
SSBDDs: Advantageous Model and Efficient Algori-
thms for Digital Circuit Modeling, Simulation & Test

A. Jutman, J. Raik, R. Ubar

Tallinn Technical University, Estonia,
email: artur@pld.ttu.ee

Abstract
In this paper we sum up the research that was done during the last decade on the topic of

Structurally Synthesized Binary Decision Diagrams (SSBDDs). We describe general
properties of SSBDDs that make this model very efficient for circuit structure dependent
methods and algorithms. In addition, we describe a deterministic test generation algorithm
based on SSBDDs and four efficient simulation methods of different classes: logic simulation,
multi-valued simulation, timing simulation, and fault simulation. We investigate and show the
origins of their common advantages and draw conclusions, which hold for all the described
algorithms. The analysis is made on the basis of experimental data acquired when applying
these algorithms to ISCAS’85 benchmark circuits. The experiments unveil some new
properties of these benchmarks, which we also present in our paper.

1 Introduction
The constant increase of integration level of modern digital circuits imposes high and further

growing requirements for the methods and algorithms used in CAD design, verification, and
testing. The efficiency of any algorithm usually heavily depends on the underlying mathematical
model. This made the search for better models a hot topic during the last several decades.

In 1986, Bryant proposed a new data structure called Reduced Ordered Binary Decision
Diagrams (ROBDDs) [1,2]. He showed simplicity of manipulation and proved the model
canonicity, what made it one of the most popular representations of Boolean functions. This
model, however, suffers from the memory explosion problem, which limits its usability on large
designs. Moreover, it cannot be used as a model for such methods that require a certain degree of
structural information about the design.

During the last decade, many modifications to ROBDD model were proposed. These
modifications were mostly aimed at fighting the memory explosion problem but very little was
done to adopt BDDs for structural problems. For such problems, the general gate-level
representation is traditionally used.

In this paper we show the advantageous properties of quite a mature but not widely known
model of Structurally Synthesized Binary Decision Diagrams (SSBDDs). This compact model
preserves the structural information about the modeled circuit and utilizes the partitioning of
circuit into a set of subcircuits represented each by its own SSBDD.

We investigate common properties and advantages of four methods of logic-level simulation of
digital systems and a deterministic test generation algorithm, which utilize SSBDDs as the
underlying mathematical model. Logic-level simulation is still one of the most often used
operations on digital designs during both design and test stages. This makes it a critical issue
affecting the overall cost of a project. We show the origins of the SSBDD advantages in the logic-
level simulation domain.

SSBDDs have already found application as an efficient mathematical model to represent digital
circuits. They were introduced the first time in [3], [4] as Structural Alternative Graphs and
generalized as multiple-valued decision diagrams in [5]. This model has several critical features
that make it very attractive compared to other commonly used mathematical models, such as
conventional BBDs (including state-of-the-art modifications) or a gate-level netlist.

First of all, the worst-case complexity (time) of generating SSBDD model from a circuit’s net-
list is linear in respect to the number of logic gates (due to circuit partitioning), while it is expone-
ntial for ROBDDs. Secondly, the size of the SSBDD model is linear in respect to the circuit size
(again, ROBDD can be of exponential size). Thirdly, SSBDD model implicitly preserves structural
information about the circuit while other BDD models do not. It also allows Boolean operations
like AND, OR, or NOT with separate SSBDDs. Finally, it even reduces the model complexity
compared to the gate-level representation, as algorithms running on the SSBDD model need no

mailto:artur@pld.ttu.ee

separate treatment of gates of different types (e.g. AND and OR gates are treated equally). More-
over, instead of considering each gate separately, it deals with macros – tree-like subcircuits (sub-
circuits with no reconvergent fanouts), which usually consist of several gates. Thus, each single
node in an SSBDD represents a whole signal path from a macro input to the output of the macro.
This is the most significant property, which allows development of efficient logic-level simulation
algorithms. This property provides also fault collapsing for fault simulation and test generation.

Due to the above mentioned advantages the SSBDD model has been proposed as a
representation model to solve various CAD problems like fast deterministic test pattern generation
[12], efficient design error localization [13], logic and multi-valued simulation [6] for different
purposes like hazards investigation, delay fault analysis, and fault cover analysis in dynamic
testing. Efficient algorithms for timing and fault simulation were proposed in [7] and [8]. All of
these methods use the advantage of the SSBDD model.

Current paper is organized as follows. In Section 2 we discuss the SSBDD model. The logic
simulation is explained in Section 3, multi-valued and timing simulation methods are given in
Section 4 and 5 correspondingly. Sections 6 and 7 give an overview of the SSBDD-based fault
simulation and test generation. In Section 8 we discuss the experimental results and finally make
concluding remarks in Section 9.

2 SSBDD Model: Important Properties
Def.1 A BDD that represents a Boolean function y=f(X) over a set of Boolean variables X={x1,

x2, … , xn} is a directed acyclic graph Gy=(M,Γ,X) with a set of nodes M and mapping Γ from M to
M. Set M consists of two types of nodes: internal (non-terminal) MN and terminal MT, M=MN∪MT.
A terminal node mT is labeled by a constant e(mT)∈{0,1} and is called leaf, while all non-terminal
nodes m∈MN are labeled by variables x∈X, and have exactly two successor nodes. Let us denote
the associated with internal node m variable as x(m), then m0 is the successor of m at the value
x(m)=0 and m1 is the successor of m at the value x(m)=1. An example of a BDD is given in Fig.1.

There is a number of various kinds of BDDs have been proposed during last two decades [9].
The most of the modifications use the Shannon decomposition rule xx xffxy += . Here xf is
obtained from y=f(x) by replacing variable x by value 1. The negative cofactor xf is obtained by
replacing variable x by value 0. This principle, along with the enforced total variable ordering on
the graph and the reduction rule, produce a BDD with a canonical property. There are other kinds
of BDDs that use different decomposition rules keeping, however, the property of canonicity [9].

SSBDD model is not a canonical model. In spite of this, as we will see later, it is a natural
BDD representation of a digital circuit. It does not rely on the Shannon decomposition. As the
basis, it uses the equivalent parenthesis form (EPF), that is, describes a digital circuit structurally.

Def.2 A BDD is called SSBDD, if there is a one-to-one correspondence between non-terminal
nodes of the BDD and signal paths in the combinational circuit. Non-terminal nodes of an SSBDD
are labeled by subscripted input variables, which can be inverted or not. In fact, SSBDD model is
further defined by construction.

An SSBDD is constructed directly from a gate-level description of a combinational circuit by a
graph superposition procedure. In this sense it is equivalent to EPF generation by superposition of
Boolean functions. In prior to the superposition, the circuit must be partitioned into a set of tree-
like fanout-free subcircuits (Fig. 2). Each such subcircuit will be represented by its own SSBDD.
Therefore the whole circuit is represented not by a single SSBDD but by a set of separate SSBDDs
connected by variables from extended set X.

Fig. 3 illustrates how an SSBDD is constructed from a combinational circuit. First, we set
elementary BDDs: for AND and NOR gates. Then we use the superposition principle to combine

 x1

 x3

 x2 x2

 0

 0

 0 1 0

 1

 0

 0 0 1 1

 1

Fig.1. Binary Decision Diagram Fig.2. Combinational circuit partitioned into 5 fanout-free macros

Subcirc.
 1

Subcirc.
 5

Subcirc.
 2

Subcirc.
 4

Subcirc.
 3

these into a whole single SSBDD just as OR gate combines the two gates into a single circuit.
From the construction procedure it follows that it is possible to apply Boolean operations AND
and OR to any two (or more) arbitrary SSBDDs. The result of this operation, a single SSBDD, will
be then equivalent to the Boolean function resulting from the same Boolean operation applied to
the same initial Boolean functions represented by the given (initial) SSBDDs.

Fig. 4 demonstrates two different SSBDD representations for the circuit from Fig. 3. For
SSBDDs, it is agreed that the edge corresponding to the value x(m)=0 always goes down while the
edge corresponding to x(m)=1 always goes right. Terminal nodes are not shown on this picture
because it is also agreed that if x(m)=0 and no edge goes down from the node m, then one gets to
the terminal node labeled by 0. Similarly, in the case of missing “right” edge, one reaches the
terminal node “1”.

This unusual alternative description style used for SSBDD representation is possible due to
introduction of the inversion of variables. In Fig. 4, variable x22 and x3 are inverted. Otherwise it
would be impossible to represent the NOR gate using this alternative description style.

It might seem useless to introduce the new style. However, it brings many advantages
successfully utilized in the algorithms described in the following sections. It is not hard to notice
that the SSBDD is a planar graph by construction. Together with the alternative description style
this property allows to substantially reduce the search space of the algorithms working on the
SSBDD model. In fact, this property is analogous to the property of monotony of Boolean EPFs.
From Fig. 4 it is seen that no separate treatment for different logic gates needed in SSBDD model.
This must be considered as an advantage compared to gate-level netlist representation.

Now we can mention that in addition to AND and OR operations, an operation of Boolean
inversion can be introduced on SSBDDs. Fig. 5 illustrates an inverted SSBDD in respect to the
SSBDD from Fig.3. In order to invert an SSBDD we have to perform two simple operations for
each node of target SSBDD. First, swap the right and down edges. Second, invert all the variables.

Definition of the three Boolean operations (AND, OR, NOT) on SSBDDs allows to apply any
arbitrary Boolean operation (as a combination of the defined operations) on an arbitrary number of
SSBDDs. This property allows easy manipulations with the SSBDD model as well as easy
construction of an SSBDD from a Boolean function.

Unlike the example in Fig 3, the automated SSBDD model construction procedure starts from a
circuit output and moves along a signal path to the direction of inputs until a fan-out point is
reached. Then the next signal path is chosen. The SSBDD construction stops when all the signal
paths have been traversed up to their fanout points or primary inputs. The next SSBDD is constru-
cted in the same way. The procedure stops when the whole circuit is covered. During such a proce-
dure, the circuit partitioning is done in a natural way with no additional computational efforts.

SSBDD Construction Algorithm:

Construction (current gate)
{
 For each input of current gate

y x1

 x3

 x21

 x22

 y x22

x1

x3

 x21

Fig. 4. Two different SSBDD representations for the
combinational circuit from Fig. 3

 y x1

x3

x22

x21

Fig. 5. An inverted SSBDD from Fig. 3

 OR

AND

NOR

y x1

x3

x21

x22

Fig.3. Illustration of the superposition principle

 1

 1

 &
x1

x2
x21

x22
x3

 y

 {
 If the input is not primary or it is not a fanout
 Insert the next gate into the SSBDD
 Call Construction (next gate)
 End If
 }
Return
}

The latter recursive algorithm must be performed for each output and fanout point. It starts

from the closest to the output (or the fanout point) logic gate and moves to the direction of inputs.
From the SSBDD model construction algorithm as well as from the definition we can derive

the complexity of the model which is equal to the total number of signal paths in all the tree-like
subcircuits. In the worst case this number is equal to the total number of all inputs of all the gates
in the modeled circuit. In other words the size of this model has linear complexity O(n) in respect
to the number of logic gates. Note that neither reordering nor decision making is done during the
SSBDD model generation. This makes the worst case time of the model generation procedure
linear in respect to the model size. Consequently, it is linear O(n) to the number of logic gates in
the circuit as well.

Table 1 gives the model size comparison for several various BDD representations. As it is seen
from the table, during the last decade there has been a substantial reduction in BDD model size
from quite bulky ROBDDs to rather modest FBDDs (Free BDDs [11]). This became possible due
to new sophisticated minimization algorithms and some modifications to the model itself.
However, the SSBDD model still leads this race as it was twenty years ago. In average, it offers
minimal model size independently of circuit function (for instance, there is no known efficient
ROBDD representation for combinational multiplier). However, these two models are intended for
different tasks as well. Since there is more than one SSBDD describing the same circuit, SSBDD
model cannot be considered as a canonical one. This is the reason why the applications of
SSBDDs and conventional BDDs are mostly different.

3 Logic Simulation
Two-valued logic simulation on SSBDDs is equivalent to path tracing procedure on graphs

according to the values of variables at a given input pattern. An assignment to the variables X
activates a path l(m0, mT) from the root node m0 to a terminal node mT. The simulation procedure
consists in tracing the path l(m0,mT) and evaluating the y=f(x) by finding the value e of the
terminal node mT.

Logic Simulation Algorithm:

 For each SSBDD in the model
 {
 Take the first node of current SSBDD
 While current node is not a terminal node
 {
 Evaluate current node and take the next node
 }
 Save the output value of current SSBDD
 }

Table 1. Comparison of sizes of different BDD models

Circuit In Out Gates ROBDD [2] FBDD [11] SSBDD
c432 36 7 232 30200 1063 308
c499 41 32 618 49786 25866 601
c880 60 26 357 7655 3575 497

c1355 41 32 514 39858 N/A 809
c1908 33 25 718 12463 5103 866
c2670 233 140 997 N/A 1815 1313
c3540 50 22 1446 208947 21000 1648
c5315 178 123 1994 32193 1594 2712
c6288 32 32 2416 N/A N/A 3872
c7552 207 108 2978 N/A 2092 3552

It is obvious that the worst case complexity of logic simulation is equal to the total number of
nodes in SSBDDs. I.e. it is also linear O(n).

4 Multi-Valued Simulation
For multi-valued simulation, we use a procedure based on calculation of Boolean derivatives

on SSBDDs. Consi-der the set S5 = {0, 1, ε, h, x} for 5-valued simulation and a multi-valued
vector xt = (xt

1, xt
2, ... xt

i, ... xt
n) for a transition period t. Denote a subset of literals with dynamic

values at this vector by XD ⊆ X, i.e.

XD = {xi xt
i ∈ S5 ∩ SD}= {xi xt

i ∈ {ε, h, x}}

Denote l(mi,mj) = 1, if there exists an activated path between the nodes mi and mj for a given

vector xt, otherwise, l(mi,mj) = 0.
Theorem 1. Given y = f(x) and xi ∈ X, the condition dy/dxi =1 for SSBDD Gy = (M,Γ,X) where

x(m) ≡ xi is equivalent to the following equation:

l(m0,m) ∧ l(m1, mT,1) ∧ l(m0, mT,0) = 1

The proof of the theorem can be found in [6].
Note, Theorem 1 can be used for calculating Boolean derivatives only in the case where vector

xt is two-valued, because only in this case all the paths are activated uniquely. The general case,
when xt is a multi-valued vector, is considered in the following theorem.

Def.3 Let max{l(mi,mj)}=1 over xk∈XD, if there exists at least one activated path between mi
and mj for all two-valued assignments of xk∈XD, otherwise max{l(mi,mj)}=0.

Theorem 2. Given y=P(X) and xi ∈ X, the condition

max {dy/dxi}=1
 xk ∈ XD

for SSBDD Gy = (M,Γ,X) where x(m) ≡ xi is equivalent to the following equation:

max{l(m0,m)} ∧ max {l(m1,mT,1)} ∧ max {l(m0,mT,0)} = 1
 xk ∈ XD xk ∈ XD xk ∈ XD

The proof of the theorem is analogous to the proof of the Theorem 1.
For calculating the maximum of a Boolean derivative and proving that max{dy/dx(m)} = 1, all

dynamic values when tracing the path l(m1, mT,1) should be replaced by 1 and when tracing the
path l(m0, mT,0) by 0. This follows from the property of monotony of Boolean EPFs. When tracing
the path l(m0,m), all dynamic values should be replaced either by 1 or by 0 properly, so that the
node m can be reached. In fact, instead of sequentially calculating the maximum of derivatives
separately step by step for all the nodes m, where x(m)∈XD, we can traverse all the paths from all
the nodes m: x(m)∈XD in both directions by a single procedure based on nested calculation of all
the derivatives. The successful utilization of the described idea allowed the creation of an efficient
algorithm with linear worst-case complexity 2n.

We do not give the multi-valued simulation algorithm here because it does not have a nice
compact representation. It is thoroughly described in [6] instead.

5 Timing Simulation
The timing simulation approach is based on the same principle of calculation of Boolean

derivatives on SSBDDs. The difference between these methods is that in multi-valued simulation
we are tracing paths to search for the nodes with variables having dynamic values while in timing
simulation we are searching for nodes that switch in current moment of time (i.e. a notion of time
is introduced). Unlike in multi-valued simulation, the complexity of the problem of timing simula-
tion itself is NP-complete and does not depend on the underlying model. It is due to the fact that a
single input transition may result in exponentially long event sequences in certain circuits. On the
other hand, the worst number of events at the output of a tree-like fanout free circuit is equal to the
total number of events at its inputs. This means linear complexity. The number of events in a

common circuit is somewhere in between. In fact, it is far from exponential case. Otherwise, the
timing simulation of an ISCAS circuit for a modest number of input vectors would be impossible.

In the following we give a simplified timing simulation algorithm on SSBDD model. The
detailed description of the algorithm, which exploits the property of monotony of Boolean EPFs
and other SSBDD properties, is given in [7].

Timing Simulation Algorithm:

 For each clock cycle
 {
 Set current time to 0
 Perform Logic Simulation and evaluate the output
 Make list of all the nodes with transitions
 Sort list by time of transition in ascending order
 For all entries in the event list
 {
 Set current time to the value from the list entry
 Apply the specified transition
 Perform Logic Simulation and evaluate the output
 If current output value differs from previous
 Assign current time to the output transition
 } }

We had to introduce a notion of time into SSBDD model in order to make the latter algorithm
work. In this extended model a certain delay is assigned to each node. This delay is calculated as a
sum of delays of all logic gates along the path represented by the corresponding node [6]. Fig. 6
illustrates this idea.

6 Fault Simulation
In general, the fault simulation task is considerably complex, since several stuck-at faults can

be simultaneously present in the circuit. A circuit with n lines can have 3n – 1 different stuck line
combinations [10]. Needless to say that even a moderate value of n will result in an enormous
amount of multiple faults. It is a common practice, therefore, to model only single stuck-at faults.
An n-line circuit has 2n single stuck-at faults. In the following we will see that modeling stuck-at
faults on SSBDD representations allows to reduce this number further.

It is possible to minimize the number of faults to be modeled by a technique called fault
collapsing. Traditionally, this is done by implementing the relation of fault dominance on the set
of faults. It is said that fault f1 dominates f2, if any test that detects f2 will also detect f1.
Representing stuck-at faults by faults at SSBDD nodes can be viewed as a type of fault collapsing
by applying fault dominance relations along the signal paths of the circuit.

While in the gate-level descriptions we model stuck-at faults at the interconnections between
the gates, in SSBDD representations the faults are considered at nodes. For example, stuck-at-0
fault at a node is modeled with the 0-edge of the node being constantly activated, regardless of the
value of the variable labeling this node. As it was stated in Def. 2, each SSBDD node represents a
distinct path in the corresponding fanout-free circuit. By testing all the SSBDD node faults we will
consequently test all the paths in the circuit and thus all the single stuck-at faults. This ability of
SSBDDs to implicitly model logic level stuck-at faults is a very important property, which
distinguishes it from other classes of BDDs.

 Table 2 presents the number of uncollapsed faults, collapsed faults and SSBDD faults in eight
ISCAS85 circuits. As we can see from the table, the traditional fault collapsing and SSBDD
representations provide almost identical results. The difference in the number of faults is at most 8

Fig. 6. Modeling delays on SSBDDs

d(x21) = d(g1) + d(g2) = 3 + 2 = 5

 y x1

 x3

 x21

 x22 1

 1

 &
x1

x2
x21

x22
x3

 y

g1

g2

g3

3

4

2

5

6 6

5

% (in the case of c1908). SSBDD achieves in average even 2 % better compaction of the fault list
than the traditional approach, reducing the fault lists in average about 1.5 times. However, this
advantage occurs partly because in ISCAS models, for every signal line, at least one fault is
required to be included to the fault list. In a more advanced collapsing techniques the list can be
further minimized. Nevertheless, Table 2 indicates that by generating SSBDDs, the fault list will
simultaneously be reduced by a considerable amount of faults.

The advantage of the SSBDD based collapsing over the traditional one is that it allows us at the
same time to rise to a higher abstraction level of circuit modeling. In the traditional case we would
only minimize the number of faults but would still be working at the level of logic gates.

A simple fault simulation algorithm of complexity O((n+1)2) is given in the following.

Fault Simulation Algorithm:

 Perform fault-free Logic Simulation
 For each SSBDD
 {
 Take the first node of current SSBDD
 While current node is not a terminal node
 {
 Evaluate current node
 Insert corresponding fault
 Perform Logic Simulation to evaluate output
 If current output differs from the fault-free
 Save current fault as detected
 Remove current fault and take the next node
 } }

More sophisticated and efficient parallel critical path tracing fault simulation method is

described in [5]. It is based on combining the parallel backward critical path tracing inside fanout
free subcircuits with parallel forward critical path tracing between fanout free subcircuits for
fanout stem analysis.

The basic idea of parallel fault simulation on SSBDD models is similar to this type of
simulation at gate-level. Here, traditional style SSBDD descriptions are preferable since in these
we do not have to keep track of whether a variable labeling a node is inverted or not. The
simulation takes place as follows. Starting from the node with the highest index value, we repeat
operation:

for each node of the SSBDD. In this operation, m denotes the current node. m0 and m1 are its 0 and
1-successors, respectively. x(m) denotes the value of the variable labeling the node m. The result
of the simulation will be the value calculated for the root node m0.

7 Test Generation
The test generation approach presented in this paper would be an exact equivalent of PODEM

[14] if SSBDD models consisted of a system, where for each logic gate an elementary BDD
corresponded. In order to compare test generation on structurally synthesized BDD and gate level
models, we have implemented two types of SSBDD synthesis: one, where BDDs are synthesized
for each FFR and the other, where they are synthesized for each gate. In the following, different
tasks of the SSBDD-based test generation process are explained.

Table 2. Comparison of collapsed and SSBDD faults

Circuit Uncollapsed Collapsed SSBDD
c880 1550 942 994

c1355 2194 1574 1618
c1908 2788 1879 1732
c2670 4150 2747 2626
c3540 5568 3428 3296
c5315 8638 5350 5424
c6288 9728 7744 7744
c7552 11590 7550 7104

() ())x(m&x(m))x(m&x(m) 01 ∨

Determining the D-Frontier. Similar to classical test generation approaches, D-frontier is
determined by finding all the nodes labeled by variables with the value D (or D-bar) and
performing X-path check for them.

X-Path Check. X-path check for a circuit line with the value D (or D-bar) checks for the
existence of such a path from that line to a primary output, where all the lines have the value X. At
the gate-level, the outputs of each gate along corresponding paths have to be checked. In the
SSBDD representations, the primitives are reduced to SSBDDs, which significantly speeds up the
procedure. In SSBDD models it is possible to perform X-path check by simply checking the values
of variables corresponding to the respective SSBDDs.

Finding Boolean Derivatives. Calculating Boolean derivative for the nodes in SSBDD is
similar to determining current backtrace objective in PODEM. In PODEM, the aim of selecting
current objective was to propagate the fault effect (D or D-bar) to an output of a subsequent gate.
In our approach, the primitives are SSBDDs and therefore the objective is to propagate the fault
effect to the output of a subsequent fanout-free region.

In order to check that Boolean derivative for a node n in an SSBDD G is not zero, three paths
have to be traversed. One from the root node of G to the node n. The two other paths have to be
traversed downwards and rightwards from n, respectively. If a path from root to node n can not be
traversed due to the values assigned to the variables in the SSBDD, or if the two last mentioned
paths overlap, Boolean derivative for node n will be zero. The derivative will be zero also if the
downward path exits the BDD rightwards or rightward path exits the BDD downwards. If the
derivative is one, current objective will be to backtrace the variable whose value is X and that
labels a node that was traversed along one of the three paths. There exists always at least one such
variable. The backtrace value is determined by the traversal direction of the respective node.

The use of Boolean derivatives for choosing current objective is the reason why on SSBDDs
higher fault coverages were achieved than in the case where BDD models were representing logic
gates (see Table 2). Due to the fact that primitives are given on the level of FFRs rather than gates,
many inconsistencies are detected earlier.

Backtrace. Backtrace on the SSBDD models is simple and very fast. Value V is backtraced on
an SSBDD G as follows. Starting from the root node we traverse a path forced by variable values
until the first node n labeled by variable x(n), which has the value X, is reached. Subsequently, we
will backtrace the value, which activates node n to the value V, on the SSBDD corresponding to
the variable x(n). Value V is recursively backtraced on the SSBDD model until primary inputs are
reached.

D-Simulation. D-simulation is the most time-consuming procedure in current implementation.
This can be expected since it is called repeatedly after each value assignment to the primary inputs.
At present, we use three-valued simulation (0, 1, X) on two vectors, one for the fault-free and the
other for the faulty circuit.

Fault Simulation. Subsequent to each generated test, fault simulation is performed in order to
determine the faults covered by the generated vector.

In the following the general algorithm of SSBDD-based test generation is given. The following
definitions are used.

Fault node is the SSBDD node under test.
Fault variable is the variable labeling the fault node.
Fault graph is the SSBDD that contains the fault node.

Test Generation Algorithm:

 While D not propagated to a PO
 {
 If fault variable = X
 { Backtrace value that activates the fault }
 Else
 {
 If fault is not activated
 { Backtrack }
 Else
 {
 If the value of fault graph not D
 {

 If Boolean derivative for fault node is 0
 { Backtrack }
 }
 Else
 {
 Determine the D-frontier
 Perform backtrace with current objective
 } } } }

8 Experimental Results
The experiments with the four described methods of logic-level simulation were carried out on

ISCAS’85 benchmarks. We run them for each circuit on two levels of abstraction: a gate-level and
SSBDD model. This allows to measure directly the effect of the chosen model on simulation time.

In all cases the speed of simulation for SSBDD model was higher than that for gate-level
representation [6,7]. For logic, multi-valued, and timing simulation the average speed-up varies
from about 1,5 up to almost 4 times compared to algorithms working on the gate-level netlist
model (Fig. 7). The fault simulation algorithm (fat dashed line in Fig. 7) shows the most noticeable
acceleration. The runtime improves up to 7 times when simulation is performed on SSBDD model.

The rise of simulation performance (and, in fact, reduction of the capacity of required memory)
becomes possible due to the model complexity reduction by shifting from lower gate level to a
higher macro level of fanout free subcircuits (Fig. 2). On this macro level all the required
structural information is implicitly preserved due to the use of SSBDDs.

One can also notice a very interesting property of the methods researched, i.e. their results for
all the circuits are correlated. The origin of this effect is the variance of the average size of macros
(measured in the number of gates) for various circuits. This property is shown in Fig. 7 by the bold
black line. The behavior of this line is also correlated to the behavior of the simulation curves.
This unveils the fundamental property of the investigated methods, which is that the average
simulation speed-up is directly proportional to the average size of a fanout-free subcircuit in the
circuit (Fig 8).

The same property can be used also to describe ISCAS’85 benchmarks themselves. In fact, it is
hard to detect any relationship that holds with no exception for all circuits from ISCAS 85
package. For instance, circuit size is not much informative if we need to estimate a BDD
generation time. This is also useless for estimation of simulation speedup we earn from SSBDD
model. Now we can arrange these benchmarks by the average size of fanout-free subcircuits
(macros). This order is significant at least for an evaluation of methods, which use SSBDDs as the
underlying model. The order is presented in Table 3.

Table 4 presents experimental results that were measured on a 233 MHz Pentium II PC under

Windows 95 operating system. In the table, comparative test generation results on SSBDD and

Table 3. Benchmarks’ order according to the average macro size
c6288 c1355 c2670 c880 c432 c1908 c5315 c7552 c499 c3540

1,62 1,77 2,32 2,36 2,42 2,90 3,15 3,24 3,30 3,83

0,0
1,0
2,0
3,0
4,0
5,0
6,0
7,0
8,0

c432 c499
c880

c1355
c1908

c2670
c3540

c5315
c6288

c7552 Circuit:

Av. macro size
Logic simulation
Fault simulation
Timing simulation
Multival.simulation

Fig. 7. Logic-level simulation speedup for different algorithms

0,0
1,0
2,0
3,0
4,0
5,0
6,0
7,0
8,0

1,0 2,0 3,0 4,0

Average Macro Size

Logic Simulation
Fault Simulation
Timing Simulation
Multival. Simulation

Fig. 8. Logic-level simulation speedup
vs. average macro size

gate levels are given for two different timeout values. The achieved fault coverages were
calculated by simulating faults of the test patterns on the noncollapsed gate-level model.
Therefore, the coverages differ slightly from the ones of the ‘classical’, collapsed, fault model. As
the Table shows, test generation times are 2.1 – 4.5 times faster at the SSBDD level than at the
gate-level. Thus, SSBDD descriptions appear to be an efficient model for the test generation
purposes.

Table 4. Comparison of SSBDD and gate-level test generation

Fault coverage, % Time, s Circuit
SSBDD Gate SSBDD Gate

c432 97.33 87.06 0.10 0.32
c880 100.0 100.0 0.05 0.11

c1355 99.64 99.64 0.24 0.64
c1908 99.75 99.46 0.22 0.65
c2670 96.67 95.16 0.55 1.78
c3540 95.58 95.24 0.77 3.47
c5315 99.78 98.90 0.57 2.75
c6288 99.80 99.30 0.60 1.45
c7552 99.46 97.10 2.71 11.5

9 Conclusions
Common features and advantages of four logic-level simulation methods implemented on the

SSBDD model are discussed in the paper. It is shown that the efficiency of the algorithms directly
depends on the underlying model. The simulation speed-up in comparison with the gate-level
simulation speed is linearly proportional to the average size of a macro measured in the number of
gates. This statement holds for at least common realistic combinational circuits such as the ISCAS
’85 benchmarks.

The algorithm that most benefited from the usage of the SSBDD model is the fault simulation
algorithm, as it utilizes at the same time fault collapsing together with the model simplification.

The experiments show also the advantages of SSBDD-based TG algorithm in respect to a
similar algorithm working on the gate-level netlist.

For more details on each of the discussed approaches look in [6], [7], and [8].

References
[1] R. Bryant “Graph-based algorithms for Boolean function manipulation”, IEEE Transaction on

Computers, 1986, vol. C-35, pp. 677-691.
[2] K.S. Brace, R.L. Rudell, and R.E. Bryant, "Efficient Implementation of a BDD Package," In Proc. of the

27th DAC, June 1990, pp. 40-45
[3] R. Ubar, “Test Generation for Digital Circuits Using Alternative Graphs (in Russian)”, in Proc. Tallinn

Technical University, 1976, No.409, Tallinn Technical University, Tallinn, Estonia, pp.75-81.
[4] R. Ubar, “Beschreibung Digitaler Einrichtungen mit Alternativen Graphen für die Fehlerdiagnose,”

Nachrichtentechnik/Elektronik, (30) 1980, H.3, pp.96-102.
[5] R. Ubar, “Test Synthesis with Alternative Graphs,” IEEE D&T of Comp. Spring 1996, pp. 48-59.
[6] R. Ubar, “Multi-Valued Simulation of Digital Circuits with Structurally Synthesized Binary Decision

Diagrams,” OPA, Gordon and Breach Publishers, Multiple Valued Logic, 1998, Vol.4, pp. 141-157.
[7] R. Ubar, A. Jutman, Z. Peng, “Timing Simulation of Digital Circuits with Binary Decision Diagrams”,

in Proc. of DATE 2001 Conference, München, Germany, 2001, pp. 460-466.
[8] R. Ubar, “Parallel Critical Path Tracing Fault Simulation,” in Proc. of the 39. Int. Wiss. Kolloquium,

Ilmenau, Germany, 1994, Band 1, pp. 399-404.
[9] A.Narayan, “Recent Advances in BDD Based Representations for Boolean Functions: A Survey”, in

Proc. 12th International Conference on VLSI Design, Goa, India, 1999, pp. 408-413.
[10] M. Abramovici, et al., Digital Systems Testing and Testable Design, New York, IEEE Press, 1990, 652p.
[11] W. Günther, R. Drechsler, "Minimization of Free BDDs," In Proc. of Asia and South Pacific Design

Automation Conf., Hong Kong, Jan 1999, pp. 323-326
[12] J. Raik, R. Ubar, “Feasibility of Structurally Synthesized BDD Models for Test Generation,”

Compendium of Papers of the European Test Workshop, Barcelona, May 27-29, 1998, pp. 145-146.
[13] A. Jutman, R. Ubar, “Design Error Diagnosis in Digital Circuits with Stuck-at Fault Model,” Journal of

Microelectronics Reliability. Pergamon Press, Vol. 40, No 2, 2000, pp. 307-320.
[14] P.Goel, “An Implicit Enumeration Algorithm to Generate Tests for Combinational Logic Circuits”,

IEEE Trans. Comput., pp. 215-222, March 1981.

