WEB-BASED TRAINING SYSTEM FOR TEACHING BASICS OF
RT-LEVEL DIGITAL DESIGN, TEST, AND DESIGN FOR TEST

S. DEVADZE, A. JUTMAN, A. SUDNITSON, R. UBAR
TALLINN TECHNICAL UNIVERSITY, ESTONIA

KEYWORDS: Web-Based Teaching, Java Applet, Education

Methodology

ABSTRACT: A conception of training system for teaching design and test of digital devices is presented. The system is
designed mainly to illustrate RT-level (Register Transfer Level) problems in control intensive digital systems. Such
topics as investigation of tradeoffs between speed and HW cost in digital design, RT-level simulation, fault simulation,
test generation, built-in self-test (BIST) and other similar are covered by the training system. The system is implemented
in a form of Java applet and can be freely accessed over Internet. The latter makes it easy for students even from foreign
universities to use this system any time and in any place. The Java applet has built-in multilingual support to ensure easy

integration into teaching courses of universities over the world.

INTRODUCTION

Rapid advances in areas of deep-submicron electron
technology and design automation tools enabled
engineers to design larger, more complex, integrated
circuits. Until recently, most electronic systems
consisted of one or multiple printed circuit boards,
containing multiple integrated circuits (IC) each. Recent
advances in IC design methods and technologies allow
to integrate these complex systems onto one single IC.
These developments are driving engineers toward new
System on a Chip (SOC) design methodologies. SOC is
seen as a major new technology and the future direction
for the semiconductor industry.

On the other hand, the more complex are getting
electronic systems the more important become problems
of test and design for testability, as costs of verification
and testing are getting the major component of design
and manufacturing costs of a new product. Today,
design and test are no longer separate issues. The
emphasis on the quality of shipped products, coupled
with the growing complexity of system design, require
testing issues to be considered early in a design process.
At present, most VLSI and system designers know little
about testing. The companies frequently hire test experts
to advise their designers on test problems, and they even
pay a higher salary to the test experts than to their VLSI
designers. This reflects the today’s university education:
everyone learns about design, but only truly dedicated
students learn test [1-3].

Entering the SoC era with its new concepts means teach-
ing more material on high-level and system design toge-
ther with the same amount of essential basics, that must
not be forgotten. In its turn, this means that more infor-
mation volumes must be fitted into the same time fra-
mes. Therefore, new effective teaching concepts must be
introduced to avoid poorer coverage of essential topics.

Teaching the basics of digital design and test means
teaching a lot of complex connections. Those connected
topics have to be explained at first one by one. Then
come their dynamic interactions. Traditional teaching
methods using desk, overhead or “PowerPoint™* pre-
sentations can explain those connections only partially.

After the lecture the dynamic part of the lecture, the
connections created by the teacher between different
subjects get lost and the students only have a static part
of the whole scenario in their notes. After listening to a
lecture they can consult only their synopses and try to
solve some problems by using a newly learned method
as good as they remember. The only accompanying ma-
terials students use in most cases are books, scripts etc.

An enhancement of this situation can be reached, if the
whole material, containing all scenes of the dynamic
process can be accessed via the Internet. The same
dynamic content can be used then as during the lecture
itself as later by students at home.

In the following a conception and tools are presented to
increase the teaching quality in the field of electronics
design and test. To illustrate both design and test
problems together, we use the same system consisting of
several interactive modules. The system supports the
possibility of distance learning as well as a web-based
computer-aided teaching. The interactive modules are
focused on easy action and reaction, learning by doing, a
game-like use, and encourage students for critical
thinking, problem solving, and creativity.

THE CONCEPT

The teaching system is implemented as a Java applet,
which consists of the following parts:

= System model subpanel (Fig. 1)
= Data path

IN —> —» OUT
Control Path
Status Control
Signals ’_C’ Signals
< MUX
Data
ouT t
1
2]
—— REG F2 F4
n C
Data f
IN » DMUX
Data Path

Fig. 1 System model

= Control path

= Simulation module

= Fault simulation module
= Test generation module
= BIST module

The conception we describe in the following allows to

solve and illustrate many problems related to RT-level

control intensive digital design together with test. The

range of problems includes (but is not limited to):

= Design of data path and a microprogram (control
path) on RT level

= Investigation of tradeoffs between speed & HW
cost in the system

= RT level simulation

= Fault simulation

= Test generation

= Design for testability and BIST

a) Data Path Description

Each functional unit F1..F4, MUX, and DMUX has a
list of micro-operations unary or binary. It is supported
by an RT-level and gate-level models of these
microoperations. The RT-level model is needed for
high-level simulation by JAVA library subprograms,
while the gate-level model is used for gate-level logic

j=0,1,2,4 — Bus number where Bg is Data OUT Bus, B is the Bus to F1 etc.

i =0,3,4 — Bus number where By is Data IN Bus, B3 is the Bus from F3 etc.

unary microoperations like: various shiftings, inverting, counting (+1, -1) etc.
various binary microoperations (with 2 operands)

various unary and binary microoperations (with 2 operands); there is a
overlay between functions of F4 and the ones of F1, F2 and F3 to allow a

: MUX mi: Bj=R; i=1,...,n— Register number;

|

i DMUX dii R = B;

: j=1,...,n — Register number

i F1(F3) f1; (f3)

E F2 f2j

, F4 fy

1

: parallelization of the given algorithm
E C Ci a list of Boolean conditions

and fault simulation. All the microoperations are labeled
by a control signal which activates the microoperation.
The description of the data path functionality in format
“control signal: microoperation” is presented in Fig. 2.
While designing his device (implementing a given
algorithm or a function like multiplication, division etc.)
a student can select needed microoperations for each
unit of data path from the whole set of possible pre-
designed microoperations. Each microoperation has a
gate-level implementation, and the number of gates
determines the cost of the microoperation. By selecting
a set of microoperations for the whole data path the
student will get also the cost of the data path in the
number of gates.

Different architectures can be chosen for
implementation of a given function. Students can
compare them and find the tradeoffs:

= M-automaton (F1 and F3 are selected to be
transparent, F4 is disabled, all microoperations are
selected only from F2). In this case it is possible to
carry out a single microoperation in one clock
cycle, the speed is low, but the cost of HW is saved.

= Sequential IM-automaton (F1, F2, F3 are enabled,
F4 is disabled). In this case the system can carry out
maximum 3 microoperations during a single clock
cycle if the algorithm gives such a possibility. For
example, in division F1 is used for inversion to
allow subtraction by the adder in F2, and F3 can be
used for shifting of data.

= Parallel IM-automaton (all blocks are selected). In
this case the system can carry out maximum 4
microoperations during a single clock cycle if the
algorithm allows to. For instance, while the three
functional units described above perform division,
F4 can count clock cycles.

For every chosen architecture, the system calculates the
cost of HW. The speed (the number of clock cycles the
microprogram needs) can be measured by simulation.

b) Control path

The control path is a microprogrammed controller [4],
which implements Mealy FSM (Final State Machine).
The controller consists of a microprogram table and an
interpreter. The microprogram is developed by the user

- e e e e e e e e e e e e e

Fig. 2 Description of data path functionality

TABLE 1 The microprogram table

Addr | Next | F1(in) [F2(in) [F4(in1)[F4(in2)] IN | F1_[F2[F3[F4 |F3(out)[F4(out)] OUT [Input|[C1]C2][C3] ...
1 2 REG2 A [X[X[X[X
2 3 REG3 B [X | X[X[X
3 4 |REG3 REG1 | REG2 SHRO ADDER | REG3 | REGT 00| X[X
3 3 |REG3 REG2 SHRO SHLO | REG3 | REG2 110 [XX
3 | END REGT X [1 [X[X
4 3 REG2 SHLO REG2 X [X [XX

to realize a given algorithm based on the available
(selected in prior) resources of the data path. The user
fills in the microprogram table represented as a subpanel
of the applet.

The first two columns of the microprogram table (Table
1) represent the address of current microinstruction and
the address of the next microinstruction corresponding-
ly. The current microinstruction can be split into several
rows in case if its operation depends on the set of
conditions C. Then the only proper row will be selected.
Columns 3 to 6 correspond to MUX and indicate which
register (REG1...REGn) will be multiplexed into which
functional unit (F1, F2, F4). Registers where the input
data from Data IN (column “Input”) will be written are
specified in column “IN”. The input data are the
operands of the implemented algorithm (this will be
further discussed in the next subsection).

Columns F1 to F4 stand for a certain microoperation
selected for a corresponding functional unit (F1 to F4) in
a certain clock cycle. The DMUX section is specified in
next two columns. It shows to which register the data
from functional units F3 and F4 will be written. Column
“OUT” indicates the register which will be redirected to
Data OUT. The last columns (C1, C2, ...) stand for
conditions where the following values must be specified:
0, 1, X (don’t care).

In Table 1 an example of algorithm, which performs
multiplication of two operands A and B is presented.
The result of multiplication is stored in REG1 and fed to
the data output. The algorithm is as follows:

R2 =A
R3 =B
While R; =0
{
1£ (Ryf0]) = I
R1 = R1 + R2
R; =RI(0.R;) // Shift R; right by one bit, put 0 at end
R, =LI(R,.0) // Shift R, left by one bit, put 0 at end

}
Data OUT =R,

TABLE 2 The simulation data

c) Simulation

Simulation is carried out at the higher level by using
Java subroutines (corresponding to functional units)
which are activated by the control signals in the order
given in the microprogram table (by checking the
condition values). The overall algorithm is the
following:

Reset all the Registers
Current State =1
While Current State # END
{
Read Status Signals
If (Current State = ADDR) and (Status Signals — C)
Select the Row from microprogram table
Else
Error: ”Simulation Error”
Assign function to each enabled Functional Unit
Ry = Data IN
Rrsouy = F3(F2(F1(Rr1in), Rr20im))
Rrstoury = FARryging)> Rrg(in2)
Data OUT = Royr
Current State = NEXT

Simulation can be carried out also at the gate level by
using Structural BDDs. The process is also controlled by
the data in microprogram table. The simulation data is
stored in a subpanel Simulation Results (Table 2).

Column “Test Nr.” defines the number of data group
from the Test Data Table (described in the next
subsection). The clock number is specified in the next
column. The simulation data is written in all the other
cells of the Simulation Data table at each clock cycle.
This data reflects the states of all the registers, outputs
of all the functional blocks, data input and output of the
device, current states at each clock cycle and condition
signals. The simulation data can be used later by the
student as the debugging info.

Column “Test Nr.” can be neglected during
conventional simulation. In that case, we simulate only a

Test Nr. | CIk.Nr. [R1|R2|R3|R4 |/ R5|R6|R7 | F1|F2|F3|F4| IN |OUT| State |C1|/C2|C3|C4|C5|C6|C7|C8
1 1 0O 3] 0O O O 0Of 0 0 o of o0 3 0 2| 1] 1 1 0 1 0 1 0
1 2] 0 3 5 0 O O 0 0O 0 0o o0 5 0 3] 1 1 1 0 0O 0o 1 0
1 3] 3] 3 2/ 0 0O 0O 0 2 2 2 3 5 0 4 0 O] 1 0 1 0 1 o0
1 4/ 3] 6| 2/ 0O 0O O O 0O 0] 0O 6 5 0 3] 1 O 1 0 0O 0 1 0
1 5| 3 12 1| 0] O] O] 0] 1] 1 1] 12 5 0 3] 1 O 1 0 1 0 1 0
1 6] 15| 12| O O] O O] 0O O] O] O] 15 5 0 4 0 O 1 0O 0O 0o 1 0
1 71 15| 8 0 O O 0O 0O O O o] 8 5 0 3 1 1 1 0 1 0 1 0
1 8 15| 8 0O 0O O O 0 0O 0 0 o0 5 15 O 1 1 1 0 1 0 1 0

single microprogram (formally, with Test Nr. 1). For
investigation of test problems (like test generation, fault
simulation, etc.) we use the same microprogram
repeatedly for several input data. Then each repetition of
the microprogram will be regarded as a test with a
corresponding number.

Table 2 represents the simulation results corresponding
to the example of the multiplication algorithm given in
the previous subsection when input operands are
numbers 3 and 5.

d) Test generation

A microoperation of one of the units F1, .., F4 can be
chosen as a target for testing. It is assumed that the same
microprogram will be repeated for a set of operands for
the chosen microoperation. The operands must be
written into the Test Data Table:

TABLE 3 The test data

No DA=1 DA =2 DA=3 DA=4
1 Data_11 Data_21 Data_31 Data_41
n Data_1n Data_2n Data_3n Data_4n

Data_1i and Data 2i — are the first and the second
operand used for the microoperation under test. The
microoperation is tested n times by n different sets of 2
(or 1) operands.

For test generation no special automatic means will be
provided. Either manually generated functional patterns
or randomly chosen patterns (test data) can be used. The
efficiency (quality) of these tests can be estimated by
fault simulation.

e) Fault simulation

Fault simulation is carried out at the gate level by using
Structural BDD model. Faults for the given block are
inserted into BDDs. The simulation process is controlled
by the data in microprogram table. The target of the
fault simulation (a unit, and a microoperation in the unit)
are selected by a student and then highlighted. The fault
simulation data is reported in the Fault Coverage Table:

TABLE 4 The fault coverage

F1 F2 F3 F4
Nr. f k f‘k f; k f4k
c|TC|C |TC| C |TC| C | TC

0

Ci TCi Ci TCi Ci TCi Ci TCi

n

C; and TC; — are fault coverage for the current test
(microprogram) with data Data Ii and Data_2i and the
total fault coverage for all the tests with all the data in
the Data Table up to the current group of i. The
microoperations f are selected from each functional
unit as a target for fault simulation.

CSTP BILBO

TPG . A A
TPG/SA Fa F4
SA

Fig. 3 Scan-path design
f) Built-in Self-Test

Usually functional test patterns do not provide a good
fault coverage. Therefore scan-path with random test
pattern generator is introduced. Special BIST subpanel
with BIST results subpanel can be opened for this
operation mode. By Scan-Path technology the inputs and
the outputs of the combinational blocks in data path are
directly accessible by scan-path registers TPG (random
test pattern generator), SA (signature analyzer), and
TPG/SA (combined TPG and SA) [5]. See Fig. 3.

Two modes may be implemented: BILBO (Built-In
Logic Block Observer) mode based on using TPG and
SA, or CSTP (Circular Self-Test Path) mode based on
using combined TPG/SA scan-path register.

Both modes can be implemented in two ways: different
settings for each combinational circuit to be tested, or
the same setting for all circuits. The aim of a student’s
work is to find best settings. For setting the polynomial,
the initial state of the TPG, and the number of clocks to
be used for test generation, there is a special subpanel.

Again, the targets for testing are microoperations in
blocks F1, ... F4. Random test patterns generated by the
TPG are saved, then fault simulated, and finally the fault
coverage is displayed.

THE IMPLEMENTATION

The teaching system is implemented in a form of Java
applet. It can be accessed through URL [6]. The Java
1.1 is chosen as the platform for the applet because at
the moment it is a de-facto standard and it is included in
installation packages of most popular browsers.

Applet interface (Fig. 3) consists of following parts:

= Schematic View - panel which contain schematic
representation of a design. This panel allows user to
define or change some properties of data path of the
design. Some components can be enabled/disabled
or their functionality can be changed. In the step-
by-step simulation mode the results of the
simulation are visually demonstrated on the
Schematic View after each step of the simulation.

= Microprogram tab-panel is used to define control
path of the system. In the simulation mode this
panel shows which part of the microprogram is
currently executed.

“ Design: new Examples Import | Expot Language Opti

ons
; Microproaram
Design Cost: MA Simulation Resuts Control
Last Clack cycles: 2 Test Dats - ontro
signals
Clock cycle: E AG Model 5
EilEnabled 0 3
- ;|- block vy ¥
FalEnabled
A0 15) 3 R2[3 | block Control
: = R3 |2 3
B (0. 15 ra R
C (0. 18) 0 R5 [0 |3 path
D (0. 15): 0 Sar
Simulate Step 5 T ry
)) . Status
Continue Simulation Dat
Stap Simulation IaHa "D “ signals
b Data path
", Simulation / Test /
Add Line | [adur] Nea] F1on] Faqn] Fagnt] Fagnz] N | F1_ | F2] Fa] F4 | Fagoun] Faut] ouT | nput] o1] o7 o3
R REGZ A n A %
nsertline [|2 3 REG3 B % X% X
3 4 REG3 REG1 REGZ SHRO ADDER REG3 REG1 XKD
SeleteLing |13 3 REG3 REGZ SHRO SHLD |REG3 REG? AL
_DsieteLine |5 £y REG WoOH M
e REGZ SHLD REG2 T
Clear All | i T -
\ Microprogram Simulation Results

RIL, v1l.3beta, RT-Level Design

Fig. 3 Applet window

Simulation tab-panel and Test tab-panel are used to
simulate and test design correspondingly. The
simulation can be carried out in different ways:

1) Step-by-step simulation mode. In this case each
row of the microprogram is executed separately
and all the results of this execution (including
state of registers and functional blocks, inputs
and outputs, status signals, etc) can be viewed
directly on Schematics View sub-panel. This
mode of simulation is useful for illustrating
how the design works or for debugging.

2) Test mode. This mode is used to test the design

repeatedly with some set of input data. User

fills in the Test data table in the Test tab-panel
with the data that will be used in testing. Then

the design simulation can be executed for a

particular row of test table or for all the rows at

once.

The results of the simulation or test are placed to
Simulation Results tab-panel.

The user-friendly interface of the applet allows users to
start experimenting with the system immediately without
requiring a long training. Nearly all operations with the
applet (except the specification of input data values) are
performed using just the mouse. The help system for the
applet is currently under construction. The draft version
of this user guide can be accessed through URL [7].

The applet has a flexible design. Should any other RT-
level model be used instead of the described one, it must

be only specified in a form of text-files. Then it can be
loaded just as simple as the original one. The
Microprogram table and the Simulation Results table
will be automatically reconfigured as well.

The current version of the applet is equipped with
several such design templates. New templates can also
be added or existing templates can be changed without
changing the applet.

Applet has a built-in collection of examples (they also
can be extended or modified) that implement different
algorithms. They will help users to understand principles
of functioning of the system. For connecting the system
to other applications as well as providing users with
possibility to save the results of their work for further
use applet has a capability of exporting results and
importing source data. Applet has a built-in multilingual
support: its interface can be easily translated to other
languages if needed (current language is English).

At the moment the applet is still in its beta version stage.
However the most functionality is already implemented.
The fault simulation and BIST are the only missed
interactive modules planned for future work.

CONCLUSIONS

By the use of web-based media we achieve: presentation
of course material independent of place and time,
individual learning according to the students’ own

needs, new forms of communication between teachers
and students, up-to-date course material.

The conception presented allows to improve the skills of
students to be educated for digital hardware and SOC
design connected with test related topics. The system
fully reflects the “easy action and reaction” conception
which was taken as the major target for its creation.
Each field, each functional unit, other modules are click-
able and their function can be changed or further adjust-
ed. The reaction on this action will be instantly reflected
by highlighting and changed colors of selected modules.

On the other hand the tasks chosen for training represent
simultaneously real research problems. This provides
students with dynamic environment to experiment with
and to find interesting solutions for stated problems. The
main target of described system is to foster in students
critical thinking, problem solving skills and creativity in
a real research environment and atmosphere.

The free-access over Internet basis and self-contained
nature makes it easy for students even from foreign
universities to use this system any time and in any place.
The Java applet has built-in multilingual support to
ensure easy integration into teaching courses of
universities over the world.

THE AUTHORS

S. Devadze, A. Jutman, A. Sudnitson, R. Ubar are with
the Computer Engineering Department of Tallinn

Technical University, Raja 15, 12618 Tallinn,
ESTONIA. E-mail: artur@pld.ttu.ee

Acknowledgements — This work is supported by the
Thuringien Ministry of Science, Research and Art
(Germany), by EU V Framework project REASON, and
by the Estonian Science Foundation (grants No 3658,
4876 and 4300).

REFERENCES

[1] M.L. Bushnell. Increasing Test Coverage in a VLSI
Design Course. International Test Conference,
Atlantic City, NJ, USA, 1999, p. 1133.

[2] J. Harrington. VLSI Design 101 — the Test Module.
International Test Conference, Atlantic City, NJ,
USA, 1999, p. 1134.

[3] V.D. Agrawal. Increasing Test Coverage in a VLSI
Design Course. International Test Conference,
Atlantic City, NJ, USA, 1999, p. 1131.

[4] Armstrong J. R., Gray F. G. Structured logic design
with VHDL. Prentice-Hall, Englewood Cliffs, 1993,
482 p.

[5] Abramovici M., Breuer M.A., and Friedman A.D.
Digital systems testing and testable design. IEEE
Press, New York, 1999, 652 p.

[6] Teaching system URL:
http://www.pld.ttu.ee/dildis/automata/applets/9/

[7] Help URL:
http://www.pld.ttu.ee/dildis/automata/applets/9/Help/
howto.html

mailto:artur@pld.ttu.ee
http://www.pld.ttu.ee/dildis/automata/applets/9/
http://www.pld.ttu.ee/dildis/automata/applets/9/Help/

