
TALLINN TECHNICAL UNIVERSITY

Faculty of Information Technology

Department of Computer Engineering

Chair of Computer Engineering and Diagnostics

Bachelor Thesis

IAF34LT

Test Time Minimization for Hybrid BIST

of Systems-on-Chip

by

Maksim Jenihhin

 Supervisors: Raimund Ubar

 Gert Jervan

Tallinn 2003

 2

Annotatsioon

Käesoleva töö põhieesmärgiks oli eksperimentaalse keskkonna loomine

mikroelektroonika testimisele kuluva aja vähedamiseks. Töö põhineb hybriidsel ise-

testivuse arhitektuuril ja on mõeldud kaasaegsete SoC disainide jaoks. Käesolev töö

põhineb töö käigus välja töötatud metodoloogial ja demonstreerib selle sobivust antud

probleemi lahendamiseks koos eksperimentaalsete tulemustega. Esimesed kaks

peatükki kirjeldavad probleemi aktuaalsust ja pakuvad taustainformatsiooni. Järgnevalt

kirjeldatakse testimisele kuluva aja vähedamist kombinatoorsete disainide korral.

Kirjeldatakse ka sobivad hübriidset ise-testivat arhitektuuri. Kuna enamus kaasaegseid

disaine põhineb aga järjestikskeemidel, siis järgmine peatükk kirjeldabki sama

probleemi lahendamist järjestikskeemide korral. Viimasena esitletakse graafilist

demonstraatorit, mida saab kasutada käesoleva probleemi illustreerimiseks.

Käesolev töö on toimunud Tallinna Tehnikaülikooli Arvutitehnika instituudi ja

Linköpingi ülikooli Embedded Systems Laboratory koostöös.

 3

Abstract

The main goal of this thesis was to develop an experimental environment for the test

time minimization problem. It assumes Hybrid BIST architecture and targets System-

on-Chip designs. The thesis is based on methodology developed during the work and

demonstrates the feasibility of the proposed methodology together with experimental

results. First two sections of this thesis explore the actuality of the problem and provide

background information. Further, the proposed methodology is discussed for the case

when a SoC consists only of combinational cores. An appropriate Hybrid BIST

architecture is proposed as well. However, real life System-on-Chip designs contain

mostly sequential cores, and this is taken into account in the next part of this thesis,

where Hybrid BIST for SoCs with sequential cores is examined. At the end of this

thesis a small demonstrational program is presented, which may be interpreted as a

useful add-on for the rest of the material reporting results of the research.

The thesis is a result of research carried out in cooperation between Tallinn Technical

University, Department of Computer Engineering (Estonia) and Embedded Systems

Laboratory of Linköping University (Sweden).

 4

Contents

Chapter 1 Introduction ... 6

Motivation .. 7

Thesis Overview... 7

Chapter 2 Background... 9

Systems-on-Chip .. 9

BIST .. 10
LFSR... 11

Hybrid BIST... 12

Scan Design .. 13

Conclusion .. 15

Chapter 3 Test Time Minimization for Hybrid BIST of Systems-on-Chip with

Combinational Cores ... 16

3.1 Theoretical Description of the Proposed Approach ... 16

Hybrid BIST Architecture .. 16

Basic Definitions and Problem Formulation... 19

Hybrid Test Sequence Computation Based on Cost Estimates 22

Test Length Minimization under Memory Constraints... 24

3.2 Experiments.. 26

Setup ... 26

Pseudorandom Pattern Generation ... 27

Deterministic Pattern Generation .. 28

Reporting Numbers of Faults Covered by Test Patterns... 29

Estimations’ Generation ... 30

Exhaustive Simulation... 34

 5

CPU Time Measurement for Performed Computations .. 36

Conclusion .. 39

Chapter 4 Test Time Minimization for Hybrid BIST of Systems-on-Chip with

Sequential Cores .. 40

4.2 Theoretical discussion ... 40

Hybrid BIST Architecture .. 40

Differences in the Testing Approach.. 42

4.1 Experiments.. 43

Setup ... 43

Test Pattern Generation.. 44

Estimation .. 45

Exhaustive Simulation and CPU Time Measurement.. 47

Conclusion .. 49

Chapter 5 Demonstrational program .. 51

Motivation .. 51

User Interface... 52

Initialization ... 55

Reaction on Events .. 56

Conclusion .. 57

Chapter 6 Conclusions and Future Work... 58

Conclusion .. 58

Future work.. 59

References and Bibliography.. 60

Appendix A... 61

Appendix B... 65

Appendix C... 67

 6

Chapter 1

Introduction

Due to constant development of microelectronics design technology, testing techniques

of new integrated circuits should be updated with the same speed. At present, such a

style of design, when a number of functional blocks are combined in one single

integrated circuit (IC), provides designers many convenient possibilities. It is usually

referred as System-on-Chip (SoC) or Core-Based System approach. Systems-on-chip

look very attractive from designing point of view, mainly, because they allow reusing

previous designs, what in its turn leads to reduced cost and shorter time-to-market. At

the same time, testing of such systems is very complex and insufficiently explored task.

General tendency shows decrease in minimal size of transistors and as a result increase

in ICs’ complexity and density, as well as their working frequency. Traditional testing

approaches use both test pattern source and sink off-chip, and therefore require external

Automatic Testing Equipment (ATE). Unfortunately, such kind of ATE can not be any

longer considered as a good solution for modern SoC testing. The reason is

unacceptable growth in their price and memory size requirements and often their

disability to perform testing at speed. Consequently, we need another solution for

today’s ICs.

One of the possible solutions, according to the facts above, is to use Hybrid Built-In

Self-Test approach. It performs all testing operations at-speed and does not need any

external equipment, while assuming some extra logic integration into IC itself.

However, Hybrid BIST approach still has some parameters, which have not been

examined enough. This thesis is a result of a research carried out to try to find a suitable

solution for one of the problems that we may face while implementing Hybrid BIST in

real life.

 7

Motivation

General idea of Built-In Self-Test (BIST) is to generate, apply and analyze

pseudorandom test patterns internally. But in real life, due to unacceptably long test

sequences and pseudorandom pattern resistant faults, it may not always be efficient

enough for some embedded cores. Therefore, Hybrid BIST approach was proposed,

what mainly adds deterministic pattern sequence to pseudorandom one, used in BIST.

One of the most important parameters influencing efficiency of Hybrid BIST becomes,

hence, the ratio of pseudorandom and deterministic patterns in the final test set. In other

words, this is a trade-off between longer total test time, when more pseudorandom test

patterns are used, and higher memory requirements, when more deterministic test

patterns must be stored.

There have been a number of researches in the area of SoC testing, but the main

emphasis has been so far on scheduling, TAM design and testability analysis.

Consequently, the research, which results are described in this thesis may, be considered

as one of the first, where, while determining parameters for Hybrid BIST of a SoC, the

system under test is handled as one whole, but not as its separate cores.

This thesis contains new methodology of test time minimization, where memory

constraints are taken into account, and maximum possible fault coverage is guaranteed.

To avoid exhaustive search, two algorithms will be introduced: one to estimate the cost

of deterministic part of the test, the second one to adjust the estimations to quasi exact

values.

Thesis Overview

The rest of the thesis is organized as follows. The second section describes some

background theories, such as general information about SoCs, Hybrid BIST, LFSR,

scan design and STUMPS. These basic concepts are necessary for overall understanding

of the proposed ideas.

Chapter 3 is the most important one. It describes our proposed solution, or being more

exact, the algorithms for deterministic component cost estimation, and further for its

 8

adjustment. In this chapter all the theoretical explanations and carried out experiments

are provided for SoCs with combinational cores.

Chapter 4 discusses about additional difficulties related to testing SoCs with sequential

cores in comparison to combinational ones. And as a consequence, it describes the

differences in our approach implementation in case of SoCs with sequential cores.

Chapter 5 presents an ActiveX control that was created mainly for demonstration of

general principles of this approach. This chapter may be considered as a separate part of

this thesis, but very useful for at first sight understanding of the processes referred in the

proposed methodology.

Finally, Chapter 6 concludes this thesis by summarizing the ideas and discussing

possible directions for the future work.

 9

Chapter 2

Background

In this chapter a number of basic concepts are discussed. It starts with presentation of

Systems-on-Chip. Then it is followed by description of BIST, while making emphasis

on pseudorandom pattern generation with LFSR and Hybrid BIST approach. A short

discussion about sequential ICs’ testing particularity is provided in Scan Design

subsection.

Systems-on-Chip

Recent miniaturization tendency in microelectronics technology and increase in

designs’ complexity have encouraged designers to accept a new approach to design [5].

The main innovation in it is implementation of whole systems, consisting of modules

with different functions, on one single chip. These systems are usually referred as

Systems-on-Chip (SoC), Core-Based Systems, or Multi-Core Systems. An example of a

SoC is shown in Fig. 2.1.

Figure 2.1 System-on-chip

SoC approach provides to designers possibility to reuse their previously designed

modules, usually referred as embedded cores, as well as integrating in their systems

cores, designed by others. Usually a SoC contains at least one microprocessor and one

RAM module, as well as such called user-defined logic (UDL). The last one is used to

“glue” various cores in the system and requires different approaches of testing.

Microprocessor Controller FPGA

RAM
UDL

Core

Core Interface Block

Microprocessor Controller FPGA

RAM
UDL

Core

Core Interface Block

 Microprocessor Controller FPGA

Core 1 Interface Block

UDL
RAM Core 2

 10

However, UDL is beside of this thesis’s point. The attractive cores for our approach are

Microprocessor and RAM, the rest are just cores that should be tested. As it will be

described latter the first one may be used for pseudorandom patterns generation and as a

test controller. A possible usage of RAM module for testing is, obviously, storing

deterministic test patterns. Although, for the possible test architecture, this thesis

provides an implementation of these Hybrid BIST components as additional logic on

IC.

BIST

Built-In Self-Test (BIST) is a design technique in which parts of a circuit are used to test

the circuit itself [6]. Although, there are various BIST schemes, any of those performs

test pattern generation, test application and response verification [5]. BIST uses mostly

pseudorandom test patterns. They are usually generated by Linear Feedback Shift

Registers (LFSR), as it will be described further. These test patterns are easy and cheap

to generate, but in reality, a pure pseudorandom test should be very long, hence too

expensive in terms of time, to obtain the highest possible fault coverage. Moreover, it is

not even always guaranteed that the highest possible fault coverage will be achieved

even with extremely long pseudorandom test pattern sequence. The reason is random

pattern resistant faults (RPR).

Figure 2.2 Pseudorandom test behavior.

In the following pseudorandom test pattern generation based on LFSR-s will be

described.

Fault coverage

Number of
pseudorandom patterns

0%

 X

100%

Pseudorandom

Deterministic

 11

LFSR

As its name implies, the LFSR (Linear Feedback Shift Register) is a shift register with

feedback from the last stage and others [5]. A general structure of it is shown on Fig

2.4.

Figure 2.4 Representation of a standard LFSR.

Two important parameters of every LFSR are initial vector and characteristic

polynomial. At the starting clock cycle, every flip-flop D contains a bit from initial

vector. On the next clock a D flip-flop shifts its value to the next one in the chain and to

the output Yi. The very last flip-flop D shifts its bit to the first one, while on the way

XOR operation may be performed between this bit and values of some other D flip-

flops. Polynomial coefficients C1, C2, …, CN determine which of D flip-flop values will

participate in the operation. An example result of 3-flip-flop LFSR work is shown

below:

Step 0: 0 1 1 -initial vector
1: 0 0 1
2: 1 0 0
3: 0 1 0
4: 1 0 1
5: 1 1 0
6: 1 1 1

 7 = 0: 0 1 1

Here C1= 0; C2= 1; C3= 1.

 In case of a good polynomial, LFSR will repeat its state on 2n-1 step, otherwise it will

happen earlier. The vector with all “0” never can be generated by LFSR, and no vector

at all can be generated, if all “0” are used for the initial vector.

Although the test patterns generated by LFSR are still pseudo-random, the randomness

provided by them is acceptable for BIST technique, considering very low generation

cost. In our approach we assume, that PRPG and MISR are implemented on Linear

+ + +

D D D

C1 C2 CN-1 CN

......

......

Y1 Y2 YN-1 YN

 12

Feedback Shift Registers (LFSR).

A simple program in C language was written for the experiments with sequential cores,

described in this thesis, and may be considered as a sample software LFSR

implementation. The source code is enclosed in Appendix B.

Hybrid BIST

To avoid the problems related to pseudorandom patterns, a solution, known as Hybrid

BIST, was introduced. In this case, we can dramatically reduce the length of the initial

pseudorandom sequence by completing it with stored deterministic test patterns, and

guarantee the highest possible fault coverage.

Figure 2.2 demonstrates usual rapid increase in fault coverage obtained by

pseudorandom test in the beginning, and further saturation. Consequently, it is

reasonable to terminate pseudorandom test sequence, as soon as fault coverage X is

achieved, and to continue with deterministic test patterns till the highest possible fault

coverage.

Determining the optimal ratio of pseudorandom and deterministic tests in the final test

set is a complex task even for one single core [4]. While considering the core as a part

of a SoC with additional constraints makes this task significantly more difficult.

However this thesis describes a possible solution for the problem.

Figure 2.3 An example of hardware-based Hybrid BIST architecture.

Fig. 2.3 shows the main components of Hybrid BIST. Pseudorandom Pattern Generator

 13

(PRPG) and Multi Input Signature Analyzer (MISR) may be implemented using any

appropriate structure able to provide pseudorandom test vectors with required degree of

randomness; however, the usual implementation is based on LFSRs. As it follows from

their names, the first one is needed to generate vectors, and the second one is for test

verification. BIST Controller supervises the testing process, and ROM stores

deterministic patterns, generated off-line.

At the same time there is another well known Hybrid BIST implementation, when

instead of additional logic on IC, existing one is used for BIST components. For

instance, it is possible to add some instructions to microprocessor, what will allow using

it as a test controller and/or PRPG.

Scan Design

Testing a System-on-Chip with sequential cores is supplemented with additional

difficulties, due to feedback loops in the cores. Moreover, the complexity grows with

the number of these loops and their lengths. Several Design for Testability (DFT)

techniques were proposed to solve the problem, and one of them is internal scan. The

general idea behind it is to break the feedback paths and to improve observability and

controllability of memory elements by integrating an over-laid shift register called scan

path [4]. However, this technique forces designers to accept several aspects increasing

total cost of IC, such as increase in silicon area, larger number of pins needed, increase

in test application time etc. In order to manage the influence of these disadvantages,

partial scan was introduced in addition to full scan. As it implies from the name, only a

subset of memory elements is included in the scan path, in this case. On the other hand,

full scan allows achieving higher fault coverage.

In our approach, we assume that full scan is used for sequential cores of a SoC. A

number of particular differences of testing a SoC with sequential cores instead of

combinational ones are provided by Chapter 4 of this thesis.

For a coherent implementation of Hybrid BIST and scan path, STUMPS may be used.

The Self-Test Using MISR and Parallel SRSG (STUMPS) architecture is shown in

Figure 2.5. The acronym SRSG (Shift Register Sequence Generator) may be considered

 14

as equivalent to PRPG, mentioned above.

In case of full scan, every memory element of a core under test (CUT) should be

included in the scan path. Often, a scan path is split into several scan chains for a large

CUT. The multiplicity of scan chains speeds up test application, because the length of

one test cycle is determined by the length of scan path. At the same time, it equals only

to the length of the longest scan chain for a CUT with multiple scan chains. However,

there is always a trade-off: the more scan chains a core has the more additional scan

inputs are required for it. From our point of view, it means increase in the LFSR length

and in the amount of memory we need to store one deterministic pattern.

Figure 2.5. Self-Test Using MISR and Parallel SRSG (STUMPS)

The general idea of the STUMPS approach is following. PRPG, MISR and scan

registers are clocked simultaneously. All scan chains registers are loaded from PRPG

for the number of clock cycles equal to the longest scan chain. Then the Test Controller

sends Scan Enable signal, the data captured by scan registers is scanned out, and later

the results are analyzed by MISR.

As before, the sequences obtained from LFSR are periodic and not linearly independent.

The fact, that they are not really random, may affect resulting fault coverage and test

performance. Nevertheless, the STUMPS architecture is widely used and, hence,

So So’

PR
PG

M
IS

R

Scan path

Scan path

Scan path

CUT

Si Si’
Primary Inputs

Primary Outputs

 15

considered in our approach.

Conclusion

This section has briefly presented testing methodologies that are common nowadays for

testing modern integrated circuits. At the same time, a number of necessary terms used

to describe our approach further were introduced. The explanations provided in this

section do not claim to be comprehensive but, quite the contrary, were aimed to their

usage in the following chapters. More specific information about these concepts is

available from the literature listed in References and Bibliography section.

 16

Chapter 3

Test Time Minimization for Hybrid BIST

 of Systems-on-Chip with Combinational Cores

This chapter presents a solution to test time minimization problem for core-based

systems consisting only combinational cores. We assume a Hybrid BIST approach,

where a test set is assembled, for each core, from pseudorandom test patterns that are

generated online, and deterministic test patterns that are generated off-line and stored in

the system. In this chapter we propose an iterative algorithm to find the optimal

combination of pseudorandom and deterministic test sets of the whole system,

consisting of multiple cores, under given memory constraints, so that the total test time

is minimized. This approach employs a fast estimation methodology in order to avoid

exhaustive search and to speed-up the calculation process. Experimental results have

shown the efficiency of the algorithm to find near optimal solutions.

This chapter is divided into two sections. First, theoretical presentation of our approach

is given [1], followed by section presenting experimental work.

3.1 Theoretical Description of the Proposed Approach

Hybrid BIST Architecture

Recently it was proposed a Hybrid BIST optimization methodology for a single core

designs [3]. Such a Hybrid BIST approach starts with a pseudorandom test sequence of

length L. At the next stage, the stored test approach takes place: precomputed

deterministic test patterns are applied to the core under test to reach the desirable fault

coverage. For off-line generation of the deterministic test patterns, arbitrary software

test generators may be used, based on deterministic, random or genetic algorithms.

In a Hybrid BIST technique the length of the pseudorandom test is an important

parameter that determines the behavior of the whole test process. It is assumed here that

 17

for the Hybrid BIST the best polynomial for the pseudorandom sequence generation

will be chosen. By using the best polynomial, we can achieve the maximal fault

coverage of the CUT. In most cases this means that we can achieve 100% fault

coverage if we run the pseudorandom test long enough. With the Hybrid BIST approach

we terminate the pseudorandom test in the middle and remove the latter part of the

pseudorandom sequence, which leads to lower fault coverage achievable by the

pseudorandom test. The loss of fault coverage should be compensated by additional

deterministic test patterns. In general a shorter pseudorandom test set implies a larger

deterministic test set. This requires additional memory space, but at the same time,

shortens the overall test process, since deterministic test vectors are more efficient in

covering faults than the pseudorandom ones. A longer pseudorandom test, on the other

hand, will lead to longer test application time with reduced memory requirements.

Therefore it is crucial to determine the optimal length LOPT of the pseudorandom test

sequence, in order to minimize the total testing cost. The previously proposed

methodology enables us to find the most cost-effective combination of the two test sets

not only in terms of test time but also in terms of tester/on-chip memory requirements.

The efficiency of such approach has been demonstrated so far for individual cores. In

this chapter we propose an approach to extend the methodology also for complex

systems containing more than one core. We take into account the constraints (memory

size) imposed by the system and minimize the testing time for the whole system with

multiple cores, while keeping the high fault coverage.

In this chapter we assume the following test architecture: Every core has its own

dedicated BIST logic that is capable to produce a set of independent pseudorandom test

patterns, i.e. the pseudorandom test sets for all the cores can be carried out

simultaneously. The deterministic tests, on the other hand, can only be carried out for

one core at a time, which means only one test access bus at the system level is needed.

An example of a multi-core system, with such test architecture is given in Figure 3.1.

This example system consists of 5 cores (different ISCAS benchmarks). Using the

Hybrid BIST optimization methodology for single core [3] we can find the optimal

combination between pseudorandom and deterministic test patterns for every individual

core (Figure 3.2). Considering the assumed test architecture, only one deterministic test

set can be applied at any given time, while any number of pseudorandom test sessions

 18

can take place in parallel.

SoC

 C3540

 C1908 C880 C1355

Embedded Tester
 C2670

Test access
mechanismBIST BIST

BISTBISTBIST

Test
Controller

Tester
Memory

Figure 3.1 A core-based system example with the proposed test architecture

To enforce the assumption that only one deterministic test can be applied at a time, a

simple ad-hoc scheduling can be used. The result of this scheduling defines the starting

moments for every deterministic test session, the memory requirements, and the total

test length t for the whole system. This situation is illustrated on Figure 3.2.

As it can be seen from Figure 3.2, the solution where every individual core has the best

possible combination between pseudorandom and deterministic patterns usually does

0 100 200 300 400 500

c3540

c1355

c2670

c880

c1908

BIST Idle Deterministic

C ore R andom Det.
C1908 105 123
C880 121 48
C2670 444 77
C1355 121 52
C3540 297 110

clock
cycles

The optimal test set for each core

t

Figure 3.2 Ad-hoc test schedule for Hybrid BIST of the core-based system

 19

not lead to the best system-level test solution. In the example we have illustrated three

potential problems:

• The total test length of the system is determined by the single longest individual

test set, while other tests may be substantially shorter;

• The resulting deterministic test sets do not take into account the memory

requirements, imposed by the size of the on-chip memory or the external test

equipment;

• The proposed test schedule may introduce idle periods, due to the test conflicts

between the deterministic tests of different cores;

There are several possibilities for improvement. For example the ad-hoc solution can

easily be improved by using a better scheduling strategy. This, however, does not

necessarily lead to a significantly better solution as the ratio between pseudorandom and

deterministic test patterns for every individual core is not changed. Therefore we have

to explore different combinations between pseudorandom and deterministic test patterns

for every individual core in order to find a solution where the total test length of the

system is minimized and memory constraints are satisfied. In the following sections we

will define this problem more precisely, and propose a fast iterative algorithm for

calculating the optimal combination between different test sets for the whole system.

Basic Definitions and Problem Formulation

Let us assume a system S, consisting of n cores C1, C2, …, Cn. For every core Ck ∈ S a

complete sequence of deterministic test patterns TDF
k and a complete sequence of

pseudorandom test patterns TPF
k will be generated. It is assumed that both test sets can

obtain by itself maximum achievable fault coverage Fmax .

Definition 1: A hybrid BIST set THk = {TPk, TDk} for a core Ck is a sequence of tests,

constructed from the subsets of pseudorandom test sequence TPk ⊆ TPF
k, and a

deterministic test sequence TDk ⊆ TDF
k . The sequences TPk and TDk complement each

other to achieve the maximum achievable fault coverage.

Definition 2: A pattern in a pseudorandom test sequence is called efficient if it detects at

 20

least one new fault that is not detected by the previous test patterns in the sequence. The

ordered sequence of efficient patterns form an efficient pseudorandom test sequence

TPEk = (P1, P2,…,Pn) ⊆ TPk. Each efficient pattern Pj ∈ TPEk is characterized by the

length of the pseudorandom test sequence TPk, from the start to the efficient pattern Pj,

including Pj. Efficient pseudorandom test sequence TPEk, which includes all efficient

patterns of TPF
k is called full efficient pseudorandom test sequence and denoted by

TPEF
k .

Definition 3: The cost of a hybrid test set THk for a core Ck is determined by the total

length of its pseudorandom and deterministic test sequences, which can be characterized

by their costs, COSTP,k and COSTD,k respectively:

kkkkDkPkT TDTPCOSTCOSTCOST βα +=+= ,,,

and by the cost of recourses needed for storing the deterministic test sequence TDk in

the memory:

kkkM TDCOST γ=,

The parameters α and βk can be introduced by the designer to align the application

times of different test sequences. For example, when a test-per-clock BIST scheme is

used, a new test pattern can be generated and applied in each clock cycle and in this

case α = 1. The parameter βk for a particular core Ck is equal to the total number of

clock cycles needed for applying a deterministic test pattern from the memory. In a

special case, when deterministic test patterns are applied by external test equipment,

application of deterministic test patterns may be up to one order of magnitude slower

than applying BIST patterns. The coefficient γk is used to map the number of test

patterns in the deterministic test sequence TDk into the memory recourses, measured in

bits.

Definition 4: When assuming the test architecture described above, a hybrid test set TH

= {TH1, TH2, …, THn} for a system S = {C1, C2, …, Cn} consists of hybrid tests THk for

each individual core Ck, where pseudorandom components of the TH can be scheduled

in parallel, whereas the deterministic components of TH must be scheduled in sequence

due to the shared test resources.

 21

Definition 5: J = (j1, j2,…, jn) is called the characteristic vector of a hybrid test set TH =

{TH1, TH2, …, THn}, where jk = |TPEk| is the length of the efficient pseudorandom test

sequence TPEk ⊆ TPk ⊆ THk.

According to Definition 2, for each jk corresponds a pseudorandom subsequence TPk(jk)

⊆ TPF
k, and according to Definition 1, any pseudorandom test sequence TPk(jk) should

be complemented with a deterministic test sequence, denoted with TDk(jk), that is

generated in order to achieve the maximum achievable fault coverage. Based on this we

can conclude that the characteristic vector J determines entirely the structure of the

hybrid test set THk for all cores Ck ∈ S.

Definition 6: The test length of a hybrid test TH = {TH1, TH2, …, THn} for a system S

= {C1, C2, …, Cn} is given by:

}),(max{max kk
k

kkkkT TDTDTPCOST ββα ∑+=

The total cost of resources needed for storing the patterns from all deterministic test

sequences TDk in the memory is given by:

∑=
k

kkM TDCOST γ

Definition 7: Let us introduce a generic cost function COSTM,k = fk(COSTT,k) for every

core Ck ∈ S, and an integrated generic cost function COSTM = fk(COSTT) for the whole

system S.

The functions COSTM,k = fk(COSTT,k) will be created in the following way. Let us have a

hybrid BIST set THk(j) = {TPk(j), TDk(j)} for a core Ck with j efficient patterns in the

pseudorandom test sequence. By calculating the costs COSTT,k and COSTM,k for all

possible hybrid test set structures THk(j), i.e. for all values j = 1, 2, …, TPEF
k, we can

create the cost functions COSTT,k = fT,k(j), and COSTM,k = fM,k(j). By taking the inverse

function j = f’T,k(COSTT,k), and inserting it into the fM,k(j) we get the generic cost

function COSTM,k = fM,k(f’T,k(COSTT,k)) = fk(COSTT,k) where the memory costs are

directly related to the lengths of all possible hybrid test solutions.

The integrated generic cost function COSTM = f(COSTT) for the whole system is the

sum of all cost functions COSTM,k = fk(COSTT,k) of individual cores Ck ∈ S.

 22

From the function COSTM = f(COSTT) the value of COSTT for every given value of

COSTM can be found. The value of COSTT determines the lower bound of the length of

the hybrid test set for the whole system. To find the component jk of the characteristic

vector J, i.e. to find the structure of the hybrid test set for all cores, the equation fT,k(j)=

COSTT should be solved.

The objective of this chapter is to find a shortest possible (min(COSTT)) hybrid test

sequence THopt when the memory constraints are not violated COSTM ≤ COSTM,LIMIT.

Hybrid Test Sequence Computation Based on Cost Estimates

By knowing the generic cost function COSTM = f(COSTT), the total test length COSTT at

any given memory constraint COSTM ≤ COSTM,LIMIT can be found in a straightforward

way. However, the procedure to calculate the cost functions COSTD,k(j) and COSTM,k(j)

is very time consuming, since it assumes that the deterministic test set TDk for each j =

1, 2, …, |TPEF
k| has to be available. This assumes that after every efficient pattern Pj ∈

TPEk ⊆ TPk, j = 1, 2, …, |TPEF
k| a set of not yet detected faults FNOT,k(j) should be

calculated. This can be done either by repetitive use of the automatic test pattern

generator or by systematically analyzing and compressing the fault tables for each j.

Both procedures are accurate but time-consuming and therefore not feasible for larger

designs. To overcome the complexity explosion problem we propose an iterative

algorithm, where costs COSTM,k and COSTD,k for the deterministic test sets TDk can be

found based on estimates. The estimation method is based on fault coverage figures and

does not require accurate calculations of the deterministic test sets for not yet detected

faults FNOT,k(j).

In the following we will use FDk(i) and FPEk(i) to denote the fault coverage figures of

the test sequences TDk(i) and TPEk(i), correspondingly, where i is the length of the test

sequence.

Procedure 1: Estimation of the length of the deterministic test set TDk.

1. Calculate, by fault simulation, the fault coverage functions FDk(i), i = 1, 2, …,

|TDF
k|, and FPEk(i), i = 1, 2, …, |TPEF

k|. The patterns in TDF
k are ordered in such

 23

the way that each pattern put into the sequence contributes with maximum increase

in fault coverage.

2. For each i* ≤ |TPEF
k|, find the fault coverage value F* that can be reached by a

sequence of patterns (P1, P2, …, Pi*) ⊆ TPEk (see Figure 3).

3. By solving the equation FDk(i) = F*, find the maximum integer value j* that

satisfies the condition FDk(j*) ≤ F*. The value of j* is the length of the

deterministic sequence TDk that can achieve the same fault coverage F*.

4. Calculate the value of |TDE
k(i*)| = |TDF

k| - j* which is the number of test

patterns needed from the TDF
k to reach to the maximum achievable fault coverage.

The value |TDE
k(i*)| = |TDF

k| - j*, calculated by the Procedure 1, can be used to estimate

the length of the deterministic test sequence TDk in the hybrid test set THk = {TPk, TDk}

with i* efficient test patterns in TPk, (|TPEk| = i*).

By finding |TDE
k(j)| for all j = 1, 2, …, |TPEF

k| we get the cost function estimate

COSTE
D,k(j). Using COSTE

D,k(j), other cost function estimates COSTE
M,k(j), COSTE

T,k(j)

and COSTE
M,k = fk

E(COSTE
T,k) can be created according to the Definitions 3 and 7.

Finally, by adding cost estimates COSTE
M,k = fk

E(COSTE
T,k) of all cores, we get the

hybrid BIST cost function estimate COSTE
M = fE(COSTE

T) for the whole system.

i

F

F D k (i) F P E k (i)

i *

F*

| T D E
k (i*) |

100%

| T D F
k | j*

Figure 3.3 Estimation of the length of the deterministic test sequence

 24

Test Length Minimization under Memory Constraints

As described above, the exact calculations for finding the cost of the deterministic test

set COSTM,k = fk(COSTT,k) are very time-consuming. Therefore we will use the cost

estimates, calculated by Procedure 1 in the previous subsection, instead. Using

estimates can give us a quasi-minimal solution for the test length of the hybrid test at

given memory constraints. After obtaining a quasi-minimal solution, the cost estimates

can be improved and another, better, quasi-minimal solution can be calculated. This

iterative procedure will be continued until we reach the final solution.

Procedure 2: Test length minimization.

1. Given the memory constraint COSTM,LIMIT, find the estimated total test length

COSTE*
T as a solution to the equation fE(COSTE

T) = COSTM,LIMIT.

2. Based on COSTE*
T, find a candidate solution J* = (j*1, j*2,…, j*n) where each

j*k is the maximum integer value that satisfies the equation COSTE
T,k(j*k) ≤

COSTE*
T.

3. To calculate the exact value of COST*M for the candidate solution J*, find the

set of not yet detected faults FNOT,k(j*k) and generate the corresponding

deterministic test set TD*k by using an ATPG algorithm.

4. If COST*M = COSTM,LIMIT, go to the Step 9.

5. If the difference |COST*M - COSTM,LIMIT| is bigger than that in the earlier

iteration make a correction ∆t = ∆t/2, and go to Step 7.

6. Calculate a new test length COSTE,N
T from the equation fE

k(COSTE
T) =

COST*
M, and find the difference ∆t = COSTE,*

T - COSTE,N
T .

7. Calculate a new cost estimate COSTE,*
T = COSTE,*

T + ∆t for the next iteration.

8. If the value of COSTE,*
T is the same as in an earlier iteration, go to Step 9,

otherwise go to Step 2.

9. END: The vector J* = (j*1, j*2,…, j*n) is the solution.

 25

To illustrate the above procedure, in Figures 3.4 and 3.5 an example of the iterative

search for the shortest length of the hybrid test is given. Figure 3.4 represents all the

basic cost curves COSTE
D,k(j), COSTE

P,k(j), and COSTE
T,k(j), as functions of the length j

of TPEk where jmin denotes the optimal solution for a single core hybrid BIST

optimization problem [3].

COSTP,k

COST

jmin

COST
E*
T

j*k

Solution

COST T,k
E

COST D,k
E

j

Figure 3.4 Cost curves for a given core Ck

Figure 3.5 represents the estimated generic cost function COSTE
M = fE(COSTE

T) for the

whole system. At first (Step 1), the estimated COSTE*
T for the given memory constraints

is found (point 1 on Figure 3.5). Then (Step 2), based on COSTE*
T the length j*k of TPEk

for the core Ck in Figure 4 is found. This procedure (Step 2) is repeated for all the cores

to find the characteristic vector J* of the system as the first iterative solution. After that

the real memory cost COSTE*
M is calculated (Step 3, point 1* in Figure 3.5). As we see

in Figure 3.5, the value of COSTE*
M in point 1* violates the memory constraints. The

difference ∆t1 is determined by the curve of the estimated cost (Step 5). After

correction, a new value of COSTE*
T is found (point 2 on Figure 3.5). Based on COSTE*

T

, a new J* is found (Step 2), and a new COSTE*
M is calculated (Step 3, point 2* in

Figure 3.5). An additional iteration via points 3 and 3* can be followed in Figure 3.5.

It is easy to see that Procedure 2 always converges. By each iteration we get closer to

the memory constraints level, and also closer to the minimal test length at given

constraints. However, the solution may be only near-optimal, since we only evaluate

solutions derived from estimated cost functions.

 26

COST T

COST M

Real cost

Estimated
cost

Memory
constraint

1

1*

2
3

2*

3*

∆t1 Correction for∆t1

∆M

∆t2 Correction for∆t2

E

E

Figure 3.5 Minimization of the test length

The theory provided above was proven with experiments described in the next section.

3.2 Experiments

Setup

The experiments for this part of the research were performed with ISCAS’85

benchmarks as sample combinational cores for virtual SoCs and listed in Table 3.1.

Table 3.1 ISCAS’85 Benchmarks used for the experiments.

Design name Number
of inputs

Number of
outputs

Used in
systems

c432 36 7 S1, S2
c499 41 32 2xS1, S2

c880 60 26 S1, S2,
2xS3

c1355 41 32 S2, S3

c1908 33 25 S2, S3

c3540 50 22 S3

c5315 178 123 2xS1, S2,
S3

c6288 32 32 S2

 27

For simulation software, Turbo Tester tools were chosen (Tallinn Technical University).

These tools were run on Solaris machine with Sun OS 5.8. The final charts were created

with Microsoft Excel XP. A number of additional programs were written in C language,

especially for these experiments.

The rest of this section describes step by step actions performed during the experiments

in such a way that anyone could repeat them.

Pseudorandom Pattern Generation

Our approach assumes that for cost estimation algorithm we have pseudorandom and

deterministic test sequences generated for each core. Moreover, it is desirable, but not

necessary, that both test sequences would be able to obtain fault coverage as close to

100% as possible.

We have used bist tool to generate pseudorandom sequences. The execution command

for it is following:

bist -rand -glen 36 -alen 7 -simul bilbo –count 3000 c432

Here option –rand means that initial vector and characteristic polynomial for LFSR,

emulator used in the program, will be generated randomly. –glen determines the length

of PRPG generated vector, which should not be shorter then desired resulting patterns.

The length of a test pattern for combinational circuits equals to the number of its inputs.

That is why in the command we use 36 – the number of primary inputs of c432 (Table

3.1). –alen determines the length of MISR and may not be shorter then number of

outputs of the circuit. Option –simul bilbo chooses BILBO BIST architecture, where

two different LFSRs are used one for PRPG and another one for MISR. –count defines

the number of generated vectors.

After several attempts for every core we succeeded to achieve pseudorandom test

pattern sets with 100% fault coverage for most of the cores. The resulting sets were

stored in *.tst files.

It is important that during the rest of the experiments always the same test patterns are

 28

used. However, it is enough to save only initial vector and characteristic polynomial and

remember the number of patterns for each core, to be sure that next time the same test

pattern sequence is generated.

Deterministic Pattern Generation

Tool generate was used to obtain deterministic test pattern sequences. A sample

command for its execution is:

generate –backtracks 300 c432

Here the larger number of backtracks allows to achieve the higher fault coverage,

although execution time increases. The resulting pattern sequences were saved as files,

but assuming that program test generation algorithm always works in the same way, we

should get the same sequences on any other run of the program.

Further, the tools optimize and analyze were used, to minimize the resulting test sets.

The first one finds and eliminates from the set of generated patterns such ones that do

not influence the final fault coverage. The second tool performs fault simulation and

saves the results in the format we need for our experiments.

The results of test pattern generation are presented in Table 3.2.

Table 3.2 Number of pseudorandom and deterministic patterns for each core.

Design
name

Number of
pseudorandom

patterns
Fault

coverage

Number of
generated

deterministic
patterns

Number of
compacted

deterministic
patterns

Fault
coverage

c432 3000 100% 67 39 100%
c499 12000 100% 96 80 100%
c880 15000 100% 60 41 100%
c1355 7000 100% 104 82 100%
c1908 20000 100% 69 34 100%
c3540 20000 98,99% 228 122 100%
c5315 7000 100% 127 90 100%
c6288 7000 100% 62 37 100%

While generating pseudorandom patterns it was not our goal to achieve the minimal

 29

number of them in test sets for the highest possible coverage. As it will be shown

further, even if we have some extra patterns at the end of pseudorandom test set, which

do not increase the final fault coverage, it does not influence our experimental results.

On the other hand, we have to work with the minimal set of deterministic patterns that

achieve 100% fault coverage (or the highest possible), in order to guarantee that the

minimal amount of memory is used to store the deterministic test set of every core.

Reporting Numbers of Faults Covered by Test Patterns

At this moment our task is to determine fault coverage obtained by every pattern in the

test sets. While generating pseudorandom patterns, tools bist and generate also perform

fault simulation. Another Turbo Tester tool report with option –progress allows

extracting the needed information. Parts of report files generated by this tool for c432

core are provided bellow:

Pseudorandom test simulation report

Coverage progress report:

Pattern 1: coverage 9.615385 % (60/624)
Pattern 2: coverage 16.826923 % (105/624)
Pattern 3: coverage 24.839744 % (155/624)
Pattern 4: coverage 33.173077 % (207/624)
Pattern 5: coverage 40.865385 % (255/624)
…
Pattern 234: coverage 98.237179 % (613/624)
Pattern 274: coverage 98.717949 % (616/624)
Pattern 288: coverage 99.679487 % (622/624)
Pattern 314: coverage 99.839744 % (623/624)
Pattern 465: coverage 100.000000 % (624/624)

Deterministic test simulation report

Coverage progress report:

Pattern 1: coverage 16.826923 % (105/624)
Pattern 2: coverage 27.083333 % (169/624)
Pattern 3: coverage 35.897436 % (224/624)
Pattern 4: coverage 41.666667 % (260/624)
Pattern 5: coverage 45.993590 % (287/624)
…
Pattern 35: coverage 96.794872 % (604/624)
Pattern 36: coverage 97.916667 % (611/624)
Pattern 37: coverage 98.237179 % (613/624)
Pattern 38: coverage 98.717949 % (616/624)
Pattern 39: coverage 100.000000 % (624/624)

Every line of this report shows the number of efficient test pattern and amount of faults,

covered by it and previous patterns together, from all possible faults of the CUT.

At this moment it is possible to modify the report file with Excel or to write a simple

program in C (the second way is more convenient, because this operation will be

repeated for a number of cores) to have only the following information:

 30

Table 3.3 Reporting the amount of faults covered.

For pseudorandom test

1 60
2 105
3 155
4 207
5 255
...
234 613
274 616
288 622
314 623
465 624

For deterministic test

1 105
2 169
3 224
4 260
5 287
...
35 604
36 611
37 613
38 616
39 624

The first column of the both sequences from Table 3.3 represents the order number of

an efficient pattern in the whole test set. The second column shows amount of faults

covered. The table for pseudorandom patterns may always be extrapolated:
…
234 613
235 613
236 613
…
272 613
273 613
274 616
…

At the same time, every deterministic pattern is efficient.

Now, we save the data described in Table 3.3 as files for every core for both

pseudorandom and deterministic tests. As a result, we have 16 files.

Estimations’ Generation

As it may be seen from Table 3.3, we need 234 pseudorandom patterns (boxed) or 37

deterministic ones to cover the same amount of faults (613) for c432 core. It means that

if we terminate pseudorandom test just after applying pattern number 234, then we may

probably need to apply 2 deterministic patterns to cover the remaining faults (39-37=2).

For our estimation we do not consider what faults exactly we covered by the moment

and take into account only their amount. If the exact amount of faults covered by certain

number of pseudorandom patterns could not be found in the saved table for

deterministic, then we take the line with that many deterministic patterns that cover the

closest larger amount of faults.

 31

This operation does not require much calculation time and may be implemented by this

small C function:

for (i=1; i<=total_num_of_random_patterns; i++){

for(j=1; j<=total_num_of_deterministic_patterns; j++){

if(random_faults[i]<=deterministic_faults[j]){

det=total_num_of_deterministic_patterns –

deterministic_patterns[i];

}

}

fprintf(FP_output_file, "%d %d\n", random_patterns[i],

det);

}

The resulting estimation table should look like this:

Table 3.4 Estimations for numbers of required deterministic patterns for c423.

 1 39
 2 38
 3 38
 4 37
 5 36
 6 33
 7 32
 8 32
 9 32
 10 28
 11 28
 12 28
 13 27
 14 26
 17 25
 18 25

 19 25
 22 24
 23 23
 24 22
 25 22
 26 22
 27 20
 28 20
 29 20
 31 18
 34 18
 35 18
 38 14
 39 13
 41 13
 42 13

 43 13
 44 12
 48 12
 50 12
 52 9
 55 9
 66 9
 69 9
 78 9
 79 8
 85 8
 97 8
 102 7
 105 7
 119 7
 123 7

 125 7
 130 6
 135 6
 139 6
 143 6
 159 5
 185 4
 195 4
 197 4
 216 3
 234 2
 274 1
 288 1
 314 1
 465 0

The first column of Table 3.4 represents number of pseudorandom patterns applied; the

second shows how many deterministic patterns we estimate we may need.

Now, we need to extrapolate this table so that estimations not only for efficient, but for

all pseudorandom patterns would be represented.

 32

1 39
2 38
. . .
97 8
98 8
99 8
100 8
101 8
102 7
. . .
463 1
464 1
465 0
466 0
. . .
2999 0
3000 0

Using the previously saved data we generate a file with such a table as shown above for

every core (Program 1).

The next step is to find out how much memory would be used by a certain core at every

possible total test length. Total test length is the sum of time we need too apply desired

number of pseudorandom patterns and the time needed to apply predetermined number

of deterministic patterns, if any, for the core. That means, if we have chosen a test for a

core with combination of deterministic and pseudorandom parts as shown in the first

line of Table 3.4, then the total test length will be 39+1=40 clock cycles.

To store 1 deterministic pattern for a combinational core the amount of bits needed

equals to number of this core’s inputs. For example, for c432 it is 36 bits (from Table

3.1). For 39 patterns we need 39*36= 1404 (bits). Using this principal, we calculate

estimated memory and total test length for every line of stored tables.

40 1404
40 1368
41 1368
41 1332
41 1296
39 1188
…

Further, we just choose for every total test length the minimal value of memory may be

used, and sort the results by the first column. Finally, we obtain a table like the

following Table 3.5:

 33

Table 3.5 Memory estimation for every total test length.

38 1008
39 1008
40 936
41 936
42 900
43 900
44 900
45 900
46 792
47 720
48 720
49 648

50 648
51 648
52 468
53 468
54 468
55 468
56 432
57 432
58 432
59 432
60 432
61 324

62 324
63 324
64 324
65 324
66 324
67 324
68 324
69 324
70 324
71 324
72 324
73 324

74 324
75 324
76 324
77 324
78 324
…
2988 0
2989 0
2990 0
2991 0
2992 0

2993 0
2994 0
2995 0
2996 0
2997 0
2998 0
2999 0
3000 0

8 files were created to store similar data for every core from Table 3.1. For all the

calculations, another program was implemented in C language (Program 2).

In order to have a graphical representation of the data, we insert it into Excel and build

charts. If we sum up estimated memory cost for all cores used in a SoC at some

particular total test length, the result will represent the memory needed for the whole

SoC.

For our experiments we have chosen 3 virtual systems, showed bellow:

Table 3.6 List of cores for the experimental SoCs.

System
name

S1
6 cores

S2
7 cores

S3
5 cores

c5315 c432 c880

c880 c499 c5315

c432 c880 c3540

c499 c1355 c1908

c499 c1908 c880

c5315 c5315

List of
used
cores

 c6288

Due to lack of available benchmarks, we had to use sometimes the same ones twice in

one system, however we consider them as different cores, and it does not influence the

final results.

The resulting chart with memory cost estimation curves for one system is shown in

Figure 3.5.

 34

Figure 3.5 Memory cost estimation curves for system S1.

 Similar charts were built for experimental systems S2 and S3 in the same way.

Exhaustive Simulation

As soon as estimation costs are calculated, we need to obtain the real results, in order to

verify the estimates. A program sub_faults, written by Elmet Orasson, was used for this

purpose. However, usual deterministic patterns generation, after applying every

efficient pseudorandom pattern for a core, can be used as well. As its input the program

uses 2 files containing pseudorandom and deterministic test pattern sets. The files also

contain fault tables, which provide information about what faults every particular test

pattern covers. This program finds out what faults were covered by first N

pseudorandom patterns, and then looks from the deterministic patterns set for those

patterns, which cover the rest of the faults. If we run the program for N=1, 2, … ,

last_random_pattern, we should get the real behavior of memory cost. A script was

written for this purpose. Its execution is very time consuming, because for every core

thousands of iterations should be performed. After every run of sub_faults, the script

also executes optimize and analyze tools to obtain the minimal set of deterministic

patterns.

A sample report of the script used for c5315 is provided bellow:

 35

Step #1 1 vectors opt=90
Step #2 2 vectors opt=89
Step #3 3 vectors opt=89
Step #4 4 vectors opt=89
Step #5 5 vectors opt=88
Step #6 6 vectors opt=86
Step #7 7 vectors opt=86
Step #8 8 vectors opt=86
Step #9 9 vectors opt=86
…

At this point, we achieved the similar data that we did, while estimating number of

required deterministic patterns in the previous subsection after the extrapolation.

Therefore, after handling this information with Program 2 mentioned above, we will

have real memory values at each possible total test length, for every core.

Further, we just build charts with Excel, based on these results. Final charts for all three

experimental systems S1, S2 and S3, containing both estimation and real values, are

presented in Figures 3.6-3.8.

Figure 3.6 Memory Cost estimations and real values for S1

 36

Figure 3.7 Memory Cost estimations and real values for S2

Figure 3.8 Memory Cost estimations and real values for S3

CPU Time Measurement for Performed Computations

The adjustment algorithm is well described in the theoretical part; this section provides

a small piece of manual verification carried out. The results are shown in Table 3.7.

 37

Table 3.7 Manual adjustment for S1 with Memory Constraint equal to 20000 bits.

System
name S1

Memory
Constraint 20 000 bits

Step # Real
Memory

Clock for
real value

Estimated
Memory

Clock for
est. value Delta New

clock

Initial 19844 162

1 27440 162 26490 121 41 203

2 21592 203 20912 148 55 217

3 20716 217 20200 150 67 229

4 19114 229 19808 164 65 227

5 19114 227 19808 164 63 225

6 19530 225 19808 164 61 223

7 19886 223 19844 162 61

We use previously calculated, and applied in Excel, data for this algorithm. As it

implies from the Table 3.7, it is needed 7 iterations until we reach the same delta as in

the previous step (boxed). In terms of time, one iteration means one call of particular

number of pseudorandom patterns simulation and generation deterministic patterns for

the remaining faults. The both actions should be implemented for all the cores used in

an experimental SoC. The values of time, required to perform one such iteration for the

whole experimental systems are presented in Table 3.8.

Table 3.8 CPU time used to perform one adjustment iteration for every system.
System
name

Time for one
iteration (seconds)

S1 28.54
S2 33.46
S3 58.28

We have chosen several memory constraints for every experimental SoC and manually

emulated work of the adjustment algorithm. While this operation, the numbers of steps

needed for every adjustment were found. Therefore, by multiplying them with the

values from Table 3.8, we obtain the time our approach needs to find a solution (Table

3.9). Here, we do not consider the CPU time used by estimation process, because it is

much less then the time spent for the adjustment, and would not influence the presented

numbers.

For the CPU time required by Exact Approach we report the time used by our script

 38

(mentioned in previous subsection) to calculate the complete test cost data for every

system.

Table 3.9. Experimental results. Final table.

Exact Approach Our Approach

System Number
of cores

Memory
Constraint

(bits)
Total Test

Length
(clocks)

CPU
Time

(seconds)

Total Test
Length
(clocks)

CPU
Time

(seconds)
20 000 222 223 199.78
10 000 487 487 57.08 S1 6
7 000 552

3772.84
599 114.16

14 000 207 209 167.3
5 500 540 542 133.84 S2 7
2 500 1017

3433.10
1040 200.76

7 000 552 586 174.84
3 500 3309 3413 291.40 S3 5
2 000 8549

10143.14
8 556 407.96

In Table 3.9 we compare our approach where the test length is found based on estimates

with an exact approach, where deterministic test sets have been found by manipulating

the fault tables for every possible switching point between pseudorandom and

deterministic test patterns. As it can be seen from the results, our approach can give

significant speedup (more than order of magnitude), while retaining acceptable

accuracy.

Figure 3.9 A test schedule for a found solution (S2, MLIMIT = 5500).

Figure 3.9 provides a graphical representation of the solution found for the system S2

with the memory constraint equal to 5500 bits (bold in Table 3.9) with a possible test

56

31

8

19

33

25

12

11

8

453

486

511

523

534

542

542

0 100 200 300 400 500

c499

c1355

c5315

c1908

c880

c6288

c432
Deterministic

Pseudorandom

Total Test Length: 542

 39

schedule for this case.

To sum up the experimental part of this chapter, a list of performed steps is presented

bellow:

1. Test pattern sets generation

1.1. Pseudorandom pattern generation

1.2. Deterministic pattern generation

2. Estimation

2.1. Reporting number of faults covered by test patterns

2.2. Estimation of required number of deterministic patterns after every new

pseudorandom one applied

2.3. Estimation of required memory for every possible total test length

3. Exhaustive simulation

3.1. Script execution to obtain the number of required deterministic patterns after

every new pseudorandom one is applied

3.2. Extracting information about required memory for every possible total test

length

4. Manual emulation of adjustment algorithm

5. CPU time used for all operations measurement (summing up separate values)

6. Results representation

Conclusion

Chapter 3 has presented an approach to the test time minimization problem for Systems-

on-Chip with combinational cores. A heuristic algorithm was proposed to minimize the

test length for a given memory constraint. The algorithm is based on the analysis of

different cost relationships as functions of the hybrid BIST structure. To avoid the

exhaustive exploration of solutions, a method for the cost estimation of the deterministic

component of the hybrid test set was proposed. It also provides an iterative algorithm,

based on the proposed estimates, to minimize the total test length of the hybrid BIST

solution under the given memory constraints. Experimental results show very high

speed of the algorithm compared to the exact calculation method.

 40

Chapter 4

Test Time Minimization for Hybrid BIST

of Systems-on-Chip with Sequential Cores

This chapter examines the test time minimization problem for Systems-on-Chip,

containing sequential cores with STUMPS architecture. As in the previous discussion,

we assume a Hybrid BIST approach, where a test set is assembled, for each core, from

pseudorandom test patterns that are generated online, and deterministic test patterns that

are generated off-line and stored in the system. This chapter will mostly describe the

differences in the approach presented above for Systems-on-Chip with combinational

cores.

The first part of the chapter discuses additional difficulties caused by sequential cores

usage and a possible solution for them [2]. The second part of it presents experiments

carried out.

4.2 Theoretical discussion

Hybrid BIST Architecture

As it was shown before, generally, a Hybrid BIST approach combines two different

types of tests. It starts with a pseudorandom test sequence of length L and continues

with precomputed deterministic test patterns, stored in the system, in order to reach the

desirable fault coverage.

There are two widely used BIST schemes: test-per-clock and test-per-scan. Our earlier

discussion was concentrated on systems with combinatorial cores and therefore a test-

per-clock scheme could be used. In this chapter our objective is to provide a solution to

the test time minimization problem in case of sequential cores. As testing of sequential

cores is very complex process and development of efficient test pattern generation

 41

algorithm for sequential cores is outside the scope of this thesis then it is assumed here

that every core contains one or several scan paths (full scan). Therefore a test-per-scan

scheme has to be used, and for every individual core, the Self-Test Using MISR and

Parallel Shift Register Sequence Generator (STUMPS) architecture is assumed.

While every core has its own STUMPS architecture then at the system level we assume

the following architecture. Every core’s BIST logic is capable to produce a set of

independent pseudorandom test patterns, i.e. the pseudorandom test sets for all the cores

can be carried out simultaneously. The deterministic tests, on the other hand, can only

be carried out for one core at a time, what means only one test access bus at the system

level is needed. An example of a multi-core system, with such test architecture is given

in Figure 4.1.

Embedded Tester

Test
Controller

Tester
Memory

Scan Path

Scan Path

Scan Path

Scan Path

LF
S

R

LFS
R

Scan Path

Scan Path

Scan Path

Scan Path

LFS
R

LF
S

R

Scan Path

Scan Path

Scan Path

Scan Path

Scan Path

Scan Path

Scan Path

Scan Path

LF
S

R

LF
S

R

LFS
R

LFS
R

s838s1423

s3271 s298

SoC

TAM

Figure 4.1 A core-based system example with the proposed test architecture

This example system consists of 4 cores (different ISCAS benchmarks). As we have

shown earlier, the solution where every individual core has the best possible

combination between pseudorandom and deterministic patterns usually does not lead to

the best system-level test solution. Several reasons for this were named in section 3.1.

The problem can be solved in a straightforward way if the supplementary deterministic

test set for every possible length of the pseudorandom set is available, what requires

very expensive in terms of time exhaustive simulation. Another, cheaper solution was

proposed in chapter 3 and can be used for systems with sequential cores, if differences

 42

discussed bellow are taken into account.

Differences in the Testing Approach

Due to different Hybrid BIST scheme used for sequential cores, one test cycle no longer

equals to one clock cycle and depends on the longest scan chain of a particular CUT. It

means for us, that a solution can exist only at some certain total test lengths (measured

in clock cycles), when the test cycles for each core participating in the test are

accomplished. The same reason introduces some additional limitations for the moments

of time when the deterministic part of the total test for a core from a system can start. In

fact, it may cause idle periods in the final schedule. An example for this situation is

shown in Figure 4.2.

Figure 4.2 Additional scheduling difficulties for sequential cores.

Let us assume, 2 cores A and B belong to one hypothetical SoC and it was determined

that, to test this SoC with some particular memory constraint, core A needs to apply 5

pseudorandom patterns and 2 deterministic ones, while core B requires 4 pseudorandom

and 1 deterministic pattern. A possible schedule for this process is provided on Figure

4.2. If the number of clocks needed to apply a test cycle for core A differs from the one

of core B, then at the switching moment, from pseudorandom to deterministic test for

core B, a short idle period occurs.

We would not like to emphasize the scheduling problem in this thesis. The example

above is provided only to illustrate the testing differences caused by using test-per-scan

BIST scheme instead of test-per-clock. There are a number of other particularities of

testing SoC with sequential cores, caused by STUMPS architecture. For instance, the

additional inputs for a CUT, such as Scan In (for each scan chain) and Scan Enable,

 PR
 PR

 D D PR PR PR PR
 PR D PR PR

Test cycle for core A

Test cycle for core B Idle time

Total test length

 43

increase the length of LFSR and amount of memory required to store 1 deterministic

pattern.

At the same time it is necessary to notice, that even we need to consider these

differences (and it will be shown in the Experiments section) while calculating estimates

and obtaining exact values, they do not influence the general idea of the approach

described in chapter 3 and more concern to the practical issue.

4.1 Experiments

Setup

The experiments for this chapter were carried out with ISCAS’ 89 benchmarks listed in

Table 4.1, as sequential cores:

Table 4.1 Sequential benchmarks used in experimental SoCs.

Design name Number of
inputs (w/o clk)

Number of
scan chains

Max. length of
scan chains

s1423 23 5 15
s208 12 1 8
s298 5 1 14
s3271 32 5 24
s420 20 1 16
s526 6 2 11
s641 38 2 9
s838 37 2 16

All of them were redesigned with Mentor Graphics DFTAdvisor to have scan paths (full

scan). Number of resulting scan chains and maximum lengths of them for each core are

provided in the Table 4.1 too.

The experiments for this chapter were carried out on the same machines as in the

previous one. This time, for fault simulation and deterministic pattern generation

commercial tool Mentor Graphics FlexTest was chosen (Figure 4.1 provides a screen

shot of this program). The rest of this section describes step by step operations

performed, concentrating mostly on new ones while omitting explanations provided by

the chapter 3.

 44

Figure 4.1 Screen shot of Mentor Graphics FlexTest program.

Test Pattern Generation

Test pattern generation for circuits containing STUMPS architecture should consider

that during one test cycle at first the patterns will be uploading for n clock cycles and

only then scanned within the next clock cycle (n = Max(scan chains length)). Therefore,

test pattern sequence must be divided into groups. Generally, a sample sequence looks

like it is shown in Figure 4.2:

1. P0110110110 0 1 - one test pattern
2. P0011011011 0 1
3. P1001101101 1 1
4. P0100110110 1 1
5. P1010011011 0 1
6. P0101001101 1 1
7. P1010100110 1 1
8. P1101010011 0 1
9. P1110101001 1 0 - the test pattern applied for primary inputs, when the data is scanned
10. P0111010100 1 1
11. P0011101010 0 1
12. P1001110101 0 1
13. P1100111010 1 1
14. P1110011101 0 1
15. P0111001110 1 1
16. P0011100111 0 1
17. P1001110011 1 1
18. P0100111001 1 0

Figure 4.2 Test pattern format for Mentor Graphics. A sample sequence.

 45

This sequence was generated for s208 core. The maximum scan chain length for the

core is 8 bits (Table 4.1). Consequently, the length of 1 test cycle is 8 clock cycles to

upload the data from scan_in input to the registers plus 1 clock cycle to scan the data.

The last bit of a test pattern in the sequence above represents the value of scan_enable

(“0” – enables scan operation). Next to the last bits (boxed) are the scan_in values.

FlexTest regards the clk input in a special way, therefore it demands for an input test

pattern sequence the char “P” instead of its value.

Due to FlexTest features, we had to implement a separate program in C for

pseudorandom pattern generation. The source code of it is provided in Appendix B. The

program emulates LFSR work and outputs test sequences in the format described above

based on the input parameters, such as maximum scan chain length for a core, initial

vector, characteristic polynomial, desired number of test cycles and others.

Deterministic test patterns sets were generated by FlexTest. The results of test pattern

generation are shown in Table 4.2.

Table 4.2 The results of test pattern generation for sequential cores.

Design name
Number of

pseudorandom
test cycles

Fault
coverage

(%)

Number of
deterministic

test cycles

Fault
coverage

(%)
s1423 1000 97.34 90 99.27
s208 1200 96.72 36 98.59
s298 500 99.24 41 100.00
s3271 500 98.01 161 99.70
s420 1411 89.00 67 99. 86
s526 1000 97.92 45 99.50
s641 1000 96.77 73 98.63
s838 1411 69.98 137 99.62

Later, we do not consider hypertrophic faults, what increases reported fault coverage,

makes the further calculations easier, while does not affect the final experimental

results.

Estimation

During test pattern simulation FlexTest allows saving session transcripts to external

 46

files. A part of such a file is listed in Figure 4.3. Necessary for estimation procedure

information may be extracted from the data manually with Excel help or by some

specially implemented program. The fault coverage is calculated based on values of

Total Faults, UO (unobserved faults) and UC (uncontrolled faults).

…
// Cycles=13 Scan=10 DS=166 HT=10 UO=90 TC=70.31% EFF=70.68% 0:00:01
// Cycles=14 Scan=11 DS=169 HT=10 UO=87 TC=71.25% EFF=71.60% 0:00:01
// Cycles=15 Scan=12 DS=170 HT=11 UO=85 TC=71.72% EFF=72.07% 0:00:01
// Cycles=16 Scan=13 DS=171 HT=11 UO=84 TC=72.03% EFF=72.38% 0:00:01
// Cycles=17 Scan=14 DS=171 HT=12 UO=83 TC=72.19% EFF=72.53% 0:00:01
// Cycles=18 Scan=15 DS=179 HT=12 UO=75 TC=74.69% EFF=75.00% 0:00:01
// Cycles=19 Scan=16 DS=185 HT=12 UO=69 TC=76.56% EFF=76.85% 0:00:01
// Cycles=20 Scan=17 DS=189 HT=12 UO=65 TC=77.81% EFF=78.09% 0:00:01

…
Figure 4.3 An extract from Mentor Graphics FlexTest fault simulation transcript.

The estimation procedure itself was step by step described in chapter 3 and uses the

same programs.

However, there are 2 differences. The first one concerns the amount of memory we

need to store one deterministic test cycle.

MDET= {max_scan_length*(nr_of_chains + 1)} + {nr_of_primary_inputs + nr_of_chains + 1}

(The “1” in this expression represents scan_enable bit.)

If we take one test cycle for core s208 from Figure 4.3, then the information, that should

be stored, is the boxed one in the sequence below:

1. P0110110110 0 1
2. P0011011011 0 1
3. P1001101101 1 1
4. P0100110110 1 1
5. P1010011011 0 1
6. P0101001101 1 1
7. P1010100110 1 1
8. P1101010011 0 1
9. P1110101001 1 0

The second difference is also caused by test-per-scan BIST usage. Earlier we did not

need to discriminate between test cycle, time for one test pattern application and clock

cycle, because they were equal in terms of time. In case of sequential cores, when the

estimation procedure is accomplished, we will have all the information for every core

expressed in test cycles. At the same time, in order to use the data for each core in a

 47

representation of a whole SoC, we need this information expressed in clock cycles.

Other words, we need one more extrapolation. For this reason one more program in C

was written.

Table 4.3 Memory and time needed for one test cycle of the experimental cores.

Design
name

Memory for 1
det. test cycle

(bits)
Time for 1 test cycle

(clock cycles)

s1423 113 16
s208 28 9
s298 33 15
s3271 176 25
s420 52 17
s526 39 12
s641 65 10
s838 85 17

Exhaustive Simulation and CPU Time Measurement

As earlier, in order to compare the obtained estimation results we had to execute an

exhaustive simulation for every number of pseudorandom test cycle. A script was used

for this purpose, which was iteratively calling FlexTest program (without GUI) for

pseudorandom pattern simulation and deterministic pattern generation.

For these experiments we have determined three virtual Systems-on-Chips containing

only the cores from Table 4.1. The systems are represented in Table 4.4:

Table 4.4 List of sequential cores for the experimental SoCs.

System
name

J
6 cores

K
6 cores

L
6 cores

s838 s3271 s838

s3271 s1423 s1423

s298 s208 s526

s641 s641 s420

s526 s298 s208

List of
used
cores

s526 s526 s298

Based on the methodology described in chapter 3, illustrative charts for each

experimental system were built with Excel to represent both estimated and exact results.

The charts are provided in Figures 4.4 -4.6.

 48

Figure 4.4 Memory cost estimations and real values for system J.

Figure 4.5 Memory cost estimations and real values for system K.

Figure 4.6 Memory cost estimations and real values for system L.

 49

(Figure 4.4 shows a good example of the situation when memory requirements for

Hybrid BIST of a SoC can be dictated by one or two dominated cores.)

Finally, three random memory constraints were chosen for each experimental SoC.

Adjustment algorithm verification was carried out in the same way, like it is shown in

section 3.1 (Table 3.7). CPU time measurement for performed calculations does not

have any differences too.

Table 4.5 compares our proposed approach where the test lengths for experimental

systems are found based on the estimation methodology and further adjustment, with an

exact approach where they were obtained by iterative pseudorandom patterns simulation

and appropriate number of deterministic patterns generation for every reasonable

number of test cycles. As it can be seen from the table, our approach gives significant

speedup and high accuracy for SoCs with sequential core as well.

Table 4.5. Experimental results with sequential cores. Final table.

Exhaustive Approach Our Proposed Approach
System
Name

Number
of Cores

Memory

Constraint
(bits)

Total
Test Length

(clocks)

CPU Time
(seconds)

Total
Test Length

(clocks)

CPU Time
(seconds)

25 000 5750 5775 270

22 000 7100 7150 216

J

6

19 000 9050

57540

9050 335

22 000 5225 5275 168

17 000 7075 7075 150

K

6

13 000 9475

53640

9475 427

15 000 3564 3570 164

13 500 4848 4863 294

L

6

12 200 9350

58740

9350 464

Conclusion

In this chapter we have presented an approach to the test time minimization problem for

Systems-on-Chip, containing sequential cores with STUMPS architecture. To avoid the

 50

exhaustive exploration of solutions, the cost estimation method for the deterministic

component of the hybrid test set is used. An iterative algorithm, based on cost estimates

is thereafter applied in order to minimize the total test length of the hybrid BIST

solution under the given memory constraints. As in the previous chapter, experimental

results show the very high speed and accuracy of the proposed method compared to the

exact calculation approach.

 51

Chapter 5

Demonstrational program

This chapter presents a demonstrational ActiveX control, which was specially created to

give some visual representation of the proposed approach for test time minimization for

Hybrid BIST of Systems-on-Chip. The previous chapters of this thesis contain many

mathematical expressions and hardware testing terminology, what makes them

sometimes not that easy to get the general idea of the internal processes for a reader

who is not very familiar with the topic. The main purpose of this demonstrational

program is to improve the situation. However, the control does not explain the

procedure of test time minimization itself, and works with precalculated values.

Motivation

ActiveX technology is convenient for visualization of a dynamic process, such as, for

example, a SoC testing. ActiveX controls are easy to insert into a web page, any

Microsoft Office document, or another program, that could be written in a programming

language different from the one used to create the control. ActiveX provides good

functionality, and in spite of the disadvantage that it works only with Microsoft

Windows Environment, ActiveX is a good solution for such kind of task, as

visualization.

To create the control Visu_mchbist.ocx, Visual Basic 6 was used. As an example of

ActiveX integration it was inserted in a web-page

(http://www.tud.ttu.ee/~t990834/Project_MC-HBIST/Visu_mchbist.HTM) and

Microsoft Power Point presentation.

To show advantages of ActiveX and cooperation, this control uses as one of the

components a small third party ActiveX control “Advanced Progress Bar”. (All

specifications and source files are referenced).

 52

Visu_mchbist.ocx ActiveX control shows the dependency of the test schedule and the

whole testing process on the chosen Memory Constraint.

The rest of the chapter is structured as follows. User Interface section describes

components layout and provides some basic instructions about the control usage. The

following two sections describe implemented functions of the program. Next part

provides general overview of the paper and conclusions.

 Appendix A and Appendix C of this thesis provide the source code listing of the

program and screenshot representatively.

User Interface

The control uses 2 forms. The main one called Visu_ctrl and Visual Basic provided

frmAbout. The second one is used only to output some general “about” information for

the program.

Figure 5.1. Main Form Visu_ctrl.

 53

The Main Form consists of 4 frames, a Title, ComboBox Cmb_mem and an About

CommandButton.

The tasks of the frames are as follows:

 Frame Chart represents graphical diagram (a part of Figure 3.7), which shows

how much time (horizontal axis) we will need to test our System-on-Chip if we

have certain amount of Memory (vertical axis) available. Green lines show our

position on the curve. During the operation time only 1 set of green lines is

visible.

 Frame Test Architecture shows general structure of a SoC from testing point of

view. Here “BIST” means the part of a core responsible for generating and

applying pseudorandom test patterns. “TAM” (Test Access Mechanism) is a set

of internal components including a bus, used to transport deterministic patterns

from the Tester Memory to a core. In the operation mode all the active

components are highlighted.

 Frame Schedule is used to represent a test schedule based on chosen Memory

Constraint and to control an imitation of test execution. Here we can find an

array of labels with the cores’ names; 3 arrays of “Advanced Progress Bar”

controls, where the first PB_1p1 and second PB_1p2 are introduced to represent

first and second parts of pseudorandom test sets correspondingly, third - PB_1d

represents deterministic parts. Scrollbar HScrll_manual_run allows the user to

follow the process of testing, when program imitates test execution, and

manually scroll till the needed time moment of the process. One multi-purpose

command button is located in the left corner of the frame. It is used to start, stop

and reset test execution imitation, according to the situation. A timer Timer1

was used to imitate the testing process. Its task is to increase the

HScrll_manual_run.Value every predetermined interval of time, when it is

allowed.

 Frame Terminal provides a dialog with the user and consists mainly of the

TextBox Text1. In the current version of this control it is possible only to read

“system notices” and tips concerning next user actions. However, in future the

user will be able to type his/her commands to the program here.

 54

In the middle of the form Visu_ctrl a ComboBox Cmb_mem is located. It is used to

initiate the control work and to choose a desired Memory Constraint from the list (4

options). All the other components (except CommandButton About) are disabled until

the user chooses a Memory Constraint. To make the control more friendly for first time

users, the area around the Cmb_mem is highlighted with red color before any Memory

Constraint is chosen.

Each of the frames listed above have PictureBox as a base for other components. That

allows managing colors in easier way and makes it more convenient to work with other

components on the frame.

Figure 5.2. About form frmAbout.

Second form used by the control is frmAbout. It is a standard About form provided by

Visual Basic 6, and it can be called by clicking CommandButton About. The form

includes also CommandButton System Information, which allows user to see the

resources of the computer he/she is using.

To conclude User Interface part, it is necessary to mention that all the components were

placed on one form to give the whole impression of the process of testing, and to allow

the user to observe it from different points of interest at the same time. Although it has

caused a lack of space on the form to show some components more detailed.

The size of the form was chosen to consider also 800x600 display resolution.

 55

Initialization

The control Visu_mchbist.ocx uses two stages of setting up initial states for the

components used during the main work of the program, when it imitates test execution.

The first stage is obvious. Some initial values for parameters of the components are

predetermined during the Main Form Visu_ctrl design (such as text Labels’ captions

and position of most of the components).

 The second stage is Private Function Initia. This function is called only when a

Memory Constraint is chosen from Cmb_mem ComboBox. Choosing a Memory

Constraint actually means for us choosing:

 Total length of the test, or a value for the variable tln

 Values for the DET array elements, which represent the lengths of deterministic

part of the test for every core

 Scaling value mm for the schedule representation. It is used to fit longer

schedule with a low Memory Constraint into the Schedule frame, and on the

other hand to extend short schedules with a higher Memory Constraint in order

to give user a better view

 Which of the green lines Line1 ... Line8 should be visible to point the right

position in the Chart

Based on the values listed above, function Initia calculates values for some parameters

of PB_1p1, PB_1p2, PB_1d arrays’ elements and for HScrll_manual_run parameters

(such as .Value, .Max, .Width). Most of the computations for the schedule are

determined by the rules mentioned in chapter 2 of this thesis.

Many similar components in this control are combined in arrays to make some

necessary assignments easier.

The function outputs summary information in the terminal window for the user

convenience.

 56

Reaction on Events

After initial states of the components are defined, the user has a choice to run the

imitation of testing process or to observe the SoC state at any moment of time during

the test process by scrolling HScrll_manual_run manually.

A special function Private Function SM() was introduced in the program. It is called

every time HScrll_manual_run.Value is changed. Based on the current position of the

HScrll_manual_run, the function calculates which of the ProgressBars from the arrays

PB_1p1, PB_1p2 and PB_1d must be changed. It is implemented so, that the user has

such an impression of the elements from the arrays as if they were one whole.

Generally, we can start changing the value of a ProgressBar on the right from currently

being changed only when it has reached its maximum value:

By the precalculated data, the testing of the first two cores, used in this particular SoC,

does not need any deterministic parts (when the user can choose only from these 4

provided Memory Constraints). Therefore, the elements with indexes 0 and 1 from

PB_1p1, PB_1p2, PB_1d arrays are treated separately and do not participate in the for-

cycles of function SM. We have a similar situation with the core c880 related elements

(index = 2), although now the reason is that here we start testing not with pseudorandom

part, but with deterministic one.

The timer Timer1 is allowed to (and does) increase the value of

HScrll_manual_run.Value only when the Boolean variable chk is true. The value of the

variable changes to the opposite every time a Click on CommandButton Cmd_start is

registered. This feature gives us an additional advantage: the same CommandButton

initiates several actions, depending on the current state of the process. If Timer1

recognizes that HScrll_manual_run.Value has become equal to its maximum possible

value (.Max) it assigns reset action to Cmd_start, and stops.

The control does not have any special properties except the standard ones.

 57

Conclusion

This chapter has presented an ActiveX control Visu_mchbist.ocx, which provides a

simplified easy-to-use demonstration of testing a System-on-Chip with Hybrid Built-In

Self Test. The control may be used for illustrative purposes, as a helpful addition to the

documentation related to the research. It can be easily integrated into any Microsoft

Office Document, web page or used as a component of another program, developed for

Microsoft Windows Platform.

[A third-party control AdvProgressBar v.1.0 was used in the current program to show

cooperation between ActiveX controls. The original package can be found on

http://www.activex.net.ru]

 58

Chapter 6

Conclusions and Future Work

The main goal of this thesis was to develop an experimental environment for the test

time minimization problem. It assumes Hybrid BIST architecture and targets System-

on-Chip designs. The thesis is based on methodology developed during the work and

demonstrates the feasibility of the proposed methodology together with experimental

results. First, the proposed methodology was discussed for the case when a SoC

consisted only of combinational cores. An appropriate Hybrid BIST architecture was

proposed as well. However, real life System-on-Chip designs contain mostly sequential

cores, and this was taken into account in the following part of this thesis, where Hybrid

BIST for SoCs with sequential cores was examined. At the end of this thesis a small

demonstrational program was presented, which may be interpreted as a useful add-on

for the rest of the material reporting results of the research.

In this section we summarize the thesis and outline possible directions for the future

work.

Conclusion

Nowadays, many modern convenient design techniques are available, and as a

consequence, manufactured integrated circuits become more and more complex. This

tendency demands, in its turn, development of existing testing techniques for the

circuits. Therefore, new test methods and approaches are highly appreciated. The

approach, proposed in this thesis, deals with one particular, but quite actual problem

that was chosen for our research activities.

Hybrid BIST is recognized as one of the most sufficient solutions in testing core-based

systems. However, even if it is implemented on one, most likely it does not consider

 59

time and memory costs, and, hence, becomes too expensive. The test time minimization

for Hybrid BIST is a complex task even for separate cores. When the cores are

combined into one system, the task of test time minimization at system level becomes

much more difficult, because we need to consider all cores of the system

simultaneously.

A naïve approach for this problem would be an exact computation of every possible

switching moment between deterministic and pseudorandom test for every core of a

system, what requires iterative pseudorandom patter simulation and deterministic

pattern generation. Moreover, an exhaustive search should be used then. Obviously,

these operations are very time consuming.

Our proposed approach uses fast cost estimation algorithm, based on fault coverage

reports, which may be obtained by only one for every core pseudorandom and

deterministic pattern simulation. Further, second algorithm iteratively adjusts the

estimated values to near optimal results.

We have carried out experiments for both combinational and sequential core-based

systems to compare these two approaches. Their results show significant speedup for

the proposed one, while retaining very high accuracy.

Future work

The following are some possible directions for future research:

 The approach described in this thesis does not consider power consumption. At

the same time the last remains very important factor in design. Therefore, it

would be highly beneficial to include power constraints into test time

minimization algorithm.

 In addition to full scan STUMPS architecture, it would be quite innovative to

investigate the possibilities to apply the same approach also to the sequential

cores with partial scan.

 Also, it would be interesting to examine more complex test architectures.

 60

References and Bibliography

[1] G. Jervan, P. Eles, Z. Peng, R. Ubar, M. Jenihhin, “Test Time Minimization for Hybrid

BIST of Core-Based Systems”, submitted to the Asian Test Symposium 2003, Xian,

China, 2003

[2] G. Jervan, Z. Peng, R. Ubar, M. Jenihhin, “Hybrid BIST Test Time Minimization for

Core-Based Systems with STUMPS Architecture”, submitted to the 18th IEEE Int.

Symposium on Defect and Fault Tolerance in VLSI Systems, Cambridge, USA, 2003

[3] G. Jervan, Z. Peng, R. Ubar, “Test Cost Minimization for Hybrid BIST,” IEEE Int. Symp.

on Defect and Fault Tolerance in VLSI Systems (DFT’00), pp.283-291, Yamanashi,

Japan, October 2000.

[4] G. Jervan, “High-Level Test Generation and Built-In Self-Test Techniques for Digital

Systems” Linkoping, October 2002

[5] S. Mourad, Y. Zorian, “Principles of Testing Electronic Systems”, Johan Willey & Sons,

2000

[6] M. Abramovichi, M. Breuer, A. Friedman, “Digital Systems Testing and Testable

Design”, IEEE Press, 1990.

[7] C. Reeves, “Modern Heuristic Techniques for Combinatorial Problems”, Oxford, 1993

[8] Adam Blum, “ActiveX Web Programming. ISAPI, Controls, and Scripting”, New York

1997

[9] D. Benage, A.Mirza, “Building Enterprise Solutions with Visual Studio 6”, SAMS 1999

[10] C. Franklin, “3. Visual Basic 6.0 Internet Programming”, New York 1999

[11] MSDN Library http://www.microsoft.com/

[12] Turbo Tester Reference Manual, Tallinn Technical University. http://www.pld.ttu.ee/tt

[13] C. Pappas, W. Murray, “The Complete Reference C++”, McGraw-Hill, 1998

 61

Appendix A

Visu_mchbist.ocx control source code (used in chapter 5)

Option Explicit
Dim i, tln, mm, j, tmr As Integer, D, DET, INP, chk As Boolean, c As String
Private Sub Cmb_mem_Click() 'Choice of the Memory Constraint
INP = Array(36, 32, 60, 33, 178, 41, 41) 'number of inputs for every core
 'to calculate memory used for every core
Select Case Cmb_mem.ListIndex 'Assigns some parameters,
 Case 0 'after a Memory Constraint is chosen
 HScrll_manual_run.Enabled = True
 DET = Array(0, 0, 8, 13, 21, 28, 36)
 tln = 468
 mm = 15
 Initia
 Line1.Visible = True
 Line2.Visible = True
 Case 1
 DET = Array(0, 0, 8, 11, 12, 25, 33)
 tln = 542
 mm = 15
 Initia
 HScrll_manual_run.Enabled = True
 Line5.Visible = True
 Line6.Visible = True
 Case 2
 DET = Array(0, 0, 7, 7, 6, 14, 17)
 tln = 879
 mm = 10
 Initia
 HScrll_manual_run.Enabled = True
 Line7.Visible = True
 Line8.Visible = True
 Case 3
 DET = Array(0, 0, 5, 4, 2, 2, 3)
 tln = 1527
 mm = 6
 Initia
 HScrll_manual_run.Enabled = True
 Line9.Visible = True
 Line10.Visible = True
End Select
End Sub

Private Sub Cmd_About_Click()
 frmAbout.Show vbModal
End Sub

Private Sub Cmd_start_Click() 'Multi-purpose button; chk - allows the Timer1
 If chk = False Then
 If Cmd_start.Caption = "RESET" Then
 HScrll_manual_run.Value = 0
 Text1.Text = "Ready"
 Else
 Cmd_start.Caption = "STOP"
 chk = True
 End If
 Else
 Text1.Text = "To continue the simulation start the system clock again"
 Text1.Text = Text1.Text + " or scroll the test manualy."
 Cmd_start.Caption = "START"
 chk = False
 End If
End Sub

 62

Private Sub HScrll_manual_run_Change()
 SM
 Rst_c
End Sub

Private Sub HScrll_manual_run_Scroll()
 SM
 Rst_c
End Sub

Private Function SM() 'Changes values of the ProgressBars, according to current position
Lbl_Clk.Caption = HScrll_manual_run.Value
Lbl_Clk.Left = HScrll_manual_run.Left + 100 + HScrll_manual_run.Value * mm * (1 - 600 / (tln * mm))

'the formula keeps the label exactly under the scrollbar cursor
PB_1p2(0).Value = HScrll_manual_run.Value
PB_1p2(1).Value = HScrll_manual_run.Value
PB_1p2(0).Caption = PB_1p2(0).Value
PB_1p2(1).Caption = PB_1p2(1).Value
If HScrll_manual_run.Value <= PB_1d(2).Max Then
PB_1d(2).Value = HScrll_manual_run.Value
i = 2
D_1
PB_1p2(2).Value = 0
Else
 PB_1d(2).Value = PB_1d(2).Max
 PB_1p2(2).Value = (HScrll_manual_run.Value - PB_1d(2).Max)
End If
PB_1d(2).Caption = PB_1d(2).Value
PB_1p2(2).Caption = PB_1p2(2).Value
For i = 3 To 6
 If HScrll_manual_run.Value <= PB_1p1(i).Max Then '1st pseudorandom
 PB_1p1(i).Value = HScrll_manual_run.Value
 PB_1d(i).Value = 0
 PB_1p2(i).Value = 0
 Else
 PB_1p1(i).Value = PB_1p1(i).Max 'deterministic part
 PB_1p2(i).Value = 0
 If (HScrll_manual_run.Value - PB_1p1(i).Max) <= PB_1d(i).Max Then
 PB_1d(i).Value = (HScrll_manual_run.Value - PB_1p1(i).Max)
 D_1
 Else
 PB_1d(i).Value = PB_1d(i).Max '2nd pseudorandom
 PB_1p1(i).Value = PB_1p1(i).Max
 PB_1p2(i).Value = (HScrll_manual_run.Value - PB_1p1(i).Max - PB_1d(i).Max)
 If i = 6 Then
 D_rst
 End If

 End If
 End If
 PB_1p1(i).Caption = PB_1p1(i).Value
 PB_1d(i).Caption = PB_1d(i).Value
 PB_1p2(i).Caption = PB_1p2(i).Value
Next
End Function

Private Function Initia() 'Sets up some initial values, considering Memory Constraint choice
 chk = False
 PB_1p2(0).Max = tln
 PB_1p2(1).Max = tln
 PB_1p2(0).Width = mm * (PB_1p2(0).Max)
 PB_1p2(1).Width = mm * (PB_1p2(1).Max)
 PB_1p2(0).Visible = True
 PB_1p2(1).Visible = True
 Pic_mem.BackColor = &HFFC0C0

 PB_1d(2).Max = DET(2)
 PB_1d(2).Width = mm * (PB_1d(2).Max)
 PB_1d(2).Visible = True
 PB_1p2(2).Max = tln - PB_1d(2).Max

 63

 PB_1p2(2).Left = PB_1d(2).Left + (PB_1d(2).Width)
 PB_1p2(2).Width = mm * (PB_1p2(2).Max)
 PB_1p2(2).Visible = True
 For i = 3 To 6
 PB_1p1(i).Max = tln - PB_1p2(i - 1).Max
 PB_1p1(i).Width = mm * (PB_1p1(i).Max)
 PB_1p1(i).Visible = True
 PB_1d(i).Max = DET(i)
 PB_1d(i).Left = PB_1p1(i).Left + PB_1p1(i).Width
 PB_1d(i).Width = mm * (PB_1d(i).Max)
 PB_1d(i).Visible = True
 PB_1p2(i).Max = tln - PB_1d(i).Max - PB_1p1(i).Max
 PB_1p2(i).Left = PB_1d(i).Left + (PB_1d(i).Width)
 PB_1p2(i).Width = mm * (PB_1p2(i).Max)
 PB_1p2(i).Visible = True
 Next i
 HScrll_manual_run.Max = tln
 HScrll_manual_run.Min = 0
 HScrll_manual_run.Value = 0
 HScrll_manual_run.Width = (HScrll_manual_run.Max) * mm
 Cmd_start.Enabled = True
 c = tln 'here all the schedule information is outputted to the terminal
 Text1.Text = "Total clock cycles for the test: " + c & vbCrLf & "Deterministic patterns for the cores: "
 For i = 0 To 6
 c = DET(i)
 Text1.Text = Text1.Text + Label8(i).Caption + ": " + c + "; "
 Next i
 Text1.Text = Text1.Text + "(... scroll down)" & vbCrLf & "Memory used for every core: "
 For i = 0 To 6
 c = INP(i) * DET(i)
 Text1.Text = Text1.Text + "" & vbCrLf & "" + Label8(i).Caption + ": " + c + " bits; "
 Next i
 Line1.Visible = False 'green lines
 Line2.Visible = False
 Line5.Visible = False
 Line6.Visible = False
 Line7.Visible = False
 Line8.Visible = False
 Line9.Visible = False
 Line10.Visible = False
 All_rst
 End Function

Private Sub Timer1_Timer() 'Moves the scrollbar
 If chk = True Then
 If HScrll_manual_run.Value < HScrll_manual_run.Max Then
 HScrll_manual_run.Value = HScrll_manual_run.Value + 1
 Text1.Text = "Simulating..."
 Else
 chk = False
 Cmd_start.Caption = "RESET"
 Text1.Text = "System notice: Simulation is completed"
 All_rst
 End If
 End If
End Sub

Private Function D_1() 'Determines which core in TA to highlight
 For j = 0 To 6
 Label10(j).BackColor = &HFF&
 Shape4(j).BorderColor = &H0
 Shape4(j).BorderWidth = 1
 Line13(j).BorderColor = &HE0E0E0
 Next
 Label10(i).BackColor = &H80000005 'i - value is taken from SM
 Shape4(i).BorderColor = &HFF& 'i - index of core using memory at the moment
 Shape4(i).BorderWidth = 3
 Line13(i).BorderColor = &HFF&
 Line3.BorderColor = &HFF&
 Line4.BorderColor = &HFF&
 Label22.ForeColor = &HFF&

 64

 Label23.ForeColor = &HFF&
End Function

Private Function D_rst() 'resets TA, when none of the cores uses the memory
 For j = 0 To 6
 Label10(j).BackColor = &HFF&
 Shape4(j).BorderColor = &H0
 Shape4(j).BorderWidth = 1
 Line13(j).BorderColor = &HE0E0E0
 Next
 Line3.BorderColor = &HE0E0E0
 Line4.BorderColor = &HE0E0E0
 Label23.ForeColor = &H0
End Function

Private Function All_rst() 'none of SoC components are active
 For j = 0 To 6
 Label10(j).BackColor = &H80000005
 Shape4(j).BorderColor = &H0
 Shape4(j).BorderWidth = 1
 Line13(j).BorderColor = &HE0E0E0
 Next
 Line3.BorderColor = &HE0E0E0
 Line4.BorderColor = &HE0E0E0
 Label22.ForeColor = &H0
 Label23.ForeColor = &H0
End Function

Private Function Rst_c() 'a patch on found bug
 If Cmd_start.Caption = "RESET" And chk = False Then
 Cmd_start.Caption = "START"
 Text1.Text = "System notice: Current position was changed manualy."
 End If
End Function

 65

Appendix B

LFSR emulator source code (used in section 4.1)

#include <stdio.h>
#include <stdlib.h>

#define name_length 40
#define max_size 100

int SR(int *reg, int b, int length) //shift right operation
{ int i; //b to the highest bit
 for (i=0; i<length-1 ; i++)
 { reg[i]=reg[i+1];}
 reg[length-1]=b;
 return 0;
}

int xor(int a, int b) //XOR operation
{
 if (a==b){return 0;} else {return 1;}
}

int main(void)
{
 FILE *fp_in, *fp_out;
 int i, j, k, c, size, count, scan, vec_size;
 int reg1[max_size], reg2[max_size];
 char tmp[name_length], tmp2[name_length];
 char name_in[name_length], name_out[name_length];

 printf("\nOutput file name: \n"); //file name request for generated patterns
 scanf("%s", &name_out);
 printf("\nInput file name: \n"); //file name request for configuration
 scanf("%s", &name_in);
 printf("\nInput number of cycles for pattern generation: \n");
 scanf("%d", &count);

 if ((fp_in=fopen(name_in, "r")) == NULL)
 { printf("Cannot open the file.\n");
 exit(1);
 }

 fscanf(fp_in, "%d", &vec_size); //length of a generated pattern
 fscanf(fp_in, "%d", &size); //length of LFSR (>= vec_size)
 fscanf(fp_in, "%d", &scan); //max length of scan chains

 for (i=size-1; i>=0; i--) //read characteristic polynomial
 { fscanf(fp_in, "%d", ®1[i]);}
 for (i=size-1; i>=0; i--) //read initial vector
 { fscanf(fp_in, "%d", ®2[i]);}

 66

 if ((fp_out=fopen(name_out, "w")) == NULL)
 { printf("Cannot open the file.\n");
 exit(1);
 }
 fprintf(fp_out,"//GENERATOR\n//PLYNOMIAL ");
 for (i=size-1; i>=0; i--)
 { fprintf(fp_out,"%d",reg1[i]);}

 fprintf(fp_out,"\n//INITIAL_STATE ");
 for (i=size-1; i>=0; i--)
 { fprintf(fp_out,"%d",reg2[i]);}
 fprintf(fp_out,"\n");

 fscanf(fp_in, "%s %s", &tmp, &tmp2); //copy inputs info from configuration file to output
 while(!feof(fp_in))
 { fprintf(fp_out,"%s %s\n", tmp, tmp2);
 fscanf(fp_in, "%s %s", &tmp, &tmp2);
 }
 fprintf(fp_out,"\n");

 c=0;
 for (j=count*(scan+1); j>0; j--) //pseudorandom pattern generation
 { for (i=0; i<size; i++)
 { if (reg1[i]==1)
 { reg2[0]=xor(reg2[i], reg2[0]);
 }
 }
 SR(reg2, reg2[0], size);
 fprintf(fp_out, "P");
 for (i=size-1; i>(size-vec_size-1); i--)
 { fprintf(fp_out,"%d",reg2[i]);}
 c++;
 if (c==(scan+1)){fprintf(fp_out, "0\n"); c=0;}
 else {fprintf(fp_out, "1\n");}
 }

 fclose(fp_in);
 fclose(fp_out);

 return 0;
}

Sample configuration file (used for core s298):
4 <number of inputs w/o clk and scan_en>
20 <LFSR length>
14 <max. scan chain length>
0 1 0 0 0 1 0 1 0 0 1 0 1 0 1 0 1 1 0 0 <characteristic polynomial>
0 0 1 1 1 0 1 1 0 1 1 0 0 0 1 0 0 1 1 0 <initial vector>
PI h <
PI inp(0) <
PI inp(1) <inputs order (FlexTest requirement)>
PI inp(2) <
PI scan_in1 <
PI scan_en <

 67

Appendix C

ActiveX control Visu_mchbist.ocx screenshot.

