
TALLINN TECHNICAL UNIVERSITY
Faculty of Information Technology

Department of Computer Engineering

Chair of Computer Engineering and Diagnostics

THEORETICAL BACKGROUND FOR THE APPLET

“DESIGN AND TEST OF DIGITAL SYSTEMS ON RT-LEVEL”

AND RELATED EXERCISES

TALLINN 2003

Julia Smahtina, June 2003

 3

TABLE OF CONTENTS

1 PRINCIPLES OF HIGH-LEVEL DESIGN REPRESENTATION 4
1.1 LEVELS OF ABSTRACTION ... 4
1.2 REGISTER-TRANSFER DESIGN... 5
1.2.1 THE CONCEPT OF DATAPATH... 6
1.2.2 THE CONCEPT OF CONTROL UNIT ... 7
2 INTRODUCTION TO TESTING ... 9
2.1 TESTING .. 9
2.2 TEST GENERATION... 9
2.3 BRIEF DESCRIPTION OF FAULT MODELS. ... 9
2.4 SINGLE STUCK –FAULT MODEL .. 11
2.5 MULTIPLE STUCK-FAULT MODEL.. 12
2.6 FAULT SIMULATION .. 12
2.7 FAULT COVERAGE ... 13
2.8 DETERMINISTIC TEST.. 13
2.8.1 INTRODUCTION TO DETERMINISTIC TEST.. 13
2.8.2 BASIC OPERATIONS OF DETERMINISTIC TEST... 14
3 THEORY AND OPERATION OF LINEAR FEEDBACK SHIFT REGISTER........ 16
3.1 BRIEF DESCRIPTION OF LFSRS STRUCTURE... 16
3.2 CHARACTERISTIC POLYNOMIALS ... 18
3.3 PERIODICITY OF LFSRS.. 19
3.4 CHARACTERISTICS OF MAXIMUM–LENGTH SEQUENCES 20
3.5 LFSRS USED AS SIGNATURE ANALYZERS .. 21
3.6 SHIFT REGISTER POLYNOMIAL DIVISION .. 22
3.7 ERROR POLYNOMIAL AND MASKING ... 22
3.8 MULTIPLE-INPUT SIGNATURE REGISTER... 24
3.9 SELECTION OF THE POLYNOMIAL P (X) .. 25
3.10 INCREASING THE EFFECTIVENESS OF SIGNATURE ANALYSIS........................... 25
3.11 CONCLUDING LFSRS THEORY ... 25
4 BUILT-IN SELF-TEST (BIST)... 27
4.1 INTRODUCTION TO BIST CONCEPTS.. 27
4.2 TEST-PATTERN GENERATION FOR BIST ... 28
4.2.1 EXHAUSTIVE TESTING ... 28
4.2.2 PSEUDORANDOM TESTING ... 28
4.2.3 PSEUDOEXHAUSTIVE TESTING.. 28
4.3 CIRCULAR SELF-TEST PATH (CSTP) ... 28
4.4 BUILT-IN LOGIC BLOCK OBSERVATION (BILBO).. 31
5 FUNCTIONAL TESTING .. 36
5.1 INTRODUCTION TO FUNCTIONAL TESTING... 36
5.2 EXHAUSTIVE AND PSEUDOEXHAUSTIVE TESTING ... 36
5.2.1 PARTIAL-DEPENDENCE CIRCUITS... 36
5.2.2 PARTITIONING TECHNIQUES.. 37
5.3 FUNCTIONAL BIST.. 37
6 APPLET “DESIGN AND TEST OF DIGITAL SYSTEMS ON RT-LEVEL”
DESCRIPTION .. 39

REFERENCES ... 46

Julia Smahtina, June 2003

 4

1 PRINCIPLES OF HIGH-LEVEL DESIGN REPRESENTATION

1.1 LEVELS OF ABSTRACTION

Within the product definition, design and manufacturing process, each person looks at
the product from a slightly different point of view and requires specific information to
support his or her work. For this reason, each product, and consequently each design,
requires several different representations or views, which differ in the type of
information that they emphasize. In addition the same representation often requires
different levels of detail in different phases of the design. The three most common types
of representation that are used are behavioral, structural, and physical representations.

Figure1. The Y-chart

To define and differentiate types of representations, use the Y-chart, a tripartite
representation of design, which is shown in Figure 1. The axes in the Y-chart represent
three different domains of description: behavioral, structural and physical. Along each
axis are different levels of the domain description. As to move farther away from the
center of the Y, the level of description becomes more abstract.

Drawing concentric circles on the Y can extend this chart. Each circle intersects the Y-
axis at a particular level of representation within a domain. The circle represents all the
information known about the design at some point of time. The outer circle is the
system level; the next is microarchitectural or register-transfer (RT) level, followed by
the logic and circuit levels. Table 1 lists these levels.

In the behavioral domain designers are interested in what a design does, not in how it is
built. Usually design is treated as one or more black boxes with a specified set of inputs
and outputs and a set of functions describing the behavior of each output in terms of the
inputs over time. A behavioral description includes an interface description and
description of constraints imposed on a design. The interface description specifies the
I/O ports and timing relationships or protocols among signals at those ports. Constraints

Behavioral
Domain

Structural
Domain

Physical
Domain

RTL Level

Logic Level

Circuit Level

System Level

A

P

Julia Smahtina, June 2003

 5

specify technological relationships that must hold for the design to be verifiable,
testable, manufacturable and maintainable.

Level Name Behavioral
Representation

Structural
Representation

Physical
Representation

System level System
specification Blocks Chip

Register-
transfer level

RTL-
specification Registers Macro cells

Logic level Boolean
functions Logic gates Standard cells

Circuit level Differential
equations Transistors Contacts

Table 1. Objects design at different abstraction levels

To describe behavior, transfer functions and timing diagrams are used on a circuit level
and Boolean expressions and state diagrams on the logic level. On the RT level, time is
divided into intervals called control states or steps. Register-transfer description
specifies for each control state the condition to be tested; all registers transfers to be
executed, and the next control state to be entered. On the system level variables and
language operators are used to express functionality of system components. Variables
and data structures are not bound to registers and memories, and operations are not
bound to any functional unit or control states. In a system level description, timing is
further abstracted to the order in which variable assignments are executed.

A structural representation bridges the behavioral and physical representation. It is one-
to-many mapping of a behavioral representation onto a set of components and
connections under constraints such as cost, area and delay. The most commonly used
levels of structural representation are identified in terms of the basic structural elements
used. On the circuit level the basic elements are transistors, resistors and capacitors,
while gates and flip-flops are the basic elements on the logic level. ALU’s, multipliers,
registers; RAM’s and ROM’s are used to identify register-transfers. Processors,
memories and buses are used on the system level.

The physical representation ignores, as much as possible, what the design is supposed to
do and binds its structure in space or to silicon. The most commonly used levels in the
physical representation are modules, multi-chip modules (MCMs) and printed circuit
(PC) boards. [3]

1.2 REGISTER-TRANSFER DESIGN

In this section the concept of datapath and control unit, different techniques of
specifying control unit and minimizing datapath for the design synthesis on register-

Julia Smahtina, June 2003

 6

transfer level will be presented. Since each RT implementation defines both a control
unit and a datapath, we can approach the concept o these parts separately.

1.2.1 THE CONCEPT OF DATAPATH

RT-level designs are composed of two interacting parts: datapath and control unit.
Usually datapath consists of storage units such as registers, register files, and memories,
and combinatorial units such as ALUs, multipliers, shifters etc. Buses connect these
units, the input and output ports. The datapath takes the operands from storage units,
performs the computation in the combinatorial units, and returns the results to storage
units during each state, which is usually equal to one clock cycle. The control unit
controls the selection of operands, operations, and the destination for the results by
setting proper values of datapath control signals. The datapath also indicates through
status signals when a particular value is stored in a particular storage unit or when a
particular relation between two data values stored in the datapath is satisfied.

For many high-speed applications simple datapaths are too slow. In order, to increase
the performance simple datapath redesign so that several operations could be performed
concurrently. These faster datapaths are called parallel datapath. The obvious way to
parallelize datapath would be to increase the number of registers and use several
functional units. But note, that the performance increase in a parallel datapath will
depend not just on the number and type of units in the datapath, but also on their
connectivity and the amount of parallelism that is available in the algorithm which is
executing on datapath. For the best performance/cost ratio, the types of units and their
connectivity must match the parallelism in the given algorithm.

There are some general techniques to optimize, to minimize the implementation of the
datapath, which based on the following component types used in the datapath: storage
components and functional units.

By focusing on the storage components, for example, we note that the variables in the
datapath must be stored in registers, register files, and memories. However, since not
variables are used at the same time, it is possible for certain variables to share the same
register or the same location in a register file or memory. So we can merge the datapath
variables in a way that reduces the number of storage locations in the datapath.

Alternatively, certain optimization techniques can focus on minimizing the number of
functional units in the datapath. In each state, selected variables are to be assigned new
values through various arithmetic, logic or shift operations, each of which can be
performed by a separate functional unit. However, since most of these operations are
executed in different states, they could share the same functional unit. So, we can
reduce the number of units in the datapath by combining different operations into
groups, allowing each group of operations to be executed in a single functional unit.

Minimizing the number of functional units in a datapath we deal with functional unit
sharing. Functional unit sharing is possible, because within any given state, a datapath
will not perform every operation. Therefore, similar operators can be grouped into a
single multifunction unit, which will be used more frequently, thus increasing the unit
utilization. In some cases, of course, grouping operations in this manner may not reduce

Julia Smahtina, June 2003

 7

the cost of the datapath, since dissimilar operators often require structurally different
designs, grouping them can sometimes result in no gain or even in a higher cost.

 (a) No shared design (b) Shared design

Figure 2. Functional unit sharing

In this example is assumed that the datapath will perform two different operations,
addition and subtraction, on different operands in different states. If we use single-
function units, we will get the design shown in Figure 2(a), in which the datapath
requires both an adder and a subtractor. We can, however, obtain the same functionality
by using only one adder/subtractor and two selectors, as shown in Figure 2(b).
Obviously, the second design will be preferable when the cost of an adder/subtractor
and two selectors is less than the cost of a separate adder and subtractor.

1.2.2 THE CONCEPT OF CONTROL UNIT

Similar to the datapath, a control unit has a set of input and a set of output signals. Each
signal is a Boolean variable that can take value of 0 or 1. There are two types of input
signals: external signals and status signals. External signals represent the conditions in
the external environment on which circuit must respond. The status signals represent the
state of the datapath. Their value is obtained by comparing values of selected variables
stored in the datapath. There are also two types of output signals: external signals and
datapath control signals. External signals identify to the environment that circuit has
reached a certain state or finished a particular computation. The datapath controls select
the operation for each component in the datapath.

In order to specify control unit we will look at two different techniques. The first
technique is based on finite state machines that are usually represented graphically. The
second technique, called microprogrammed control, uses a programming representation
for control unit.

The first technique we use to specify a control unit is finite state machine. The finite
state machine (FSM) consists of a set of states and directions on how to change states.
The FSM can be defined abstractly as the quintuple <S, I, O, f, h>, where S, I, and O
represent a set of outputs, respectively, and f and h represent the next state and output
functions. The next state function f is defined abstractly as a mapping S * I→S. The
FSM model assumes that the time is divided into uniform intervals and these transitions
from one state to another occur only at the beginning of each time interval. Therefore,
the next state function f defines what the state of the FSM will be in the next time

a c b d

selector selector

+/-

x y

a b c d

- +

x y

Julia Smahtina, June 2003

 8

interval given the state and input values in the present interval. The output function h
determines the output values in the present state.

There are two different types of FSM, which correspond to two different definitions of
the output function h. One type is a state-based or Moore FSM, for which h is defined as
a mapping S→O. The output symbol is assigned to each state of the FSM, and depends
only on the current state. The other type is an input-based or Mealy FSM, for which h is
defined as the mapping S * I→O. In this case, a pair of state and input symbols defines
an output symbol in each state.

As it was told earlier, the second technique of specifying the control unit is
microprogrammed control, which is based on follows:

• A set of control signals that must be asserted in a given state is defined by
microinstructions selected in microprogram.

• In order to control different transitions between the states of microprogram
are defined by a set of datapath status signals. Which, usually, take a value
of 0 or 1.

• Designing a control unit as an algorithm that implements the simpler
microinstructions is called microprogramming. The key idea of
microprogramming is to represent the asserted values of control lines
symbolically, so the microprogramm is a representation of microinstructions.

• Microprogram is a representation of the control unit that will be translated
by algorithm to control logic.[6]

Julia Smahtina, June 2003

 9

2 INTRODUCTION TO TESTING

2.1 TESTING

Testing of a system is an experiment in which the system is exercised and its resulting
response is analyzed to ascertain whether it behaved correctly. If incorrect behavior is
detected, a second goal of a testing experiment may be to diagnose, or locate, the cause
the misbehavior. Diagnosis assumes knowledge of the internal structure of the system
under test. These concepts of testing and diagnosis have a broad applicability; consider,
for example, medical tests and diagnoses or debugging a computer program.

An important problem in testing is test evaluation, which refers to determining the
effectiveness, or quality of a test. Test evaluation is usually done in the context of a
fault model, and the quality of a test, fault coverage. Test evaluation is carried out via a
simulated testing experiment called fault simulation. Fault coverage and fault simulation
will be described in this section as well.

2.2 TEST GENERATION

Test generation (TG) is the process of determining the stimuli necessary to test a digital
system. TG depends primarily on the testing method employed. On-line testing methods
do not require TG. Little TG effort is needed, when a feedback shift register working as
a pseudorandom sequence generator provides the input patterns. Automatic TG (ATG)
refers to TG algorithm that, given a model of a system, can generate tests for it. Random
TG (RTG) is a simple process that involves only generation of random vectors.
However to achieve a high-quality test a large set of random vectors is needed.

TG can be fault oriented or functional oriented. In fault-oriented TG, ones try to
generate tests that will detect (and possibly locate) specific faults. In function-oriented
TG, one tries to generate a test that, if it passes, shows that the system performs its
specified function.

2.3 BRIEF DESCRIPTION OF FAULT MODELS.

Failure modes are manifested on the logical level as incorrect signal values. A fault is a
model that represents the effect of a failure by means of the change that is produced in
the system signal. Several defects are usually mapped to one fault model. But some
defects can be also represented by more than one fault model. The table 1 lists the
common fault models.

Fault model Description
Single stuck-at faults (SSF) One line takes the value 0 or 1.
Multiple stuck-at faults Two or more lines have fixed values, not necessarily

the same.
Bridging faults Two or more lines that are normally independent

become electrically connected.
Delay faults A fault is caused by delays in one or more paths in the

Julia Smahtina, June 2003

 10

circuit.
Intermittent faults Caused by internal parameter degradation. Incorrect

signal values occur for some but not all states of the
circuit. Degradation is progressive until permanent
failure occurs.

Transient faults Incorrect signal values caused by coupled
disturbances. Coupling may be via power bus capacity
or inductive coupling.

Table 2. Most commonly used Fault Models.

Faults defined in conjunction with a structural model are referred to as structural faults;
their effect is to modify the interconnections among components. Functional faults are
defined in conjunction with a functional model.

Although intermittent and transient faults occur often, their modeling requires statical
data on their probability of occurrence. These data are needed to determine how many
times an off-line testing experiment should be repeated to maximize the probability of
detecting a fault that is only sometimes present in the circuit under test. Unfortunately,
this type of data is usually not available. Intermittent and transient faults are better dealt
with by on-line testing.

The simplifying single-fault assumption is justified by the frequent testing strategy,
which states that we should test a system often enough so that the probability of more
than one fault developing between two consecutive testing experiments is sufficiently
small. Thus if maintenance intervals for a working system are too long, we are likely to
encounter multiple faults. But even when multiple faults are present, the tests derived
under a single-fault assumption are usually applicable for the detection of multiple
faults, because, in most cases, a multiple fault can be detected by the tests designed for
the individual single faults that compose the multiple one.

In general, structural fault models assume that components are fault-free and only their
interconnections are affected. Typical faults affecting interconnections are shorts and
opens. A short is formed by connecting points not intended to be connected, while an
open results from the breaking of a connection. For example, in many technologies, a
short between ground or power and a signal line can make the signal remain at a fixed
voltage level. The corresponding logical fault consists of the signal being stuck at a
fixed logic value v (v ∈{0, 1}), and denoted by s-a-v. A short between two signal lines
usually creates a new logic function. The logical fault representing such a short is
referred to as a bridging fault. The effect of an open on undirectional signal line with
only one fanout is to make the input that has become unconnected due to the open
assume a constant logic value and hence appear as a stuck fault (Figure 3(a)). An open
in a signal line with fanout may result in multiple stuck fault, as it shown in Figure 3(b).

Julia Smahtina, June 2003

 11

 (a) Single stuck at fault (b) Multiple stuck fault
Figure 3. Stuck faults caused by opens

2.4 SINGLE STUCK –FAULT MODEL

The single-stuck fault model is also referred to as the classical or standard fault model
because it has been the first and the most widely studied and used. Although its validity
is not universal, its usefulness results from the following attributes:
• It represents many different physical faults.
• It is independent of technology, as the concept of a signal line being stuck at a logic

value can be applied to any structural model
• Compared to other fault models, the number of SSFs in a circuit is small.
• SSFs can be used to model other types of faults.

The last point is illustrated in Figure 4. To model a fault that changes the behavior of
the signal line z, we add to original circuit a multiplexor that realizes the function

1 if
0 if

==′
==′

fzz
fzz

f

The new circuit operates identically to the original circuit for f=0 and can realize any
faulty function fz by inserting the fault s-a-1. For example connecting x to fz would
create the effect of a functional fault that changes the function of the inverter from

xz = to xz = . Connecting x to fz via an inverter with a different delay would create
the effect of delay model.

Figure 4. Model modification

Z’

f

z

zf

x x z
0

1

open

Stuck lines

open

Stuck line

Julia Smahtina, June 2003

 12

2.5 MULTIPLE STUCK-FAULT MODEL

The multiple stuck-fault (MSF) models are a straightforward extension of the SSF
model in which several lines can be simultaneously stuck. If we denote by n number of
possible SSF sites, there are 2n possible SSFs, but there are (3n –1) possible MSFs
(which include the SSFs). If we assume that the multiplicity of a fault, the number of
lines simultaneously stuck, is no greater than a constant k, then the number of possible
MSFs is

() i
k

i

n
i 2

1
∑

=

This is usually too large number to allow dealing with all multiple faults. To detecting
MSFs, it is always possible to use exhaustive and pseudoexhaustive testing. However, it
is not practical for large circuits. The most important factors that affect the detectability
of MSFs are the number of primary outputs and reconverging fanouts.

Figure 5. Elements of simulation

We are not going to describe other fault models, such as bridging faults, delay faults and
temporary faults, the short description of these models is given in Table 2.

2.6 FAULT SIMULATION

Fault simulation is performed during the design cycle to achieve the following goals:

• Testing specific faulty conditions.
• Guiding the test pattern generation program.
• Measuring the effectiveness of the test patterns.
• Generating fault dictionaries.

To perform the task of fault simulation, the fault simulation program requires, in
addition to the circuit model, the stimuli, and the responses of a good circuit to the
stimuli, a fault model and a fault list.

As it was mentioned above, there are different fault models, and the most widely used is
the stuck-at model. The responses deduced by the fault simulator are used to determine
the fault coverage.

The fault simulation process is shown in Figure 5. A fault is considered from the list and
a pattern is applied to the circuit. If the fault is detected, it is dropped from the fault list

Library

Design Stimuli

Response

Simulator

Julia Smahtina, June 2003

 13

and the next fault is considered. Otherwise, another pattern is applied; the fault is then
considered undetectable by the test and is removed from the fault list. The process is
continued until the fault list is empty.

After fault simulation, the faults are either detected or undetected. The fault is detected
if it has been controllable and observable by one of the patterns in the test set. In such
case, at least one of the primary outputs of the faulty circuit is different from the good
circuit. Otherwise, it is not detected by any of the patterns of the test set.

2.7 FAULT COVERAGE

The effectiveness of the test set is quantifiable. It is the percentage of the faults detected
by a test and is known as fault coverage, defined as

faults ofnumber total
detected faultscoveragefault =

And a more realistic expression is

faults detectable
detected faultscoveragefault =

In other words, this is a percentage of detectable faults in the circuit under test (CUT)
that are detected by a test set. The set is complete if its fault coverage is 100%. The
level of fault coverage is desirable but rarely attainable in most practical circuits.
Moreover, the 100% fault coverage does not guarantee that the circuit is fault-free. The
test checks only for failures that can be represented by the model used, such as stuck-at-
fault-model. Other failures are not necessarily detected.

2.8 DETERMINISTIC TEST

2.8.1 INTRODUCTION TO DETERMINISTIC TEST

In contrast to Random Test Generation, which is generally works without taking into
account the function or the structure of the CUT, deterministic test generation produces
tests by processing a model on the circuit. But deterministic test is more expensive, but
it produces shorter and higher-quality tests.

Figure 6. Deterministic test generation system

Model ATG

Fault
Universe

Diagnostic
Data

Tests

Julia Smahtina, June 2003

 14

Deterministic test can be fault-oriented or fault-independent. In a fault-oriented process,
tests are generated for specified faults, whereas a fault-independent test works without
targeting faults.

Figure 6 shows a general view of a deterministic test generation system. Tests are
generated based on a model of the circuit and a given fault model. The generated tests
include both the stimuli to be applied and the expected response of the fault-free circuit.
Some test generation systems also produce diagnostic data to be used for fault location.
As it was told generated tests based on a given fault model, the fault model in our case
is the stuck-at fault model. Using deterministic test generation some heuristic
algorithms can be proposed. The best known are the D-algorithm, critical path
algorithm, PODEM and SOCRATES.

All algorithms are based on the four main operations processes of excitation,
sensitization, justification, and implication. The D-algorithm starts at the faulty line, and
its main difficulty is in reconverging fan-out. The critical path algorithm starts from the
primary outputs of the circuit and generates a test pattern for several faults, while
PODEM starts from the primary inputs.

2.8.2 BASIC OPERATIONS OF DETERMINISTIC TEST

To generate the pattern for a stuck –at fault on a line, we need to provoke or excite the
fault, sensitize the results to a primary output, and justify the logic values required on
the other lines in the circuit. It is needed to find implications of these values on other
gates.

To provoke or excite a line is to control it to a logic value that is the complement of the
value at which it is stuck; this is equivalent to placing the faulty signal on the line. The
signal is a discrepancy from the fault-free circuit. For example, to provoke the stuck-at
1 fault on line W, W/1, of the circuit in Figure 7, we must put 0 on this line, W=0.

It is necessary to sensitize or propagate the fault to a primary output in order to observe
it. The path from the faulty location to the primary output is a sensitizing or propagation
path. A fault may have more than one sensitizing path to the same output or to different
outputs. The fault W/1 has one sensitizing path: trough G3, G4, and G6. To sensitize the
fault to the output of G3, we must have E=1. Finally to propagate the fault to the
primary output, Z, we need to have H=1. The values on E and H need to be justified to
the primary inputs.

Julia Smahtina, June 2003

 15

Figure 7. Test pattern generation terminology

We justify 1 on E by having A =B =0. Next we find the implication of B on gate G2.
Sometimes in propagating and justifying we encounter a conflict because some of the
lines we need to control have values already assigned. In such cases it is said that we
encountered an inconsistency. [2]

Z

B=0
 A=0

Justification

E=1
 G3

 G4

 G5

 G 6
W/1

U = 0

V

H=1
F

G

 G1
Justification

Sensitization or Propagation

 G2

Implication
C 0

Julia Smahtina, June 2003

 16

3 THEORY AND OPERATION OF LINEAR FEEDBACK SHIFT
REGISTER

In this section some of the formal properties associated with linear feedback shift
registers will be presented. LFSRs are used extensively in two capacities in DFT and
BIST designs, as a source of pseudorandom binary test sequences and as a means to
carry out response compression – known as signature analysis.

3.1 BRIEF DESCRIPTION OF LFSRs STRUCTURE

Consider the feedback shift registers shown in Figure 8. These circuits are all
autonomous – they have no inputs except for clocks. Each cell is assumed to be a
clocked D flip-flop. It is well known that such circuits are cyclic in the sense that they
clocked repeatedly; they go through a fixed sequence of states. For example, a binary
counter consisting of n flip-flops would go through a fixed sequence of states 0, 1, 2n-1,
0, 1,…. The maximum number of states for such a device is 2n. The shift register shown
in a Figure 8(a) cycles through only two states. If the initial state were 00 or 11, it
would never change state. An n-bit shift register cycles through at most n states. Notice
that the output sequence generated by such a device is also cyclic. The circuit of Figure
8(b) starting in the initial state 111 (or 000) produces a cyclic sequence of states of
length 1. The sequence generated for the circuit of Figure 8(c) if the initial state is 011
is shown in Figure 8(b).

In Figure 8(d) is illustrated the case where sequence generated by the feedback shift
register is of the length (23-1). The circuit of Figure 8(d) is said to be a maximal-length
shift register, since it generated a cyclic state sequence of length (2n-1), as long as its
initial state is not all zeros. Also if one of these circuits generates a cyclic state sequence
of length k, then the output sequence also repeats itself every k clock cycles.

 Output
 sequence
 State 0 1 0 1. . . .
 S0
 Repeated 1 1 1 1..
 subsequence S0

 S1 0 1 --------------------------------
 ------------------------------ S1 = S0 1 1 1
 S2= S0 1 0

 (a) (b)

1

0

1

1

1

Julia Smahtina, June 2003

 17

 S0 0 1 1
 S1 0 0 1
 S2 1 0 0 11001011100
 S3 1 1 0

S4 = S0 0 1 1
 S1 0 0 1
 S2 1 0 0
 S3 0 1 0
 S4 1 0 1
 (c) S5 1 1 0
 S6 1 1 1

 S7 = S0 0 1 1

 (d)
 Figure 8. Feedback shift registers

A linear circuit is a logic network constructed from the following basic components:

• unit delays or D flip-flops;
• modulo- 2 adders;
• modulo- 2 scalar multipliers;

In the analysis of such circuits, all operations are done modulo 2. The truth table for
modulo- 2 addition and subtraction is shown below.

± 0 1

0 0 1
1 1 0

Thus x + x= -x - x= x - x= o

Such a circuit is considered to be a linear since it preserves the principle of
superposition, because its response to a linear combination of stimuli is the linear
combination of the responses of the circuits to the individual stimuli.

In this section will be described a class of linear circuits, known as autonomous linear
feedback shift registers that have the canonical form shown in Figures 9.1 and 9.2. Here
ci is a binary constant and ci = 1 implies that a connection exists, while ci = 0 implies
that no connection exists. When ci = 0 the corresponding XOR gate can be replaced by a
direct connection from its input to its output.

0

1

1

Julia Smahtina, June 2003

 18

Figure 9.1. Type 1 (external- XOR) LFSR

Figure 9.2. Type 2 (internal-XOR) LFSR

3.2 CHARACTERISTIC POLYNOMIALS

A sequence number a0, a1, …,am, … can be associated with a polynomial, called a
generating function G(x), by the rule

G(x)= a0 + a1 x + a2 x2 + .. +am xm … .

Let { am }= a0, a1, … represent the output sequence generated by an LFSR, where ai =0
or 1. Then this sequence can be expressed as

 ∑
∞

=

=
0

)(
m

m
m

xaxG (1)

For the type 1 LFSR, it could be shown, that if the current state of Qi is am-1, for i=1, 2,
…, n, then

 im

n

i
im aca −

=
∑=

1
 (2)

Thus recurrence relation can define the operation of the circuit. Let the initial state of
LFSR be a –1, a –2, …, a –n+1, a –n. The operation of the circuit starts n clock periods
before generating the output a0. Since

∑
∞

=

=
0

)(
m

m
m xaxG

Substituting for am we get

 D Q

D Q

Julia Smahtina, June 2003

 19

[].)(......

)(

1
1

10

1
1

1

010 1

xGxaxaxcxaxaxaxc

xaxcxacxG

i
i

i
n

i
i

m

m
m

i
i

i
n

i
i

m

im
im

i
n

i
i

m

m

n

i
imi

+++=

+++=

===

−
−

−
−

=

∞

=

−
−

−
−

=

∞

=

−
−

=

∞

= =
−

∑∑∑

∑∑∑∑

Hence

()1
1

11
...)()(−

−
−

−
==

+++= ∑∑ xaxaxcxGxcxG i
i

i
n

i
i

i
n

i
i

Or

()

∑

∑

=

=

−
−

−
−

+

++
= n

i

i
i

n

i

i
i

i
i

xc

xaxaxc
xG

1

1

1
1

1

...
)((3)

Thus G (x) is a function of the initial state a –1, a –2, …, a –n+1, a –n of the LFSR and the
feedback coefficients c1, c2, …, cn. The denominator in (3), denoted by

n

n xcxcxcxP ++++= ...1)(2
21

Is referred to as the characteristic polynomial of the sequence [am] and of the LFSR. For
an n-stage LFSR, cn=1. Note that P (x) is only a function of the feedback coefficients. If
we set a –1= a –2= …= a1-n=0, and a –n=1, then (3) reduces to

)(
1)(
xP

xG =

Thus the characteristic polynomial along with the initial state characterizes the cyclic
nature of an LFSR and hence characterizes the output sequence. So for a –1= a –2= …=
a1-n=0, and a –n=1, then function G (x) is follow:

 m

m
m xa

xP
xG ∑

∞

=

==
0)(

1)((4)

3.3 PERIODICITY OF LFSRs

As it was told before an LFSR goes through a cyclic or periodic sequence of states and
that the output produced is also periodic. The maximum length of this period is 2n-1,
where n is the number of stages. In this section we consider properties related to the
period of an LFSR. Most results will be presented without proof.

Julia Smahtina, June 2003

 20

If the initial state of an LFSR is a –1= a –2= …= a1-n=0, and a–n=1, then the LFSR
sequence [am] is periodic with a period that is the smallest integer k for which P (x)
divides (1-xk).

Maximum-length sequence is the sequence generated by an n-stage LFSR has period
(2n-1)
Primitive polynomial is the characteristic polynomial associated with a maximum-
length sequence.

An irreducible polynomial is one that cannot be factored, because it is not divisible by
any other polynomial other than 1 and itself.

An irreducible polynomial P (x) of degree n satisfies the following two conditions:

1. For n ≥ 2, P (x) has an odd number of terms including the 1 term.
2. For n ≥ 4, P (x) must divide (evenly) into (1+ xk), where k= (2n –1).

An irreducible polynomial is primitive if the smallest positive integer k that allows the
polynomial to divide evenly into (1+ xk) occurs for k=(2n –1), where n is the degree of
the polynomial.

The number of primitive polynomials for n-stage LFSR is given by the next formula

λ2(n)=Φ(2n -1)/n

where

∏

−=Φ

np p
nn 11)(

and p is taken over all primes that divide n. Table 3 shows some values of λ2(n).

N λ2(n)

1 1

2 1

4 2

8 16

16 2048

32 67108864

Table 3. Number of primitive polynomials of degree n

3.4 CHARACTERISTICS OF MAXIMUM–LENGTH SEQUENCES

Sequences generated by LFSRs that are associated with a primitive polynomial are
called pseudorandom sequences, since they have many properties like those of random

Julia Smahtina, June 2003

 21

sequences. However, since they are periodic and deterministic, they are pseudorandom,
not random. Some of these properties are listed next.

In the following, any string of (2n –1) consecutive outputs is referred to as an m-
sequence.

Property 1. The number of 1s in an m-sequence differs from the number of 0s by one.
Property 2. An m-sequence produces an equal number of runs of 1s and 0s.
Property 3. In every m-sequence, one half the runs have length 1, one fourth have
length 2, one eighth have length 3, and so forth, as long as the fractions result in integral
numbers of runs.

These properties of randomness make feasible the use of LFSRs as test sequence
generators in BIST circuitry.

3.5 LFSRs USED AS SIGNATURE ANALYZERS

Signature analysis is a compression technique based on the concept of cyclic
redundancy checking (CRC). In the simplest form of the scheme shown below, the
signature generator consists of a single-input LFSR. The signature is the contents of this
register after the last input bit has been sampled. Figure 10 illustrates this concept.

Figure 10. A type 2 LFSR used as a signature analyzer

It is possible, that we get a signature of faulty circuit same as the normally functioning
one, this effect called errors masking. The proportion of error streams that mask to the
correct signature S (R0) is independent of actual signature. For a test bit stream of length
m, there are 2m possible response streams, one of which is correct. The number of bit
streams that produce a specific signature is

nm

n

m
−= 2

2
2

where the LFSR consists of n stages and the all-zero state is now possible because of
the existence of an external input. For a particular fault-free response, there are (2m-n –1)
erroneous bit streams that will produce the same signature. Since there are a total of (2m-
1) possible erroneous response streams, the proportion of masking error stream is

D Q

c c c =1

G(x)

Julia Smahtina, June 2003

 22

n
m

nm

SA nmMP −
−

≈
−
−

= 2
12
12),(

where, the approximation holds for m>>n

If all possible error streams are equally likely, which is rarely the case, then

),(nmMPSA is probability that an incorrect response will go undetected, i.e., the
probability of no masking (1-2-n). This is somewhat strange result since it is only a
function of the length of the LFSR and not of the feedback network. Increasing the
register length by one stage reduces the masking probability by a factor of 2. Note that
because of the feedback network, all single- bit errors are detectable. However, there is
no direct correlation between faults and error masking. Thus a 16-bit signature analyzer
may detect 100(1-2-16)= 99.9984 percent of the erroneous responses but not necessarily
this same percentage of faults.

Signature analysis is the most popular method employed for test data compression
because it usually produces the smallest degree of masking.

3.6 SHIFT REGISTER POLYNOMIAL DIVISION

The theory behind the use of an LFSR for signature analysis is based on the concept of
polynomial division, where the “remainder” left in the register after completion of the
test process corresponds to the final signature.

Consider to the type 2(internal-XOR) LFSR shown in Figure 10. The input sequence
[am] can be represented by the polynomial G (x) and the output sequence by Q (x) The
highest degree of the polynomials G (x) and Q (x) corresponds, respectively, to the first
input bit to enter LFSR and the first output bit produced n clock periods later, where n is
the degree of the LFSR. If the initial state of the LFSR is all zeros, let the final state of
the LFSR be represented by the polynomial R (x). Then it can be shown that these
polynomials are related by the equation

)(
)()(

)(
)(

xP
xRxQ

xP
xG

∗∗ +=

where P*(x) is the reciprocal characteristic polynomial of the LFSR. The reciprocal
characteristic polynomial is used because am corresponds to the first bit of the input
stream rather than the last bit. Type 1 (external-XOR) LFSRs also carry out polynomial
division and produce the correct quotient. However, the contents of the LFSR are not
the remainder as is for the type 2 LFSRs. But it can be shown that all input sequences,
which are equal to each other modulo P (x), produce the same remainder.

3.7 ERROR POLYNOMIAL AND MASKING

Let E(x) be an error polynomial, where each non-zero coefficient represents an error
occurring in the corresponding bit position. As an example, let the correct response be
R0 =10111 and the erroneous response be R´(x)=11101. Then the difference or error
polynomial is 01010. Thus G0 (x)= x4 + x2 + x + 1, G’ (x)= x4 + x3 + x2 + 1, and

Julia Smahtina, June 2003

 23

E(x)=x3 + x. Clearly G’ (x)= G (x) +E (x)(modulo 2). Since G (x)=Q (x) P* (x) + R (x),
an undetectable response sequence is one that satisfies the equation

)()()()()()(xRxPxQxExGxG +′=+=′ ∗

G’ (x) and G (x) produce the same remainder. From this observation we obtain the
following well-known result from algebraic coding theory.

Let R (x) be the signature generated for an input G (x) using the characteristic
polynomial P (x) as a divisor in a LFSR. For an error polynomial E (x), G (x) G’ (x)=G
(x)+E (x) have the same signature R (x) if and only if E (x) is a multiple of P (x).

Thus both type 1 and type 2 LFSRs can be used to generate the signature R (x).
Henceforth, the final contents of the LFSR will be referred to as the signature, because
sometimes, depending on the initial state and polynomial P (x), the final state does not
correspond to the remainder of G (x)/P (x).

For an input data stream of length m, if all possible error patterns are equally likely,
then the probability that an n-bit signature generator will not detect an error is

12
12)(

−
−

=
−

m

nm

MP

which, for m>>n, approaches 2-n.

This result follows directly from the previous theorem because P (x) has (12 −−nm) non-
zero multiples of degree less than m. It also corresponds to the same result given earlier
but based on a different argument. Note that this result is independent of the polynomial
P (x). This includes P (x)=xn , which has no feedback, it is just a shift register. For this
case, the signature is just the last n bits of the data stream. In fact one can use the first n
bits and truncate the rest of test sequence and obtain the same results. These strange
conclusions follow from the assumption that all error patterns are equally likely. But in
this case long test sequences would not be necessary.

To see why this assumption is done, consider a minimal-length test sequence of length
m for a combinational circuit. Clearly the i-th test vector ti detects some fault fi not
detected by tj, j =1, 2, …, i-1. Thus if fi is present in the circuit, the error pattern is of the
form 00 … 01xx …, the first i-1 bits must be 0. Several other arguments can be made to
show that all error patterns are not equally likely.

An LFSR signature analyzer based on any polynomial with two or more non-zero
coefficients detects all single-bit errors. Assume P (x) has two or more non-zero
coefficients. Then all non-zero multiples of P(x) must have at least two non-zero
coefficients. Hence an error pattern with only one non-zero coefficient cannot be
multiple of P (x) and must be detectable.

A (k, k) burst error is one where all erroneous bits are within k consecutive bit position,
and at most k bits are in error. If P (x) is of degree n and the coefficients of x0 is 1, then
all (k, k) burst errors are detected as long as n ≥ k. Rather than assuming that all error
patterns are equally likely, one can assume that the probability that a response bit is in

Julia Smahtina, June 2003

 24

error is p. Then for p=0,5 the probability of masking is 2-n. For very small or very large
values of p, the probability of masking approaches the value

))12/(11()21)(12(2 −−− −−+

nmnn p

where m is the length of the test sequence.
Experimental results also show that using primitive polynomials helps in reducing
masking effect.

In conclusion, the bound of 2-n on error masking is not too useful since it is based on
realistic assumptions. However, in general, signature analysis gives excellent results.
Results are sensitive to P (x) and improve as n increases. Open problems deal with
selecting the best characteristic polynomial P (x) to use, characterizing error patterns,
correlating fault coverage to P (x) and determining the probability of masking.

3.8 MULTIPLE-INPUT SIGNATURE REGISTER

Signature analysis can be extended to testing multiple-output circuits. Normally a
single-output signature analyzer is not attached to every output because of the resulting
high overhead. A single signature analyzer could be time-multiplexed, but that would
require repeating the test sequence for each output, resulting in a potentially long test
time. The most common technique is to use a multiple-input signature register (MISR),
such as the one shown in Figure 11. Here we assume that the CUT has n (or less)
outputs. It is seen that this circuit operates as n single-input signature analyzer. For
example, by setting Di =0 for all i ≠ j, the circuit computes the signature of the data
entering on line Dj. The mathematical theory associated with MISRs will not be
presented, but it follows as a direct extension of the results presented previously for
Single Input Signature Registers (SISR). An error pattern can be associated with each
input Di. These error patterns are merged within LFSR. Again, assuming all error
patterns are equally likely, the probability that a MISR will not detect an error is
approximately 2-n.

Figure 11. Multiple-input signature register

D Q

Cn Cn-1 Cn-2 C1

D1 D3 D2 Dn

Julia Smahtina, June 2003

 25

3.9 SELECTION OF THE POLYNOMIAL P (X)

As stated previously, a MISR having n stages has a masking probability approximately
equal to 2-n for equally likely error patterns long data streams. Also, this result is
independent of P (x). Let the error bit associated with Di at time j be denoted by eij,
where i= 1, 2, ... , n, and j = 1, 2, …, m. Then the error polynomial associated with Di is

1

1

−

=
∑= j

m

j
iji xeE

Then the effective error polynomial is
1

1
)(−

=
∑= i

n

i
i xExE

assuming that the initial state of the register is all zeros. The error polynomial E (x) is
masked if it is a multiple of P (x). So a complex-feedback LFSR structure is typically
used on the assumption that it will reduce the chances of masking an error.

When the characteristic polynomial is the product of the parity generator polynomial
g(x)= x+1 and a primitive polynomial of degree (n-1), an n-stage MISR has the
property that the parity over all the bits in the input streams equals the parity of the final
signature. Hence masking will not occur for an odd number of errors.

3.10 INCREASING THE EFFECTIVENESS OF SIGNATURE ANALYSIS

There are several ways to decrease the probability of masking. Based on the theory
presented, the probability of masking can be reduced be increasing the length of the
LFSR. Also a test can be repeated using a different feedback polynomial. When testing
combinational circuits, a test can be repeated after first changing the order of the test
vectors, thus producing a different error polynomial. This technique can be also used for
sequential circuits, but now the fault-free signature also changes.

Masking occurs because once an error exists within an LFSR, it can be canceled by new
errors occurring on the inputs. Inspecting the contents of the signature analyzer several
times during the testing process decreases the chance that a faulty circuit will go
undetected. This technique is equivalent to periodically sampling the output of the
signature analyzer. The degree of storage compression is a function of how often the
output is sampled. [1]

3.11 CONCLUDING LFSRs THEORY

Using linear feedback registers for test pattern generating and as a response compactors
is widely used since they are easy to implement, they can be used for field test and self-
testing, and can provide high fault coverage, though the correlation between error
coverage and fault coverage is hard to predict.

Signature analysis is widely used because it provides excellent fault and error coverage,
though fault coverage must be determined using a fault simulator or a statical fault

Julia Smahtina, June 2003

 26

simulator. Unlike the other techniques, several means exist for improving the coverage
without changing the test, such as by changing the characteristic polynomial or
increasing the test length of the register.

Julia Smahtina, June 2003

 27

4 BUILT-IN SELF-TEST (BIST)

4.1 INTRODUCTION TO BIST CONCEPTS

The main idea of Built-in self-test (BIST) is the capability of a circuit (chip, board, or
system) to test itself.

BIST techniques can be classified into two categories, namely on-line BIST, which
includes concurrent and no concurrent techniques, and off-line BIST, which include
functional and structural approaches (Figure 12).

Forms of testing

 Off-line On-line

 Functional Structural Concurrent Non-concurrent

Figure 12. Forms of testing

In on-line BIST, testing occurs during normal functional operating conditions; i.e., the
circuit under test (CUT) is not placed into a test mode where normal functional
operation is locked out. Concurrent on-line BIST is a form of testing that occurs
simultaneously with normal functional operation. In no concurrent on-line BIST, testing
is carried out while a system is in an idle state. This is often accomplished by executing
diagnostic software routines or diagnostic firmware routines. The test process can be
interrupted at any time so that normal operation can resume.

Off-line BIST deals with testing a system when it is not carrying out its normal
functions. Systems, boards, and chips can be tested in this mode. This form of testing is
also applicable at the manufacturing, field and operational levels. Often Off-line testing
is carried out using on-chip or on-board test-pattern generators (TPGs) and output
response analyzers (ORAs) or microdiagnostic routines. Off-line testing does not detect
errors in real time, i.e., when they first occur, as is possible with many on-line
concurrent BIST techniques.

Functional off-line BIST deals with the execution of a test based on a functional
description of the CUT and often employs a functional, or high-level, fault model.
Normally such a test is implemented as diagnostic software or firmware.

Structural off-line BIST deals with the execution of a test based on the structure of the
CUT. An explicit structural fault model may be used. Fault coverage is based on
detecting structural faults. Usually tests are generated and responses are compressed
using some form of an LFSR. The theory of LFSR will be described later. In the next
section various forms of testing and related TPGs will be described.

Julia Smahtina, June 2003

 28

4.2 TEST-PATTERN GENERATION FOR BIST

4.2.1 EXHAUSTIVE TESTING

Exhaustive testing deals with the testing of an n-input combinational circuit where all 2n
inputs are applied. A binary counter can be used as TPG. If a maximum-length
autonomous LFSR is used, its design can be modified to include the all-zero state.

Exhaustive testing guarantees that all the detectable faults that do not produce
sequential behavior will be detected. Depending on the clock rate, this approach is
usually not feasible if n is larger than about 22. Other techniques to be described are
more practical when n is large. The concept of exhaustive testing is not generally
applicable to sequential circuits.

4.2.2 PSEUDORANDOM TESTING

Pseudorandom testing deals with testing a circuit with test patterns that has many
characteristics of random patterns but where the patterns are generated deterministically
and hence are repeatable. Pseudorandom patterns can be generated with or without
replacement. Generation with replacement implies that each pattern is unique. Not all 2n
test patterns need be generated. Pseudorandom test patterns without replacement can be
generated by an autonomous LFSR. Pseudorandom testing is applicable to both
combinational and sequentional circuits. Fault coverage can be determined by fault
simulation. The test length is selected to achieve an acceptable level of fault coverage.
Unfortunately, some circuits contain random-pattern-resistant faults and thus require
long test length to insure high fault coverage.

4.2.3 PSEUDOEXHAUSTIVE TESTING

Pseudoexhaustive testing achieves many of the benefits of exhaustive testing but usually
requires far fewer test patterns. It relies on various forms of circuit segmentation and
attempts to test each segment exhaustively.

There are several forms of segmentation, a few of which are listed below:
1. Logical segmentation

• Cone segmentation
• Sensitized path segmentation

2. Physical segmentation

4.3 CIRCULAR SELF-TEST PATH (CSTP)

The circular self –test path (CSTP) is intended for register- based BIST architecture,
where self-test cells are grouped into registers, CSTP employs a self-test design shown
in Figure 13 and partial self-test, where not all registers must consist of self-test cells.
Some necessary features of this architecture are all inputs and outputs must be
associated with boundary scan cells and all storage cells must be initializable to a
known state before testing.

Julia Smahtina, June 2003

 29

N/T Z Mode
0
1

Dj
Dj ⊕ Sj-1

System
Test

Figure 13. Storage cell design for use in CSTP BIST architectures.

Figure 14. A design employing the circular self-test path architecture

Dj

1

10
u
x

D Q

R
Sj-1

Z Qj
Sj

N/T

mm

PPOOss PPOOss

RR77 RR88

RR66

RR22 RR11

RR33 RR55

RR44

CC55

CC11

CC44 CC66

CC33

 C2

PPIIss PPIIss

RR

RR -Self-test path

-conventional register

Julia Smahtina, June 2003

 30

Consider the circuit shown in Figure 14. The registers R1, R2, R3, R7 and R8 are part of
the circular self-test path. Note that the self-test cells form a circular path. If this circular
path contains m cells, then it corresponds to a MISR having the characteristic
polynomial (1+xm). Registers R4, R5 and R6 need not to be in the self-test path, nor do
they require reset or set lines, since they can be initialized based on the state of the rest
of the circuit. That is, once R1, R2 and R3 are initialized, if R4, R5, and R6 are issued two
system clocks, then they too will be initialized to known state

The same cannot be said of R3 because of the feedback loop formed by the path R3-C3-
R6-C6-R3. However, if R3 has a reset line, then it needs not to be in the self-test path.
Increasing the number of cells in the self-test path increases both the BIST hardware
overhead and the fault coverage for a fixed test length.

The test process requires three phases.

1. Initialization: All registers are placed into a known state
2. Testing of CUT: The circuit is run in the test mode; registers that are not

in the self-test path operate in their normal mode.
3. Response evaluation.

During phase 2 the self-test path operates as both a random-pattern generator and
response compactor. During phase 3 the circuit is again run in the test mode. But now
the sequences of outputs from one or more self-test cells are compared with
precomputed fault-free values. This comparison can be done either on-chip or off-chip.

Figure 15 shows the general form of a circular self-test path design. The circular path
corresponds to an ‘LFSR having the primitive polynomial p (x)=1+xm. In this section
some theoretical and experimental results about certain performance aspects of this
class of design will be briefly presented. These results are applicable to many designs
where a MISR is used as PRPG.

Figure 15. General form of a circular self-test path design

Let zi (t) and xi (t) be the input and output, respectively, to the ith cell in circular self-test
path. Then assume that the sequences of bits applied to each cell in the path are
independent and that each sequence is characterized by a constant (in time) probability
of a 1, for input zi (t), pi =Prob {zi (t)=1}, t= 1, 2, ….

If there exists an input to the circular path, zi, such that 0< pi < 1, then independent of
the initial state of the path, { } 5.01)(lim ==

∞→
txprob jt

, j= 1, 2, …, m.

C

Z
1

Z
2

X1 X2

Z
m

Julia Smahtina, June 2003

 31

Thus if response of the circuit to the initial state of the circular path is neither the all-
zeros nor the all-ones pattern, then some time after initialization the probability of a 1 at
any bit position of the circular path is close to 0,5.

The number of clock cycles required for xi (t) to converge to 0,5 is a function of the
length of the circular path, and is usually small compared to the number of test patterns
normally applied to the circuit.

The pattern coverage (also known as the state coverage) is denoted by Cn,r and is
defined as the fraction of all 2n binary patterns occurring during r clock cycles of the
self-testing process at n arbitrary selected outputs of the circular path. These outputs can
be the n inputs to a block of logic C.

As the length of the circular path increases, the impact of the value of pi on the pattern
coverage decreases.

The circular path provides a block C with an almost exhaustive test for test lengths a
few times longer than an exhaustive test.

When the number of clock cycles associated with a test exceeds the length of the
circular path, the impact of the location of the n cells feeding the block C on the pattern
coverage is negligible. For long test times, the pattern coverage associated with n cells
is almost independent of the length of the path.

4.4 BUILT-IN LOGIC BLOCK OBSERVATION (BILBO)

One major problem of the most BIST designs is that they deal with an unpartioned
version of a CUT, where all primary inputs are grouped together into one set, all
primary outputs into a second set, and all storage cells into a third set. These sets are
then associated with PRPGs and MISRs. Since the number of cells in these registers is
usually large, it is not feasible to consider exhaustive or pseudoexhaustive test
techniques. For example, a chip can easily have over 100 inputs and several hundred
storage cells. To circumvent this problem one can attempt to cluster storage cells into
groups, commonly called registers. In general these groups correspond to the functional
registers found in many designs, such as the program counter and the instruction
register. Some BIST architectures take advantage of the register aspects of many
designs to achieve a more effective test methodology.

One such architecture employs built-in logic-block observation (BILBO) registers,
shown in Figure 16(a). In this register design the inverted output Q of a storage cell is
connected via a NOR and a XOR gate by the data input of the next cell. A BILBO
register operates in one of four modes, as specified by the control inputs B1 and B2.
When B1= B2 =1, the BILBO register operates in its normal parallel load mode (see
Figure 16 (b)). When B1= B2 =0, it operates as a shift register with scan input Si (see
Figure 16(c)). Note that the data is complemented as it enters the scan register. When
B1=0 and B2=1, all storage cells are reset. When B1=1 and B2=0, the BILBO register is
configured as an LFSR (see Figure 16(d)), or more accurately the register operates as a
MISR. If the Zis are the outputs of a CUT, then the register compresses the response to
form a signature. If the inputs Z1, Z2, …, Zn are held at a constant value of 0, and the

Julia Smahtina, June 2003

 32

initial value of the register is not all-zeros, then the LFSR operates as a pseudorandom-
pattern generator.

A simple form of a BILBO BIST architecture consists of partitioning a circuit into a set
of registers and blocks of combinational logic, where the normal registers are replaced
by BILBO registers. In addition, the inputs to a block of logic C are driven by a BILBO
register Ri, and the outputs of C drive another BILBO register Rj.

(b)

(c)

C1

C2

Scan-in

(a)

D Q

Z1

Q1

Z2 Zn

Q2

D

 Q

S0
Si

Qn

Julia Smahtina, June 2003

 33

(d)

Figure 16. n-bit BILBO register

Figure 17. BIST designs with BILBO registers

Consider the circuit shown in Figure 17(a), where the registers are all BILBOs. To test
C1, first R1 and R2 are seeded, and then R1 is put into the PRPG mode and R2 into the
MISR mode. Assume the inputs of R1 are held at the value 0. The circuit is then run in
this mode for N clock cycles. If the number of inputs of C1 is not too large, C1 can even
be tested exhaustively, except for the all-zero pattern. At the end of this test process,
called a test session, the contents of R2 can be scanned out and the signature checked.
Similarly configuring R1 to be a MISR and R2 to be a PRPG can test C2. Thus the
circuit is tested in two test sessions.

Figure 17(b) shows a different type of circuit configuration, one having a self-loop
around the R2 BILBO register. This design does not conform to a normal BILBO
architecture. To test C1, R1 must be in the PRPG mode. This is not possible for the
design shown in Figure 16(a). What can be done is to place R2 in the MISR mode. Now
its outputs are essentially random vectors that can be used as test data to C1. One feature
of this scheme is that errors in the MISR produce “erroneous” test patterns that are

Q2 Qn-1 Qn

ZZ11 ZZ22 ZZ33 ZZnn

Q1

R1

R2

C1

C2

(a)

R1

C1

R2

(b)

Julia Smahtina, June 2003

 34

applied to C1, which is tend to produce more errors in R2. The bad aspect of this
approach is that there may exist faults that are never detected. This could occur, for
example, if the input data to C1 never propagate the effect of a fault to the output of C1.

Figure 18. Bus-oriented BIST architecture

The situation can be rectified by using a concurrent built-in logic-block observation
(CBILBO) register. This register operates simultaneously as a MISR and a PRPG.
Recall that when a BILBO register is in the PRPG mode, its inputs need to be held at
some constant value. This can be achieved in several ways. Often the BILBO test
methodology is applied to a modular and bus-oriented system in which functional
modules, such as ALUs, RAMs, ROMs, are connected via a register to a bus (see Figure
18). By disabling all bus drivers and using pull-up or pull-down circuitry, the register
inputs can be held in a constant state.

Figure 19. Pipeline-oriented BILBO architecture

However, some architecture has a pipeline structure shown as in Figure 19. To
deactivate the inputs to a BILBO register during its PRPG mode, a modified BILBO
register design having three control states, and one can be used to specify the MISR
mode and another the PRPG mode.

BBUUSS

R11

C1

R21

R1n

R1n

Cn

PIs

C1

C2

Cn

BILBO

BILBO

POs

Julia Smahtina, June 2003

 35

One aspect that differentiates the BILBO architecture from the other BIST architectures
is the partitioning of storage cells to form registers and the partitioning of the
combinational logic into blocks of logic. Other types of registers, such as constant-
weight counters or more complex forms of LFSRs can replace the BILBO registers.[1]

Julia Smahtina, June 2003

 36

5 FUNCTIONAL TESTING

In this section will be described functional testing methods that are based on functional
model of the system.

5.1 INTRODUCTION TO FUNCTIONAL TESTING

A functional model reflects the functional specifications of the system and, to a great
extent, is independent of its implementation. Therefore functional tests derived from a
functional model can be used only to check whether physical faults are present in the
manufactured system, but also as design verification tests for checking that the
implementation is free of design errors.

The objective of functional testing is to validate the correct operation of a system with
respect to its functional specifications. This can be approached in two different ways.
One approach assumes specific functional fault models and tries to generate tests that
detect the faults defined by these models. By contrast, the other approach is not
concerned with the possible types of faulty behavior and tries to derive tests based only
on the specified fault-free behavior. Between these two there is a third approach that
defines an implicit fault model, which assumes that almost any fault can occur.
Functional tests detecting almost any fault are said to be exhaustive, as they must
completely exercise the fault-free behavior. Because of the length of the resulting tests,
exhaustive testing can be applied in practice only to small circuits. By using some
knowledge about the structure of the circuit and by slightly narrowing the universe of
faults are guaranteed to be detected, we can obtain pseudoexhaustive tests that can be
significantly shorter than the exhaustive ones.

5.2 EXHAUSTIVE AND PSEUDOEXHAUSTIVE TESTING

The Universal Fault Model

Exhaustive tests detect all the faults defined by the universal fault model. This implicit
fault model assumes that any fault is possible, except those that increase the number of
states in a circuit. For a combinational circuit N realizing the function Z(x), the
universal fault model accounts for any fault f that changes the function to Zf(x).The only
faults not included in this model are those that transform N into a sequential circuit. For
a sequential circuit, the universal fault model accounts for any fault that changes the
state table without creating new states.

To test all the faults defined by the universal fault model in a combinational circuit with
n primary inputs, we need to apply 2n possible input vectors. The exponential growth of
the required number of vectors limits the practical applicability of this exhaustive
testing method only to circuit with less than 20 primary inputs. Further pseudoexhausive
testing methods will be presented.

5.2.1 PARTIAL-DEPENDENCE CIRCUITS

Let O1, O2, …, Om be the primary outputs of a circuit with n primary inputs, and let ni be
the number of primary inputs feeding Oi. A circuit in which no primary outputs depend

Julia Smahtina, June 2003

 37

on all the primary inputs, is said to be a partial-dependence circuit. For such circuit,
pseudoexhaustive testing consists in applying all in2 combinations to the ni inputs
feeding every primary output Oi. .

5.2.2 PARTITIONING TECHNIQUES

The pseudoexhaustive testing techniques described in the previous section are not
applicable to total-dependence circuits, in which at least one primary output depends on
all primary inputs. Even for a partial-dependence circuit, the size of a pseudoexhaustive
test set may still be too large to be acceptable in practice. In such cases,
pseudoexhaustive testing can be achieved by partitioning techniques. The principle of is
to partition the circuit into segments such that the number of inputs of every segment is
significantly smaller than the number of primary inputs of the circuit. Then the
segments are exhaustively tested. The main problem with this technique is that, in
general, the inputs of a segment are not primary inputs and its outputs are not primary
outputs.
Then we need a means to control the segment inputs from the primary inputs and to
observe its outputs at the primary outputs. One way to achieve this, referred to as
sensitized partitioning, is based on sensitizing path from primary inputs to the segment
inputs and from the segment outputs to primary outputs.

5.3 FUNCTIONAL BIST

Functional BIST is a promising solution for self-testing complex digital systems at
reduced costs in terms of area and performance degradation.

To increase the functionality, achieve higher performance, and decrease cost, designers
are actually moving quickly towards very deep sub-micron technologies. From one
hand, the vast availability of gates permits the integration of a variety of memories,
processors and analog units on a single chip. On the other hand traditional testing
approaches based on an external ATE become more and more unfeasible. The number
of externally accessible I/O pins counting up to several hundreds strongly limits the
controllability and observability of embedded cores.

In traditional BIST architectures, LFSRs and multifunctional registers, like BILBO,
mostly perform test pattern generation.

The functional BIST strategy, exploits functionality’s and modules embedded into the
system itself for test pattern generation. In Figure 20 both modules Mi and Mj are part of
the system logic. And during testing Mi is controlled in such way that outputs serve as a
test patterns for module Mj. Typically Mi is a sequential circuit used as test pattern
generator (STPG) for a given unit under test (UUT), in this case Mj.

Julia Smahtina, June 2003

 38

Figure 20. Functional BIST

Further will be described the universal method to control and initialize sequential
structures so that they work as an STPG for a given unit under test.

The sequence of values appearing on the STPG is a function of the triplet (σ, δ, τ) as
well as of the logic function embedded into the block. This is shown in Figure 21. First
the state register of the STPG is initialized with initial state (δ) and its primary inputs
are fixed at an input value (σ), then the STPG is let evolve for a certain number of clock
cycles (τ). Initial state and the input value are often collectively referred to as seed of
the STPG.

Figure 21. The STPG

For sake of efficiency and flexibility, the STPG can be periodically reseeded, stopping
its evaluation and restarting it with a new triple (σ, δ, τ) until the target fault coverage is
reached. In such a case, the global test length is a function of the number of reseeding:

ini∑ ≤≤0
τ

When adopting functional approach, the designer can trade-off between:

• Maximizing the fault coverage.
• Minimizing the test times, global test length

Minimizing the complexity of the BIST controller, by selecting a proper common τ.

UUT

State register

Logic
function

Input register

stpg

PIs

Reseeding
 process

Set of
triplets

BIST
controller

POs

Julia Smahtina, June 2003

 39

6 APPLET “DESIGN AND TEST OF DIGITAL SYSTEMS ON RT-
LEVEL” DESCRIPTION

The applet is introduced as the teaching system wich shows how to provide digital
design on RT-level and also shows a variety of different modern testing techniques
including functional and deteministic testing, a number of BIST solutions.

Overall description of the teaching system

RT-Level teaching system illustrates many problems related to both RT-level control
intensive digital design and test. This gives a possibility to teach all of them in a
consecutive iterative approach. The range of problems includes:

• Design of datapath and a control part (microprogram) on RT- level
• Investigation of tradeoffs between speed & HW cost in the system
• RT- level simulation and validation
• gate-level deterministic test generation and functional testing
• fault simulation
• logic BIST, circular BIST, functional BIST, etc.
• design for testability

The teaching system interface consists of the following major parts:
• Schematic View - panel provides the schematic representation of a design. This

panel allows user to define or change some properties of datapath of the design.
Some components (functional units) can be enabled /disabled or their functionality
can be changed. In the step-by-step simulation mode the results of the simulation are
visually demonstrated on the Schematic View after each step of the simulation.

• Microprogram tab-panel is used to define control part of the system. During the
simulation this panel shows, which part of the microprogram, is currently executed.

• Simulation tab-panel and Test tab-panel are used to simulate and test design
correspondingly. The simulation can be carried out in different ways:

1) Step-by-step simulation mode. In this case each row of the microprogram is
executed separately and all the results of this execution (including state of
registers and functional blocks, inputs and outputs, status signals, etc) can be
viewed directly on Schematics View sub-panel. This mode of simulation is
useful for illustrating how the design works or for debugging.

2) Test mode: This mode is used to test the design repeatedly with some set of
input data. User fills in the Test data table in the Test tab-panel with the data
that will be used in testing. Then the design simulation can be executed for a
particular row of test table or for all the rows at once. The results of the
simulation or test are placed to Simulation Results tab-panel.

• Simulation Results tab-panel reflects the results of fault-free simulation.
• Fault simulation module provides fault simulation for the datapath and its units.
• Global Test Panel is used to provide fault coverage information as for the whole

datapath as for each single unit under test.
• Local Test Panel provides means for manual local test patterns generation for a

selected unit of datapath. It also provides the fault coverage for each unit as well as
for the datapath as whole.

Julia Smahtina, June 2003

 40

• Test Microprogram allows change the special test microprogram, which is used in
Deterministic test, Logical and Circular BIST modes.

Figure 22. The interface of the teaching system

The teaching system has a flexible design, with several implemented RT-level system
models (implemented RT model will be described in section 9), the latter allow
developing different algorithms with different HW cost and speed. The teaching system
has a built-in extendable collection of examples implementing different algorithms
(multiplication, subtraction, etc). They help users to understand principles the system
operation. For connecting the system to other applications as well as for providing users
with a possibility to save the results of their work for further use, the applet has a data
import/export capability. [4]

Datapath description

MUX mij: Bj = Ri i = 1,…,n – Register number;

 j = 0,1,2,4 – Bus number where B0 is Data OUT Bus, B1 is the Bus to F1 etc.

DMUX dij: Rj = Bi i = 0,3,4 – Bus number where B0 is Data IN Bus, B3 is the Bus from F3 etc.

 j = 1,…,n – Register number

F1 (F3) f1j (f3j) unary microoperations like: various shiftings, inverting, counting (+1, -1) etc.

F2 f2j various binary microoperations (with 2 operands)

F4 f4j various unary and binary microoperations (with 2 operands); there is a overlay between

functions of F4 and the ones of F1, F2 and F3 to allow a parallelization of the

given algorithm

Figure 23. Description of datapath functionality

Julia Smahtina, June 2003

 41

Each functional unit (FU) of the datapath F1…Fn contains a number of microoperations
(functions: unary and binary), which are labeled by corresponding control signals
activating chosen function. The description of the datapath functionality in format
“control signal: microoperation” is presented in Figure 23.

The user can select one or more microoperations for each unit of datapath when
implementing his own algorithm (like subtraction, multiplication etc). Each
microoperation has a gate-level implementation, and the number of gates determines its
cost. All selected microoperations determine the final HW cost of the system.

Different architectures of the datapath can be chosen for implementation of the given
algorithm, so the user can compare them considering either the cost or timing
requirements. For example, the user can use only one functional unit, in order to carry
out a single microoperation in one clock cycle. In this case the hardware cost is saved
but the speed is low. There is another possibility, in which all functional units can be
used, in a parallel or sequential mode, in order to carry out maximum number of
microoperations during a single clock cycle, if the algorithm allows to. In this case the
speed is higher than in the previous case.

The speed (the number of clock cycles) of the algorithm is measured by simulation. In
its turn the simulation is supported by an RT-level model of the system as a whole and
by gate-level models of each microoperation in each FU.

Control part

The control part is a microprogrammed controller, which implements Mealy FSM
(Final State Machine). The controller consists of a microprogram table and an
interpreter. The microprogram is developed by the user to realize a given algorithm
based on the selected resources of the datapath. The user fills in the rows of
microprogram table, which contain information about the address of the current and the
next microinstruction, MUX and DMUX configurations, Data IN values, selection of
functions in FUs (F1 to Fn) at each microinstruction, and status signal configuration. In
Figure 24 an example of subtraction algorithm of two operands A and B is presented.
The result of subtraction is stored in REG3 and fed out to the data output.

Figure 24. Subtraction algorithm microprogram

The first two columns of the microprogram table represent the address of current
microinstruction and the address of the next microinstruction correspondingly. The
current microinstruction can be split into several rows in case if its operation depends
on the set of conditions C. Then the only proper row will be selected. Columns F1(in).
..,Fn(in) correspond to MUX and indicate which register (REG1…REGn) will be
multiplexed into which functional unit (F1, .., Fn). Registers where the input data from

Julia Smahtina, June 2003

 42

Data IN (column “Input”) will be written are specified in column “IN”. The input data
are the operands of the implemented algorithm. Columns F1 to Fn stand for a certain
microoperation selected for a corresponding functional unit (F1 to Fn) in a certain clock
cycle. The DMUX section is specified in columns F1 (out),...,Fn(out). It shows to which
register the data from functional units Fn1 and Fnn will be written. Column “OUT”
indicates the register, which will be redirected to Data OUT. The last columns (C1, …,
Cn) stand for conditions where the following values must be specified: 0, 1, X (don’t
care).

The RT-level simulation is carried out at the higher level by using corresponding to
functional units Java subroutines, which are activated according to condition values by
the control signals in the order given in the microprogram table. The simulation data is
stored in the Simulation Results subpanel, presented in Figure 25 below.

Figure 25. The Simulation Result panel

Column “Test Nr.” defines the number of data group from the Test Data Table. The
clock number “Clock” is specified in the next column. The simulation data is written in
all other cells of the Simulation Results table at each clock cycle . This data reflects the
states of all the registers, outputs of all the functional blocks, data input and output of
the device, current states at each clock cycle and condition signals. The simulation data
can be used by the student as a debugging info as well as for the improving the
efficiency: the speed or the cost of the system.

Testing

The toolkit of the modern design and test engineer contains quite a few methods of
testing of a SoC design. All of them have come from the earlier times and have been
adopted for the new paradigm. The RT teaching system shows a variety of different
modern testing techniques including functional and deterministic testing, a number of
BIST solutions.

Prior to entering the test mode, the system under test must be designed and verified. The
user can do it himself or use one of prepared examples. When the test mode is selected,
the microprogram and the structure of the datapath are “frozen” and cannot be modified
anymore. At the same time the user selects target microoperations of the data path for
test generation and fault simulation. The fault simulation information is reflected
(depending on a mode selected) at the Global Test Panel for the whole system and at the
Local Test Panel for a single selected unit. In the following we describe the test modes
in detail.

Julia Smahtina, June 2003

 43

Functional Testing

In this mode the cheapest test technique is investigated, which does not require
designing special test programs and embedding of special test structures into the system.
The same unmodified microprogram and datapath are used instead.The required level of
fault coverage must be achieved then only by a smart selection of input data. The fault
simulation information is presented at the Global Test Panel. The input operands (A, B,
C, D) are specified first. The same microprogram is used then repeatedly for fault
simulation for all the input data. The fault coverage is calculated for each selected FU
and for the whole system as well. The cumulative fault coverage (column “total”) for
each input vector is also provided in the Global Fault Coverage table, shown in Figure
26 presented below.

.
Figure 26. Global Fault coverage table

Deterministic Test

Deterministic Test mode is aimed at a gate-level test generation and fault simulation for
each selected FU separately, see Figure 27. They are considered by the user in series
and test vectors are generated. The simulation results are provided in the fault table at
the Local Test Panel. For each vector the fault coverage (FC (vec)) is calculated and the
information on tested nodes is given. The cumulative fault coverage (FC) is also shown
for each simulation step.

The hierarchical RT-level fault simulation is also applied in order to evaluate the global
fault coverage of those vectors for the datapath as a whole. For this purposes a test
program is composed for each selected FU. The simulation data is reflected in the
Global Test Panel in the same way as it is done in the Functional Test mode.

In order to help the user generating gate-level test vectors, the gate-level schematic of
currently selected FU is displayed. The user selects a target fault and generates a test
vector. After pressing the “Simulate” button this vector is fault simulated at the gate
level and the results (local fault coverage) are added into the fault table. At the same
time, the same vector is sent to RT-level hierarchical fault simulator in order to fill in
the Global Test Panel.

The test microprogram, used for RT-level fault simulation must provide a good access
to the selected FU. A simple version of such a program is generated automatically. It
can be used as a template by a student in order to develop a more sophisticated test
program if needed.

Julia Smahtina, June 2003

 44

Figure 27. Deterministic test pattern generation in Local Test Panel

BIST mode

RT teaching system allows to provide testing with different BIST solutions, which are
based on a scan-path technology (Figure 28), where the inputs and outputs of the
combinational blocks in datapath are directly accessible by TPGs, SAs or TPG/SA
(combined TPG and SA).

Teaching system allows reconfiguration of internal registers in the BIST mode.
Depending on the chosen BIST method some of them can perform functions of TPG,
SA or TPG/SA. If the Logic BIST (BILBO) method is to be evaluated, the TPG and SA
functions must be separated and located in different registers. On the contrary, in
Circular BIST (CSTP) both TPG and SA are situated in the same register. In the both
modes it is possible to configure the TPG on-line from the interactive graphical panel,
see Figure 29.

Figure 28. Scan-path design

F1

F2

F3

F4
TPG

SA
TPG/SA

BILBO CSTP

Julia Smahtina, June 2003

 45

Figure 29. Interactive LFSR configuration graphical panel

When the configuration is completed, the gate-level and the hierarchical fault
simulation are performed and the results are displayed in the way similar to the one used
in Functional and Deterministic test modes.

There is another BIST mode, called Functional BIST. This mode has very much in
common to Functional Testing. The only difference between the two modes is that in
the former one there is possibility to insert SAs at any arbitrary point within the data
path. In this way we increase the observability of the system, since each such SA is
capable of collecting data at each clock compressing it into an observable signature.

Julia Smahtina, June 2003

 46

REFERENCES

[1] ABRAMOVICI, M., BREUER, M.A., FRIEDMAN, A. Digital Systems Testing

and Testable Design. IEEE Press / AT&T, New York, 1990.

[2] MOURAD, S., ZORIAN, Y. Principles of Testing Electronic Systems. John Wiley

& Sons, Inc., New York, 2000.

[3] DANIEL. D GAJSKI, NIKIL D. DUTT, ALLEN C-H WU, High-Level synthesis

Introduction to Chip and System Design, Kluwer Academic Publishers, 1994.

[4] S. DEVADZE, A. JUTMAN, A. SUDNITSON, R. UBAR, H.-D. WUTTKE

“Teaching Digital RT-Level Self-Test using a Java Applet” 20th IEEE Conference
NORCHIP'2002, Copenhagen, Denmark, 2002, p.322-328.

[5] JANUSZ RAJSKI, JERZY TYSZER. Arithmetic Built-In Self-Test for embedded

systems. New Jersey, 1998.

[6] JOHN L.HENNESSY, DAVID A. PATTERSON. Computer Organization and

Design. San Francisco, California, 1997.

[7] JAAN RAIK. Hierarchical Test Generation for Digital Circuits Represented by

Decision Diagrams. Doctor graduate thesis. Tallinn, 2001.

[8] Supporting theoretical notes on diagnostics URL:

http://www.pld.ttu.ee/diagnostika/theory

http://www.pld.ttu.ee/diagnostika/theory

