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Abstract 
In this paper we sum up the research that was done during the last decade on the topic of 

Structurally Synthesized Binary Decision Diagrams (SSBDDs). We describe general 
properties of SSBDDs that make this model very efficient for circuit structure dependent 
methods and algorithms. In addition, we describe a deterministic test generation algorithm 
based on SSBDDs and four efficient simulation methods of different classes: logic simulation, 
multi-valued simulation, timing simulation, and fault simulation. We investigate and show the 
origins of their common advantages and draw conclusions, which hold for all the described 
algorithms. The analysis is made on the basis of experimental data acquired when applying 
these algorithms to ISCAS’85 benchmark circuits. The experiments unveil some new 
properties of these benchmarks, which we also present in our paper. 

1 Introduction 
The constant increase of integration level of modern digital circuits imposes high and further 

growing requirements for the methods and algorithms used in CAD design, verification, and 
testing. The efficiency of any algorithm usually heavily depends on the underlying mathematical 
model. This made the search for better models a hot topic during the last several decades. 

In 1986, Bryant proposed a new data structure called Reduced Ordered Binary Decision 
Diagrams (ROBDDs) [1,2]. He showed simplicity of manipulation and proved the model 
canonicity, what made it one of the most popular representations of Boolean functions. This 
model, however, suffers from the memory explosion problem, which limits its usability on large 
designs. Moreover, it cannot be used as a model for such methods that require a certain degree of 
structural information about the design. 

During the last decade, many modifications to ROBDD model were proposed. These 
modifications were mostly aimed at fighting the memory explosion problem but very little was 
done to adopt BDDs for structural problems. For such problems, the general gate-level 
representation is traditionally used.   

In this paper we show the advantageous properties of quite a mature but not widely known 
model of Structurally Synthesized Binary Decision Diagrams  (SSBDDs). This compact model 
preserves the structural information about the modeled circuit and utilizes the partitioning of 
circuit into a set of subcircuits represented each by its own SSBDD. 

We investigate common properties and advantages of four methods of logic-level simulation of 
digital systems and a deterministic test generation algorithm, which utilize SSBDDs as the 
underlying mathematical model. Logic-level simulation is still one of the most often used 
operations on digital designs during both design and test stages. This makes it a critical issue 
affecting the overall cost of a project. We show the origins of the SSBDD advantages in the logic-
level simulation domain. 

SSBDDs have already found application as an efficient mathematical model to represent digital 
circuits. They were introduced the first time in [3], [4] as Structural Alternative Graphs and 
generalized as multiple-valued decision diagrams in [5]. This model has several critical features 
that make it very attractive compared to other commonly used mathematical models, such as 
conventional BBDs (including state-of-the-art modifications) or a gate-level netlist. 

First of all, the worst-case complexity (time) of generating SSBDD model from a circuit’s net-
list is linear in respect to the number of logic gates (due to circuit partitioning), while it is expone-
ntial for ROBDDs. Secondly, the size of the SSBDD model is linear in respect to the circuit size 
(again, ROBDD can be of exponential size). Thirdly, SSBDD model implicitly preserves structural 
information about the circuit while other BDD models do not. It also allows Boolean operations 
like AND, OR, or NOT with separate SSBDDs. Finally, it even reduces the model complexity 
compared to the gate-level representation, as algorithms running on the SSBDD model need no 
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separate treatment of gates of different types (e.g. AND and OR gates are treated equally). More-
over, instead of considering each gate separately, it deals with macros – tree-like subcircuits (sub-
circuits with no reconvergent fanouts), which usually consist of several gates. Thus, each single 
node in an SSBDD represents a whole signal path from a macro input to the output of the macro. 
This is the most significant property, which allows development of efficient logic-level simulation 
algorithms. This property provides also fault collapsing for fault simulation and test generation. 

Due to the above mentioned advantages the SSBDD model has been proposed as a 
representation model to solve various CAD problems like fast deterministic test pattern generation 
[12], efficient design error localization [13], logic and multi-valued simulation [6] for different 
purposes like hazards investigation, delay fault analysis, and fault cover analysis in dynamic 
testing. Efficient algorithms for timing and fault simulation were proposed in [7] and [8]. All of 
these methods use the advantage of the SSBDD model. 

Current paper is organized as follows. In Section 2 we discuss the SSBDD model. The logic 
simulation is explained in Section 3, multi-valued and timing simulation methods are given in 
Section 4 and 5 correspondingly. Sections 6 and 7 give an overview of the SSBDD-based fault 
simulation and test generation. In Section 8 we discuss the experimental results and finally make 
concluding remarks in Section 9. 

2 SSBDD Model: Important Properties 
Def.1 A BDD that represents a Boolean function y=f(X) over a set of Boolean variables X={x1, 

x2, … , xn} is a directed acyclic graph Gy=(M,Γ,X) with a set of nodes M and mapping Γ from M to 
M. Set M consists of two types of nodes: internal (non-terminal) MN and terminal MT, M=MN∪MT. 
A terminal node mT is labeled by a constant e(mT)∈{0,1} and is called leaf, while all non-terminal 
nodes m∈MN are labeled by variables x∈X, and have exactly two successor nodes. Let us denote 
the associated with internal node m variable as x(m), then m0 is the successor of m at the value 
x(m)=0 and m1 is the successor of m at the value x(m)=1. An example of a BDD is given in Fig.1.  

There is a number of various kinds of BDDs have been proposed during last two decades [9]. 
The most of the modifications use the Shannon decomposition rule xx xffxy += . Here xf  is 
obtained from y=f(x) by replacing variable x by value 1. The negative cofactor xf  is obtained by 
replacing variable x by value 0. This principle, along with the enforced total variable ordering on 
the graph and the reduction rule, produce a BDD with a canonical property. There are other kinds 
of BDDs that use different decomposition rules keeping, however, the property of canonicity [9]. 

SSBDD model is not a canonical model. In spite of this, as we will see later, it is a natural 
BDD representation of a digital circuit. It does not rely on the Shannon decomposition. As the 
basis, it uses the equivalent parenthesis form (EPF), that is, describes a digital circuit structurally.  

Def.2 A BDD is called SSBDD, if there is a one-to-one correspondence  between non-terminal 
nodes of the BDD and signal paths in the combinational circuit. Non-terminal nodes of an SSBDD 
are labeled by subscripted input variables, which can be inverted or not. In fact, SSBDD model is 
further defined by construction. 

An SSBDD is constructed directly from a gate-level description of a combinational circuit by a 
graph superposition procedure. In this sense it is equivalent to EPF generation by superposition of 
Boolean functions.  In prior to the superposition, the circuit must be partitioned into a set of tree-
like fanout-free subcircuits (Fig. 2). Each such subcircuit will be represented by its own SSBDD.  
Therefore the whole circuit is represented not by a single SSBDD but by a set of separate SSBDDs 
connected by variables from extended set X. 

Fig. 3 illustrates how an SSBDD is constructed from a combinational circuit. First, we set 
elementary BDDs: for AND and NOR gates. Then we use the superposition principle to combine 
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these into a whole single SSBDD just as OR gate combines the two gates into a single circuit. 
From the construction procedure it follows that it is possible to apply Boolean operations AND 
and OR to any two (or more) arbitrary SSBDDs. The result of this operation, a single SSBDD, will 
be then equivalent to the Boolean function resulting from the same Boolean operation applied to 
the same initial Boolean functions represented by the given (initial) SSBDDs. 

Fig. 4 demonstrates two different SSBDD representations for the circuit from Fig. 3. For 
SSBDDs, it is agreed that the edge corresponding to the value x(m)=0 always goes down while the 
edge corresponding to x(m)=1 always goes right. Terminal nodes are not shown on this picture 
because it is also agreed that if x(m)=0 and no edge goes down from the node m, then one gets to 
the terminal node labeled by 0. Similarly, in the case of missing “right” edge, one reaches the 
terminal node “1”. 

This unusual alternative description style used for SSBDD representation is possible due to 
introduction of the inversion of variables. In Fig. 4, variable x22 and x3 are inverted. Otherwise it 
would be impossible to represent the NOR gate using this alternative description style. 

It might seem useless to introduce the new style. However, it brings many advantages 
successfully utilized in the algorithms described in the following sections. It is not hard to notice 
that the SSBDD is a planar graph by construction. Together with the alternative description style 
this property allows to substantially reduce the search space of the algorithms working on the 
SSBDD model. In fact, this property is analogous to the property of monotony of Boolean EPFs. 
From Fig. 4 it is seen that no separate treatment for different logic gates needed in SSBDD model. 
This must be considered as an advantage compared to gate-level netlist representation. 

Now we can mention that in addition to AND and OR operations, an operation of Boolean 
inversion can be introduced on SSBDDs. Fig. 5 illustrates an inverted SSBDD in respect to the 
SSBDD from Fig.3. In order to invert an SSBDD we have to perform two simple operations for 
each node of target SSBDD. First, swap the right and down edges. Second, invert all the variables. 

Definition of the three Boolean operations (AND, OR, NOT) on SSBDDs allows to apply any 
arbitrary Boolean operation (as a combination of the defined operations) on an arbitrary number of 
SSBDDs. This property allows easy manipulations with the SSBDD model as well as easy 
construction of an SSBDD from a Boolean function. 

Unlike the example in Fig 3, the automated SSBDD model construction procedure starts from a 
circuit output and moves along a signal path to the direction of inputs until a fan-out point is 
reached. Then the next signal path is chosen. The SSBDD construction stops when all the signal 
paths have been traversed up to their fanout points or primary inputs. The next SSBDD is constru-
cted in the same way. The procedure stops when the whole circuit is covered. During such a proce-
dure, the circuit partitioning is done in a natural way with no additional computational efforts.  
 
SSBDD Construction Algorithm: 
 
Construction (current gate) 
{ 
 For each input of current gate 
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 { 
  If the input is not primary or it is not a fanout 
   Insert the next gate into the SSBDD 
   Call Construction (next gate) 
  End If 
 } 
Return 
} 

 
The latter recursive algorithm must be performed for each output and fanout point. It starts 

from the closest to the output (or the fanout point) logic gate and moves to the direction of inputs. 
From the SSBDD model construction algorithm as well as from the definition we can derive 

the complexity of the model which is equal to the total number of signal paths in all the tree-like 
subcircuits. In the worst case this number is equal to the total number of all inputs of all the gates 
in the modeled circuit. In other words the size of this model has linear complexity O(n) in respect 
to the number of logic gates. Note that neither reordering nor decision making is done during the 
SSBDD model generation. This makes the worst case time of the model generation procedure 
linear in respect to the model size. Consequently, it is linear O(n) to the number of logic gates in 
the circuit as well. 

Table 1 gives the model size comparison for several various BDD representations. As it is seen 
from the table, during the last decade there has been a substantial reduction in BDD model size 
from quite bulky ROBDDs to rather modest FBDDs (Free BDDs [11]). This became possible due 
to new sophisticated minimization algorithms and some modifications to the model itself. 
However, the SSBDD model still leads this race as it was twenty years ago. In average, it offers 
minimal model size independently of circuit function (for instance, there is no known efficient 
ROBDD representation for combinational multiplier). However, these two models are intended for 
different tasks as well. Since there is more than one SSBDD describing the same circuit, SSBDD 
model cannot be considered as a canonical one. This is the reason why the applications of 
SSBDDs and conventional BDDs are mostly different. 

3 Logic Simulation 
Two-valued logic simulation on SSBDDs is equivalent to path tracing procedure on graphs 

according to the values of variables at a given input pattern. An assignment to the variables X 
activates a path l(m0, mT) from the root node m0 to a terminal node mT. The simulation procedure 
consists in tracing the path l(m0,mT) and evaluating the y=f(x) by finding the value e of the 
terminal node mT. 

 
Logic Simulation Algorithm: 
 
 For each SSBDD in the model 
 { 
  Take the first node of current SSBDD 
  While current node is not a terminal node 
  { 
   Evaluate current node and take the next node 
  } 
  Save the output value of current SSBDD 
 } 

 

Table 1. Comparison of sizes of different BDD models 

Circuit In Out Gates ROBDD [2] FBDD [11] SSBDD 
c432 36 7 232 30200 1063 308 
c499 41 32 618 49786 25866 601 
c880 60 26 357 7655 3575 497 

c1355 41 32 514 39858 N/A 809 
c1908 33 25 718 12463 5103 866 
c2670 233 140 997 N/A 1815 1313 
c3540 50 22 1446 208947 21000 1648 
c5315 178 123 1994 32193 1594 2712 
c6288 32 32 2416 N/A N/A 3872 
c7552 207 108 2978 N/A 2092 3552 

 



It is obvious that the worst case complexity of logic simulation is equal to the total number of 
nodes in SSBDDs. I.e. it is also linear O(n). 

4 Multi-Valued Simulation 
For multi-valued simulation, we use a procedure based on calculation of Boolean derivatives 

on SSBDDs. Consi-der the set S5 = {0, 1, ε, h, x} for 5-valued simulation and a multi-valued 
vector xt = (xt

1, xt
2, ... xt

i, ... xt
n) for a transition period t. Denote a subset of literals with dynamic 

values at this vector by XD ⊆ X, i.e.  
 

XD = {xi xt
i ∈ S5 ∩ SD}= {xi xt

i ∈ {ε, h, x}} 
 
Denote l(mi,mj) = 1, if there exists an activated path between the nodes mi and mj for a given 

vector xt,  otherwise, l(mi,mj) = 0. 
Theorem 1. Given y = f(x) and xi ∈ X, the condition dy/dxi =1 for SSBDD Gy = (M,Γ,X) where 

x(m) ≡ xi is equivalent to the following equation: 
 

l(m0,m) ∧ l(m1, mT,1) ∧ l(m0, mT,0) = 1 
 

The proof of the theorem can be found in [6]. 
Note, Theorem 1 can be used for calculating Boolean derivatives only in the case where vector 

xt is two-valued, because only in this case all the paths are activated uniquely. The general case, 
when xt is a multi-valued vector, is considered in the following theorem. 

Def.3 Let max{l(mi,mj)}=1 over xk∈XD, if there exists at least one activated path between  mi 
and mj  for all two-valued assignments of xk∈XD, otherwise max{l(mi,mj)}=0. 

Theorem 2. Given y=P(X) and xi ∈ X, the condition 
 

max {dy/dxi}=1  
 xk ∈ XD  

 
for SSBDD Gy = (M,Γ,X) where x(m) ≡ xi is equivalent to the following equation: 
 

max{l(m0,m)} ∧ max {l(m1,mT,1)} ∧ max {l(m0,mT,0)} = 1 
 xk ∈ XD                     xk ∈ XD                           xk ∈ XD 

 
The proof of the theorem is analogous to the proof of the Theorem 1. 
For calculating the maximum of a Boolean derivative and proving that max{dy/dx(m)} = 1, all 

dynamic values when tracing the path l(m1, mT,1) should be replaced by 1 and when tracing the 
path l(m0, mT,0) by 0. This follows from the property of monotony of Boolean EPFs. When tracing 
the path l(m0,m), all dynamic values should be replaced either by 1 or by 0 properly, so that the 
node m can be reached. In fact, instead of sequentially calculating the maximum of derivatives 
separately step by step for all the nodes m, where x(m)∈XD, we can traverse all the paths from all 
the nodes m: x(m)∈XD in both directions by a  single procedure based on nested calculation of all 
the derivatives. The successful utilization of the described idea allowed the creation of an efficient 
algorithm with linear worst-case complexity 2n. 

We do not give the multi-valued simulation algorithm here because it does not have a nice 
compact representation. It is thoroughly described in [6] instead. 

5 Timing Simulation 
The timing simulation approach is based on the same principle of calculation of Boolean 

derivatives on SSBDDs. The difference between these methods is that in multi-valued simulation 
we are tracing paths to search for the nodes with variables having dynamic values while in timing 
simulation we are searching for nodes that switch in current moment of time (i.e. a notion of time 
is introduced). Unlike in multi-valued simulation, the complexity of the problem of timing simula-
tion itself is NP-complete and does not depend on the underlying model. It is due to the fact that a 
single input transition may result in exponentially long event sequences in certain circuits. On the 
other hand, the worst number of events at the output of a tree-like fanout free circuit is equal to the 
total number of events at its inputs. This means linear complexity. The number of events in a 



common circuit is somewhere in between. In fact, it is far from exponential case. Otherwise, the 
timing simulation of an ISCAS circuit for a modest number of input vectors would be impossible. 

In the following we give a simplified timing simulation algorithm on SSBDD model. The 
detailed description of the algorithm, which exploits the property of monotony of Boolean EPFs 
and other SSBDD properties, is given in [7]. 

 
Timing Simulation Algorithm: 
 
 For each clock cycle 
 { 
  Set current time to 0 
  Perform Logic Simulation and evaluate the output 
  Make list of all the nodes with transitions 
  Sort list by time of transition in ascending order 
  For all entries in the event list 
  { 
   Set current time to the value from the list entry 
   Apply the specified transition 
   Perform Logic Simulation and evaluate the output 
   If current output value differs from previous 
    Assign current time to the output transition 
 }  } 
 

We had to introduce a notion of time into SSBDD model in order to make the latter algorithm 
work. In this extended model a certain delay is assigned to each node. This delay is calculated as a 
sum of delays of all logic gates along the path represented by the corresponding node [6].  Fig. 6 
illustrates this idea. 

6 Fault Simulation 
In general, the fault simulation task is considerably complex, since several stuck-at faults can 

be simultaneously present in the circuit. A circuit with n lines can have 3n – 1 different stuck line 
combinations [10]. Needless to say that even a moderate value of n will result in an enormous 
amount of multiple faults. It is a common practice, therefore, to model only single stuck-at faults. 
An n-line circuit has 2n single stuck-at faults. In the following we will see that modeling stuck-at 
faults on SSBDD representations allows to reduce this number further. 

It is possible to minimize the number of faults to be modeled by a technique called fault 
collapsing. Traditionally, this is done by implementing the relation of fault dominance on the set 
of faults. It is said that fault f1 dominates f2, if any test that detects f2 will also detect f1. 
Representing stuck-at faults by faults at SSBDD nodes can be viewed as a type of fault collapsing 
by applying fault dominance relations along the signal paths of the circuit. 

While in the gate-level descriptions we model stuck-at faults at the interconnections between 
the gates, in SSBDD representations the faults are considered at nodes. For example, stuck-at-0 
fault at a node is modeled with the 0-edge of the node being constantly activated, regardless of the 
value of the variable labeling this node. As it was stated in Def. 2, each SSBDD node represents a 
distinct path in the corresponding fanout-free circuit. By testing all the SSBDD node faults we will 
consequently test all the paths in the circuit and thus all the single stuck-at faults. This ability of 
SSBDDs to implicitly model logic level stuck-at faults is a very important property, which 
distinguishes it from other classes of BDDs. 

 Table 2 presents the number of uncollapsed faults, collapsed faults and SSBDD faults in eight 
ISCAS85 circuits. As we can see from the table, the traditional fault collapsing and SSBDD 
representations provide almost identical results. The difference in the number of faults is at most 8 

Fig. 6. Modeling delays on SSBDDs 
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% (in the case of c1908). SSBDD achieves in average even 2 % better compaction of the fault list 
than the traditional approach, reducing the fault lists in average about 1.5 times. However, this 
advantage occurs partly because in ISCAS models, for every signal line, at least one fault is 
required to be included to the fault list. In a more advanced collapsing techniques the list can be 
further minimized. Nevertheless, Table 2 indicates that by generating SSBDDs, the fault list will 
simultaneously be reduced by a considerable amount of faults. 

The advantage of the SSBDD based collapsing over the traditional one is that it allows us at the 
same time to rise to a higher abstraction level of circuit modeling. In the traditional case we would 
only minimize the number of faults but would still be working at the level of logic gates. 

A simple fault simulation algorithm of complexity O((n+1)2) is given in the following. 
 

Fault Simulation Algorithm: 
 
 Perform fault-free Logic Simulation 
 For each SSBDD 
 { 
  Take the first node of current SSBDD 
  While current node is not a terminal node 
  { 
   Evaluate current node 
   Insert corresponding fault 
   Perform Logic Simulation to evaluate output 
   If current output differs from the fault-free 
    Save current fault as detected 
   Remove current fault and take the next node 
 }  } 

 
More sophisticated and efficient parallel critical path tracing fault simulation  method is 

described in [5]. It is based on combining the parallel backward critical path tracing inside fanout 
free subcircuits with parallel forward critical path tracing between fanout free subcircuits for 
fanout stem analysis. 

The basic idea of parallel fault simulation on SSBDD models is similar to this type of 
simulation at gate-level. Here, traditional style SSBDD descriptions are preferable since in these 
we do not have to keep track of whether a variable labeling a node is inverted or not. The 
simulation takes place as follows. Starting from the node with the highest index value, we repeat 
operation: 
 
 
for each node of the SSBDD. In this operation, m denotes the current node. m0 and m1 are its 0 and 
1-successors, respectively. x(m) denotes the value of the variable labeling the node m. The result 
of the simulation will be the value calculated for the root node m0. 

7 Test Generation 
The test generation approach presented in this paper would be an exact equivalent of PODEM 

[14] if SSBDD models consisted of a system, where for each logic gate an elementary BDD 
corresponded. In order to compare test generation on structurally synthesized BDD and gate level 
models, we have implemented two types of SSBDD synthesis: one, where BDDs are synthesized 
for each FFR and the other, where they are synthesized for each gate. In the following, different 
tasks of the SSBDD-based test generation process are explained. 

Table 2. Comparison of collapsed and SSBDD faults 

Circuit Uncollapsed Collapsed SSBDD 
c880 1550 942 994 

c1355 2194 1574 1618 
c1908 2788 1879 1732 
c2670 4150 2747 2626 
c3540 5568 3428 3296 
c5315 8638 5350 5424 
c6288 9728 7744 7744 
c7552 11590 7550 7104 
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Determining the D-Frontier. Similar to classical test generation approaches, D-frontier is 
determined by finding all the nodes labeled by variables with the value D (or D-bar) and 
performing X-path check for them. 

X-Path Check.  X-path check for a circuit line with the value D (or D-bar) checks for the 
existence of such a path from that line to a primary output, where all the lines have the value X. At 
the gate-level, the outputs of each gate along corresponding paths have to be checked. In the 
SSBDD representations, the primitives are reduced to SSBDDs, which significantly speeds up the 
procedure. In SSBDD models it is possible to perform X-path check by simply checking the values 
of variables corresponding to the respective SSBDDs. 

Finding Boolean Derivatives. Calculating Boolean derivative for the nodes in SSBDD is 
similar to determining current backtrace objective in PODEM. In PODEM, the aim of selecting 
current objective was to propagate the fault effect (D or D-bar) to an output of a subsequent gate. 
In our approach, the primitives are SSBDDs and therefore the objective is to propagate the fault 
effect to the output of a subsequent fanout-free region. 

In order to check that Boolean derivative for a node n in an SSBDD G is not zero, three paths 
have to be traversed. One from the root node of G to the node n. The two other paths have to be 
traversed downwards and rightwards from n, respectively. If a path from root to node n can not be 
traversed due to the values assigned to the variables in the SSBDD, or if the two last mentioned 
paths overlap, Boolean derivative for node n will be zero. The derivative will be zero also if the 
downward path exits the BDD rightwards or rightward path exits the BDD downwards. If the 
derivative is one, current objective will be to backtrace the variable whose value is X and that 
labels a node that was traversed along one of the three paths. There exists always at least one such 
variable. The backtrace value is determined by the traversal direction of the respective node. 

The use of Boolean derivatives for choosing current objective is the reason why on SSBDDs 
higher fault coverages were achieved than in the case where BDD models were representing logic 
gates (see Table 2). Due to the fact that primitives are given on the level of FFRs rather than gates, 
many inconsistencies are detected earlier. 

Backtrace. Backtrace on the SSBDD models is simple and very fast. Value V is backtraced on 
an SSBDD G as follows. Starting from the root node we traverse a path forced by variable values 
until the first node n labeled by variable x(n), which has the value X, is reached. Subsequently, we 
will backtrace the value, which activates node n to the value V, on the SSBDD corresponding to 
the variable x(n). Value V is recursively backtraced on the SSBDD model until primary inputs are 
reached. 

D-Simulation. D-simulation is the most time-consuming procedure in current implementation. 
This can be expected since it is called repeatedly after each value assignment to the primary inputs. 
At present, we use three-valued simulation (0, 1, X) on two vectors, one for the fault-free and the 
other for the faulty circuit.  

Fault Simulation. Subsequent to each generated test, fault simulation is performed in order to 
determine the faults covered by the generated vector.  

In the following the general algorithm of SSBDD-based test generation is given. The following 
definitions are used. 

Fault node is the SSBDD node under test. 
Fault variable is the variable labeling the fault node. 
Fault graph is the SSBDD that contains the fault node. 
 

Test Generation Algorithm: 
 
 While D not propagated to a PO 
 { 
  If fault variable = X 
  { Backtrace value that activates the fault } 
  Else 
  { 
       If fault is not activated 
   { Backtrack } 
   Else 
    { 
    If the value of fault graph not D 
    { 



     If Boolean derivative for fault node is 0 
     { Backtrack } 
    } 
    Else 
    { 
     Determine the D-frontier 
     Perform backtrace with current objective 
 } } } } 

 

8 Experimental Results 
The experiments with the four described methods of logic-level simulation were carried out on 

ISCAS’85 benchmarks. We run them for each circuit on two levels of abstraction: a gate-level and 
SSBDD model. This allows to measure directly the effect of the chosen model on simulation time.  

In all cases the speed of simulation for SSBDD model was higher than that for gate-level 
representation [6,7]. For logic, multi-valued, and timing simulation the average speed-up varies 
from about 1,5 up to almost 4 times compared to algorithms working on the gate-level netlist 
model (Fig. 7). The fault simulation algorithm (fat dashed line in Fig. 7) shows the most noticeable 
acceleration. The runtime improves up to 7 times when simulation is performed on SSBDD model. 

The rise of simulation performance (and, in fact, reduction of the capacity of required memory) 
becomes possible due to the model complexity reduction by shifting from lower gate level to a 
higher macro level of fanout free subcircuits (Fig. 2). On this macro level all the required 
structural information is implicitly preserved due to the use of SSBDDs. 

One can also notice a very interesting property of the methods researched, i.e. their results for 
all the circuits are correlated. The origin of this effect is the variance of the average size of macros 
(measured in the number of gates) for various circuits. This property is shown in Fig. 7 by the bold 
black line. The behavior of this line is also correlated to the behavior of the simulation curves. 
This unveils the fundamental property of the investigated methods, which is that the average 
simulation speed-up is directly proportional to the average size of a fanout-free subcircuit in the 
circuit (Fig 8). 

The same property can be used also to describe ISCAS’85 benchmarks themselves. In fact, it is 
hard to detect any relationship that holds with no exception for all circuits from ISCAS 85 
package. For instance, circuit size is not much informative if we need to estimate a BDD 
generation time. This is also useless for estimation of simulation speedup we earn from SSBDD 
model. Now we can arrange these benchmarks by the average size of fanout-free subcircuits 
(macros). This order is significant at least for an evaluation of methods, which use SSBDDs as the 
underlying model. The order is presented in Table 3. 

 
Table 4 presents experimental results that were measured on a 233 MHz Pentium II PC under 

Windows 95 operating system. In the table, comparative test generation results on SSBDD and 

Table 3. Benchmarks’ order according to the average macro size  
c6288 c1355 c2670 c880 c432 c1908 c5315 c7552 c499 c3540 

1,62 1,77 2,32 2,36 2,42 2,90 3,15 3,24 3,30 3,83 
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Fig. 7. Logic-level simulation speedup for different algorithms 
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Fig. 8. Logic-level simulation speedup 
vs. average macro size 



gate levels are given for two different timeout values. The achieved fault coverages were 
calculated by simulating faults of the test patterns on the noncollapsed gate-level model. 
Therefore, the coverages differ slightly from the ones of the ‘classical’, collapsed, fault model. As 
the Table shows, test generation times are 2.1 – 4.5 times faster at the SSBDD level than at the 
gate-level. Thus, SSBDD descriptions appear to be an efficient model for the test generation 
purposes. 

Table 4. Comparison of SSBDD and gate-level test generation 

Fault coverage, % Time, s Circuit 
SSBDD Gate SSBDD Gate 

c432 97.33 87.06 0.10 0.32 
c880 100.0 100.0 0.05 0.11 

c1355 99.64 99.64 0.24 0.64 
c1908 99.75 99.46 0.22 0.65 
c2670 96.67 95.16 0.55 1.78 
c3540 95.58 95.24 0.77 3.47 
c5315 99.78 98.90 0.57 2.75 
c6288 99.80 99.30 0.60 1.45 
c7552 99.46 97.10 2.71 11.5 

9 Conclusions 
Common features and advantages of four logic-level simulation methods implemented on the 

SSBDD model are discussed in the paper. It is shown that the efficiency of the algorithms directly 
depends on the underlying model. The simulation speed-up in comparison with the gate-level 
simulation speed is linearly proportional to the average size of a macro measured in the number of 
gates. This statement holds for at least common realistic combinational circuits such as the ISCAS 
’85 benchmarks. 

The algorithm that most benefited from the usage of the SSBDD model is the fault simulation 
algorithm, as it utilizes at the same time fault collapsing together with the model simplification. 

The experiments show also the advantages of SSBDD-based TG algorithm in respect to a 
similar algorithm working on the gate-level netlist. 

For more details on each of the discussed approaches look in [6], [7], and [8]. 
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