
Web-based Tools for Finite State Machine Decomposition with Analysis of
Information Flows

E. Fomina, A. Keevallik, M. Kruus, and A. Sudnitson

Department of Computer Engineering, TTU, Raja 15, 12618 Tallinn, Estonia, E-mail: alsu@cc.ttu.ee

ABSTRACT: Finite state machine is a convenient model for
specification, analysis and synthesis of control part of
electronic systems. This work focuses on a particular but a
comprehensive problem of decomposition of FSMs. We are
concerned with solving complex combinatorial tasks arising
from the process of design. An approach to modelling of
information flows in networks of FSMs is proposed. The
educational aim of this work is to provide a basic
theoretical background for design of discrete systems using
opportunities of asynchronous mode of education via the
Internet.

1 Introduction
FSMs have been widely used to express algorithms,
communication protocols, digital systems, sequential
logic circuits, and sequential logic cells. Decomposition
of FSMs is a well-known and important problem in
sequential circuit synthesis [1-3].

Driven by remarkable theorems of Claude E.
Shannon, which motivate entropy as the measure of
information content, we have been examining the
entropy measures of search for approximate or indirect
methods of evaluation information and information
dependencies in FSMs. Our goal is to originate a
quantitative theory of decomposition for FSMs based on
the structural decomposition theory [4].

A substantial part of this work is the development of a
user-friendly interactive system developed for WWW that
assists designers to deepen basic concepts and notions in
digital design and helps to design complex control
devises. The system uses Java technology that represents
a powerful tool for the development of platform-
independent interactive software, which can be used on
the WWW through Java-enabled Web browser.

This system under design provides remote distance
interactive learning and supports various phases of the
learning process. The modern information technologies
have enabled education using synchronous and
asynchronous tools [5]. In asynchronous mode students
can have access to instructional material at any time and
from any convenient location. Asynchronous learning
networks provide in addition a network of people who
can interact with each other using electronic connectivity

tools to simulate the interactivity of physical presence.
The architecture of the system under development allows
using both modes of education.

2 Motivation and Preliminaries
Theoretical background of our system is “decomposition
synthesis” approach. This is based on the FSM
decomposition theory, which uses partition pair algebra
proposed in [4]. The importance of this theory lies in the
fact that it provides a direct link between algebraic
relationships and physical realizations of machines. The
mathematical foundation of this theory rest on an
algebraization of the concept of “information” in a
machine and supply the algebraic formalism necessary to
study problems about the flow of this information in
machines when they operate. The formal techniques are
very closely related to modern algebra. It has, we believe
after Hartmanis and Stearns [4], an abstract beauty
combined with the challenge of physical interpretation
and application. It falls squarely in the interdisciplinary
area of applied algebra, which is a part of engineering
mathematics.

This paper targets the very first step in the synthesis
flow where the FSM characterizing the control part of
the high-level representation is described in the form of a
State Transition Graph (STG) and each state is
represented in a symbolic form.

While we investigate mainly input-state
dependencies, FSM may be treated generally as triplet 〈S,
Χ, δ〉, where S={s1, … , sm} is a set of states;
Χ={x1, … ,xl} is a set of primary input symbolic
variables;
δ: D(δ) → S is a next state function with domain
D(δ)=D1 × … × Dl × S and codomain S. Here, Di

represents a set of values each xi may assume.
We define a network of FSM as an abstract algebraic

system. FSM network is a system N=〈 XN , BN , RN 〉,
where ΧN is a set of network input variables;
BN = {Ai | i ∈ I = {1, … ,n}} is a set of state machines
referred as component machines;
RN ⊆ B × B is a relation of connection.

To describe the network more thoroughly, we use the
set of internal symbolic variables of net Z={zi | zi ∈ Si,
i∈I, i={1,…,n}} and representation of relation of
connection RN as incidence matrix || rij ||. rij =1 means i-
th component FSM receives information from j-th
component FSM.

Network state machines could be defined as
Ai = < Xi , Si , δi >, where
Xi = Zi ∪ Ei , Zi ⊆ Z, Ei ⊆ XN ;
Zi = {zij | rij=1 in incidence matrix of relation RN} is a
set of internal inputs;
Ei is a set of external inputs, Ei ⊆ X;
δi: D(δi) → Si, is a transition function.

The decomposition proceeds from the set of partitions
on the set of states, S, which are induced on FSM by a
network that realizes prototype machine (a partition on
the set of states, S, is a collection of disjoint subsets of
states whose set union is S). The individual machines
that make up the overall realization are referred to as
sub-machines. Each sub-machine corresponds to a
partition from the basic set.

A block of states in a partition effectively corresponds
to a state in the sub-machine associated with that
partition. All the states belonging to a single block in a
submachine are given the same code in that submachine.
Therefore, there is no way of distinguishing between two
states belonging to a single block in a sub-machine
without recourse to information from other sub-
machines.

The concept of partition pairs is introduced to study
how “ignorance spreads” or “information flows” runs
through a sequential machine when it operates. The
notion of partition pairs is based on the idea that the first
partition of pair 〈π1, π2〉 has enough information to
calculate the second one. It is natural that for any
partition π we can determine the M(π) partition. The
operator M(π) gives the maximum front partition of
partition pair. Informally speaking, for a given
partitionπ, the partition M(π) describes the least amount
of information we must have about the present state of A
to the next state (i.e., the block of π which contains the
next state of A). If partition M(πi) is less or equal to
multiplication of partitions from {πj | rij = 1} than it
means that i-th sub-FSM receives enough information
from sub-FSMs with which it is connected accordingly
relation of connection to compute the next state.

3 Decomposition Software System
To implement the software system’s architecture we
should follow four main requirements [1] :
• Possibility to ran under various operating systems;
• Implementation of new modules without changing

the rest of the system;
• Realizing a client server architecture;

• Using the same source to generate the printed and
interactive worksheets to prevent inconsistency after
modifications.

These requirements cause the use the applet concept
of Java language. Java is the natural programming
language of choice on the client side because of its
flexibility of Graphic User Interface (GUI) design,
convenient network programming, and platform
independence. The last property is especially significant
since it allows the same applet program to run on client
computers of different platform.

Developed system includes building tutorial of FSM
synthesis theory and additional useful information for
working with client software. The advantage of the
tutorial is interconnectedness among different topics and
with other related tutorials, which is easy to implement
on the WWW using the hypertext mark-up language.
The tutorial contains many examples for students to
study and compare.

The sequence of applets to understand the essence of
decompositions is developed. Next, we discuss main of
them from “informational” point of view.

In our reasoning, we proceed from information
theoretic concepts, which are rationalized on the basis of
algebraic structure theory of sequential machines [2]. In
the following, we assume that the state lines of the FSM
are modeled as Markov chain characterized by the
stochastic matrix (qij)1≤i, j≤m, where qij is the conditional
probability of the FSM being in j-th state given that it
was previously in i-th state. These probabilities, along
with the steady state probability vector (pi)1 ≤ i ≤ m (we
suppose that all states are reachable) can be found using
standard techniques for probabilistic analysis of FSMs
[5].

Let E = {e1, e2, … eg} be a complete set of events
which may occur with the probabilities p1, p2, … , pg In
order to quantify the content of information, Shannon
introduces the concept of entropy.

Entropy of E (denoted by H(E)) is given by:

∑
∈

⋅−=
Ee

epepEH)(log)()(2 (1)

Depending on the specified sense of event, we can
define several entropy measures, e.g. the entropy of FSM
based on the state of occupation probabilities or based on
the state transition probabilities. Reasoning similarly, we
define the entropy of partition π as:

∑
∈

⋅−=
π

π
B

BpBpH)(log)()(2 (2)

where the probability of the block B ⊆ S is defined as the
cumulative occupation probability of the states in B.

Entropy of FSM network corresponding to the set of
partitions, N = {π1, π2, … , πn}, is equal to

∑
∈

=
N

HNH
π

π)()((3)

The sequence of applets to understand the essence of
decompositions is developed.

Applet 1 describes how partitions on a set can be
“multiplied” and “added”. These operations on partitions
play a central role in the structure theory of FSM and
form a basic link between machine concepts and algebra.
The sum of two partitions π1 and π2 is the largest
partition (the one with the most blocks) that is refined by
both π1 and π2. The product of π1 and π2 is the smallest
partition (the one with the fewest blocks) that refines
both π1 and π2. A partition on the set of states of the FSM
can be considered as a measure of information about the
FSM. That it is why the multiplication of all partitions in
the set must be zero partition in order to preserve all the
information about the source FSM behavior in the
network of FSMs defined by the partition set. The
functionality of the prototype machine is maintained in
the decomposed machine if the partitions associated with
the decomposition are such that their product is the zero-
partition on S (every block of partition consists exactly of
one state).

Applet 2 exhibits formal correspondence to intuitive
concept of a ”subcomputation”. We consider the concept
of a homomorphism. Since a machine A can be used to
realize its homomorphic image A', we can say informally
that A' does a part or a subcomputation of the
computation performed by A. From partition algebra
point of view the concept of homomorphism relates to
partitions with substitution property. We recall that if a
partition π on the set of states of a machine A has the
substitution property, than as long as we know the block
of π which contains a given state of A, we can compute
the block of π to which that state is transformed by any
given input sequence. Intuitively we say that the
“ignorance” about the given state (as specified by the
partition π) does not spread as the machine operates [5].

Applet 3. The concept of partition pairs is more
general than substitution property and is introduced to
study how “ignorance spreads” or “information flows”
through a sequential machine when it operates. If (π,π’)
is a partition pair on the FSM A than blocks of π are
mapped into the blocks ofπ’ by A In other words, if we
only know the block of π which contains the state of A,
then we can compute for every input the block ofπ’ to
which this state is transferred by A.

For partition pair 〈πi, πj〉 the conditional entropy is

() ()ijiij HHH πππππ −⋅=),((3)

It is natural that for any partition π we can determine
the M(π) partition. The operator M(π) gives the
maximum front partition of partition pair. Informally
speaking, for a given partitionπ, the partition M(π)
describes the least amount of information we must have
about the present state of A to the next state (i.e., the
block of π which contains the next state of A). Thus this

partition gives precise meaning to our intuitive concept
“how much do we have to know about the present state to
compute … about the next state”.

To calculate this partition we need to find the
symbolic cover of the discrete function Fi: D(δ) → πi.
Given a FSM, we first assign one-hot codes to all states.
Then symbolic minimization is applied to the one-hot
coded machine using multi-valued logic minimization.
The result is a symbolic cover, Ki, of the Fi. Each
element of the symbolic cover is a symbolic prime
implicant, that is a triplet 〈β, B’, B〉 where B’ is the set of
states (block of partition M(π)) which transit to the next
state contained in the same block B of partition π under
input conditionβ. The number of prime implicates, |Ki|, is
proportional to number of rows in the transition table of
corresponding sub-machine.

Applet 4 performs construction of FSM network that
realizes the prototype FSM. We consider FSM network
as algebraic system N = 〈 B, I, O, g, F 〉 where B is a set
of component FSMs, I is a set of inputs and O is a set of
outputs, g is output function of network, F ⊆ B × B is a
relation of connection of component FSMs of the
network. We represent F as incidence matrix || rij ||. rij =
1 means i-th component FSM receives information from
j-th component FSM. Every FSM from B is in
correspondence with chosen partition πi. If partition τ =
M(πi) is less or equal to multiplication of partitions from
{πj | rij = 1} than it means that i-th component FSM
receives enough information from component FSMs with
which it is connected accordingly F to compute the next
state.

Our work proceeds from the fact that the principal
NP-complete problem of FSM decomposition is
searching of a set of partitions on the set of states of
prototype FSM. As it was shown in [4], only such a set of
partitions may be used for FSM decomposition. The lack
of a methodology of searching of these partitions is
substantial limitation of application of powerful algebraic
decomposition theory in practice. We attempt to
surmount this obstacle. Implementation of FSM in a
device with the lack of external terminals appears very
often in practice and has always been a problem for
designers.

Applet 5 is devoted to choice of decomposition
partition on the set of states of prototype FSM to meet a
requirement on the number of inputs. Here we should
emphasize the fact that the machine decomposition
problem and the reduction of variable dependence are
virtually identical concepts. This is NP-hard problem,
and amounts to solving a face hypercube-embedding
problem [1]. In spite of recent advances, computing a
decision of this task remains prohibitive for FSM of
practical complexity. In this applet we show how the
input-state dependencies can be used to decrease the
number of inputs. Theoretical foundation of our approach

is based on the new notion of partition with don’t care’s
and its relation to pair algebra.

A Partition with Don’t Care's (PDC) ρ of a set S is a
collection of disjoint nonempty subsets of S. The disjoint
subsets are called blocks of ρ and their set union is equal
to Sd ⊆ S. The set difference S \ Sd is Don’t Care's area of
the PDC and we can consider it as some distinguished
(special) block bc, which may be empty. The PDC ρ in
reality defines a set of conventional partitions, denoted by
G(ñ), generated by distributing the elements of
distinguished block over the other blocks of the PDC and
over new created blocks in all possible ways. The set of
all PDC pairs on A is pair algebra on ℑ × ℑ, where ℑ is
lattice of PDC of S. Thus, all the results that are derived
about pair algebra [5] hold for PDC pairs on A.

The idea of the next two applets is to introduce
additional “idle” states into the FSM in the hope to meet
design constraints. The network of FSMs consists of
components working alternatively in time, i.e. all
components except one are suspended in one of extra
state (the “wait” state). In [1] similar approach is called
factorisation of the sequential state machines. This
property gives opportunity to apply sleep mode operation
(dynamic power management) for saving power
consumption.

Applet 6 enables to decompose a prototype FSM into
a set connected component FSMs with given constraints
on the complexity of component FSMs (a number of
inputs, outputs, states and rows in their transition tables)
on the base of one partition on the set of states. The
number of states of component FSM is equal to the
number of states in corresponding block of partition π
plus 1 (waits or idle state).

Applet 7 implements a method for FSM
decomposition with outputs distributed among the
component FSMs. A partition on the set of prototype
FSM outputs is taken as primary design requirement.

4 Concluding Remarks
This work focuses on how new Web-based frameworks
can enable research and development in synthesis of
control-dominated discrete systems. The pedagogical
basis on which our system is built is that students learn
most quickly when they are presented with material that
they can quickly use to solve design problems. Students
can decompose a given FSM into a set of connected
FSMs with given constraints on the complexity of
component FSMs (a number of inputs, outputs, states and
rows in their transition tables). The system assists to
fulfil projects on design of digital devices.

The idea of using entropy based informational
measures can be extended to other phases of logic
synthesis also. Here we should emphasize the fact that
the machine decomposition and the reduction of variable
dependence are virtually identical concepts. To ensure

that partition entropy is a good indicator of
implementation complexity, experiments have been
carried on hundreds of FSMs. They proved that the
correlation between of decomposition partition πi and the
complexity of sub-FSM Ai (area) are very high (more
than 0,95).

In future we plan to update the system to carry on an
interactive Web-based decomposition synthesis at a
higher level that considers both the controller and data
path simultaneously. The synthesis system under
development should not be only design automation
software but it should be a research tool and educational
system we will be able to use for further development of
synthesis theory.

Acknowledgements
This work has been supported partially by the Estonian
Science Foundation (under Grant 4876) and by the
Ministry of Education in Thüringen, Germany (DILDIS
project).

References
[1] P. Ashar, S.Devadas, and A.R.Newton, Sequential

Logic Synthesis. Kluwer Academic Publishers,
Boston, 1992.

[2] S. Baranov, Logic Synthesis for Control Automata,
Kluwer Academic Publishers, Boston, 1994.

[3] G. De Micheli, Synthesis and Optimization of
Digital Circuits. McGraw-Hill, Inc., New York,
1994.

[4] M. Dubin, T. Neese, and I. Moon, Action Based
Learning for Switching and Automata Theory.
Available:
http://vlsi.colorado.edu/~mooni/N_ABLE/N_ABLE.
html

[5] J. Hartmanis, R. E. Stearns, Algebraic Structure
Theory of Sequential Machines, Prentice-Hall,
Englewood Cliffs, New York, 1966.

[6] A Sudnitson, S. Devadze, A. Levenko. Finite State
Machine Decomposition. Available:
http://www.pld.ttu.ee/dildis/automata/applets.

[7] H-D. Wuttke, K. Henke, R. Peukert, “Interned Based
Education – An Experimental Environment for
Various Educational Purposes”. In Proc. The
IASTED International Conference Computers and
advanced Technology in Education, (Philadelphia,
PA USA, May 1999), pp. 50-54.

