
Dependable Computing Depends on Structured Fault Tolerance

Algirdas Aviiienis
University of California, Los Angeles, CA, U.S.A., and

Vytautas Magnus University, Kaunas, Lithuania
Email:avizQcs.ucla.edu

Abstract

Fault tolerance is a f u n d a m e n t a l technique f o r the
a t ta inment of depen,dable computing. T h i s paper dis-
cusses a general paradigm for the design of faul t -
tolerant s y s t e m s and illustrates it by a design paradigm
for faul t - tolerant software.

1 Introduction

Today we are witnessing an explosive growth in the
complexity of contemporary computing and communi-
cation systems. Concurrently, one fundamental prin-
ciple is becoming more and more evident: the more
good our sophisticated computing and communication
systems can contribute to the wellbeing and the qual-
ity of life of the human race, the more harm they can
cause when they fail to perform their functions, or per-
form them incorrectly. Let us consider the control of
air, rail, and subway traffic, the emergency response
systems of our cities, the Aight controls of airliners,
the safety systems of nuclear power plants, and most
of all, the rapidly growing dependence of health care
delivery on high-performance computing and commu-
nications.

At the same time, the challenges to dependable op-
eration are also growing in scope and severity. Design
faults cause system crashes at the most inopportune
times. Complex systems suffer stability problems due
to unforeseen interactions of overlapping fault events
and mismatches of defense mechanisms. “Hackers”
and individuals with criminal intent invade systems
and cause disruptions, misuse, and damage. Accidents
lead to the severing of communications links that serve
entire regions. Finally, it may be foreseen that “info-
terrorists” will attempt to cause similar damage with
malicious intent.

In the presence of all these threats, fault tolerance
is the essential guarantee that our vitally important
systems will not, figuratively speaking, turn against

their builders and users by failing to serve as expected
because of physical, design, or human-machine inter:
action faults, or even because of malicious attempts
to disrupt their essential services.

However, introducing fault tolerance into a com-
plex system is a difficult task. Past experience has
shown that fault tolerance is most effective when it is
an integral function of every subsystem as well as a
hierarchically organized function of the entire system.

This paper describes such a structured approach
to the design of fault-tolerant systems, with emphasis
on the tolerance of software design faults by means of
design diversity.

2 Systematic Design of Fault-Tolerant
Systems

The concept of fault tolerance originally appeared
in technical literature in 1967 as follows [l]

“We say that a s y s t e m i s faul t - tolerant i f its pro-
grams can be properly executed despite the occurrence
of logic faults.”

The prime motivation for the creation of the con-
cept was the new challenge of building unmanned
spacecraft for interplanetary exploration that was as-
signed by the U S . National Aeronautics and Space
Administration (NASA) to Caltech’s Jet Propulsion
Laboratory (JPL) in late 1958. Mission lengths of up
to ten years and more were being considered, and on-
board computing was a prerequisite for their success.
Design of computers that would survive a journey of
several years and then deliver their peak performance
at a distant planet was an entirely unexplored disci-
pline.

Existing theoretical studies of the long-life prob-
lem indicated that large numbers of spare subsystems
offered a promise of longevity, given that all spares
could be successfully employed in sequence. The JPL
problem was to translate the idealized “spare replace-
ment” system model into a flightworthy implementa-

158
1071-9458D5 $4.00 Q1995 IEEE

http://Email:avizQcs.ucla.edu

tion of a spacecraft guidance and control computer.
A proposal to design such a computer, called “A Self-
Testing-And-Repairing System for Spacecraft Guid-
ance and Control,’’ and designated by the acronym
“STAR” was presented in October, 1961 [2], and the
research effort continued for more than ten years, cul-
minating with the construction and demonstration of
the laboratory model of the JPL- STAR computer [3].
A flight model of the JPL-STAR was designed for a
10-15 year space mission, lbut its building was halted
when NASA discontinued the Graind Tour mission for
which it was intended.

The longevity requirement led to the study of all
accessible engineering solutions and theoretical inves-
tigations of reliability enhancement. The variety of
existing theories and techiniques motivated the defi-
nition of the unifying concept of fault tolerance that
merged diverse approaches into a cohesive view of all
system survival attributes, and greatly facilitated the
design of the JPL-STAR computer.

During the next two decades - the 70’s and the 80’s
- we have seen a continuing expansion of the universe
of faults that are to be tolerated by fault- tolerant sys-
tems. The original concept dealt with transient and
permanent logic faults of physical origin. Faults due
to human mistakes in design were added when the
growing complexity of soi‘tware and of logic on VLSI
chips made the removal of all design faults prior to
operational use not certain. Experience also led to
the addition of interaction faults, inadvertently intro-
duced by humans during the operation or maintenance
of a computer.

Finally, consequences of maliciious actions intended
to alter or to stop the service being delivered by a sys-
tem were recognized as being deliberate design faults.
This concept establishes a. common ground for the uni-
fied treatment of security and fault tolerance concerns
in system design, The assurance of full compatibility
and integration of security and fault tolerance tech-
niques is a major challenge for contemporary design-
ers.

In retrospect, it may be said that the concept of
fault tolerance has served well during the past quar-
ter of a century in facilitating the appearance of suc-
cessively more dependable systems for the control and
support of various essential functions of contemporary
society: computing and communications, transporta-
tion, nuclear power, financial transactions, health care
delivery, etc.

Thirty years of experience have shown that the
building of dependable systems requires the balanced
use of both fault avoidance and fault tolerance tech-

niques. An imbalance in either direction leads to an
ineffective use of resources and severely limits the at-
tainable dependability. The definition of the concept
of fault tolerance initiated the evolution of principles
for the systematic design of fault-tolerant systems.
The specification and design of the STAR computer
at JPL involved much improvisation and experimen-
tation with design alternatives. It became apparent
that the lessons learned during this process could serve
as the foundation for a more orderly approach that
would utilize a set of guidelines for the choice of fault
masking, error detection, fault diagnosis, and system
recovery techniques.

The first effort to devise such guidelines was pre-
sented at the 1967 Fall Joint Computer conference in
the paper “Design of Fault-Tolerant Computers” [l].
That paper first introduced the term “fault-tolerant
computer” and the concept of “fault tolerance” into
technical literature. It also presented a classification
of faults and outlined the alternate forms of masking,
diagnosis, and recovery techniques along with some
criteria for choices between “massive” (i.e., masking)
and “selective” application of redundancy. The design
of the JPL- STAR computer was used to illustrate the
application of these criteria in choosing the fault tol-
erance techniques for a spacecraft computer that had
long life and autonomy requirements with strict weight
and power constraints.

3 A Design Paradigm

The 1967 paper was the first of a sequence of publi-
cations that formulated an evolving view of how to
attain dependable computing by the structured in-
troduction of fault tolerance during system design.
Two different classes of faults - those due to physical
causes and those due to human mistakes, oversights,
and deliberate actions are considered. This evolving
view was presented in a series of papers on guide-
lines for fault-tolerant system design and implemen-
tation, supported by specific discussions of the tech-
niques, scope, and aims of fault tolerance and fault
avoidance in hardware, software, communication, and
man/machine interfaces. Milestones of this series have
been the papers: [4, 5, 6, 7, 8, 91. Strong motivation
for the effort came from the increasing number of suc-
cessful fault-tolerant systems that offered new design
insights and more operational experience.

The unifying theme of the above referenced work
over the past three decades has been the evolution
of a design paradigm for fault-tolerant systems that
guides the designer to consider fault tolerance as

159

a fundamental issue throughout the design process.
The word “paradigm” is used here in the dictionary
sense of “pattern, example, model” in place of the
word “methodology” that implies a study of methods,
rather than a set of guidelines with illustrations that
is discussed here.

Taken in order of appearance, the papers show a
progressive refinement of concepts and an expansion
of the scope to include the tolerance of “human made”
design and interaction faults. Other recently intro-
duced themes are the balancing of performance and
fault tolerance objectives during system par ti tioning ,
and the integration of subsystem recovery procedures
into a multi-level recovery hierarchy. Strong emphasis
has been directed to the application of design diversity
in a multichannel system in order to attain tolerance
of design faults, [6, 81, including the tolerance of de-
liberate design faults [lo].

Fault tolerance has now been recognized as the key
prerequisite of dependability for very large systems,
such as the FAA’s Advanced Automation System for
air traffic control [ll]. Because of their great func-
tional complexity, such systems pose the most severe
challenge yet in the design of fault-tolerant systems.
The introduction of fault tolerance into very complex,
distributed systems is most likely to succeed if a me-
thodical approach is employed. This approach begins
with the initial design concepts and requires the col-
laboration of performance and fault tolerance archi-
tects during the critical tasks of system partitioning,
function allocation, and definition of inter- subsys-
tem communication and control. Such a highly struc-
tured design approach is presented here as the design
paradigm for fault-tolerant systems.

The design paradigm is an abstraction and refine-
ment of observed design processes, in which the var-
ious steps often overlap. Its objective is to minimize
the probability of oversights, mistakes, and inconsis-
tencies in the process of meeting the specified goals of
dependable service with respect to defined classes of
faults by means of the chosen implementation of fault
tolerance. The paradigm is stated for the implemen-
tation of a new design. If the goal is the improvement
of an existing design, then each step is a reexamina-
tion, possibly leading to changes of previously made
decisions.

The paradigm partitions the system building pro-
cess into three activities: specification, design, and
evaluation. Design consists of system partitioning,
subsystem design, and system integration steps. Eval-
uation takes place during and after each design step.
The principal steps of the paradigm are summarized

SPECIFICATION

Dependability of Service
Classes of Expected Faults
Evaluation Methods

DESIGN & EVALUATION

System Partitioning:
* Choose Containment Boundaries
* Allocate Redundant Resources
* Decide Design Diversity
* Assign Global F.T. Functions
* Set Subsystem Goals . - - - - - - - - - - - - - - -
Subsystem Design:

* Error Detection
* Fault Diagnosis
* Error Recovery
* Fault Removal
* Recovery Validation
* Evaluation - - - - - - - - - - - - - - - -
Systemwide Integration:

* Qualitative Evaluation
* Simulations
* Prototyping
* Experimentation
* Quantitative Evaluation

Figure 1: A Design Paradigm

in Figure 1, and a detailed discussion is presented in
[91.

4 Software Design Diversity: A Struc-
tured Approach

At the present time it is becoming quite apparent
that design faults are and will continue to be the most
costly class of faults. Recent examples are the $475
million design fault in the Pentium microprocessor,
the drastic reductions of the $4.8 billion AAS system
[ll], and major computer systems (for example, the
$51 million state of California DMV database system
and the $74 million Los Angeles County medical in-

160

formation system) that never became operational be-
cause of an excessive number of software design faults.

Design diversity is a fundamental solution to =sure
fault tolerance of design faults [6]. This section sum-
marizes the principal concepts of design diversity as it
is employed to attain software fault tolerance.

We say that a unit of softSWare (module, CSCI, etc.)
is faul t - tolerant (abbreviated “f-t”) if it can continue
delivering the required service, i.e., supply the ex-
pected outputs with the expected timeliness, after dor-
m a n t (previously undiscovered, or not removed) im-
perfections, called software ,faults, have become active
by producing errors in program flow, internatl state,
or results generated within the software unit. When
the errors disrupt (alter, halt, or delay) the service
expected from the software unit, we say that it has
failed for the duration of service disruption. A non-
fault-tolerant software unit, is called a szmplex unit.

Multiple, redundant computing channels (or
“lanes”) have been widely used in sets of N = 2, 3, or
4 to build f-t hardware syistems. ‘To make a simplex
software unit fault-tolerant, the corresponding solu-
tion is to add one, two, or more simplex units to form
a set of N 2 2 units. The redundant units are in-
tended to compensate for, or mask a failed software
unit when they are not affected by software faults that
cause similar errors at cross-check points. The critical
difference between multiple-channel hardware systems
and f-t software units is that the simple replication of
one design that is effective against random physical
faults in hardware is not :sufficient for software fault
tolerance. Copying software will also copy the dor-
mant software faults; therefore each simplex unit in
the f-t set of N units needs to be built separately and
independently of the other members of the net. This
is the concept of software design diversity [6].

Design diversity is applicable to tolerate design
faults in hardware as well. Some multichannel sys-
tems with diverse hardware and software have been
built; they include the flight control computers for the
Boeing 777 [12], and the Airbus [13] airliners. Vari-
ations of the diversity concept have been widely em-
ployed in technology and in human affairs. Examples
in technology are: a mechanical linkage backing up an
electrical system to operate aircraft control surfaces,
an analog system standing by for a primary digital sys-
tem that guides spacecraft launch vehicles, a satellite
link backing up a fiber-optic cable, etc. In human ac-
tivities we have the pilot-copilot-flight engineer teams
in cockpits of airliners, two- or three-surgeon teams at
difficult surgery, and similar arrangements.

A set of N 2 2 diverse simplex units alone is not

fault-tolerant; the simplex units need an execution en-
v ironment (EE) for f-t operation. Each simplex unit
also needs fault tolerance features that allows it to
serve as a m e m b e r of the f-t software unit with sup-
port of the EE. The simplex units and the EE have
to meet three requirements: (1) the EE must provide
the support functions to execute the N 2 2 member
units in a fault-tolerant manner; (2) the specifications
of the individual member units must define the fault
tolerance features that they need for f-t operation sup-
ported by the EE; (3) the best effort must be made
to minimize the probability of an undetected or unre-
coverable failure of the f-t software unit that would be
due to a single cause.

The evolution of techniques for building f-t software
out of simplex units has taken two directions. The two
basic models of f-t software units are N - v e r s i o n soh-
ware (NVS)[14], shown in Figure 2 and recovery blocks
(RB)[15] shown in Figure 3. The common property of
both models is that two or more diverse units (called
versions in NVS, and alternates and acceptance t e s t s
in RB) are employed to form a f-t software unit. The
most fundamental difference is the method by which
the decision is made that determines the outputs to
be produced by the f-t unit. The NVS approach em-
ploys a generic decision algorzthm that is provided by
the EE and looks for a consensus of two or more out-
puts among N member versions. The RB model ap-
plies the acceptance tes t to the output of an individ-
ual alternate; this acceptance test must by necessity
be specific for every distinct service, i.e., it is custom-
designed for a given application, and is a member of
the RB f-t software unit, but not a part of the EE.

N = 2 is the special case of fail-safe software units
with two versions in NVS, and one alternate with one
acceptance test in RB. They can detect disagreements
between the versions, or between the alternate and
the acceptance test, but cannot determine a consen-
sus in NVS, or provide a backup alternate in RB. Ei-
ther a safe shutdown is executed, or a supplementary
recovery process must be invoked in case of a disagree-
ment. The use of two or more diverse 2-version soft-
ware units leads to the ” N self-checking programming”
approach[l6].

Both RB and NVS have evolved procedures for er-
ror recovery. In RB, backward recovery is achieved
in a hierarchical manner through a nest ing of RBs,
supported by a recovery cache [17] that is part of the
EE. In NVS, forward recovery is done by the use of
the communi t y error recovery algorithm [I$] that is
supported by the specification of recovery points and
by the decision algorithm of the EE. Both recovery

161

Figure 2: The N-version software (NVS) model with n = 3

Figure 3: The recovery block (RB) model

methods have limitations: in RB, errors that are not
detected by an acceptance test are passed along and
do not trigger recovery; in NVS, recovery will fail if a
majority of versions have the same erroneous state at
the recovery point.

5 A Design Paradigm for N-Version
Software

The effort to develop a systematic process (a
paradigm) for the building of multiple-version software
units that tolerate software faults, and function analo-
gously to majority-voted multichannel hardware units
was initiated at UCLA in early 1975 as a part of re-
search in reliable computing that was started in 1961
[2], Table 1 summarizes the investigations conducted
at UCLA since 1975.

The experience that had been accumulated during
the first four investigations at UCLA [6, 19, 201 led
to the rigorous definition and application of a set of
guidelines, called the NVS Design Paradigm [21] dur-
ing the subsequent Six-Language NVP project [22].
The paradigm as it was further refined during this
project, is summarized in Figure 4 and described in
this section. The purpose of the paradigm is to inte-

grate the unique requirements of NVP with the con-
ventional steps of software development methodology.
The word “paradigm,” used in the dictionary sense,
means “pattern, example, model,” presented here as
a set of guidelines and rules with illustrations.

The objectives of the design paradigm are: (1) to
reduce the possibility of oversights, mistakes, and in-
consistencies in the process of software development
and testing; (2) to eliminate most perceivable causes
of related design faults in the independently generated
versions of a program, and to identify causes of those
which slip through the design process; (3) to minimize
the probability that two or more versions will produce
similar erroneous results that coincide in time for a
decision (consensus) action of NVX.

The application of a proven software development
method, or of diverse methods for individual versions,
is the foundation of the NVP paradigm. The chosen
method is supplemented by procedures that aim: (1)
to attain suitable isolation and independence (with
respect to software faults) of the N concurrent ver-
sion development efforts, (2) to encourage potential
diversity among the N versions of an NVS unit, and
(3) to elaborate efficient error detection and recovery
mechanisms. The first two procedures serve to reduce
the chances of related software faults being introduced

162

Table 1: N-version programming studies at UCLA

Diversity Language Versions Size

into two or more versions via potential “fault leak”
links, such as casual conversations or mail exchanges,
common flaws in training or in manuals, use of the
same faulty compiler, etc. The last procedure serves
to increase the possibilities of discovering manifested
errors before they can cause an incorrect decision and
consequent failure.

In Figure 4, the NVP paradigm is shown to be com-
posed of two categories of activities. The first cate-
gory, represented by boxes and single-line arrows at
the left, contains standard software development pro-
cedures. The second category, represented by ovals
and double-line arrows at the right, specifies the con-
current implementation of various fault tolerance tech-
niques unique to N-version programming. The de-
scriptions of the incorporated activities and guidelines
are presented next.

5.1 System Requirement Phase : Deter-
mine Method of NVS Supervision

The NVS Execution Ehvironment has to be deter-
mined in the system requirement phase in order to
evaluate the overall system impact and to provide re-
quired support facilities. There are three aspects of
this step:

(1) Choose NVS execution method and allo-
cate resources. The overall system architec-
ture is defined during system requirement phase,
and the software configuration items are identi-
fied. The number of software versions and their
interaction is determined.

(2) Develop support mechanisms and tools.
An existing NVX may be adapted, or a new one
developed according to the application. The NVX
may be implemented in software, in hardware,
or in a combination of both. The basic func-

tions that the NVX must provide for NVS exe-
cution are: (a) the decision algorithm, or set of
algorithms; (b) assurance of input consistency for
all versions; (c) interversion communications; (d)
version synchronization and enforcement of tim-
ing constraints; (e) local supervision for each ver-
sion; (f) the global executive and decision func-
tion for version error recovery; and (g) a user
interface for observation, debugging, injection of
stimuli, and data collection during N-version ex-
ecution of applications programs. The nature of
these functions was extensively illustrated in the
descriptions of the DEDIX testbed system [23].

(3) Select hardware architecture. Special dedi-
cated hardware processors may be needed for the
execution of NVS systems, especially when the
NVS supporting environments need to operate
under stringent requirements (e.g., accurate su-
pervision, efficient CPUs, etc.). The options of
integrating NVX with hardware fault tolerance in
a hybrid configuration also must be considered.

5.2 Software Requirement Phase : Select
Soft ware Diver sit y Dimensions

The major reason for specifying software diversity
is to eliminate the commonalities between the sepa-
rate programming efforts, as they have the potential
to cause related faults among the multiple versions.
Three steps of the selection process are identified.

(1) Assess random diversity vs. required di-
versity. Different dimensions of diversity could
be achieved either by randomness or by require-
ment. The random diversity, such as that pro-
vided by independent personnel, causes dissim-
ilarity because of an individual’s training and
thinking process. The diversity is achieved in an

163

I
Software Specification

I1

* 4 Designphase 1 - --[CodingPhase 1
+ Development Protocol

Exploit
Presence of NVS Testing Phase

Evaluation and
Acceptance Phase

t No
efinemen

Figure 4: A design paradigm for N-version programming (NVP)

uncontrolled manner. The required diversity, on
the other hand, considers different aspects of di-
versity, and requires them to be implemented into
different program versions. The purpose of such
required diversity is to minimize the opportuni-
ties for common causes of software faults in two
or more versions (e.g., compiler bugs, ambiguous
algorithm statements, etc.), and to increase the
probabilities of significantly diverse approaches to
version implementation.

(2) Evaluate required design diversity. There
are four phases in which design diversity could be
applied: specification, design, coding, and test-
ing. Different implementors, different languages,
different tools, different algorithms, and differ-
ent software development methodologies, includ-
ing phase-by-phase software engineering, proto-
typing, computer-aided software engineering, or
even the “clean room” approach may be chosen
for every phase. Since adding more diversity im-
plies higher cost, it is necessary to evaluate cost-
effectiveness of the added diversity along each di-

mension and phase.

(3) Specify diversity under application con-
straints. After the preceding assessments, the
final combination of diversity can be determined
under specific project constraints. Typical con-
straints are: cost, schedule, and required depend-
ability. This decision presently involves substan-
tial qualitative judgment, since quantitative mea-
sures for design diversity and its cost impact are
not yet developed.

5.3 Software Specification Phase : Install
Error Detection and Recovery Algo-
rit hms

The specification of the member versions, to be
called “V-spec,” needs to state the functional require-
ments completely and unambiguously, while leaving
the widest possible choice of implementations to the
N programming efforts. Sufficient error detection and
recovery algorithms have to be selected and specified
in order to detect errors that could potentially lead to

1 64

system failures. Three aspects are considered below.

(1) Specify the matching features needed by
NVX. Each V-spec rnust prescribe the match-
zng features that are needed by the NVX to ex-
ecute the member versions as an NVS unit in a
fault-tolerant manner The V-spec defines: (a)
the functaons to be implemented, the time con-
straints, the inputs, and the initial state of a
member version; (b) requirements for internal
error detectaon and etceptzon handlang (if any)
within the version; (c) the dzversaty requirements;
(d) the cross-check poanis (“cc-points”) at which
the NVX decision algorithm will be applied to
specified outputs of all versions; (e) the recovery
poznts (“r-points”) at which the NVX can exe-
cute communaty error recovery for a failed version;
(f) the choice of the NVX deczszon algorrthm and
its parameters to be used at each cc-point and r-
point; (g) the response to each possible outcome
of an NVX decision, including absence of consen-
sus; and (h) the safeguards against the Conszstent
Comparason problem [24].

(2) Avoid diversity-limiting factors. The specifi-
cations for simplex software tend to contain guid-
ance not only (‘what” needs to be done, but also
“how” the solution ought to be approachled. Such
specific suggestions of “how” reduce the chances
for diversity among the versions and should be
eliminated from the V-spec. Another potential
diversity-limiting factor is the over-specification
of cc-points and r-points. The installation of cc-
points and r-points enhances error detection and
recovery capability, but it imposes common con-
straints to the programs and may limit design di-
versity, The choice o f the number of these points
and their placement depend on the siize of the
software, the control flow of the application, the
number of variables to be checked and recovered,
and the time overhead allowed to perform these
operations.

(3) Diversify the specification. The use of two
or more distinct V-specs, derived from the same
set of user requirements, can provide extensive
protection against specification errors. TWO ex-
amples are: a set of three V-specs (formal alge-
braic OBJ, semi-formal PDL, and English) that
were derived together [6], and a set of two V-specs
that were derived by two independent efforts [25].
These approaches]provide additional means for
the verification of the V-specs, and oRer diverse
starting points for version implementors.

5.4 Design and Coding Phase : Conduct
NVS Development Protocol

In this phase, multiple programming teams (P-
teams) start to develop the NVS concurrently accord-
ing to the V-spec. The main concern here is to max-
imize the isolation and independence of each version,
and to smooth the overall software development. A co-
ordinating team (C-team) is formed to supervise the
effort. The steps are :

(1) Impose a set of mandatory rules of iso-
lation. The purpose of imposing such rules on
the P-teams is to assure the independent genera-
tion of programs, which means that programming
efforts are carried out by individuals or groups
that do not interact with respect to the program-
ming process. The rules of isolation are intended
to identify and avoid potential “fault leak” links
between the P-teams. The development of the
rules in an ongoing process, and the rules are en-
hanced when a previously unknown “fault leak”
is discovered and its cause pinpointed. Current
isolation rules include: prohibition of any discus-
sion of technical work between P-teams, widely
separated working areas (offices, computer termi-
nals, etc.) for each P-team, use of different host
machines for software development, protection of
all on-line computer files, and safe deposit of tech-
nical documents.

(2) Define a rigorous communication and doc-
umentation (C&D) protocol. The C&D pro-
tocol imposes rigorous control on all necessary in-
formation flow and documentation efforts. The
goal of the C&D protocol is to avoid opportuni-
ties for one P-team to influence another P-team in
an uncontrollable, and unnoticed manner. In ad-
dition, the C&D protocol documents communica-
tions in sufficient detail to allow a search for “fault
leaks” if potentially related faults are discovered
in two or more versions at some later time.

(3) Form a coordinating team (C-team). The
C-team is the executor of the C&D protocol. The
major functions of this team are: (a) to prepare
the final texts of the V-specs and of the test data
sets; (b) to set up the implementation of the C&D
protocol; (c) to acquaint all P-teams with the
NVP process, especially rules of isolation and the
C&D protocol; (d) to distribute the V-specs, test
data sets, and all other information needed by
the P-teams; (e) to collect all P-team inquiries

165

regarding the V-specs, the test data, and all mat-
ters of procedure; (f) to evaluate the inquiries
(with help from expert consultants) and to re-
spond promptly either to the inquiring P-team
only, or to all P-teams via a broadcast; (g) to
conduct formal reviews, to provide feedback when
needed, and to maintain synchronization between
P-teams; (h) to gather and evaluate all required
documentation, and to conduct acceptance tests
for every version.

5.5 Testing Phase : Exploit the Presence
of NVS

A promising application of NVS is its use to rein-
force current software verification and validation pro-
cedures during the testing phase, which is one of the
hardest problems of any software development. The
uses of multiple versions are:

(1) Support for verification procedures. During
software verification, the NVS provides a thor-
ough means for error detection since every dis-
crepaiicy among versions needs to be resolved.
Moreover, it is observed that consensus decision
of the existing NVS may be more reliable than
that of a “gold” model or version that is usually
provided by an application expert.

(2) Opportunities for “back-to-back” testing.
It is possible to execute two or three versions
“back-to-back” in a testing environment. How-
ever, there is a risk that if the versions are brought
together prematurely, the independence of pro-
gramming efforts may be compromised and “fault
leaks” might be created among the versions. If
this scheme is applied in a project, it must be
done by a testing team independent of the P-
teams (e.g., the C-team), and the testing results
should not be revealed to a P-team, if they con-
tain information from other versions that would
influence this P-team.

5.6 Evaluation and Acceptance Phase :
Assess the Dependability of NVS

Evaluation of the software fault-tolerance at-
tributes of an NVS system is performed by means of
analytic modeling, simulation, experiments, or com-
binations of those techniques. The evaluation issues
are:

(1) Define NVS acceptance criteria. The accep-
tance criteria of the NVS system depend on the

validity of the conjecture that residual software
faults in separate versions will cause very few, if
any, similar errors at the same cc-points. These
criteria depend on the applications and must be
elaborated case by case.

(2) Assess evidence of diversity. Diversity
requirements support the objective of indepen-
dence, since they provide more natural isolation
against “fault leaks” between the teams of pro-
grammers. Furthermore, it is conjectured that
the probability of random, independent faults
that produce the same erroneous results in two or
more versions is less when the versions are more
diverse. Another conjecture is that even if re-
lated faults are introduced, the diversity of mem-
ber versions may cause the erroneous results not
to be similar at the NVX decision. Therefore,
evidence and effectiveness of diversity need to be
identified and assessed [26].

(3) Make NVS dependability predictions. For
dependability prediction of NVS, there are two
essential aspects: the choice of suitable software
dependability models, and the definition of quan-
titative measures. Usually, the dependability pre-
diction of the NVS system is compared to that of
the single-version baseline system.

5.7 Operational Phase : Choose and Im-
plement an NVS Maintenance Policy

The maintenance of NVS during its lifetime offers
a special challenge. The two key issues are:

(1) Assure and monitor NVX functionality.
The functionality of NVX should be properly
assured and monitored during the operational
phase. ,-Critical parts of the NVS supervisory sys-
tem NVX could themselves be protected by the
NVP technique. Operational status of the NVX
running NVS should be carefully monitored to as-
sure its functionality. Any anomalies are recorded
for further investigation.

(2) Follow the NVP paradigm for NVS mod-
ification. For the modification of the NVS
unit, the same design paradigm is to be followed,
i.e., a common specification of the modification
should be implemented by independent mainte-
nance teams. The cost of such a policy is higher,
but it is hypothesized that the extra cost in main-
tenance phase, compared with that for single ver-
sion, is relatively lower than the extra cost during

166

the development phase. This is due to two rea-
sons: (a) the achieved NVS reliability is higher
than that of a single version, leaving fewer costly
operational failures to1 be experienced; (13) when
adding new features to the operating software,
the existence of multiple program versions should
make the testing and certification tasks eatsier and
more cost-effective.

6 Conclusion

Fault tolerance is the eissential technique to assure
dependability of systems that are far too complex for
proofs of design correctness or for exhaustive testing.
However, imperfections in the implementatioin of fault
tolerance pose a lethal threat, and the utmost rigor
needs to be applied when fault tolerance is being in-
troduced during system design. The design paradigms
described above are a first step in that direction, and
further steps remain a challenge to the builders of fu-
ture systems that we can justifiably trust to deliver
the required services when they are needed.

Acknowledgements

The year 1995 marks 40 years since the author’s
first professional work on system dependability at
JPL. It has been my good fortune to work with and
learn from many colleagues at the University of Illi-
nois, Caltech’s Jet Propulsion Laboratory and the
UCLA Computer Science Department. The work with
my friends in the IEEE CS Technical Committee on
Fault-Tolerant Computing and IFIP Working Group
10.4 on Dependable Computing and Fault Tolerance
has been a rewarding experience and a source of in-
spiration for this presentation.

References

A. Aviiienis, “Design of Fault-Tolerant Comput-
ers,” A FIPS Conference Proceedings, 1967 Fall
Joint Computer Conference, Vol. 31, ppl. 733-743,
1967.

A. Aviiienis and D. A. Rennels, “The Evolution
of Fault Tolerant Computing at the Jet Propulsion
Laboratory and at UCLA: 1960-1986,” in The Evo-
lution of Fault- Tolerant Computing. Vienna and
New York: Springer-Verlag, 1987.

A. Aviiienis, G. C. Gilley, F. P. Mathur, D. A.
Rennels, J . A. Rohr, and D. K. Rubin, “The STAR

(Self-Testing-and-Repairing) Computer: An In-
vestigation of the Theory and Practice of Fault-
Tolerant Computer Design,” IEEE Trans. Com-
puters, Vol. c-20, pp. 1312-1321, November 1971.

A. Aviiienis, “Architecture of Fault-Tolerant
Computing Systems,” Digest of FTCS-5, Paris,
pp. 3-16, June 1975.

A. Aviiienis, “Fault-Tolerance: The Survival At-
tribute of Digital Systems,” Proceedings of the
IEEE, Vol. 66, pp. 1109-1125, October 1978.

A. Aviiienis and J . P. J . Kelly, “Fault Tolerance
by Design Diversity: Concepts and Experiments,”
Computer, Vol. 17, pp. 67-80, Aug. 1984.

A. Aviiienis and J. C. Laprie, “Dependable Com-
puting: From Concepts to Design Diversity,” Pro-
ceedings of the IEEE, Vol. 74, pp. 629-638, May
1986.

A. Aviiienis, “Software Fault Tolerance,” in In-
formation Processing 89, Proceedings o f the IFIP
11th World Computer Congress , San Francisco,
CA, G.X. Ritter (Ed.), B.V. North Holland: Else-
vier Science Publishers, pp. 491-498. 1989,

A. Aviiienis, “Building Dependable Systems: How
to Keep Up with Complexity,” 25th International
Symposium on Fault- Tolerant Computing, Special
Isssue., Pasadena, CA, pp. 4-14, June 1995.

[lo] M. K. Joseph and A. Aviiienis, “A Fault Toler-
ance Approach to Computer Viruses,” Proceedings
of the 1988 IEEE Symposium on Security and Pri-
vacy, Oakland, CA, pp. 52-58, April 18-21, 1988.

[ll] A. Aviiienis and D. E. Ball, “On the Develop-
ment of a Highly Dependable and Fault Tolerant
Air Traffic Control System,” Computer, Vol. 20,
pp. 84-90, February 1987.

[12] R. Riter, “Modeling and Testing a Critical Fault-
Tolerant Multi-Process System,” Digest of Papers
of FTCS-25, Pasadena, CA, pp. 516-521, June,
1995.

[13] D. Briere and P. Traverse, “AIR-
BUS A320/A330/A340 Electrical Flight Controls,
A Family of Fault-Tolerant Systems”, Digest of
Papers of FTCS-23, Toulouse, France, pp. 616-
623, June, 1993.

[14] A. Aviiienis and L. Chen, “On the implementa-
tion of N-version programming for software fault
tolerance during execution,” Proc. IEEE COMP-
SAC 7’7, pp. 149-155, November 1977.

167

[15] B. Randell. “System structure for software fault-
tolerance,” IEEE Trans. Software Engineering, vol
SE-1, pp. 220-232, June 1975.

[26] M. R. Lyu, Chen J . H., and A. Aviiienis, “Soft-
ware diversity metrics and measurements,” Proc.
IEEE COMPSAC 1992, pp. 69-78, Chicago, Illi-
nois, September 1992.

[16] J . C.Laprie, J . Arlat, C. Beounes, K. Kanoun,
and C. Hourtolle, “Hardware and software fault-
tolerance: definition and analysis of architectural
solutions”, Digest of Papers of FTCS-17, Pitts-
burgh, PA, pp. 116-121, June, 1987.

[17] T. Anderson and R. Kerr. “Recovery blocks in ac-
tion: a system supporting high reliability,” Proc.
2nd International Conference on Software Engi-
neering, pp. 447-457, San Francisco, CA, October
1976.

[18] K. S. Tso and A. Aviiienis, “Community error
recovery in N-version software: a design study with
experimentation,” Digest of 17th FTCS, pp. 127-
133, Pittsburgh, PA, July 1987.

[19] E. Chen and A. Aviiienis, “N-version program-
ming: a fault-tolerance approach to reliability of
software operation,” Digest of 8th FTCS, pp. 3-9,
Toulouse, France, June 1978.

[20] J . Kelly, A. Aviiienis, B. Ulery, B. Swain, M. Lyu,
A. Tail and K. Tso, “Multi-version software devel-
opment,” Proc. IFAC Workshop SAFECOMP’86,
pp. 35-41, Sarlat, France, October 1986.

[all M. R. Lyu and A. Aviiienis. “Assuring design
diversity in N-version software: a design paradigm
for N-version programming,” pp. 197-218. In J . F.
Meyer and R. D. Schlichting, editors, Dependable
Computing for Critical Applications 2, New York:
Springer-Verlag, Wien, 1992.

[22] A. Aviiienis, M. R. Lyu, and W. Schuetz, “In
search of effective diversity: a six-language study
of fault-tolerant flight control software,” Digest of
18th FTCS, pp. 15-22, Tokyo, Japan, June 1988.

[23] A. Aviiienis, “The N-version approach to fault-
tolerant software, IEEE Trans. Software Engineer-
ing, vol SE-11, pp. 1491-1501, December 1985.

[24] S. S. Brilliant, J. C. Knight, and N. G. Leveson,
“The consistent comparison problem in N-version
software,” IEEE Trans. Software Engineering, vol
15, pp. 1481-1485, November 1989.

[25] C. V. Ramamoorthy et all “Application of a
methodology for the development and valida-
tion of reliable process control software,” IEEE
Trans. Software Engineering, vol SE-7, pp. 537-
555, November 1981.

168

