Cu and sj is not the 
state of Cu), then in Cu  
δu(bu , zt) = st  
λu ( bu, zt ) = Y0 . 

5. The initial state of the component controller is 
equal to s0 , if Cp ∈ Ω1 and bp otherwise. 

 
ILLUSTRATIVE EXAMPLE  
 
Let us examine the decomposition procedure.  
The number of states of component FSM is equal to the 
number of states in corresponding block of cover ϕ plus 
1 (wait or idle state). 
The additional output variable zi in the controller Cp in 
accordance to each st ∉ Sp, if two conditions are 
satisfied: 
• there is transition from the state st included in Sp to 

the state next sj not included in Sp in the controller 
C or sj is included in Sp but Y(sj) is not subset of Yp; 

• there is at least one block Sk (k ≠ p) such that next 
state sj is included in Sk and st is not included in Sk 
among the blocks of the cover ϕ. 

We put the additional input variable zt in the controller 
Cp in accordance to each st ∈ Sp , if there is at least one 
transition to this state from the state sj not included in Sp 
in the controller C.  
If the controller C is in the state sj, the corresponding 
states in component controllers of a network are 
following: all controllers from the set Ωj are in the state 



sj , all others are in b-states. If controller C transits from 
the state sj to the state st with the input condition αh and 
the output βh , each controller Ck ∈ Ωjt also transits from 
sj to st .Each controller Cp ∈ Ωj \ Ωjt (the next state st is 
not in Cp) transits from sj to bp , and the output signal at 
the corresponding transition from sj is equal to βh ∩ Yq 
in each controller Cq ∈ Ωj (it does not matter whether 
the state st is in Cq or is not in Cq). The output signal zt 
is produced only in one of the component controller of 
the set Ωj . Each component controller Cm of the set     
Ωt \ Ωjt , with the state st and without the state sj , 
transits to this state st from the state bm with the input zt 
(this signal zt is the output in only one controller of the 
set Ωj ). The output at this transition from bm , to st is 
zero (Y0). 
Let us put the network in accordance to the example 
Table 1 and partition  
π={ {y1, y3, y4, y7}, {y6, y8, y9 }, {y2, y5, y10} }  
The cover on the set of states of our prototype FSMD 
(this set is represented by the set of states of controller) 
corresponding to the given partition π is ϕ={{s1, s4, s7}, 
{s4, s5, s8}, {s2, s3, s6}} and the cover on the set of g-
transition is ψ ={{1, 2, 7, 8, 17}, {9, 10, 11, 12, 13, 18, 
19}, {3, 4, 5, 6, 14,15,16} 
The number of component machines is equal to the 
number of blocks in the partition π or in the 
corresponding covers ϕ and ψ . 
In our example, the network consists of three 
component machines A1, A2, and A3. Their g-transitions 
sets represented in the transition tables 2, 3, 4.  
 

Present 
state 

si 

Next 
state 

sj 

Input 
condition 

αh 

Output 
signals 

βh 

 
h 
 

s1 x1 y7    1 s1 
b1 ^x1  z3 2a 

s1 x1 & x2 y3  y4 7 
b1 x1 & ^x2 y1 y3 y4 z3 8a 

 
s4 
 b1 ^x1 - g1 

s7 b1 1 y1   z5 17a 

s4 z4 - 11b b1 
 b1 ^z4 - d1 

 
Table 2: The first component transition table 

 
The set of states of the first component is the states from 
the first block of cover ϕ plus b1, S1 = {s1, s4, s7, b1}.  
The set of outputs consists of variables from Y which 
are in g-transitions from the first block of cover ψ plus 
additional output variable z3 because there is transition 
from s4 to s3 in the original transition table, but s3 is the 
state of the second component C2. 
The set of inputs consists of variables which are in g-
transitions from the first block of cover ψ plus 
additional input variable z4 because exists g-transition 
(11) not included in the first block of cover ψ with next 
state s4.  
Note, that Ω4 = { C1, C2 } and Ω3 = { C3 }, but only C1 
generates output z3.. 

The sketch of the of components network is presented in 
Figure2. 
 

Present 
state 

sp 

Next 
state 

sn 

Input 
condition 

αh 

Output 
signals 

βh 

 
h 
 

s4 x3 & x4 y6  y9  z4 11 
s5 x3 & ^x4 y6  y9 12 

 
s5 
 s8 ^x3 y6  y8 13 

s8 x3 - 18 s8 
 s5 ^x3 y8  y9 19 

s5 ^x1 & x4 y6  y9 9 

s8 ^x1 & ^x4 y6  y8 y9 10 

s4 
 

b3 x1 - g2 
s8 z8 - 5b/16b 

s5 z5 - 17b 

 
b3 
 

b3 ^z5 & ^z8 - d2 

 
Table 3: The second component transition table 

 
Note, that when there is transition to the state s4 both 
controllers C1 and C2 are activated but only one of them 
will generate outputs controlling own datapath. The 
datapath of other machine will be silent (it depends on 
the value of input variable x1). This is the case, because 
the condition presented in affirmation 2 is not satisfied 
in our example. 
 

Present 
state 

si 

Next 
state 

sj 

Input 
condition 

αh 

Output 
signals 

βh 

 
h 
 

s2 s3 1 y2   y10 3 
s6 x7 y2  y10 4 
b2 ^x6 & x7 z8 5a 

 
s3 

s2 ^x6 & ^x7 y2  y5  y10 6 
s2 x5 y2  y10 14 
s3 ^x5 & x7 y5 15 

 
s6 

b2 ^x5 & ^x7 y2 y10  z8 16a 
s3 z3 - 2b/8b b2 

 b2 ^z3 - d3 

 
Table 4: The third component transition table 

Thus, when there is a transition between two 
components, the caller FSMD will go into its idle state 
while at the same time, callee FSMD goes from its idle 
state into its next state. The transitions to and from 
respective idle states for two component FSMDs happen 
concurrently, thus no extra clock cycle is needed. But 
overall execution time can be longer or shorter than the 
in the case of prototype FSMD as shown in [3]. 
In Figure 1 shutdown mechanism is not presented. For 
instance, gated-clock technique [1]could be used. In this 
case, an decomposed FSMD consists of a number of 
component FSMD and an equally large number of clock 
control blocks with nand-gates for gating the local 
clocks. In particular, handshake protocol between 
components of decomposition could be used.  
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Figure 2: example FSMD network 
 
CONCLUSIONS 
 
This paper elaborates functional partition approach for 
low-power synthesis at RT-level. FSMD functional 
partitioning technique is applied before logic level of 
design process. The original FSMD is first partitioned 
into several smaller FSMDs. 
We use technique of dynamic power management to 
accomplish the task of preventing logic computations in 
modules when the results will not be used. The reason 
why FSMD functional partitioning can significantly 
reduce the switching activities at the registers and the 
functional modules and only one (subset) of machines is 
(are) executing a computation at any given time while 
the other processors will be idle. Here we should 
emphasize the fact that the machine decomposition is 
the organic part of synthesis process. In addition to 
reducing power, FSMD functional partitioning also 
provides solutions to a variety of synthesis problems. 
The solution of problem is reduced to the controller 
decomposition. In our decomposition procedure, we 
proceed from assumed partition on the set of outputs of 
FSM controlling the transfers in datapath. The data path 
of idle controller is not consuming power because the 
inputs are not changing. The overhead in this technique 
is the communication and possible duplication of 
registers. 
Experiments have been carried out on the wide range of 
random machines and on the set of well-known FSM 
benchmarks. The results confirmed that it is possible to 

significantly reduce switching activity of 
implementation and that significant reduction in power 
consumption could be achieved without essential 
performance degradation. Results are much more 
significant for machines with large number of inputs 
and data dominated designs with large number of 
microoperations (in particular, for the most important 
case for real practice projects when |Rm| << M and when 
controller  has large amount of state-loops). 
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The method concerns the technique of partition search 
on the set of FSMD microoperations. Analysis of power 
dissipation in datapath for partition search is beyond of 
this work and is the subject of further investigations. 
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