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GLOSSARY DEFINITIONS 

 

 

ALFSR - Autonomous LFSR 

ASIC - Application-Specific Integrated Circuit 

ATE - Automatic Test Equipment 

ATPG - Automatic Test Pattern Generator 

BIST - Built-In Self-Test 

BSC - Boundary Scan Cell (in BST) 

BSDL - Boundary Scan Description Language 

BSR - Boundary Scan Register (in BST) 

BST - Boundary Scan Test 

CMOS - Complementary MOS 

CUT - Circuit Under Test 

DR - Data Register (in BST) 

FAN  - FAN-out-oriented test generation algorithm 

FC - Fault Coverage 

FEF - Functionally Equivalent Faults 

GDF - Gate Delay Fault 

IC - Integrated Circuit 

IR - Instruction Register (in BST) 

LFSR - Linear Feedback Shift Register 

MOS - Metal-Oxide-Silicon 

MUX - Multiplexer 

NMOS - N-channel MOS 

PDF - Path Delay Fault 

PI - Primary Input 

PO - Primary Output 
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PODEM - Path-Oriented DEcision-Making algorithm 

RPR - Random Pattern-Resistant faults 

RU - Replaceable Unit 

SSA - Single Stuck-At 

SSF - Single Stuck-at Faults 

TAP - Test Access Port (in BST) 

TCK - Test Clock (in BST) 

TDI - Test Data Input (in BST) 

TDO - Test Data Output (in BST) 

TMS - Test Mode Select (in BST) 

TRST - Test Reset (in BST) 

UUT - Unit Under Test 
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1 FAULT MODELS AND FAULT SIMULATION 

 

 

Introduction. Failure modes are manifested on the logical level as incorrect signal 

values. A fault is a model that represents the effect of a failure by means of the change 

that is produced in the system signal. Several defects are usually mapped to one fault 

model, and it is called a many-to-one mapping. However some defects may also be 

represented by more than one fault model. Fault models have the advantage of being a 

more tractable representation than physical failure modes. It is possible to mark most 

commonly used fault models. 

 
Fault Model Description 

Single stuck-at faults (SSA) One line takes the value 0 or 1. 

Multiply stuck-at faults Two or more lines have fixed values, not 

necessarily the same. 

Bridging faults Two or more lines that are normally independent 

become electrically connected. 

Delay faults A fault is caused by delays in one or more paths in 

the circuit. 

Intermittent faults Caused by internal parameter degradation. 

Incorrect signal values occur for some but not all 

states of the circuit. Degradation is progressive 

until permanent failure occurs. 

Transient faults Incorrect signal values caused by coupled 

disturbances. Coupling may be via power bus 

capacitive or inductive coupling. Includes internal 

and external sources as well as particle irradiation. 

 

 

Table 1. Most commonly used fault models 
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As a model, the fault does not have to be an exact representation of the defects, but 

rather, to be useful in detecting the defects. For example, the most common fault model 

assumes single stuck-at (SSA) lines even though it is clear that this model does not 

accurately represent all actual physical failures. The rational for continuing to use stuck-

at-fault model is the fact that it has been satisfactory in the past. Also, test sets that have 

been generated for this fault type have been effective in detecting other types of faults. 

However, as with any model, a fault cannot represent all failures. Further will be 

discussed a bit closer the fault models that have been brought in Table 1. 

 

1.1 MOST COMMON FAULTS MODELS 

 

1.1.1 Single stuck-at faults. As it was mentioned earlier a single stuck-at (SSA) fault 

represents a line in the circuit that is fixed to logic value 0 or 1. Independent of how 

accurately the stuck-at fault represents the physical defect, we next continue 

investigating how to generate patterns that detect these faults. Lets examine the 

behavior, one the logical level, of a two-input AND gate when stuck-at faults are 

injected, one at time, on all input and output leads. This is illustrated in Figure 1. 

 

 

 

 

Faulty response Inputs 

AB 

Good 

response A/0 B/0 Z/0 A/1 B/1 Z/1 

00 0 0 0 0 0 0 1 

01 0 0 0 0 1 0 1 

10 0 0 0 0 0 1 1 

11 1 0 0 0 1 1 1 

 

Figure 1. Stuck-at faults on a two-input AND gate and their detection 

 

All input combinations are given in the first column of the table. The fault-free and 

faulty circuit’s responses, R and Rf, respectively, are listed in the other columns of the 

table for each stuck-at fault. The fault is detected whenever there is an input 

combination such that (R xor Rf) = 1. Stuck-at faults on line A are indicated by A/0 for 

A 
B 

 
Z 
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stuck-at 0 and A/1 for stuck-at 1. Similar notations are used for the other lines. A careful 

observation of the table indicates that a faulty response of the circuit is not always 

observable. For instance, with A/0, it is expected that the output will always be zero 

irrespective of the input combination. Thus the faulty response differs from the fault-

free response only when the input combination AB = 11 is applied on the circuit. This 

combination is considered as a test pattern that detects the fault A/0. In a similar 

fashion, we can determine that this pattern also detects B/0 and Z/0. This pattern detects 

any of the faults but does not help diagnose which fault actually occurred. We notice 

also that a fault may be detected by more than one pattern. This is the case with Z/1. 

Any of the three test patterns (10), (01), and (00) should be sufficient to detect the fault. 

The latter pattern (00) is the only one that determines that the failure is due to Z/1. If the 

main aim is to detect the failures rather than diagnose them, only three patterns are 

necessary to accomplish the task. They are (01), (10), and (11) and they form a test set 

of length 3.  

 

Summing up the SSA faults for the two-input AND gate, we have shown that: 

 

• Three patterns are sufficient to detect all faults 

• The three faults A/0, B/0, and Z/0 are equivalent 

• Detecting stuck-at 1 faults on the inputs guarantees detection of the same fault 

on the output 

 

1.1.2 Multiply stuck-at faults. A defect may cause multiply stuck-at faults. That is, 

more than one line may be stuck-at high or low simultaneously. With decreased device 

geometry and increased gate density on the chip, the likelihood is greater that more than 

one SSA fault can occur simultaneously. It has been recommended to check m-way 

stuck-at faults up to m = 6 [Goldstein 1970]. This is particularly true with present 

technology circuits because of the high device density. A set of m lines has 2m 

combinations of SA faults. Since the total number of m-sets of lines in a N-line circuit is 

 

 

the total number of m-way faults is 2mC(N,m). 

)!(!
!),(

mNm
NmNC
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Thus the total number of multiply faults is: 

 

 

In detecting multiply stuck-at faults, it is always possible to use exhaustive and 

pseudoexhaustive testing. However, this is not practical for large circuits. The most 

important factors that affect the detectability of multiply stuck-at faults are the number 

of primary outputs and the reconverging fanouts [Schertz 1971, Hughes 1984]. 

 

1.1.3 Bridging faults. Such faults occur when two or more lines are shorted together 

and create wired logic. When the fault involves r lines with r ≥ 2, it is said to be of 

multiplicity r; it is a simple bridging fault. Multiply bridging faults are more likely to 

occur at the primary inputs of a chip. Bridging faults are becoming more predominant 

because the devices are becoming smaller and the gate density higher. The total number 

of all possible simple bridging faults in a m-line circuit is C(m,2). However, in reality 

most pairs of lines are not likely to be shorted. Thus the actual number is much smaller 

than theoretically calculated and is layout dependent.  

 

Bridging faults may cause a change in the functionality of the circuit that cannot be 

represented by a known fault model. An example of this type of fault is illustrated in 

Figure 2. 

 

 

 

 

 

 

 

 

 

 

Figure 2. Change in functionality due to bridging faults 
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Here you can see that the function of the good NMOS circuit is AC+BD, while the 

bridging fault changes the functionality of the gate to (A+C)(B+D). Also, the NOR gate 

has been transformed into a sequential circuit.  

 

For detecting bridging faults have been used SSA fault test sets. They yield 100% fault 

detection for some special circuits. The approach is to alter the order of the patterns. It is 

also possible to use exhaustive test sets. 

 

1.1.4 Delay faults. It is possible for a circuit to be structurally correct but to have signal 

paths with delays that exceed the bounds required for correct operation. In such a case, a 

delay fault is said to have occurred. The ultimate goal for detecting delay faults is to 

determine that the circuit works without malfunctions at the designed clock frequency. 

Thus it is appropriate to assume that the bound for correct operations should be the 

slack of the signal at the lead at which the fault is detected. The slack is difference 

between the clock period and the longest delay path. 

 

Two main models are used for delay testing. The first, gate delay fault (GDF), is gate-

oriented. The second model, path delay fault (PDF), is path-oriented.  

 

The GDF model assumes that the delay faults are lumped at the faulty gate. The delay at 

the output of the gate will depend on whether this signal is switching from 0 to 1 (rise) 

or vice versa (fall). There is a disadvantage in adopting this type of fault because it does 

not capture the cumulative effects from other gates, and it also ignores the delays in the 

interconnect wires. Also, the gate delay may cause a local delay at its output without 

affecting the delay of the circuit. 

 

The PDF model takes into account the cumulative delay from the primary input to the 

output. Although this model requires the consideration of too many paths, it is more 

realistic, particularly for present technology circuits, where delays are due primarily to 

the interconnect wires. As the technology features decreased, gate delays have been 

reduced. Meanwhile, the resistance of the interconnect wires has increased due to the 

reduction of their cross-sectional area. Except for domino logic gates, delay testing of 

CMOS circuits consists of applying a pair of input patterns at the desired operational 

speed and observing the outputs for early or late transitions. 
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1.1.5 Temporary faults. The last two types of faults, transient and intermittent faults, 

are made up the temporary faults. Table 2 lists these types of temporary faults and some 

of their main causes. These failures are much harder to track because it is usually not 

possible to reproduce the fault when a component, chip, or board is tested. They are 

encountered in different digital components, but are particularly important in memory 

chips and microprocessors. 

 
Type Causes 

Transient Power supply disturbances 

Electromigration interference 

Charged particles 

Atmospheric discharges 

Electrostatic discharges 

Intermittent Parameter degradation 

 

Table 2. Temporary faults 

 

A transient fault occurs when a logic signal has its value temporarily altered by noise 

signals, and the rest of the circuit may interpret the resulting signal incorrectly. Such a 

fault is difficult to diagnose and correct. It is thus important to minimize the noise in the 

circuit and increase the circuit’s noise immunity.  

 

Intermittent faults are recognized to be an important cause of field failures in computer 

systems. Very little is known about the failure mechanisms because spontaneous 

intermittent failures are difficult to observe and control. 

 

1.2 FAULT SIMULATION CONCEPTS 

 

1.2.1 Introduction to fault simulation. Fault simulation is performed during the design 

cycle to achieve the following goals: 

 

• Testing specific faulty conditions 

• Guiding the test pattern generator program 

• Measuring the effectiveness of the test patterns 

• Generating fault dictionaries 
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To perform its task, the fault simulation program requires, in addition to the circuit 

model, the stimuli, and the responses of a good circuit to the stimuli, a fault model and a 

fault list. This is illustrated in Figure 3.  

 

 

 

 

 

 

 

 

 

Figure 3. Elements of fault simulation 

 

As was mentioned earlier, there are different fault models, and the most widely used is 

the stuck-at model. Test patterns generated for this model have proven to be useful for 

other types of models, such as multiply stuck-at, bridging, and delay faults. The 

responses deduced by the fault simulator are used to determine the fault coverage. 

 

In Figure 3 is illustrated the fault simulation process where a fault is considered from 

the list and a pattern is applied to the circuit. If the fault is detected, it is dropped from 

the fault list and the next fault is considered. Otherwise, another pattern is applied, and 

if the fault is not detected when all patterns are applied, the fault is then considered 

undetectable by the test and is removed from the fault list. The process is continued 

until the fault list is empty. 

 

1.2.2 Fault simulation results. The output of a fault simulator separates faults into 

several fault categories. If we can detect a fault at a location, it is a testable fault. A 

testable fault must be placed on a controllable net, so that we can change the logic level 

at that location from 0 to 1 and from 1 to 0. A testable fault must also be on an 

observable net, so that we can see the effect of the fault at a primary output (PO). This 

means that uncontrollable nets and unobservable nets result in faults we cannot detect. 

We call these faults untested faults, untestable faults, or impossible faults. 

 

Stimuli Design
Model

Simulator

Response

Library
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If a PO of the good circuit is the opposite to that of the faulty circuit, we have a detected 

fault (sometimes called a hard-detected fault or a definitely detected fault). If the POs of 

the good circuit and faulty circuit are identical, we have an undetected fault. If a PO of 

the good circuit is a 1 or a 0 but the corresponding PO of the faulty circuit is an X 

(unknown, either 0 or 1), we have a possibly detected fault (also called a possible-

detected fault, potential fault, or potentially detected fault). 

 

If the PO of the good circuit changes between a 1 and a 0 while the faulty circuit 

remains at X, then we have a soft-detected fault. Soft-detected faults are a subset of 

possibly detected faults. Some simulators keep track of these soft-detected faults 

separately. Soft-detected faults are likely to be detected on a real tester if this sequence 

occurs often. Most fault simulators allow you to set a fault-drop threshold so that the 

simulator will remove faults from further consideration after soft-detecting or possibly 

detecting them a specified number of times. This is called fault dropping (or fault 

discarding). The more often a fault is possibly detected, the more likely it is to be 

detected on a real tester. A redundant fault is a fault that makes no difference to the 

circuit operation. A combinational circuit with no such faults is irredundant.  

 

1.2.3 Fault coverage. The effectiveness of the test sets is usually measured by the fault 

coverage (FC). This is the percentage of detectable faults in the circuit under test (CUT) 

that are detected by the test set. The fault coverage is defined as: 

 

A more realistic expression can be found as: 

 

The set is complete if its fault coverage is 100%. This level of fault coverage is 

desirable but rarely attainable in most practical circuits. Moreover, 100% fault coverage 

does not guarantee that the circuit is fault-free. The test checks only for failures that can 

be represented by the model used, such as a stuck-at-fault model that was mentioned 

earlier. Other failures are not necessarily detected. 

 

fault coverage = faults detected / total number of faults 

fault coverage = faults detected / detectable faults 



Created by Natalja Mazurova, 2003 

Theoretical background for the applet-based exercises 13 

 

 

 

 

 

 

2 TEST GENERATION 

 

 

Introduction. In this introduction part we distinguish between various types of tests 

according to the test generation method.  

 

The first type is the exhaustive test. Since a test pattern is a combination of the values 

applied on the primary inputs (PI) of a CUT, it is conceivable to use all possible 

combinations (an exhaustive test set) and apply them to the circuit. This exhaustive 

approach to testing has the advantage of being easy to generate and of yielding 100% 

fault coverage. However, such a testing method is efficient only for purely 

combinational small circuits.  

 

An alternative to exhaustive testing is the pseudoexhaustive test. The approach is to test 

the components of a circuit exhaustively without having to apply an exhaustive test on 

the entire circuit. Figure 4 illustrates this approach quite well. The circuit has eight PIs. 

The length of an exhaustive test is 256 patterns. Instead, the circuit is partitioned into 

three subcircuits: α, β, and γ.  

 

 

 

 

 

 

 

 

 

Figure 4. Verification testing 
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It is possible to test the first component exhaustively using four patterns and observing 

through the primary output, Z1. For this, the other input to the OR gate should be 

controlled by zero. The other two components each depend on three of the inputs. They 

can be tested exhaustively with eight patterns each. The total length of the test is the 

sum of the three individual tests, 20 patterns instead of 256 patterns. To test subcircuit γ, 

we need to sensitize the response to the test through Z2. This implies keeping W = 1. As 

for component β, the response may be sensitized through Z1 or Z2, and hence we need to 

keep R = 0 or V = 1. This type of testing requires an efficient way of partitioning the 

circuit.  

 

Another special case of exhaustive testing is known as verification testing. It is 

applicable to circuits where each PO is a function of only a subset of PIs. The circuit we 

used for pseudoexhaustive testing has two POs, Z1 and Z2. Each output is dependent on 

a subset of the PIs, 5 and 6, respectively, as can be determined from Figure 5. The 

corresponding exhaustive test sets are of lengths 32 and 64. The length of the test for the 

circuit is then the sum of both test sets and is equal to 96 patterns. This is definitely a 

much shorter test set than the exhaustive test of length 256 patterns. 

 

Test patterns may also be generated in random order. Lets take a quick look at the 

pseudorandom test. The cost of generating the test is minimal. A fault simulator is 

needed to grade the test and assess the fault coverage. The advantage of random testing 

is that it has been shown to detect a large percentage (possibly 85%) of stuck-at faults. 

Consequently, many commercial ATPGs use random testing as a first stage of the test 

pattern generation and then apply heuristics to deal with the still undetected faults, 

which are called random pattern-resistant (RPR) faults.  

 

In purely random testing, a test pattern may be generated more than once. However, 

pseudorandom test generation is more appropriate to ensure that there is no repetition of 

patterns. Pseudorandom test sets may be generated by a software program or by a linear 

feedback shift register (LFSR). LFSR will be discussed later in the last subchapter. 

 

Deterministic tests are fault-oriented tests. In this case, patterns are generated targeting a 

specific fault model. 
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2.1 BASIC OPERATIONS OF ATPG 

 

To generate a pattern for a stuck-at fault on a line, we need to provoke or excite the 

fault, sensitize the results to a PO, and justify the logic values required on the other lines 

in the circuit. In performing these operations, values are assigned to the lines in the 

circuit. We need to find the implications of these values on other gates. 

 

To provoke or excite a line is to control it to a logic value that is the complement of the 

value at which it is stuck; this is equivalent to placing the faulty signal on the line. This 

signal is a discrepancy from the fault-free circuit. For example, to provoke the stuck-at 1 

fault on line W, W/1, of the circuit in Figure 5, we must put 0 on this line, W = 0. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Test pattern generation terminology 

 

It is necessary to sensitize or propagate the fault to a PO in order to observe it. The path 

from the faulty location to the PO is a sensitizing or propagation path. A fault may have 

more than one sensitizing path to the same output or to different outputs. The fault W/1 

has one sensitizing path: through G3, G4 and G6. To sensitize the fault to the output of 

G3, we must have E = 1. Finally, to propagate the fault to the primary output, Z, we 

need to have H = 1. The values on E and H need to be justified to the PIs. We justify 1 

on E by having A = B = 0. Next we find the implication of B on gate G2. Sometimes in 

propagating and justifying we encounter a conflict because some of the lines we need to 

control have values already assigned. In such cases it is said that we encountered an 

inconsistency. 
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2.2 PODEM ALGORITHM 

 

The path-oriented decision-making (PODEM) algorithm starts the search for the test 

pattern at the PIs of the circuit. The algorithm is outlined by the flowchart in Figure 6.  
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Figure 6. PODEM algorithm 
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Starting with an objective, a specific fault to be detected, a search tree is created in 

which two choices are available, 0 and 1, for the PIs. The choice is random. Evaluate 

the implications of this choice on the subsequent gates to the output. If it furthers the 

objective – controlling the fault site to the intended value – accept it and select another 

PI. If an inconsistency occurs, the algorithm backtracks and selects another input 

combination. The search stops whenever a pattern generated or no patterns are possible 

(undetectable fault). 

 

The advantage of PODEM is that it cuts down on the backtracking, as will be 

demonstrated using the next circuit in Figure 7.  

 

 

 

 

 

 

 

 

 

 

 

Figure 7. The circuit that uses reconvergent fanout with XOR gates 

 

The target fault is H/0 and the search tree is shown in Figure 8. 

1. Assign x to all inputs. 

2. Assigning 0 to the PI, A, causes H = 0; hence this choice does not further our 

goal and it is discarded. Then A = 1. 

3. Similarly, B = 0 is rejected and B = 1 is selected. 

4. We proceed with C = 0. The implication of this value is not furthering the 

objective, nor is it blocking it. 

5. Thus we select E = 0; this then results in J = 0 and L = 1. 

6. Similarly, we select F = G = 0, which implies that K = 0, M = 1, N = 0, Q = 1. 

7. We can propagate D on P, then D’ on the PO, R. (SA0, SA1 faults are denoted 

by D, D’ correspondingly). 
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Figure 8. PODEM search tree for circuit in Figure 8 

 

From the search tree in Figure 8, the primary inputs are then {ABCEFG} = {110000}. 

 

2.3 FAN ALGORITHM 

 

PODEM has been effective in reducing the occurrences of backtracking, but the new 

strategy has helped in reducing them even further: FAN [Fujiwara 1983]. This 

algorithm does extensive analysis of the circuit connectivities before backtracking. 

Also, the search is aided by testability analysis.  

 

The fan-out-oriented test generation (FAN) algorithm remedies the exhaustive approach 

of PODEM by pruning from the search tree any branching that would not yield a 

solution.  

 

FAN uses the following strategies [Fujiwara 1986]: 

START

A=0 A=1

B=0 B=1

C=0
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F=0 G=1

G=0

Test has been generated
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1. In each step of the algorithm, determine as many signal values as possible that 

can be implied uniquely. 

2. Assign a faulty signal D or D’ that is uniquely determined or implied by the fault 

in question. 

3. When the D-frontier consists of a single gate, apply a unique sensitization. 

4. Stop the backtrack at a headline, and postpone the line justification for the 

headline to later. 

5. Multiply backtracking is more efficient than backtracking along a single path. 

6. In the multiply backtrack, if an objective at a fanout point has a contradictory 

requirement, stop the backtrack so as to assign a binary value to the fan-out 

point. 

 

Using these strategies, FAN minimized the backtracks and reduced the test generation 

time. In Table 3 you can see the comparison of FAN and PODEM for five benchmark 

circuits. The last two columns are of particular interest because they indicate the 

effectiveness of the algorithm. These columns give the number of faults that were not 

detected after 1000 backtracks; they are referred to as the aborted faults. 

 

 Computing time 
Average 

backtracks 

Percentage of 

faults aborted 

Circuit PODEM FAN PODEM FAN PODEM FAN 

1 1.3 1 4.9 1.2 0.32 0.37 

2 3.6 1 42.3 15.2 2.26 3.13 

3 5.6 1 61.9 0.6 2.42 4.00 

4 1.9 1 5.0 0.2 0.99 1.10 

5 4.8 1 53.0 23.2 0.82 1.02 

 

Table 3. Comparison of PODEM and FAN algorithms 

 

2.4 LFSR 

 

In random test pattern generation, a pattern may be repeated several times in the 

process. However, using pseudorandom yields random patterns without repetition. This 

is equivalent to selection without replacement. The length of the test generated in such a 

manner depends on the seed of the random number generator. It is conceivable to use 
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some software tools to generate the random patterns and then store them in a ROM that 

is placed on the chip. One of the types of hardware may be used instead, and it is a 

linear feedback shift register (LFSR). Example of LFSR is shown in Figure 9. 

 

 

 

  

 

 

 

Figure 9. ALFSF for pseudorandom test pattern generation 

 

As its name implies, the LFSR is a shift register with feedback from the last stage and 

other stages. Besides the clock, it has no other inputs. This is why it is also referred to as 

autonomous LFSR (ALFSR). The outputs of the flip-flops form the test pattern. For this 

example, there are 3-bit test patterns. In Figure 9, the parity of all feedback leads is the 

input to the register. Thus we have Y0 = (Y1 xor Y3), Y1 = y0, Y2 = y1, and Y3 = y2, where 

y1y2y3 represents the present state and Y1Y2Y3 is the next state of the register. The LFSR 

was arbitrarily initialized to 001, which is the first pattern appearing on the LFSR. Next 

we clock the circuits as many times as it is necessary to reproduce this first pattern as 

illustrated in Table 4. In all, there are seven patterns, since all-zeros pattern cannot be 

generated. 

 
Clk Y0 Y1 Y2 Y3 

 1 0 0 1 

1 1 1 0 0 

2 1 1 1 0 

3 0 1 1 1 

4 1 0 1 1 

5 0 1 0 1 

6 0 0 1 0 

7 1 0 0 1 

 

Table 4. Pseudorandom pattern generated by LFSR in Figure 9 
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If we need we can modify the design in Figure 10 in order to allow the inclusion of the 

all-zeros pattern. It can be done by adding a NOR gate as is shown in Figure 10. 

 

 

 

 

 

 

 

Figure 10. LFSR of Figure 10 with adjustment for all-0’s pattern 

 

The results are shown in Table 5, where eight distinct patterns are listed. 

 
Clk Y0 Zero Y1 Y2 Y3 

 0 1 0 0 1 

1 1 1 0 0 0 

2 1 0 1 0 0 

3 1 0 1 1 0 

4 0 0 1 1 1 

5 1 0 0 1 1 

6 0 0 1 0 1 

7 0 0 0 1 0 

8 0 1 0 0 1 

 

Table 5. Pseudorandom pattern generated by LFSR in Figure 10 
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3 FAULT DIAGNOSIS 

 

 

Introduction. A unit under test (UUT) fails when its observed behavior is different from 

its expected behavior. In case UUT is to be repaired, the cause of the observed error(s) 

must be diagnosed. Diagnosis consists of locating the physical fault(s) in a structural 

model of the UUT. The degree of accuracy to which faults can be located is called 

diagnostic resolution. No external testing can distinguish among functionally equivalent 

faults (FEF). The partition of all faults into distinct subsets of FEF defines the maximal 

fault resolution. A test that achieves the maximal fault resolution is said to be a 

complete fault-location test.  

 

Repairing the UUT often consists of substituting one of its replaceable units (RU) 

referred as a faulty RU, by a good unit. Hence usually we are interested only in locating 

a faulty RU, rather than in an accurate identification of the real fault inside an RU. This 

diagnosis process is characterized by RU resolution. Suppose that the results of the test 

do not allow distinguishing between two suspected RUs U1 and U2. We could replace 

now one of these RUs, say U1 with a good RU and then return to the test experiment. If 

the new results are correct, the faulty RU was the replaced one; otherwise, it is the 

remaining one U2. This type of approach is an example of a sequential diagnosis 

procedure. 

 

It is true to say that the diagnosis process is often hierarchical. There are two main 

types of the hierarchical diagnosis process and they are called: the top-down diagnosis 

process and the bottom-up diagnosis process. 

 

In the top-down diagnosis process (system - boards - ICs) first-level diagnosis may deal 

with large RUs, such as boards containing many components, these are referred to as 
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field-replaceable units. The faulty board is then tested in a maintenance center to locate 

the faulty component on the board. Accurate location of faults inside a faulty IC may be 

also useful for improving its manufacturing process.  

 

In the bottom-up diagnosis process (ICs - boards - system) a higher level is assembled 

only from components already tested at a lower level. This is done to minimize the cost 

of diagnosis and repair, which increases significantly with the level at which the faults 

are detected.  

 

3.1 COMBINATIONAL FAULT DIAGNOSIS METHODS 

 

This approach does most of the work before the testing experiment. It uses fault 

simulation to determine the possible responses to a given test in the presence of faults. 

The database constructed in this step is called a fault table or a fault dictionary. To 

locate faults, one tries to match the actual results of test experiments with one of the 

precomputed expected results stored in the database. The result of the test experiment 

represents a combination of effects of the fault to each test pattern. That's why this 

approach is called combinational fault diagnosis method.  

 

3.1.1 Fault table. The fault table associates with each fault a set of test patterns that 

uniquely identifies the fault. For example, consider the information in Table 6, where an 

entry of ajk = 1 indicates that fault k is detected by pattern j, if ajk = 0 then fault k is not 

detected by pattern j. Now, if we know that a circuit passes all test patterns except the 

fourth pattern, we can deduce that the failure was due to fault F8. If, however, the 

circuit fails both test patterns T3 and T4, the cause is either F5 or F8.  

 
Fault 

Pattern 
F1 F2 F3 F4 F5 F6 F7 F8 

T1 1 0 1 0 0 1 0 0 

T2 0 1 1 1 0 0 0 0 

T3 0 0 1 0 1 0 1 0 

T4 0 0 1 0 0 0 1 1 

 

Table 6. Fault table 
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Another good example is shown in next Figure 11. 

 
Fault Experiment 

Pattern 
F1 F2 F3 F4 F5 F6 F7 E1 E2 E3 

T1 0 1 1 0 0 0 0 0 0 1 

T2 1 0 0 1 0 0 0 0 1 0 

T3 1 1 0 1 0 1 0 0 1 0 

T4 0 1 0 0 1 0 0 1 0 1 

T5 0 0 1 0 1 1 0 1 0 1 

T6 0 0 1 0 0 1 1 0 0 0 

 
                                                Fault F5 located 

       Fault F1 and     F4 are not distinguishable 

 

                                                   No match, diagnosis not possible 

 

Figure 11. Fault table and the diagnosis 

 

In this example the results of three test experiments E1, E2, E3 are demonstrated. E1 

corresponds to the first case where a single fault is located, E2 corresponds to the 

second case where a subset of two not distinguishable faults are located, and E3 

corresponds to the third case where no fault can be located because of the mismatch of 

E3 with the column vectors in the fault table. 

 

3.1.2 Fault dictionary. Fault dictionaries contain the same data as the fault tables with 

the difference that the data is reorganized. In fault dictionaries a mapping between the 

potential results of test experiments and the faults is represented in a more compressed 

and ordered form. For example, the column bit vectors can be represented by ordered 

decimal codes.  

 

3.2 SEQUENTIAL FAULT DIAGNOSIS METHODS 

 

In sequential fault diagnosis the process of fault location is carried out step-by-step, 

where each step depends on the result of the diagnostic experiment at the previous step. 

Such a test experiment is called adaptive testing. Sequential experiments can be carried 
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out either by observing only output responses of the UUT or by pinpointing by a special 

probe also internal control points of the UUT (guided-probe testing). In this chapter we 

will dedicate the separate subchapter to the guided-probe testing. Sequential diagnosis 

procedure can be graphically represented as diagnostic tree. 

 

3.2.1 Fault location by edge-pin testing. In fault diagnosis test patterns are applied to 

the UUT step-by-step. In each step, only output signals at edge-pins of the UUT are 

observed and their values are compared to the expected ones. The next test pattern to be 

applied in adaptive testing depends on the result of the previous step. The diagnostic 

tree of this process consists of the fault nodes (rectangles) and test nodes (circles). A 

fault node is labeled by a set of not yet distinguished faults. The starting fault node is 

labeled by the set of all faults. To each fault node k a test node is linked labeled by a test 

pattern Tk to be applied as the next. Every test pattern distinguishes between the faults it 

detects and the ones it does not. The task of the test pattern Tk is to divide the faults in 

fault node k into two groups - detected and not detected by Tk faults. Each test node has 

two outgoing edges corresponding to the results of the experiment of this test pattern. 

The results are indicated as passed (P) or failed (F). The diagnostic tree in the Figure 12 

below corresponds to the example considered in Figure 11. We can see that most of the 

faults are uniquely identified; two faults F1, F4 remain indistinguishable. Not all test 

patterns used in the fault table are needed. Different faults need for identifying test 

sequences with different lengths. The shortest test contains two patterns the longest four 

patterns. 

 

 
 P                                           P            
 
                           F                                              F              
                                              P          P P 

 
                                                
 F  F F 

 

 

 

 

Figure 12. An example of a diagnostic tree 
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Rather than applying the entire test sequence in a fixed order as in combinational fault 

diagnosis, adaptive testing determines the next vector to be applied based on the results 

obtained by the preceding vectors. In our example, if T1 fails, the possible faults are 

{F2,F3}. At this point applying T2 would be wasteful, because T2 does not distinguish 

among these faults.  

 

3.2.2 Guided-probe testing. Guided-probe testing extends edge-pin testing process by 

monitoring internal signals in the UUT via a probe, which is moved (usually by an 

operator) following the guidance provided by the test equipment. The principle of 

guided-probe testing is to backtrace an error from the primary output where it has been 

observed during edge-pin testing to its source (physical fault) in the UUT. 

 

Typical faults located by guided-probe testing are opens and defective components. An 

open between two points A and B is identified by a mismatch between the error 

observed at B and the correct value measured at the signal source A. A faulty device is 

identified by detecting an error at one of its outputs, while only expected values are 

observed at its inputs. 

 

Unlike the fault-dictionary method, guided-probe testing is not limited to the SSF 

model. The concept of “defective component” covers any type of internal device fault 

detected by the applied test; this generality makes guided-probe testing independent of a 

particular fault model. 

 

The most time-consuming part of guided-probe testing is moving the probe. To speed-

up the fault location process, we need to reduce the number of probed lines. A lot of 

methods to minimize the number of probes are available. 

 

Here are some speed-up techniques to achieve this goal with 3 explaining examples: 

 

• Skip probing the output of a suspected device and directly probe its inputs. For 

the example in Figure 13, after observing an error at i, next step is to probe 

directly the inputs of m. The output j would be probed only if no errors are 

detected at the inputs, to distinguish between the faulty device m and an open 

between j and i. 
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               error 

 

                * 

 j  i 

 

 

Figure 13. Case 1 when probing 

 

• Probe only those inputs that can affect the output with errors (see Figure 14 

below, the bold lines are affecting the erroneous output).  

 

                       error 

 

                        * 

                       probe 

 

 

Figure 14. Case 2 when probing 

 

• Among the inputs that can influence the output with errors, probe first the 

control lines; if no errors are detected at the control lines, then probe only those 

data inputs enabled by the values of the control lines. For the MUX shown in 

Figure 15, if no errors are found at the select inputs S0 and S1, the next line 

probed is D3, because it is the input selected by (S0 , S1) = 11. 

 
 

 1 
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 1  
                                         0/1   

 
         1     1 

 
Figure 15. Case 3 when probing 

 

• Use a fault dictionary to provide a starting point for probing. 
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Next will be discussed an example that is illustrated in Figure 16. Guided-probe testing 

technique is also used here. Our main goal is to find a faulty line in a given circuit. To 

achieve this goal, we can construct a diagnostic tree. 

 

 X1 

 X51   X7 
   

                                              X2                         X5 

                                      X31                         X 52 
        
     X3 X8 

 X6 
                                               X32 

                                  X4 

 

Figure 16. Given circuit 

 

Let have a test pattern 1010 applied to the inputs of the circuit. The diagnostic tree 

created for this particular test pattern is shown in Figure 17. On the output x8, instead of 

the expected value 0, an erroneous signal 1 is detected. By backtracing (indicated by 

bold arrows in the diagnostic tree) the faulty component NOR - x5 is located. 
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Figure 17. The diagnostic tree for the circuit in Figure 16 
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In conclusion must be said that diagnostic tree allows carrying out optimization of the 

fault location procedure, for example to generate a procedure with minimum average 

number of probes. 
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4 BOUNDARY SCAN 

 

 

Introduction. Boundary-scan test (BST) is a method for testing boards. The BST 

standard interface was designed to test boards, but it is also useful to test ASICs. The 

BST interface provides a standard means of communicating with test circuits on-board 

an ASIC. We do need to include extra circuits on an ASIC in order to use BST. This is 

an example of increasing the cost and complexity (as well as potentially reducing the 

performance) of an ASIC to reduce the cost of testing the ASIC and the system. 

 

The general boundary scan architecture is shown in Figure 18. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 18. Boundary scan architecture 
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This configuration requires that the board and each IC that is part of the boundary scan 

include the following principal hardware components: 

 

• A test access port (TAP) with four to five pins 

• A group of registers: an instruction register (IR) and data registers (DRs) 

• A TAP controller, a 16-state finite state machine 

 

The boundary scan architecture allows configuring the cells for the following testing 

modes: 

 

• External testing: interconnects between the chips 

• Internal testing: testing of the logic within the chip 

 

4.1 TEST ACCESS PORT 

 

TAP controller uses various types of signals. They are the signals applied to the four 

mandatory pins and the optional test reset (TRST). The latter pin can reset the test logic 

asynchronously. The four mandatory pins include two data pins, test data input (TDI) 

and test data output (TDO), and two control pins, test mode select (TMS) and test clock 

(TCK).  

 

Next is written the functions of all signals of the TAP controller: 

 

• TDI. This signal allows the introduction of test data. The TDI of the board is 

connected to its counterpart on the first chip in the scan chain. This signal is 

shifted in the registers at the positive edge of the TCK and, when not in use, is 

kept high. 

• TDO. Test data output allows scanning out of the test data. The TDO of the 

board is connected to its counterpart on the lat chip in the scan chain. Data are 

shifted out at the negative edge of TCK. 

• TCK. The test clock operates the testing function synchronously and 

independent of the system clock. It controls the transfer to data and instructions 

among the TAP registers and shifting the data within any of the registers. 



Created by Natalja Mazurova, 2003 

Theoretical background for the applet-based exercises 32 

• TMS. The input stream to this pin is interpreted by the TAP controller and used 

to manage the various test operations. 

• TRST. This is an optional signal whose purpose is to reset all testing logic 

asynchronously and independent of TCK. 

 

4.2 REGISTERS 

 

There are three mandatory registers: the instruction register, the bypass register, and the 

boundary scan register (BSR), which consists of collections of the boundary scan cells 

(BSCs). A brief description of these registers is given below in this subchapter. But first 

of all it is necessary to know about the functionality of the BSC. 

 

Boundary scan cell. Common boundary scan cell may be used at the input or output 

pins. During normal operation the input signal is applied to the data-in pin and passes to 

the internal logic through MUX2. Thus the value of Test/Normal should be 0, while the 

Shift-Load mode may be either 0 or 1. When the same cell is used as an output pin, the 

data-in are from the internal logic of the chip and pass, through MUX2, to the output of 

the chip. An example of a boundary scan cell is shown in Figure 19. 

 

 

 

 

 

 

 

 

 

 

 

Figure 19. Basic boundary scan cell 
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Bypass register. The bypass register is set to logic 0 at the rising edge of TCK when the 

TAP controller is in the Capture-DR state. Use of the bypass register allows the signal at 

the TDI to pass directly to the TDO of the chip, thus bypassing all the other BSCs of the 

chip. Figure 20 shows the flow of data through the bypass register. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 20. Various registers and flow of data through the bypass register 

 

Boundary scan register. The boundary scan register consists of all the BSC cells on the 

periphery of the chip. These registers are also shown in the previous Figure 20. 

Boundary scan register is part of the testing of the interconnects and of any logic 

between the boundary scan ICs on the board.  

 

Instruction register. The instruction register is a serial-in, parallel-out register. All the 

instruction registers of the IC are connected in a chain. In this register the appropriate 

instructions are shifted in serially and the individual instructions are captured in parallel.  

 

Device identification register. The device identification register is optional, but if 

included on the IC, it should comply with the standard. It must be a 32-bit-long parallel-

in and serial-out. It is intended to contain the manufacturer’s number and the version 

number. This information facilitates verifying that the correct IC is mounted in a correct 

position and it is the correct version of the chip. Unlike the other registers, the 

information is not passed to an input latch. 
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4.3 TAP CONTROLLER 

 

The TAP controller has three main functions: 

 

1. Loading the instructions in the IR. 

2. Providing control signal to load and shift the test data into TDI and out of TDO. 

3. Performing some test actions, such as capture, shift, and update test data. 

 

The state diagram of the TAP controller is shown in Figure 21. Some of the states 

correspond to actual operations on the data (DR) or the instructions (IR), while others 

allow some flexibility in the flow of operations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 21. Test access port controller 

 

4.3.1 Controller’s states. At power on, the controller is in the Test-Logic-Reset state. It 
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TMS changes to logic 0, the controller is in the Run-Test-Idle state. 

 

To start testing, the instruction needs to be loaded into IR. For this, TMS is held high 

and the TCK is clocked twice for the controller to reach the Select-IR-Scan state. Now 

1

0

Test-Logic-
Reset

Run-Test/
Idle

Capture-DR

Shift - DR

Exit1 - DR

Pause - DR

Exit2-DR

Update-DR Update - IR

Select-
DR- Scan

Capture - IR

Shift - IR

Exit1 - IR

Pause1 - IR

Exit2 - IR

Select-
IR- Scan

0

1 1 1

0

0

1

0

1

1

0

0

0

0

1

0

1

1

1

0

0

1

0

1

0

1 1 00



Created by Natalja Mazurova, 2003 

Theoretical background for the applet-based exercises 35 

TDI and TDO are connected to IR, and all IR registers on the board are serially 

connected. Next, the controller passes to the Capture-IR state with TMS = 0. Once the 

instruction is loaded in the IRs, then, with TMS still low, the controller stays in the 

Shift-IR state for as many clock cycles as needed by the test mode. In this state, the 

previously captured data are shifted via TDI and via TDO. If shifting is not needed, 

TMS = 1 and the controller bypasses Shift-IR and enters Exit1-IR state. The latter state 

as well as any of the other exit states is temporary. At the next positive edge of the 

clock, there is transition to another state. If TMS = 0, the next state is Pause-IR, and the 

control remains in this state until TMS = 1. The Pause-IR state is needed when the shift 

is done in a chain of different lengths. From this state, the control goes to Exit2-IR, then 

to Shift-IR if TMS = 0, or to Update-IR, if TMS = 1. The controller enters this state 

once the shifting process has been completed. The new data are latched into their 

parallel outputs of the selected data registers at the falling edge of the TCK. Depending 

on the value of TMS, the next state is either Run-Test-Idle or Select-DR-Scan. When 

the controller is in the DR branch of the state diagram, it performs on the IR operations 

similar to those described above. 

 

4.3.2 Instruction set. The controller utilizes only a few instructions. Only three of these 

are mandatory: BYPASS, EXTEST, and SAMPLE/PRELOAD. The most commonly 

used optional instructions are IDCODE, INTEST, and RUNBIST. Below you can see 

the functions of three mandatory as well as most commonly used optional instructions.  

 

BYPASS Instruction. This mandatory instruction permits bypassing of the current IC. It 

places the one-bit bypass register between TDI and TDO of the chip when another IC is 

being tested. 

 

EXTEST Instruction. This is mandatory instruction, which is actually the primary 

reason for boundary scan. It allows testing of the connectivities of the various pins of 

the ICs mounted on the board. The fault models used are stuck-at, bridging faults, and 

opens. For present technology circuits, noise faults should also be considered (for 

example, such noise failure as ground bounce).  

 

SAMPLE/PRELOAD Instruction. This instruction is mandatory and is used to scan 

BSR without interrupting the normal operation of the internal logic. It supports two 
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functions: sampling the normal operations of the chip and preloading data for another 

test operation into the latched parallel outputs of the BSCs.  

 

IDCODE Instruction. Although this optional instruction does not involve testing of the 

board, it helps identifying misplaced ICs. Often, it is difficult to distinguish between 

similar devices, and discovering the reason for malfunction of the board may take 

unnecessarily a long time. 

 

INTEST Instruction. This is another optional instruction. It allows static testing of a 

particular IC using a bed-of-nails fixture and pin probing of ATE. The test patterns are 

applied to the input of the chip and the response captured at the outputs. The test data 

are applied one at a time at the rate of TCK. 

 

RUNBIST Instruction. This instruction is also optional. It causes the execution of BIST 

test provided on the IC selected. It requires minimum data from outside the chip since in 

BIST the test patterns are generated internally on the chip. These patterns are applied 

dynamically. The instruction is run when the TAP controller is in its Run-Test-Idle 

state. The result of the test is captured when the controller is in Capture-DR state. 

 

CLAMP Instruction. This optional instruction is used to control the output signal of a 

component to a constant level by means of a BSC. This is useful to hold values on some 

pins of the circuit, which are not involved in the test. These required signals are then 

loaded with other test patterns every time they are needed. This instruction, although 

useful, increases test application time. 

 

HIGHZ Instruction. The HIGHZ instruction is optional and forces all outputs of a 

component to a high-impedance state. It is used, for example, when an in-circuit test is 

required for testing a non-BS compliant component.  

 

4.4 BSDL 

 

Since 1990 when the IEEE 1149.1 (Test Access Port and Boundary Scan Architecture) 

standard was approved, implementation of the standard has accelerated. As more people 

became aware of and used the standard, the need for a standard method for describing 
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IEEE 1149.1-compatible devices was recognized. The IEEE 1149.1 working group 

established a subcommittee to develop a device description language to address this 

need. 

 

The subcommittee has since developed and approved an industry standard language 

called Boundary Scan Description Language (BSDL). BSDL is a subset of VHDL 

(VHSIC Hardware Description Language) that describes how IEEE 1149.1 is 

implemented in a device and how it operates. BSDL captures the essential features of 

any IEEE 1149.1 implementation. 

 

Now let’s take a look at the elements of BSDL. A BSDL description for a device 

consists of the following elements: 

 

• Entity descriptions 

• Generic parameter 

• Logical port description 

• Use statements 

• Pin mapping(s) 

• Scan port identification 

• Instruction Register description 

• Register access description 

• Boundary Register description 

 

Entity descriptions – The entity statement names the entity, such as the device name 

(e.g. SN74ABT8245). An entity description begins with an entity statement and 

terminates with an end statement. 

 

   entity XYZ is 

          {statements to describe the entity go here} 

     end XYZ 

 

Generic parameter – A generic parameter is a parameter that may come from outside 

the entity, or it may be defaulted, such as a package type (e.g. “DW”). 
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     generic (PHYSICAL_PIN_MAP : string : = “DW”); 

 

Logical port description – The port description gives logical names to the I/O pins 

(system and TAP pins), and denotes their nature such as input, output, bidirectional, and 

so on. 

 

     port (OE: in bit; 

                   Y: out bit_vector(1 to 3); 

                   A: in bit_vector(1 to 3); 

                GDN, VCC, NC: linkage bit; 

                TDO: out bit; 

                TMS, TDI, TCK: in bit); 

 

Use statements – The use statement refers to external definitions found in packages and 

package bodies. 

 

     use STD_1149_1_1994.all; 

 

Pin mapping(s) – The pin mapping provides a mapping of logical signals onto the 

physical pins of a particular device package. 

 

     attribute PIN_MAP of XYZ : entity is  

     PHYSICAL_PIN_MAP; 

     constant DW: PIN_MAP_STRING: = 

        “OE: 1, Y: (2,3,4), A: (5,6,7), GND:8, VCC:9, “& 

                   “TDO:10, TDI:11, TMS:12, TCK:13, NC:14”; 

 

Scan port identification – The scan port identification statements define the device’s 

TAP. 

 

     attribute TAP_SCAN_IN of TDI : signal is TRUE; 

     attribute TAP_SCAN_OUT of TDO : signal is TRUE; 

     attribute TAP_SCAN_MODE of TMS : signal is TRUE; 

     attribute TAP_SCAN_CLOCK of TCK : signal is (50.0e6, BOTH); 
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Instruction Register description – The Instruction Register description identifies the 

device-dependent characteristics of the Instruction Register. 

 

     attribute INSTRUCTION_LENGTH of XYZ : entity is 2; 

     attribute INSTRUCTION_OPCODE of XYZ : entity is 

        “BYPASS (11), “& 

        “EXTEST (00), “& 

        “SAMPLE (10) “; 

     attribute INSTRUCTION_CAPTURE of XYZ : entity is 

                   “01”; 

 

Register access description – The register access defines which register is placed 

between TDI and TDO for each instruction. 

 

     attribute REGISTER_ACCESS of XYZ : entity is 

        “BOUNDARY (EXTEST, SAMPLE), “& 

        “BYPASS (BYPASS) “; 

 

Boundary Register description – The Boundary Register description contains a list of 

boundary scan cells, along with information regarding the cell type and associated 

control. 

 

     attribute BOUNDARY_LENGTH of XYZ : entity is 7; 

     attribute BOUNDARY_REGISTER of XYZ : entity is 

        “0 (BC_1, Y(1), output3, X, 6, 0, Z), “& 

        “1 (BC_1, Y(2), output3, X, 6, 0, Z), “& 

        “2 (BC_1, Y(3), output3, X, 6, 0, Z), “& 

        “3 (BC_1, A(1), input, X), “& 

        “4 (BC_1, A(2), input, X), “& 

        “5 (BC_1, A(3), input, X), “& 

        “6 (BC_1, OE, input, X), “& 

        “6 (BC_1, *, control, 0)”; 
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