
E-Learning tool and Excercises for Teaching Digital Test

Raimund Ubar, Elmet Orasson
Tallinn Technical University

Raja 15, 12618 Tallinn, Estonia {raiub,elmet}@pld.ttu.ee

Abstract. A set of tools (“interactive modules”)
targeted to e-learning is presented for teaching logic
level test generation and fault diagnosis in digital
circuits. The tools support different university courses
on computer engineering, switching and automata
theories, digital electronics and design for testability
to learn by hands-on excercises test and fault
diagnosis related topics. A big reservoir of examples
and the possibility to set up interesting engineering
problems like how to generate test patterns for a
digital circuit, or how to locate a faulty gate makes
the learning process more interesting and allows
learning at an individual depth and duration. The
interactive modules are focused on easy action and
reaction, multilingual descriptions, learning by doing,
and a game-like use. The tasks chosen for hands-on
training represent simultaneously real research
problems, which allow to foster in students critical
thinking, problem solving skills and creativity.

1. Introduction.
The increasing complexity of VLSI circuits, Systems-
on-Chip (SOC) or even Networks-on-Chip (NOC) has
made test generation one of the most complicated and
time-consuming problems in digital design. The more
complex are getting electronics systems, the more
important will be the problems of test and design for
testability because of the very high cost of testing
electronic products. At present, most system
designers and electronics engineers know little about
testing, so that companies frequently hire test experts
to advise their designers on test problems, and they
even pay a higher salary to the test experts than to
their VLSI designers [1]. This reflects also today’s
university education: everyone learns about design,
but only truly dedicated students learn test. The next
generation of engineers involved with System-on-
Chip (SoC) technology should be made better aware
of the importance of test, and trained in test
technology to enable them to produce high quality
and defect-free products.

In this paper a conception is presented how to
improve the skills of students to be educated for
hardware and SOC design in test related topics. We
present a learning method based on using so-called
living pictures [2]. The method presented deals with

the goal, to put interactive teaching modules to the
Internet that can be used in a lecture as well as for
individual self-studies [2]. They can be accessed
independent of time and place. On one hand, teachers
can demonstrate different examples and procedures of
test related topics using living pictures during the
lessons. On the other hand, students can use the same
simulations on their home computer, if the living
pictures are available on the Internet.

The core of the teaching concept presented are
some JAVA-applets (the interactive modules) running
on any browser connected to the Internet. We call this
type of applet "Living Pictures". By using interaction
possibilities the students can produce input stimuli,
watch the behaviour of the circuit in the fault-free
mode and also in different faulty modes. In the paper,
different learning tasks and excercises are described
which make use of this applet.

2. User interface
The program for representing “living pictures” for
teaching Digital Test is written in Java 1.3. It can be
run over network, using standard browsers like
Netscape and Internet Explorer with Java 1.3 runtime
plug-in, or with Java 1.3 applet viewer. The program
can be used for teaching the basics of testing digital
systems, deterministic test generation, pseudo-random
test generation, fault simulation and fault diagnosis.

The work window of the applet consists of three
main parts (Fig.1):

• Vector insertion panel
• View panel for design schematics
• View panel for displaying information (test

patterns, fault tables, waveforms, and
different statistics)

The vector insertion panel has two subpanels for
inserting single input test vectors and for setting up
the feedback configuration of a Linear Feedback Shift
Register (LFSR) to be used for automatically
generating test vectors [3]. In the LFSR mode, the
first subpanel is used for initializing the LFSR. The
LFSR based Automated Test Pattern Generator
(ATPG) is used for emulating different Built-In Self-
Test (BIST) ideas like BILBO, Circular-Self-Test-
Path (CSTP), “Store-and-generate” [3], or other
hybrid BIST approaches [4].

mailto:@pld.ttu.ee

Fig.1. Working windows of the applet

The first subpanel is also used when creating test
vectors for specific fault detection. In this case, the
fault activating and propagating values are inserted
one by one into the signal boxes at connections of the
design schematics, and the input test vector will be
deduced from these internal signal values.

The schematics panel displays currently selected
schematics. The small boxes at the lines display
internal signal values on connections. The boxes are
clickable during manual test vector generation and
fault diagnosis. In the test generation mode, the
needed signal values for fault activation or fault
propagation can be inserted directly at the
connections. In the fault diagnosis mode, by clicking
the boxes, a guided probing procedure can be
simulated. A click on the box shows the result of
measuring the “real” signal on the corresponding
connection of the simulated faulty circuit.

Detected faults, signal conflicts etc. are displayed
as colored bold wires. Color coding is as following:

• red - stuck-at-1 fault is detectable,
• green - stuck-at-0 fault is detectable,
• gray - undefined (don’t care) signal, and
• blue - conflicting signals.

The data panel displays information about
simulated test vectors and detected faults. In the fault
simulation mode you can click on the row of a given
test vector and have a visualization which faults are
detected by the given vector. In the signal (waveform)
mode you can select all the signals in interest and
leave out those which are not.

There are four main menus used with the applet:
schematics, mode, language, and help.

The schematics menu contains a list of predefined
circuits. For didactive purposes most of them are very
simple circuits for better understanding the most
impüortant relationships between signals, functions
and faults.

By the language menu the user may choose one of
the currently supported languages from the given list.

The help menu provides with useful tips and
explanations.

The mode menu tells the applet what is to be done
• test vector insertion,
• manual test vector generation,
• fault simulation or fault diagnosis (two

possible diagnostic approaches are
implemented: sequential and combinational
diagnosis).

We start working with the applet by selecting a
circuit from a set of predefined ones. Then we can
carry out different experiments with this circuit by
selecting a proper working mode from the mode
menu.

3. Test vector generation

There are two methods possible for test vector
generation using the applet:

1) direct test vector insertion on inputs (on the
vector insertion panel), and

2) test generation by path activation in the
circuit (on the schematics panel).

In the direct test vector insertion mode we can
choose test vectors either automatically by using
LFSR, or by inserting vectors manually.

In the manual mode, we generate step by step
input patterns which are simultaneously simulated.
The boxes at the lines on the schematics subpanel
display the result of simulation – the values of
internal signals on the connections. The waveforms
can be viewed on the data subpanel.

When using LFSR, we have to specify the initial
state, to set up the feedback structure, and to specify
the length of the test sequence. By LFSR we can
simulate the BIST either in the mode of Built-In
Logic Block Observer (BILBO) or in the mode of
Circular Self-Test Path (CSTP) [4,5]. By changing
the settings on the vector insertion panel we can
emulate different feedback structures of the chosen
BIST architecture.

In the test generation mode we choose a target
fault in the schematic and create step by step proper
activated paths in the ciruit to activate the fault at his
site and to propagate the error signals caused by the
fault towards output by clicking the needed values
into boxes on the lines. From these values finally, an
input vector will be deduced. The colours on lines
help us to understand the current status of the task:
activated faults and activated paths are marked by red
and green lines, the inconsistencies of the signal
values are highlighted by blue colour. As the result of
the procedure, a test pattern will be generated. The
detected by the test faults are displayed also on the
data panel in form of a row in the fault table.

Fig.2. Test generation by path activation

For example, to generate a test pattern for the fault
x3 ≡ 1 in Fig. 2, first, a signal with opposite value 0 to
the faulty value 1 should be inserted to x3 by clicking
the box on the line x3. Then, the faulty signal of x3
should be propagated to the output of the circuit. By
inserting the value 1 on the line x2 the faulty signal
from x3 is propagated through the gate I1. Next, by
inserting the value 0 on the upper input of gate I4 the
faulty signal is propagated through the gate I4.

Finally, by inserting the value 1 on the lower input of
gate I6 the faulty signal is propagated through the gate
I6 to the output y. The activated path is shown in Fig.2
by bold lines. All the inserted values should be
properly justified step by step by other signals
moving towards the inputs. As the result, a test
pattern will be created on the inputs. For this
example, the input pattern x1x2x3 = 110 will be found.

In the fault simulation mode, a fault table is
generated and shown on the data panel for all the test
vectors created by the given moment. By selecting a
test vector on the data panel, all the detected faults
will be highlighted by colours on the schematic panel.

Fig.3. Fault simulation results

For example, in Fig. 3, activated paths (shown by
bold lines) are found by fault simulating the test
pattern x1x2x3 = 111. The following faults are detected
along these paths: x1 ≡ 0, x2 ≡ 0, x3 ≡ 0, I0b ≡ 0, I1a ≡ 0,
I4a ≡ 1, I4b ≡ 1, I6a ≡ 0, I6b ≡ 0, y ≡ 0. The inputs of
gates are denoted from above down by a,b.

In Fig. 1, the results of fault simulation for 5 test
vectors are shown. On the schematic panel we see the
activated paths and detected faults for the vector
number 4 which is selected in the view panel. The
values in boxes show the behaviour of connection
lines of the circuit for this test vector. The activated
faults are highlighted by coloured lines, the value 0
(or 1) in the boxes means that the fault stuck-at-1 (or
stuck-at-0) is activated.

4. Fault diagnosis

In the fault diagnosis mode we need at first, to create
a fault table by running the fault simulator for a set of
previously generated test vectors. Entering into the
diagnosis mode will insert a random fault into the
circuit.

The following diagnosis strategies chosen from
menu can be investigated: combinational and
sequential diagnosis.

For learning the combinational diagnostic
strategy, a single vector or a subset of vectors can be

x3

x2

x1

I3

I1

I0
&

&

I4
1

I5
1

I6
&

I2
&

&

1

1

0

0

1

0
1

0

1

y
x3

x2

x1

I3

I1

I0
&

&

I4
1

I5
1

I6
&

I2
&

&

1

1

1

0

1

1
0

1

1

1

selected and applied to the erroneous circuit (by
imitating test experiments). The applet shows the
results of testing, and displays also the subset of
suspected faults. To improve the diagnostic
resolution, additional test vector(s) may be generated
and used in the repeated test experiment.

Sequential diagnosis (guided-probe testing) is
based on the guided probing strategy. A test pattern is
applied and the expected behavior of the circuit is
displayed. The principle of guided-probe testing is to
backtrace an error from the output where it has been
observed to its source (faulty gate). By clicking on
the connection boxes, the real values of signals of the
faulty circuit can be measured. A faulty gate is
located if it has been found that the signal on the
output of the gate is faulty, while only expected
signals are observed at its inputs.

The main didactive point in learning the both
diagnostic strategies is to try to localize the fault by as
few test vectors (in the combinational approach) or by
as few measurements (in the case of sequential
approach) as possible. In this task a competition
between students can be carried out which makes the
“play” with the applet even more exciting.

As an example, let us see the procedure of
sequential fault localization by pinpointing the signals
in the circuit for the case of test pattern x1x2x3 = 110
represented in Fig.2. Suppose the gate I1 is faulty. An
error has been observed on the output. Three possible
fault location procedures can be imagined.

Fig.4. Fault diagnosis by backtracing errors

First, we may use a trivial backtracing procedure

of erroneous signals shown as a search tree in Fig. 4.
In the worst case we may click on the 6 nodes.
Starting with the node I6b we observe a correct signal.
Then, we try the next input I6a of the gate I6 where the
error is detected. We continue now backtracing in the

node I4 a. Then, we try the next input I4b of the gate I4
where again the error is detected. Now we backtrace
to the inputs of the gate I1 where no errors are found.
This means that we have located the erroneous gate I1
by 6 measurements.

Second, we may analyse the fault activation
conditions on the inputs of gates in the backtrace tree
for local optimization (at each gate) of the search
process. For example, based on the input signals of
the gate I6 we realize that if an erroneous signal has
been propagated through the gate, it can originate
only from the input I6a. In other words, we can skip
pinpointing of the node I6b. In the same way, we
realize that the measurement of I4a is also not needed.
As the result, the backtracing procedure will cost only
4 measurements (see the bold lines in Fig.4).

There is a third possibility to analyze the situation
for a global optimization of the searh process. Since
there exists a continuous activated path from the input
x3 to the output y, the faulty gate should be located on
that path. By measuring the value of I4b we can divide
all the possible faults into two equal groups. In the
case of correct value, we have to proceed towards the
output and pinpoint the value of I6a to determine
which of the gates I4 or I6 is faulty. In the case of
erroneous signal, we have to continue towards the
inputs and measure the value of x3 to determine if
either the input x3 or the gate I1 is faulty. In both cases
we need only 2 measurements to locate the fault.

On this little example, we managed to show that
the fault diagnosis process can be regarded as a
demanding mental experiment. A competition can be
organized between students to make the learning
procedure an exciting event.

5. Research training in BIST

In the following we show how the tasks can be
chosen based on the applet for hands-on training,
which simultaneously represent real research
problems. Solving the formulated tasks allow to foster
in students critical thinking, problem solving skills
and creativity.

The research oriented tasks are related to the field
of Built-In Self-Test (BIST) in Systems on Chip.

 BIST is the capability of a circuit to test itself.
From a large variety of BIST methodologies, we
concentrate ourselves in a off-line BIST [5]
consisting of the following main components: test
pattern generator (TPG), unit under test (UUT) and a
response analyser (RA). The corresponding BIST
architecture is shown in Fig. 5.

OUT

I 6a

I 6b

I 4 a

I 4 b

I 1 a

I 1 b
OK

F

OK

F

OK

OK

TPG is usually a pseudorandom test pattern
generator, and RA – a signature analyser, both based
on linear feedback shift registers (LFSR) [5].

There are several disadvantages of such a
structure. First, the test sequences generated randomly
are usually very long, second, they do not guarantee
always a sufficient fault coverage because of
existence of so called “hard-to-test” faults.

Fig. 5. BIST architecture

To overcome these drawbacks, combinations of
several approaches have been proposed. One of them,
called hybrid BIST, is based on combining on-line
generated pseudorandom test patterns with stored
pregenerated test patterns.

Fig. 6. BIST architecture

A hybrid BIST architecture is depicted in Fig.6.
Pseudorandom pattern generator (PRPG) and
Multiple Input Signature Analyzer (MISR) are
implemented inside the core under test. Pre-generated
deterministic patterns are stored in ROM.

In this approach, at first pseudorandom test
sequence with a length L is generated on-line, after
that a switch to a stored test approach takes place. For
the stored test approach, previously generated and
then in the memory stored test patterns are read one

by one from the memory and applied to the UUT to
reach the 100% fault coverage.

The applet presented allows to generate test
patterns by both methods: by generating on-line
pseudorandom test patterns using the LFSR approach,
and by manually generating deterministic test patterns
for the faults not detected by pseudorandom test
patterns.

There are now several problems to be solved
which still have not found sufficient solutions in the
research and industrial community:

• What is the shortest LFSR and what is the
best characteristic polynomial for the LFSR
to be used for on-line test generation to
achieve the highest fault coverage at the
minimum length of the pseudorandom test
sequence?

• How to find the best level of mixing the
pseudorandom test and stored deterministic
test as the tradeoff between the memory cost
and testing time.

To find solutions for the mentioned questions
will be the task of the laboratory research for
students. The students are not asked to carry out
boring measurements, to press simply on buttons for
starting a program and getting results which are
nothing but a simple confirmation of what they
already know from lectures. Instead, they are asked to
solve a series of engineering problems, they have to
plan and carry out experiments to find answers for the
given questions.

Fig. 7. Optimization of hybrid BIST

The are not available straightforward algorithms
or software tools to find directly solutions for the

TPG UUT RA

Fault Cover %

Creal_min

Cestimated_min

Predicted cost
Real cost

CTOTAL (Total cost of BIST)

Stored
test

length
MS

Generated
test

length
TG

100%

PRPG

. . .
. . .

. . .

ROM

.

SoC

Core

MISR

B
IS

T
C

on
tro

lle
r

CORE UNDER
TEST

mentioned problems. The only method is to set up
hypotheses and check them by experiments.

Fig. 7 shows a graphical solution for finding the
optimum of mixing pseudorandom and stored test
approaches as the tradeoff between the memory cost
and testing time. Let have the whole cost of the BIST
to be found as

CTOTAL = CTIME + CHW = αTG + βMS

where CTIME is the cost related to the time needed for
test, CHW is the hardware cost related to the BIST
architecture, TG is the length of the test generated by
LFSR, MS is is the number of patterns to be stored,
and α,β are constants to map the test length and
memory space to the costs of two parts of test
solutions to be mixed.

The problem is that it would be very time
consuming to find experimentally all the curves
shown in Fig. 7 except the generated test length TG.
The practical way would be in trying to find the curve
for MS with as least as possible number of
experiments, and to try to predict the curve on the
basis of experimental data, and then by choosing as
few as possible additional experiments to approach
step by step to the real optimum.

To find a proper algorithm for solving this
optimization problem will be the task of the student.

6. Conclusions

The described applet can be used for teaching the
basics of testing digital systems.

The teacher can use the applet during the lecture
explaining the basics of the topic. The applet can be
used also during the exam for giving some tasks to
students.

Students can use the same applet for training
purposes. They can insert different possible faults,
and watch how the faults change the circuit’s
behavior at different input patterns, how the test
patterns can be generated to detect a given fault, or
how the faults can be localized by test patterns.

The tasks formulated for students based on the
applet are research oriented.. The students are not
asked to carry out boring measurements, to press
simply on buttons for starting a program and getting
results which are nothing but a simple confirmation of
what they already know from lectures. Instead, they
are asked to solve problems, and they themselves

have to plan and carry out experiments to find
answers for the given questions.

By the use of web-based media we achieve:
• presentation of course material independent

of place and time,
• individual learning according to the

students‘ own needs,
• new forms of communication between

teachers and students (chat, joint editing),
• up-to-date course material.
The conception presented allows to improve the

skills of students to be educated for digital hardware
and SOC design in test related topics.

The principal mission of the conception is to
inspire students to learn, to inspire them on a journey
to knowledge, and to prepare them to develop
problem-solving strategies.

Acknowledgement. This work was supported partly
by the Thuringien Ministry of Science, Research and
Art (Germany), by the EU Framework V project
REASON, and by the Estonian Science Foundation
Grant No 4300. We thank also Dr. Wuttke from TU
Ilmenau, Germany for close cooperation in
developing this applet.

References

1. M.L. Bushnell. Increasing Test Coverage in a

VLSI Design Course. International Test
Conference, Atlantic City, NJ, USA, 1999, p.
1133.

2. Ubar, R., Wuttke, H.-D., "Action Based Learning
System For Teaching Digital Electronics And
Test" ,3rd European Workshop on
Microelectronics Education" (EWME 2000), Aix-
en-Provence, Kluwer Academic Publishers, May
18-19 2000, pp. 107-110.

3. M.Abramovici et al. Digital Systems Testing and
Testable Design. IEEE Press, 1999, 652 p.

4. G.Jervan, H.Kruus, Z.Peng, R.Ubar. About Cost
Optimization of Hybrid BIST in Digital Systems.
3rd Int. Symp. on Quality of Electronic Design,
San Jose, California, March 18-20, 2002, pp.273-
279.

5. M.L. Bushnell, V.D. Agrawal. Essentials of
Electronic Testing for Digital, Memory and
Mixed-Signal VLSI Circuits. Kluwer Academic
Publishers, 2000, 690 pp.

6. http://www.pld.ttu.ee:81/java/IntroI/Training.htm

http://www.pld.ttu.ee:81/java/IntroI/Training.htm

