
FINITE STATE MACHINES WITH DATAPATH
PARTITIONING FOR LOW POWER SYNTHESIS

A. Sudnitson
Tallinn Technical University, ESTONIA

KEYWORDS: Dynamic power management,
finite state machine with datapath, decomposition

Abstract: Resent investigations have shown the very good results of digital systems and circuits optimization using
integration of dynamic power management in the design flow. This approach proceed from detection periods of time
during which parts of the circuit are not doing useful work and shut them down by either turning off the power supply
or the clock signal. In this work, we take this approach to design at register transfer level. We consider the partition
technique for controller and datapath simultaneously and develop a decomposition procedure for the finite state
machines with datapath (FSMD) model. The proposed techniques leads to a general low power design methodology
based on functional partitioning of FSMD.

INTRODUCTION

With increasing sizes of designs and the need for low
power applications, power is another optimization
constraint that has become critical in addition to timing
and area for very large scale integration circuits. The
drive towards system on a chip (SoC) has accelerated
the significance of a low power design methodology. In
the last ten years, research on techniques for low power
at various levels of design have intensified and much
work has been done in the area of power consumption
estimation and optimization, as surveyed in [1].
At the elementary transistor gate level (CMOS
technology), we can formulate total power dissipation as
the sum of three major components: switching loss,
leakage, and short-circuit loss.

PWdevice =(1/2) C Vdd
2 a f + Ileakage Vdd + Isc Vdd

Here, C is the output capacitance, Vdd is the supply
voltage, f is the chip clock frequency, and a is the
activity factor (0 ≤ a ≤ 1) that determines the device
switching frequency. Ileakage is the leakag current, and Isc
is the average short-circuit current. Also for current
ranges of Vdd (say, 1volts to 3 volts) switching loss or
the power consumed in charging and discharging the
load capacitance of a gate (dynamic power dissipation)
(1/2) C Vdd

2a f remains the dominant component. So as
a first-order approximation for the whole chip we may
formulate the power dissipation as

PWchip = =(1/2)[∑ Ci Vi
2 ai fi]

Ci, Vi, ai, and fi are i-th unit or block-specific average
values. The summation is taken over all blocks or units
i, at the microarchitecture level [2].
A wide range of techniques has already been proposed
for the optimization of circuits for low power. Current
research in low-power design focuses on techniques to
reduce dynamic power dissipation of the circuit. The
work presented in this paper exploits a fundamental and
important source of power reduction – shutting down
useless parts of a circuit. This idea is known as power

management. Power management can be applied on
different levels of the design process of application
specific integrated circuits. In this work we consider
techniques for register-transfer level (RTL) power
optimization. After behavioral synthesis each design
consists of at least one control unit (or controller) and
one datapath (or operative part of design). The main
difference from system level power management is that
the shutdown of hardware is decided on every clock
cycle, hence the name dynamic power management [1].
Organizing the target architecture as a
datapath/controller model is an invariant part for most
behavioral synthesis tools. Functional partition
technique at RTL targeted for low power has been
recently proposed by Hwang et al. [3]. It was shown that
power savings would increase appreciably if both the
controller and the datapath were and if the techniques
were applied on the complete circuit, rather than on
individual blocks. In addition to reducing power, FSMD
functional partitioning also provides solutions to a
variety of synthesis problems. As distinct from previous
work [3,4] in this article conceptually more general
theoretical background for partition [5] is considered
and procedure of partition is elaborated.

BACKGROUND

To begin with, we outline three techniques could be
used for inserting dynamic power management
mechanisms into RT-level designs.
Precomputation relies on the idea of duplicating part of
the logic with the purpose of precomputing the circuit
output values one clock cycle before they are required,
and then uses these values to reduce the total amount of
switching in the circuit during the next clock cycle. In
fact, knowing the output values one clock in advance
allows the original logic to be turned off during the next
time frame, thus eliminating any charging and
discharging of the internal capcitances. It is shown [6]

that it is important to resort to partial, rather than global,
shutdown, i.e., to select for power management only a
(possible small) subset of the circuit inputs.
Another approach to RT-level dynamic power
management, known as gated clocks, provides a way to
selectively stop the clock, and thus force the original
circuit to make no transitions, whenever the
computation to be carried out at the next clock cycle is
useless. In other words, the clock signal is disabled in
accordance to the idle conditions of the logic network.
Guarded evaluation [7] is the third popular RT-level
shutdown technique. The distinctive feature of this
solution is that, unlike precomputation and gated clocks,
it does not require one to synthesise additional logic to
implement the shutdown mechanism; rather it exploits
existing signals in the original circuit. The approach is
based on placing some guard logic, consisting of
transparent latches with an enable signal, at the inputs of
each block of the circuit that needs to be power
managed. When the block must execute some useful
computation in a clock cycle, the enable signal makes
the latches transparent. Otherwise, the latches retain
their previous state, thus blocking any transition within
the logic block. In consequence of analysis of different
techniques for dynamic power management at RT-level,
our work proceeds from the fact that substantial
problem is detection on a per-clock-cycle basis which
parts of design is idle and integrate it in the synthesis
procedures.
Typically, the synthesized design from high level steps
of synthesis (scheduling and allocation) consists of two
modules (Figure 1): a control part (or controller) and an
operative part (or datapath). The formal description of
control unit is a Mealy state machine which generates
control signals to activate the different operations in
specific clock cycles. The datapath unit consists of
instantiation of datapath components such as
multipliers, adders, incrementers and multiplexors.
Several different ways to specify register-transfer
designs, including popular algorithmic-state machine
(ASM) charts, and techniques for converting such an
ASM chart into an design implementation consisting of
a control unit and a datapath are presented in [5, 8].

 Datapath

inputs
Control Control
inputs signals

X Y

 Datapath
 Status signals outputs

Figure 1: High-level block diagram

To synthesize designs at RT-level the model of an
FSMD is introduced by Gajski in [8]. The FSMD
computes new values for variables stored in the data
path and produces outputs.

Our approach is based on the decomposition of FSMD.
Informally the essence of the decomposition task could
be described as follows.
Given a prototype FSMD description of a desired
terminal behavior, the decomposition problem is to find
two or more machines which, when interconnected in a
prescribed way, will display that terminal behavior. The
individual machines that make up the overall realization
are referred to as component FSMDs. Each submachine
corresponds to a subset of the set of states of source
FSMD. An FSMD is partitioned into the set of
interconnected FSMDs targeting optimization by
criteria of power consumption. Each of these component
FSMDs is then synthesized to its own custom processor,
having its own controller and datapath. The objective is
to investigate decomposition techniques for reduction of
power consumption using dynamic power management
without increasing appreciable design effort.

FSMD PARTITION

FSMD model

FSMD is an universal model that represents hardware
design. The FSMD adds a datapath including variables,
operators on communication to the classic FSM. To
define FSMD formally, we must extend the definition of
an FSM by introducing sets of datapath variables,
inputs, and outputs that will complement the sets of
FSM states, inputs and outputs.

An FSMD is formulated as a quintuple:
< S, I × SS, O × AS, δ, λ >, where
• S is the set of states of the FSMD
• I × SS is the set of inputs of the FSMD. Inputs

extended with status expressions
• O × AS is the set of outputs of the FSMD. Outputs

extended with variable assignments
• δ is the next state function, mapping

S × (I × SS) → S
• λ is the output function, mapping

 S × (I × SS) → (O × AS)

The controller implements the FSM. It computes the
next state and the signals controlling the transfers in
datapath according to primary control input lines, status
lines and the present state. The extracted FSM is
described as unit with the set of binary inputs (channels)
X = {x1, … , xL} and the set of binary outputs (channels)
Y = {y1, … , yT} (Figure 1).
Let a microoperation be an elementary indivisible step
of data processing in the datapath and let Y be a set of
microoperations. Microoperations are induced by the
binary signals y1, … ,yT from a controller. To perform
the microoperation yi (i = 1, …, T) the signal yi = 1 has
to appear at the output yi . A set of microoperations
executed concurrently in the datapath is called a
microinstruction. Thus if βh = {yh

1, … , yh
t} is

microinstruction, then βh is represented as subset of Y
and the microoperations yh

1, … , yh
t are executed at the

same clock period of an FSMD. The Yt could be empty
and we denote such an empty microinstruction Y0 (“-“).

Controller

C

Datapath

D

The variables x1, … , xL are the input variables of the
controller and they may be changed during the
microinstruction implementation. We can consider X as
the set of coding variables of the set (I × SS) that is the
set of inputs of FSMD. Similarly Y ={y1, … ,yT} is the
set of coding variables of the set (O × AS) that is the set
of outputs of FSMD. The set of states of controller is
equal to the set of states of source FSMD. The
controller is usually represented as FSM with binary
inputs and outputs. Formally, the FSM is defined as a
quintuple < S, X, Y, δ, λ >, where
S = { s1, … , sM } is a set of states.
Χ = {x1, … , xL } is a set of binary input variables
(channels).
Υ = {y1, … , yT} is a set of binary output variables
(channels).
δ: D(δ) → S is a multiple valued next state function
with domain D(δ) = D1 × … × DL × S and codomain S.
Di = {0, 1} represents a set of values (symbols) each
input variable xi may assume.
λ: D(λ) → R(λ) is an output function with domain
D(λ) = D(δ) and codomain R(λ) =E1 × … × ET .
Ei = {0, 1} represents a set of values each output
variable yi may assume.
The behavior of a controller can be described by state
transition graph or, equivalently, by presentation by the
list of transitions.
For example of prototype FSMD control part behavior
representation we refer to table 1.

Present
state

si

Next
state

sj

Input
condition

αh

Output
signals

βh

h

s1 x1 y7 1 s1
s3 ^x1 - 2

s2 s3 1 y2 y10 3
s6 x7 y2 y10 4
s8 ^x6 & x7 - 5

s3

s2 ^x6 & ^x7 y2 y5 y10 6
s1 x1 & x2 y3 y4 7
s3 x1 & ^x2 y1 y3 y4 8
s5 ^x1 & x4 y6 y9 9

s4

s8 ^x1 & ^x4 y6 y8 y9 10
s4 x3 & x4 y6 y9 11
s5 x3 & ^x4 y6 y9 12

s5

s8 ^x3 y6 y8 13
s2 x5 y2 y10 14
s3 ^x5 & x7 y5 15

s6

s8 ^x5 & ^x7 y2 y10 16
s7 s5 1 y1 17

s8 x3 - 18 s8
 s5 ^x3 y8 y9 19

Table 1: Transition table of illustrative example

We use the formal notion of generalized transition
(g-transition).
g-transition is quartuple < si , sj , αh , βh > where si is
the present state, sj is the next state, αh is the input

condition (Boolean function), βh is the output
(microinstruction) of transition.
In our example, every row of Table 1 defines one g-
transition from a source state to a destination state along
with certain output microinstruction according to a
certain input condition (term).
If sp is the present state and { sr / r∈Rm ⊆ {1,...,M} } is
the set of the next ones where transitions from sm are
possible then there is the set of functions {αpr / r∈Rm}.
The search for the next state means the evaluation of the
Boolean functions. It is necessary to evaluate which of
these functions has value “true” for a given input
combination z from {0, 1}L.

Controller Decomposition

Decomposition model. A collection ϕ of nonempty
subsets of a set S whose union is S (such that if Bi, Bj ∈
ϕ, then Bi ⊆ Bj implies i=j) is called a cover on S. The
notion of cover s generalization of a partition, that is a
collection of disjoint subsets of S whose set union is S.
We refer to these subsets as blocks of the cover
(partition).
Let π = {Y1, … Yn} be the partition on the set of output
variables Y.
Let G = {g1, … gH} be the set of g-transitions in the
transition table (in our example every g-transition
corresponds to row in table 1),
X(gh) and Y(gh) be the sets of essential input and output
variables (microoperations) in the g-transition
gh (h = 1, … H),
X(si) and Y(si) be the sets of input and output variables
at the transitions from the state si .
On the set G we define relation ξ such that gi ξ gj if
there is at least one common variable in the sets Y(gi)
and Y(gj):
gi ξ gj ⇔ Y(gi) ∩ Y(gj) ≠ ∅
This relation is symmetric and reflexive and induces the
cover µ on the set Y.
For every block Yp from partition π we put in
accordance component FSM AP in the network N.
Let us put the cover ϕ on the set of states S and the
cover ψ on the set of g-transitions G of the transition
table in accordance to the pair < C, π >:
ϕ = {B1, … , Bn}; Bp ⊆ S, s ∈ Bp ⇔ Y(s) ∩ Yp ≠ ∅;
ψ = {G1, … , Gn}; Gp ⊆ G,
g ∈ Gp ⇔ Y(m) ∩ Yp ≠ ∅.
From above it follows that the state s will be in the
block Bp of the cover ϕ, there is at least one output
variable from the block Yp of the partition π at the
transitions from this state s. It is also evident that the
state s may be in several blocks of ϕ, for example, in Bp
and Br, if Y(s) ∩ Yp ≠ ∅ and Y(s) ∩ Yr ≠ ∅, i. e. the
output variables from Yp and Yr are produced at the
transitions from state s.
In exactly the same way, it follows that the g-transition
gh will be in the block Gp of the cover ψ, if at least one
output variable from the block Yp of the partition π is
written in the row of transition table corresponding
transition gh. Just as for ϕ, the same m will be in several
blocks of ψ, for example, in Gp and Gr , if

Y(m) ∩ Yp ≠ ∅ and Y(h) ∩ Yr ≠ ∅,
i.e. the output variables from Yp and Yr are written in
the row m.
In our example (Table 1),
µ={ {y7}, {y2, y5, y10}, {y1, y3, y4}, {y6, y8, y9} }
ψ={{1, 2, 7, 8, 17}, {9, 10, 11, 12, 13, 18, 19},
{3, 4, 5, 6, 14,15,16} }

Affirmation 1. Given FSMD A and the partition π =
{Yp |, i∈{1, … n}} on the set of output variables Y. Then
there exists a network N of FSMDs with alternatively
active datapath (datapath of only one component FSMD
is active every clock period) that realizes A if and only
if π ≥ µ.

The choice is very important step of low power design
and should be fulfilled with allocation at high level
synthesis. It is not considered in this work.
As an example, we will take partition
π={ {y1, y3, y4, y7}, {y6, y8, y9 }, {y2, y5, y10} },
that satisfies the condition π≥µ..
As an outcome of it, the datapath shutdown techniques
could be applied, portions of the combinational logic in
the datapath can be shut down for some cycles when
those results are either precomputed or are not required.

Affirmation 2. If decompositional partition π on Y is
such that for all states si of FSMD A exists block Yj
such that Y(si) ⊆ Yj than constructed network consists of
multiple-exclusive communicating component FSMDs
(only one pair controller/datapath is active).

In the last case we are able to apply shutdown technique
that considers both the controller and datapath
simultaneously. We partition a digital system into
multiple simpler communicating processors, and then
shut down the inactive processors (i.e. the inactive
controller/datapath pairs).
The following procedure of decomposition show the
evidence of affirmations.

Decomposition procedure. Let us put the network N
with n component FSMD
Ap = < Sp, Xp, Vp, δp, λp >, p = 1, … n,
in accordance to triplet < A, π, ϕ , ψ>. The number of
component machines is equal to the number of blocks in
the partition π (or the cover ϕ and ψ).
Further the steps of decomposition procedure are
presented in formal way.

1. Sp = Bp ∪ {bp} is the set of states in the component

controller Cp , where Bp is the p-th block of the
cover ϕ, and bp is additional state in Cp.

2. Xp = X(Gp) ∪ Zx
p is the set of input variables in the

component controller Cp.
Here X(Gp) = ∪m∈G

p X(gh)
X(gh) is the set of essential input variables in the g-
transition gh of the controller C of the prototype
FSMD;
Gp is the p-th block of the cover ψ.
Zx

p = {zt | δ(sj , αh) = st ; st ∈ Sp , sj ∉ Sp}.

3. Vp = Yp ∪ Zy
p

Zy
p = {zi | δ(st , αh) = sj ; st ∈ Sp , sj ∈ Sk, st ∉ Sk}.

4. Assume that there is a g-transition < sj, st, αh, βh >
in of prototype FSMD (the transition from sj to st
with the input condition αh and the output βh in the
controller C):
δ(sj , αh) = st; λ(sj , αh) = βh .

Define the corresponding transitions in component
controller.
Ωj be the set of component controllers with the state
sj,
Ωt be the set of component controllers with the state
st,

Ωjt = Ωj ∩ Ωt be the set of component controllers
with the states sj and st
If Ck ∈ Ωjt

 , then in Ck
δk(sj , αh) = st.

If Ap ∈ Ωj \ Ωjt

 , (si is the state of Cp and st is not the
state of Cp), then in Cp

δp(sj ,α h) = bp .
The output controlling datapath of qth component
FSMD for controller Cq ∈ Ωj (si is the state of Cq
and it is also possible that the next state st is the
state of Cq) is equal to βh ∩ Yq. In addition to
controlling outputs one and only one controller
from Ωj (say Cr), must generate the output signal
which forces each controller from Cu ∈ Ωt \ Ωjt (if
this set is not empty) to transit from the additional
(idle) state bu to st and in Cq
λr (sj, αh) = βh ∩ Yu ∪ {zt} .
If Cu ∈ Ωt \ Ωjt (st is the state of Cu and sj is not the
state of Cu), then in Cu
δu(bu , zt) = st
λu (bu, zt) = Y0 .

5. The initial state of the component controller is
equal to s0 , if Cp ∈ Ω1 and bp otherwise.

ILLUSTRATIVE EXAMPLE

Let us examine the decomposition procedure.
The number of states of component FSM is equal to the
number of states in corresponding block of cover ϕ plus
1 (wait or idle state).
The additional output variable zi in the controller Cp in
accordance to each st ∉ Sp, if two conditions are
satisfied:
• there is transition from the state st included in Sp to

the state next sj not included in Sp in the controller
C or sj is included in Sp but Y(sj) is not subset of Yp;

• there is at least one block Sk (k ≠ p) such that next
state sj is included in Sk and st is not included in Sk
among the blocks of the cover ϕ.

We put the additional input variable zt in the controller
Cp in accordance to each st ∈ Sp , if there is at least one
transition to this state from the state sj not included in Sp
in the controller C.
If the controller C is in the state sj, the corresponding
states in component controllers of a network are
following: all controllers from the set Ωj are in the state

sj , all others are in b-states. If controller C transits from
the state sj to the state st with the input condition αh and
the output βh , each controller Ck ∈ Ωjt also transits from
sj to st .Each controller Cp ∈ Ωj \ Ωjt (the next state st is
not in Cp) transits from sj to bp , and the output signal at
the corresponding transition from sj is equal to βh ∩ Yq
in each controller Cq ∈ Ωj (it does not matter whether
the state st is in Cq or is not in Cq). The output signal zt
is produced only in one of the component controller of
the set Ωj . Each component controller Cm of the set
Ωt \ Ωjt , with the state st and without the state sj ,
transits to this state st from the state bm with the input zt
(this signal zt is the output in only one controller of the
set Ωj). The output at this transition from bm , to st is
zero (Y0).
Let us put the network in accordance to the example
Table 1 and partition
π={ {y1, y3, y4, y7}, {y6, y8, y9 }, {y2, y5, y10} }
The cover on the set of states of our prototype FSMD
(this set is represented by the set of states of controller)
corresponding to the given partition π is ϕ={{s1, s4, s7},
{s4, s5, s8}, {s2, s3, s6}} and the cover on the set of g-
transition is ψ ={{1, 2, 7, 8, 17}, {9, 10, 11, 12, 13, 18,
19}, {3, 4, 5, 6, 14,15,16}
The number of component machines is equal to the
number of blocks in the partition π or in the
corresponding covers ϕ and ψ .
In our example, the network consists of three
component machines A1, A2, and A3. Their g-transitions
sets represented in the transition tables 2, 3, 4.

Present
state

si

Next
state

sj

Input
condition

αh

Output
signals

βh

h

s1 x1 y7 1 s1
b1 ^x1 z3 2a

s1 x1 & x2 y3 y4 7
b1 x1 & ^x2 y1 y3 y4 z3 8a

s4
 b1 ^x1 - g1

s7 b1 1 y1 z5 17a

s4 z4 - 11b b1
 b1 ^z4 - d1

Table 2: The first component transition table

The set of states of the first component is the states from
the first block of cover ϕ plus b1, S1 = {s1, s4, s7, b1}.
The set of outputs consists of variables from Y which
are in g-transitions from the first block of cover ψ plus
additional output variable z3 because there is transition
from s4 to s3 in the original transition table, but s3 is the
state of the second component C2.
The set of inputs consists of variables which are in g-
transitions from the first block of cover ψ plus
additional input variable z4 because exists g-transition
(11) not included in the first block of cover ψ with next
state s4.
Note, that Ω4 = { C1, C2 } and Ω3 = { C3 }, but only C1
generates output z3..

The sketch of the of components network is presented in
Figure2.

Present
state

sp

Next
state

sn

Input
condition

αh

Output
signals

βh

h

s4 x3 & x4 y6 y9 z4 11
s5 x3 & ^x4 y6 y9 12

s5
 s8 ^x3 y6 y8 13

s8 x3 - 18 s8
 s5 ^x3 y8 y9 19

s5 ^x1 & x4 y6 y9 9

s8 ^x1 & ^x4 y6 y8 y9 10

s4

b3 x1 - g2
s8 z8 - 5b/16b

s5 z5 - 17b

b3

b3 ^z5 & ^z8 - d2

Table 3: The second component transition table

Note, that when there is transition to the state s4 both
controllers C1 and C2 are activated but only one of them
will generate outputs controlling own datapath. The
datapath of other machine will be silent (it depends on
the value of input variable x1). This is the case, because
the condition presented in affirmation 2 is not satisfied
in our example.

Present
state

si

Next
state

sj

Input
condition

αh

Output
signals

βh

h

s2 s3 1 y2 y10 3
s6 x7 y2 y10 4
b2 ^x6 & x7 z8 5a

s3

s2 ^x6 & ^x7 y2 y5 y10 6
s2 x5 y2 y10 14
s3 ^x5 & x7 y5 15

s6

b2 ^x5 & ^x7 y2 y10 z8 16a
s3 z3 - 2b/8b b2

 b2 ^z3 - d3

Table 4: The third component transition table

Thus, when there is a transition between two
components, the caller FSMD will go into its idle state
while at the same time, callee FSMD goes from its idle
state into its next state. The transitions to and from
respective idle states for two component FSMDs happen
concurrently, thus no extra clock cycle is needed. But
overall execution time can be longer or shorter than the
in the case of prototype FSMD as shown in [3].
In Figure 1 shutdown mechanism is not presented. For
instance, gated-clock technique [1]could be used. In this
case, an decomposed FSMD consists of a number of
component FSMD and an equally large number of clock
control blocks with nand-gates for gating the local
clocks. In particular, handshake protocol between
components of decomposition could be used.

Status
signal bus

 x1 y1
x2 y3
 x6

 z4 y4
 y7
 z3 z5

 x1 y6
 y8 x7
 x3

x4 y9

 z4

 y2 x1
x5
 x6 y5 x3

x7 z8 y10

Figure 2: example FSMD network

CONCLUSIONS

This paper elaborates functional partition approach for
low-power synthesis at RT-level. FSMD functional
partitioning technique is applied before logic level of
design process. The original FSMD is first partitioned
into several smaller FSMDs.
We use technique of dynamic power management to
accomplish the task of preventing logic computations in
modules when the results will not be used. The reason
why FSMD functional partitioning can significantly
reduce the switching activities at the registers and the
functional modules and only one (subset) of machines is
(are) executing a computation at any given time while
the other processors will be idle. Here we should
emphasize the fact that the machine decomposition is
the organic part of synthesis process. In addition to
reducing power, FSMD functional partitioning also
provides solutions to a variety of synthesis problems.
The solution of problem is reduced to the controller
decomposition. In our decomposition procedure, we
proceed from assumed partition on the set of outputs of
FSM controlling the transfers in datapath. The data path
of idle controller is not consuming power because the
inputs are not changing. The overhead in this technique
is the communication and possible duplication of
registers.
Experiments have been carried out on the wide range of
random machines and on the set of well-known FSM
benchmarks. The results confirmed that it is possible to

significantly reduce switching activity of
implementation and that significant reduction in power
consumption could be achieved without essential
performance degradation. Results are much more
significant for machines with large number of inputs
and data dominated designs with large number of
microoperations (in particular, for the most important
case for real practice projects when |Rm| << M and when
controller has large amount of state-loops).

C1

The method concerns the technique of partition search
on the set of FSMD microoperations. Analysis of power
dissipation in datapath for partition search is beyond of
this work and is the subject of further investigations.

THE AUTHOR

Dr. Alexander Sudnitson is with the Department of
Computer Engineering of Tallinn Technical University,
Raja 15, 12617 Tallinn, Estonia.
E-mail: alsu@cc.ttu.ee

Acknowledgement – This work has been supported by
the Estonian Science Foundation (under Grant G4876).

REFERENCES

[1] E.Macii, M.Pedram, and F.Somenzi, “High-level

Power Modeling, Estimation, and Optimization”,
IEEE Trans. Computer-Aided Design, vol. 17,
no.11, 1998, pp.1061-1079

[2] D.M.Brooks, P.Boose, et al., “Power Aware
Microarchitecture: Deign and Modeling Challenges
for Next-Generation Microprocessors”, IEEE
MICRO, Nov. 2000, pp. 26-43.

[3] E.Hwang, F.Vahid, and Y.-C.Hsu, “FSMD
Functional Partitioning for Low Power”,
Proceedings of the D A T E International
Conference, March 1999, pp.22-28

 [4] S.-H.Chow, Y.-C.Ho, T.Hwang, and C.L.Liu, “Low
Power Realization of Finite State Machines – A
Decomposition Approach”, ACM Trans. on Deign
Automation, vol.1, no.3, July 1996, pp. 315-340

[5] S.Baranov “Logic Synthesis for Control
Automata”. Kluwer Academic Publishers, 1994

[6] M.Alidina, J.Monteiro, et al., "Pre-computation-
Based Sequential Logic Optimization for Lower
Power”. Proceedings of the International
Conference on Computer Design, October 1994,
pp.74-81

[7] V.Tiwari, S.Malik and P.Ashar, "Guarded
Evaluation: Pushing power management to logic
synthesis/design". IEEE Trans. Computer-Aided
Design, vol. 17, no.10, 1998, pp. 1051-1060

[8]D.D.Gajski, F.Vahid, S.Narayan, and J.Gong,
“Specification and Design of Embedded Systems”,
Englewood Cliffs, N.J.: Prentice-Hall, 1994

С2

C3

D1

D2

D3

mailto:alsu@cc.ttu.ee

	FINITE STATE MACHINES WITH DATAPATH
	PARTITIONING FOR LOW POWER SYNTHESIS
	A. Sudnitson
	Tallinn Technical University, ESTONIA

	Abstract: Resent investigations have shown the very good results of digital systems and circuits optimization using integration of dynamic power management in the design flow. This approach proceed from detection periods of time during which parts of the
	INTRODUCTION
	CONCLUSIONS
	REFERENCES

