
Teaching Digital RT-Level Self-Test using a Java Applet

S. Devadze, A. Jutman, A. Sudnitson, R. Ubar

Tallinn Technical University,
Raja 15, 12618 Tallinn, Estonia,

raiub@pld.ttu.ee

H.-D.Wuttke

Technical University Ilmenau, Germany
Dieter.Wuttke@theoinf.tu-ilmenau.de

Abstract. A method called “living pictures” to combine learning, training and research pha-
ses in a laboratory course for educating today’s VLSI and system designers is presented and
implemented as an Internet based tool. The system is designed mainly to illustrate RT-level
(RT-Register Transfer) problems in control intensive digital systems including: investigation
of tradeoffs between system’s speed and HW cost, RT-level simulation, fault simulation, test
generation, built-in self-test (BIST) and others. In this article we concentrate mainly on
testing related problems. The described system has a built-in multilingual support to ensure
easy integration into teaching courses of universities over the world.

1. INTRODUCTION
Advances in the areas of deep-submicron electron technology and design automation tools are
enabling engineers to design larger and more complex integrated circuits, and driving them
toward new System on a Chip (SOC) design methodologies. SOC is seen as a major new
technology and the future direction for the semiconductor industry. The more complex
electronics systems are getting, the more important will be the problems of testing and design
for testability. The costs of test is becoming the major component of the manufacturing cost of
a new product. Today, design and test are no longer separate issues. The emphasis on the
quality of the shipped products, coupled with the growing complexity of systems design,
require testing issues to be considered early in the design process.
Recent reviews have discovered that most VLSI and system designers know little about
testing because of the gap in education [1]. Today’s university courses on design very seldom
handle the topics of testing in sufficient details. Entering into SOC era means that test must
become an integral part of the VLSI and system design courses. The next generation of
engineers involved with VLSI technology should be made aware of the importance of test, and
trained in test technology to enable them to produce high quality, defect-free products.
Design for Testability (DFT) is rapidly becoming one of the key considerations in today’s
SOC designs. Moving towards multi-million gate SOCs makes embedded testing strategies
via Built-In Self-Test (BIST) architectures mandatory. It is critical to ensure that students will
be equipped with skills in DFT and BIST, and get hands-on experience in solving test
problems in digital systems to make them successful designers when they leave university [2].
In the following a conception and tools are presented to increase the teaching quality in the
field of electronics design and test. Both, gate level and RT-level testing problems are
covered. To illustrate design and test problems together, we use the same environment. The
system supports the possibility of distance learning as well as a web-based computer-aided
teaching. The interactive modules are focused on easy action and reaction, learning by doing,
a game-like use, and encourage students for critical thinking, problem solving, and creativity.
The paper is organized as follows. Section 2 gives an overview of the new teaching concept
supported by the paper. In Section 3 the simulation environment is described. Section 4
presents the concepts of teaching high-level test topics and in Section 5 conclusions are made.

mailto:raiub@pld.ttu.ee
mailto:Dieter.Wuttke@theoinf.tu-ilmenau.de

2. SYSTEM OVERVIEW
The core of the teaching concept presen-
ted here is a Java-applet of a special type,
which we call “Living Pictures” [3].
Those applets simulate tricky, quite com-
plicated situations of the learning subject
in a graphical form on the computer scre-
en. The graphics is self-explanatory and
provides interaction possibilities. By
using these possibilities the students can
generate examples that are interesting
enough to encourage their own experim-
ents but not too complicated for learning.
Fig.1 shows the four phases of the learning process supported by the education system:
listening, replication, examination and practice phase. The system supports the action based
training since for each phase there exists a special application service adapted to the learning
process which allows different views and actions using the same interactive module.
In our teaching system [4] we combine and illustrate many different problems related to both
RT-level control intensive digital design and test. This gives a unique possibility to teach all
of them in a consecutive iterative approach. The range of taught problems includes:
§ design of a data path and control path (microprogram) on RT level
§ investigation of tradeoffs between speed of the system & HW cost
§ RT-level simulation and validation
§ gate-level deterministic test generation and functional testing
§ fault simulation
§ logic BIST, circular BIST, functional BIST, etc.
§ design for testability
The teaching system (Fig. 2) consists of the following major parts:
§ Schematic View panel provides the schematic representation of the target system and the

graphical simulation data. The internal structure of the data path is also reflected there.
§ Microprogram table is used to define the control path of the system. During the

simulation this panel shows which line of the microprogram is currently executed.
§ Simulation and Test tab-panels allow to choose and run RT-level fault and fault-free

simulation. The simulation can be performed for a single set of input data (step-by-step or
at once) as well as for all the sequence of input operands at once.

§ Simulation Results tab-panel reflects the results of fault-free simulation.
§ Fault simulation module provides fault simulation for the data path and its units.
§ Global Test Panel is used to provide fault coverage information as for the whole data path

as for each single unit under test.
§ Local Test Panel provides means for manual local test patterns generation for a selected

unit of data path. It also displays the gate-level schematic of the unit and the fault coverage
for each unit as well as for the data path as whole.

§ Test Microporogram is used to organize separate test access to each selected functional
unit of the data path.

§ BIST module provides the basis to experiment with embedded self-test facilities. The user
can select the BIST mode and specify locations of signature analyzers within the data path
and the LFSR (Linear Feedback Shift Register) architecture for pseudo-random TPG.

Fig. 1 The four phases of learning process

Listen

Replicate

Practice

Examine

Ap
pl

ic
at

io
n

1

 Interactive
 Modules

Ap
pl

ic
at

io
n

3

Application 2

Application 4

The applet has a flexible design. The RT-level system model, shown in Fig 2 is not
mandatory. Should any other model be used, it must be only specified in a form of text-files.
Then it can be loaded just as simple as the original one.
The applet has a built-in extendable collection of examples implementing different
algorithms. They help users to understand principles the system operation. For connecting the
system to other applications as well as for providing users with a possibility to save the results
of their work for further use applet has a data import/export capability. It also has a built-in
multilingual support.

3. RT-LEVEL DESIGN-ORIENTED SUBSYSTEM
Each functional unit (FU) of the data path F1..F4 contains a number of microoperations
(functions: unary and binary), which are labeled by corresponding control signals activating
chosen function. There is an overlap between possible functions of F4 and of F1, F2 and F3 to
allow a parallelization of a given algorithm. The user can select one or more microoperations
for each unit of data path when implementing his own algorithm (like multiplication, division
etc.). Each microoperation has a gate-level implementation, and the number of gates determi-
nes its cost and in the end the final HW cost of the system. The user can select, thus, a particu-
lar implementation of his algorithm (like I or M-automata, sequential or parallel IM-automa-
ta) meeting either the cost or timing requirement. The speed (the number of clock cycles) of
the algorithm is measured by simulation. The simulation is supported by an RT-level model of
the system as a whole and by gate-level models of each microoperation in each FU.
The control path is a microprogrammed controller [6], which implements Mealy FSM (Final
State Machine). The controller consists of a microprogram table and an interpreter. The
microprogram is developed by the user to realize a given algorithm based on the selected reso-
urces of the data path. The user fills in the rows of microprogram table, which contain infor-

Fig. 2 Training system

mation about the address of the current and the next microinstruction, MUX and DMUX con-
figurations, Data IN values, selection of functions in FUs (F1 to F4) at each microinstruction,
and status signal configuration.
In Fig. 2 an example of algorithm of multiplication of two operands A and B is presented. The
result of multiplication is stored in REG1 and fed out to the data output.
The RT-Level simulation is carried out at the higher level by using corresponding to functional
units Java subroutines which are activated according to condition values by the control signals
in the order given in the microprogram table. The simulation data is stored in the Simulation
Results subpanel. This data reflects the states of all the registers, outputs of all the functional
blocks, data input and output of the device, current states at each clock cycle and condition
signals. The simulation data can be used by the student as a debugging info as well as for the
improving the efficiency: the speed or the cost of the system.
For more details on design-oriented part of our system, please visit the dedicated web page [4]
and turn to our previous article [5] in which we made emphasis in RT-level design. In the
present article, on the contrary, we will concentrate mostly on test-related topics.

4. TEACHING RT-LEVEL TEST
The toolkit of the modern design and test engineer contains quite a few methods of testing of a
SoC design. All of them have come from the earlier times and have been adopted for the new
paradigm. With our teaching system we are aimed at showing a variety of different modern
testing techniques including functional and deterministic testing, a number of BIST solutions.
Prior to entering the test mode, the system under test must be designed and verified. The user
can do it himself or use one of prepared examples. When the test mode is selected, the micro-
program and the structure of the data path are “frozen” and cannot be modified anymore. At
the same time the user selects target microoperations of the data path for test generation and
fault simulation. The fault simulation information is reflected (depending on a mode selected)
at the Global Test Panel for the whole system and at the Local Test Panel for a single selected
unit (Fig. 4). In the following we describe the test modes in detail.
Functional Test. In this mode the cheapest test technique is investigated, which does not
require designing special test programs and embedding of special test structures into the
system. The same unmodified microprogram and data path configuration are used instead. The
required level of fault coverage must be achieved then by only a smart selection of input data.
The sole checkpoint allowed for catching the fault is the data path primary output. Moreover,
it only can be observed at the time when the microprogram outputs the final result.
The fault simulation information is presented at the Global Test Panel (Fig. 3). The input
operands (A,B,C,D) are specified first. The same microprogram is used then repeatedly for
fault simulation for all the input data. The fault coverage is calculated for each selected FU
and for the whole system as well. The cumulative fault coverage for each input vector is

Fig. 3 Global Fault Coverage table from the Global Test panel

provided in the Global Fault Coverage table (Fig. 3).
The primary task of the student during investigation of functional testing is the selection of
good operands in order to achieve the target fault coverage as fast as possible. For simpler
designs this technique can be feasible. However, for more complicated structures something
more sophisticated must be used.
Deterministic Test. This mode is aimed at a gate-level test generation and fault simulation for
each selected FU separately. They are considered by the user in series and test vectors are
generated. The simulation results are provided in the fault table at the Local Test Panel (Fig.
4). For each vector the fault coverage (FC2) is calculated and the information on tested nodes
is given. The cumulative fault coverage (FC1) is also shown for each simulation step. The
hierarchical RT-level fault simulation is also applied in order to evaluate the global fault cove-
rage of those vectors for the data path as a whole. For this purposes a test program is compo-
sed for each selected FU. The simulation data is reflected in the Global Test Panel in the same
way as it is done in the Functional Test mode.
In order to help the user generating gate-level test vectors, the gate-level schematic of current-
ly selected FU is displayed. The user selects a target fault and generates a test vector. After
pressing the “Simulate” button this vector is fault simulated at the gate level and the results
(local fault coverage) are added into the fault table. At the same time, the same vector is sent
to RT-level hierarchical fault simulator in order to fill in the Global Test Panel. In this panel
the vector is shown as two decimal operands. The test microprogram, used for RT-level fault
simulation must provide a good access to the selected FU. A simple version of such a program
is generated automatically. It can be used as a template by a student in order to develop a more
sophisticated test program if needed.
The primary task of the student working in Deterministic Test mode is the creation of short
local tests covering maximum amount of faults for each of selected FUs. Another, more

Fig. 4 Deterministic test pattern generation in Local Test Panel

advanced, task is the reduction of the overall test length for the whole investigated system by
modification of standard test programs and combination/modification of local test patterns.
The latter allows testing faults in several FUs simultaneously and by the same test vectors.
The BIST Mode. The Deterministic Test mode is one of the most efficient ways of testing.
However, it does not provide access to internal signals of the system under test. This problem
is addressed by various BIST solutions. Usually it is a scan-path with a random test pattern
generator (TPG) and one or more signature analyzers (SA). By scan-path technology (Fig. 5)
the inputs and the outputs of the combinational blocks in data path are directly accessible by
TPGs, SAs or TPG/SA (combined TPG and SA) [7].
Our teaching system allows reconfiguration of internal registers in the BIST mode. Depending
on the chosen BIST method some of them can perform functions of TPG, SA or TPG/SA. If
the Logic BIST (L-BIST) method is to be evaluated, the TPG and SA functions must be
separated and located in different registers. On the contrary, in Circular BIST (C-BIST) both
TPG and SA are situated in the same register. In the both modes it is possible to configure the
TPG on-line from the interactive graphical panel. When the configuration is completed, the
gate-level and the hierarchical fault simulation are performed and the results are displayed in
the way similar to the one used in Functional and Deterministic test modes.
The described above modes help to illustrate the way of operation of different BIST structures
and show how their efficiency depends on the TPG configuration. The selection of a good
configuration for each selected FU is the main problem to solve by the student. Another task
is the selection of such a single TPG configuration, that allows testing all of the FUs in the
shortest possible time.
There is another BIST mode, called Functional BIST (F-BIST), implemented in the applet.
This mode has very much in common to Functional Testing. The only difference between the
two modes is that in the former one there is possibility to insert SAs at any arbitrary point
within the data path. In this way we increase the observability of the system, since each such
SA is capable of collecting data at each clock compressing it into an observable signature. The
student’s task then is to improve the efficiency of Functional Testing paradigm by introducing
the minimal number of additional test points.

5. CONCLUSIONS
The conception presented allows to improve the skills of students in the area of digital
hardware and SOC design connected with testing. The free-access basis and self-contained
nature makes it easy for students even from foreign universities to use this system
independently of time and place, and learn individually according to their own needs. This
concept brings new forms of communication between teachers and students and up-to-date
course material. The system’s built-in multilingual support ensures easy integration into
teaching courses of universities over the world.

Fig. 5 Scan-path design

F1

F2

F3

F4
TPG

SA
TPG/SA

 L-BIST C-BIST

The applet fully reflects the “easy action and reaction” conception which was taken as the
major target for its creation. Each field, each functional unit, and other modules are clickable.
Their functions can be changed or further adjusted. The reaction on each action is instantly
reflected by highlighting of selected modules.
On the other hand the tasks chosen for training represent simultaneously real research
problems. This provides students with dynamic environment to experiment with and to find
interesting solutions for stated problems.
Acknowledgements: This work is partially supported by the Thuringian Ministry of Science,
Research and Art (Germany), by EU V Framework project REASON, and by the Estonian
Science Foundation (grants No 3658, 4876 and 4300).

REFERENCES:

[1] M.L. Bushnell. Increasing Test Coverage in a VLSI Design Course. International Test
Conference, Atlantic City, NJ, USA, 1999, p. 1133.

[2] J. Harrington. VLSI Design 101 – the Test Module. International Test Conference,
Atlantic City, NJ, USA, 1999, p. 1134.

[3] H.-D. Wuttke, et al. Internet Based Education - An experimental environment for educati-
onal purposes. Proc. of IASTED, May 6-8, 1999, Philadelphia, USA, pp. 50-54.

[4] Teaching system URL: http://www.pld.ttu.ee/dildis/automata/applets/9/
[5] S. Devadze, et al. Web-based training system for teaching basics of RT-level digital

design, test, and design for test. Proc. of MIXDES, June 20-22, 2002, Wroclaw, Poland.
[6] Armstrong J. R., Gray F. G. Structured logic design with VHDL. Prentice-Hall,

Englewood Cliffs, 1993, 482 p.
[7] Abramovici M., Breuer M.A., and Friedman A.D. Digital systems testing and testable

design. IEEE Press, New York, 1999, 652 p.

http://www.pld.ttu.ee/dildis/automata/applets/9/

