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Abstract 

Fault tolerance is a f u n d a m e n t a l  technique f o r  the 
a t ta inment  of depen,dable computing.  T h i s  paper dis- 
cusses a general paradigm for the  design of faul t -  
tolerant s y s t e m s  and illustrates it by a design paradigm 
for faul t - tolerant  software. 

1 Introduction 

Today we are witnessing an explosive growth in the 
complexity of contemporary computing and communi- 
cation systems. Concurrently, one fundamental prin- 
ciple is becoming more and more evident: the more 
good our sophisticated computing and communication 
systems can contribute to the wellbeing and the qual- 
ity of life of the human race, the more harm they can 
cause when they fail to perform their functions, or per- 
form them incorrectly. Let us consider the control of 
air, rail, and subway traffic, the emergency response 
systems of our cities, the Aight controls of airliners, 
the safety systems of nuclear power plants, and most 
of all, the rapidly growing dependence of health care 
delivery on high-performance computing and commu- 
nications. 

At the same time, the challenges to dependable op- 
eration are also growing in scope and severity. Design 
faults cause system crashes at the most inopportune 
times. Complex systems suffer stability problems due 
to unforeseen interactions of overlapping fault events 
and mismatches of defense mechanisms. “Hackers” 
and individuals with criminal intent invade systems 
and cause disruptions, misuse, and damage. Accidents 
lead to the severing of communications links that serve 
entire regions. Finally, it may be foreseen that “info- 
terrorists” will attempt to cause similar damage with 
malicious intent. 

In the presence of all these threats, fault tolerance 
is the essential guarantee that our vitally important 
systems will not, figuratively speaking, turn against 

their builders and users by failing to serve as expected 
because of physical, design, or human-machine inter: 
action faults, or even because of malicious attempts 
to disrupt their essential services. 

However, introducing fault tolerance into a com- 
plex system is a difficult task. Past experience has 
shown that fault tolerance is most effective when it is 
an integral function of every subsystem as well as a 
hierarchically organized function of the entire system. 

This paper describes such a structured approach 
to the design of fault-tolerant systems, with emphasis 
on the tolerance of software design faults by means of 
design diversity. 

2 Systematic Design of Fault-Tolerant 
Systems 

The concept of fault tolerance originally appeared 
in technical literature in 1967 as follows [l] 

“We say  that  a s y s t e m  i s  faul t - tolerant  i f  its pro- 
grams can be properly executed despite the  occurrence 
of logic faults.” 

The prime motivation for the creation of the con- 
cept was the new challenge of building unmanned 
spacecraft for interplanetary exploration that was as- 
signed by the U S .  National Aeronautics and Space 
Administration (NASA) to Caltech’s Jet Propulsion 
Laboratory (JPL) in late 1958. Mission lengths of up 
to ten years and more were being considered, and on- 
board computing was a prerequisite for their success. 
Design of computers that would survive a journey of 
several years and then deliver their peak performance 
at a distant planet was an entirely unexplored disci- 
pline. 

Existing theoretical studies of the long-life prob- 
lem indicated that large numbers of spare subsystems 
offered a promise of longevity, given that all spares 
could be successfully employed in sequence. The JPL 
problem was to translate the idealized “spare replace- 
ment” system model into a flightworthy implementa- 
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tion of a spacecraft guidance and control computer. 
A proposal to design such a computer, called “A Self- 
Testing-And-Repairing System for Spacecraft Guid- 
ance and Control,’’ and designated by the acronym 
“STAR” was presented in October, 1961 [2], and the 
research effort continued for more than ten years, cul- 
minating with the construction and demonstration of 
the laboratory model of the JPL- STAR computer [3]. 
A flight model of the JPL-STAR was designed for a 
10-15 year space mission, lbut its building was halted 
when NASA discontinued the Graind Tour mission for 
which it was intended. 

The longevity requirement led to the study of all 
accessible engineering solutions and theoretical inves- 
tigations of reliability enhancement. The variety of 
existing theories and techiniques motivated the defi- 
nition of the unifying concept of fault tolerance that 
merged diverse approaches into a cohesive view of all 
system survival attributes, and greatly facilitated the 
design of the JPL-STAR computer. 

During the next two decades - the 70’s and the 80’s 
- we have seen a continuing expansion of the universe 
of faults that are to be tolerated by fault- tolerant sys- 
tems. The original concept dealt with transient and 
permanent logic faults of physical origin. Faults due 
to human mistakes in design were added when the 
growing complexity of soi‘tware and of logic on VLSI 
chips made the removal of all design faults prior to 
operational use not certain. Experience also led to 
the addition of interaction faults, inadvertently intro- 
duced by humans during the operation or maintenance 
of a computer. 

Finally, consequences of maliciious actions intended 
to alter or to stop the service being delivered by a sys- 
tem were recognized as being deliberate design faults. 
This concept establishes a. common ground for the uni- 
fied treatment of security and fault tolerance concerns 
in system design, The assurance of full compatibility 
and integration of security and fault tolerance tech- 
niques is a major challenge for contemporary design- 
ers. 

In retrospect, it may be said that the concept of 
fault tolerance has served well during the past quar- 
ter of a century in facilitating the appearance of suc- 
cessively more dependable systems for the control and 
support of various essential functions of contemporary 
society: computing and communications, transporta- 
tion, nuclear power, financial transactions, health care 
delivery, etc. 

Thirty years of experience have shown that the 
building of dependable systems requires the balanced 
use of both fault avoidance and fault tolerance tech- 

niques. An imbalance in either direction leads to an 
ineffective use of resources and severely limits the at- 
tainable dependability. The definition of the concept 
of fault tolerance initiated the evolution of principles 
for the systematic design of fault-tolerant systems. 
The specification and design of the STAR computer 
at JPL involved much improvisation and experimen- 
tation with design alternatives. It became apparent 
that the lessons learned during this process could serve 
as the foundation for a more orderly approach that 
would utilize a set of guidelines for the choice of fault 
masking, error detection, fault diagnosis, and system 
recovery techniques. 

The first effort to devise such guidelines was pre- 
sented at the 1967 Fall Joint Computer conference in 
the paper “Design of Fault-Tolerant Computers” [l]. 
That paper first introduced the term “fault-tolerant 
computer” and the concept of “fault tolerance” into 
technical literature. It also presented a classification 
of faults and outlined the alternate forms of masking, 
diagnosis, and recovery techniques along with some 
criteria for choices between “massive” (i.e., masking) 
and “selective” application of redundancy. The design 
of the JPL- STAR computer was used to illustrate the 
application of these criteria in choosing the fault tol- 
erance techniques for a spacecraft computer that had 
long life and autonomy requirements with strict weight 
and power constraints. 

3 A Design Paradigm 

The 1967 paper was the first of a sequence of publi- 
cations that formulated an evolving view of how to 
attain dependable computing by the structured in- 
troduction of fault tolerance during system design. 
Two different classes of faults - those due to physical 
causes and those due to human mistakes, oversights, 
and deliberate actions are considered. This evolving 
view was presented in a series of papers on guide- 
lines for fault-tolerant system design and implemen- 
tation, supported by specific discussions of the tech- 
niques, scope, and aims of fault tolerance and fault 
avoidance in hardware, software, communication, and 
man/machine interfaces. Milestones of this series have 
been the papers: [4, 5, 6, 7,  8, 91. Strong motivation 
for the effort came from the increasing number of suc- 
cessful fault-tolerant systems that offered new design 
insights and more operational experience. 

The unifying theme of the above referenced work 
over the past three decades has been the evolution 
of a design paradigm for fault-tolerant systems that 
guides the designer to consider fault tolerance as 

159 



a fundamental issue throughout the design process. 
The word “paradigm” is used here in the dictionary 
sense of “pattern, example, model” in place of the 
word “methodology” that implies a study of methods, 
rather than a set of guidelines with illustrations that 
is discussed here. 

Taken in order of appearance, the papers show a 
progressive refinement of concepts and an expansion 
of the scope to include the tolerance of “human made” 
design and interaction faults. Other recently intro- 
duced themes are the balancing of performance and 
fault tolerance objectives during system par ti tioning , 
and the integration of subsystem recovery procedures 
into a multi-level recovery hierarchy. Strong emphasis 
has been directed to the application of design diversity 
in a multichannel system in order to attain tolerance 
of design faults, [6, 81, including the tolerance of de- 
liberate design faults [lo]. 

Fault tolerance has now been recognized as the key 
prerequisite of dependability for very large systems, 
such as the FAA’s Advanced Automation System for 
air traffic control [ll]. Because of their great func- 
tional complexity, such systems pose the most severe 
challenge yet in the design of fault-tolerant systems. 
The introduction of fault tolerance into very complex, 
distributed systems is most likely to succeed if a me- 
thodical approach is employed. This approach begins 
with the initial design concepts and requires the col- 
laboration of performance and fault tolerance archi- 
tects during the critical tasks of system partitioning, 
function allocation, and definition of inter- subsys- 
tem communication and control. Such a highly struc- 
tured design approach is presented here as the design 
paradigm for fault-tolerant systems. 

The design paradigm is an abstraction and refine- 
ment of observed design processes, in which the var- 
ious steps often overlap. Its objective is to minimize 
the probability of oversights, mistakes, and inconsis- 
tencies in the process of meeting the specified goals of 
dependable service with respect to defined classes of 
faults by means of the chosen implementation of fault 
tolerance. The paradigm is stated for the implemen- 
tation of a new design. If the goal is the improvement 
of an existing design, then each step is a reexamina- 
tion, possibly leading to changes of previously made 
decisions. 

The paradigm partitions the system building pro- 
cess into three activities: specification, design, and 
evaluation. Design consists of system partitioning, 
subsystem design, and system integration steps. Eval- 
uation takes place during and after each design step. 
The principal steps of the paradigm are summarized 

SPECIFICATION 

Dependability of Service 
Classes of Expected Faults 
Evaluation Methods 

DESIGN & EVALUATION 

System Partitioning: 
* Choose Containment Boundaries 
* Allocate Redundant Resources 
* Decide Design Diversity 
* Assign Global F.T. Functions 
* Set Subsystem Goals . - - - - - - - - - - - - - - -  
Subsystem Design: 

* Error Detection 
* Fault Diagnosis 
* Error Recovery 
* Fault Removal 
* Recovery Validation 
* Evaluation - - - - - - - - - - - - - - - -  
Systemwide Integration: 

* Qualitative Evaluation 
* Simulations 
* Prototyping 
* Experimentation 
* Quantitative Evaluation 

Figure 1: A Design Paradigm 

in Figure 1, and a detailed discussion is presented in 
[91. 

4 Software Design Diversity: A Struc- 
tured Approach 

At the present time it is becoming quite apparent 
that design faults are and will continue to be the most 
costly class of faults. Recent examples are the $475 
million design fault in the Pentium microprocessor, 
the drastic reductions of the $4.8 billion AAS system 
[ll], and major computer systems (for example, the 
$51 million state of California DMV database system 
and the $74 million Los Angeles County medical in- 
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formation system) that never became operational be- 
cause of an excessive number of software design faults. 

Design diversity is a fundamental solution to =sure 
fault tolerance of design faults [6]. This section sum- 
marizes the principal concepts of design diversity as it 
is employed to attain software fault tolerance. 

We say that a unit of softSWare (module, CSCI, etc.) 
is faul t - tolerant  (abbreviated “f-t”) if it can continue 
delivering the required service, i.e., supply the ex- 
pected outputs with the expected timeliness, after dor- 
m a n t  (previously undiscovered, or not removed) im- 
perfections, called software ,faults, have become active 
by producing errors in program flow, internatl state, 
or results generated within the software unit. When 
the errors disrupt (alter, halt, or delay) the service 
expected from the software unit, we say that it has 
failed for the duration of service disruption. A non- 
fault-tolerant software unit, is called a szmplex unit. 

Multiple, redundant computing channels (or 
“lanes”) have been widely used in sets of N = 2, 3,  or 
4 to build f-t hardware syistems. ‘To make a simplex 
software unit fault-tolerant, the corresponding solu- 
tion is to add one, two, or more simplex units to form 
a set of N 2 2 units. The redundant units are in- 
tended to compensate for, or mask a failed software 
unit when they are not affected by software faults that 
cause similar errors at cross-check points. The critical 
difference between multiple-channel hardware systems 
and f-t software units is that the simple replication of 
one design that is effective against random physical 
faults in hardware is not :sufficient for software fault 
tolerance. Copying software will also copy the dor- 
mant software faults; therefore each simplex unit in 
the f-t set of N units needs to be built separately and 
independently of the other members of the net. This 
is the concept of software design diversity [6]. 

Design diversity is applicable to tolerate design 
faults in hardware as well. Some multichannel sys- 
tems with diverse hardware and software have been 
built; they include the flight control computers for the 
Boeing 777 [12], and the Airbus [13] airliners. Vari- 
ations of the diversity concept have been widely em- 
ployed in technology and in human affairs. Examples 
in technology are: a mechanical linkage backing up an 
electrical system to operate aircraft control surfaces, 
an analog system standing by for a primary digital sys- 
tem that guides spacecraft launch vehicles, a satellite 
link backing up a fiber-optic cable, etc. In human ac- 
tivities we have the pilot-copilot-flight engineer teams 
in cockpits of airliners, two- or three-surgeon teams at 
difficult surgery, and similar arrangements. 

A set of N 2 2 diverse simplex units alone is not 

fault-tolerant; the simplex units need an execution en- 
v ironment  (EE) for f-t operation. Each simplex unit 
also needs fault tolerance features that allows it to 
serve as a m e m b e r  of the f-t software unit with sup- 
port of the EE. The simplex units and the EE have 
to meet three requirements: (1) the EE must provide 
the support functions to execute the N 2 2 member 
units in a fault-tolerant manner; (2) the specifications 
of the individual member units must define the fault 
tolerance features that they need for f-t operation sup- 
ported by the EE; (3) the best effort must be made 
to minimize the probability of an undetected or unre- 
coverable failure of the f-t software unit that would be 
due to a single cause. 

The evolution of techniques for building f-t software 
out of simplex units has taken two directions. The two 
basic models of f-t software units are N - v e r s i o n  soh- 
ware (NVS)[14], shown in Figure 2 and recovery blocks 
(RB)[15] shown in Figure 3. The common property of 
both models is that two or more diverse units (called 
versions in NVS, and alternates  and acceptance t e s t s  
in RB) are employed to form a f-t software unit. The 
most fundamental difference is the method by which 
the decision is made that determines the outputs to 
be produced by the f-t unit. The NVS approach em- 
ploys a generic decision algorzthm that is provided by 
the EE and looks for a consensus of two or more out- 
puts among N member versions. The RB model ap- 
plies the acceptance tes t  to the output of an individ- 
ual alternate; this acceptance test must by necessity 
be specific for every distinct service, i.e., it is custom- 
designed for a given application, and is a member of 
the RB f-t software unit, but not a part of the EE. 

N = 2 is the special case of fail-safe software units 
with two versions in NVS, and one alternate with one 
acceptance test in RB. They can detect disagreements 
between the versions, or between the alternate and 
the acceptance test, but cannot determine a consen- 
sus in NVS, or provide a backup alternate in RB. Ei- 
ther a safe shutdown is executed, or a supplementary 
recovery process must be invoked in case of a disagree- 
ment. The use of two or more diverse 2-version soft- 
ware units leads to the ” N  self-checking programming” 
approach[l6]. 

Both RB and NVS have evolved procedures for er- 
ror recovery. In RB, backward recovery is achieved 
in a hierarchical manner through a nest ing of RBs, 
supported by a recovery cache [17] that is part of the 
EE. In NVS, forward recovery is done by the use of 
the communi t y  error recovery algorithm [I$] that is 
supported by the specification of recovery points  and 
by the decision algorithm of the EE. Both recovery 
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Figure 2: The N-version software (NVS) model with n = 3 

Figure 3: The recovery block (RB) model 

methods have limitations: in RB, errors that are not 
detected by an acceptance test are passed along and 
do not trigger recovery; in NVS, recovery will fail if a 
majority of versions have the same erroneous state at 
the recovery point. 

5 A Design Paradigm for N-Version 
Software 

The effort to develop a systematic process (a 
paradigm) for the building of multiple-version software 
units that tolerate software faults, and function analo- 
gously to majority-voted multichannel hardware units 
was initiated at UCLA in early 1975 as a part of re- 
search in reliable computing that was started in 1961 
[2], Table 1 summarizes the investigations conducted 
at UCLA since 1975. 

The experience that had been accumulated during 
the first four investigations at UCLA [6, 19, 201 led 
to the rigorous definition and application of a set of 
guidelines, called the NVS Design Paradigm [21] dur- 
ing the subsequent Six-Language NVP project [22]. 
The paradigm as it was further refined during this 
project, is summarized in Figure 4 and described in 
this section. The purpose of the paradigm is to inte- 

grate the unique requirements of NVP with the con- 
ventional steps of software development methodology. 
The word “paradigm,” used in the dictionary sense, 
means “pattern, example, model,” presented here as 
a set of guidelines and rules with illustrations. 

The objectives of the design paradigm are: (1) to 
reduce the possibility of oversights, mistakes, and in- 
consistencies in the process of software development 
and testing; (2) to eliminate most perceivable causes 
of related design faults in the independently generated 
versions of a program, and to identify causes of those 
which slip through the design process; (3) to minimize 
the probability that two or more versions will produce 
similar erroneous results that coincide in time for a 
decision (consensus) action of NVX. 

The application of a proven software development 
method, or of diverse methods for individual versions, 
is the foundation of the NVP paradigm. The chosen 
method is supplemented by procedures that aim: (1) 
to attain suitable isolation and independence (with 
respect to software faults) of the N concurrent ver- 
sion development efforts, (2) to encourage potential 
diversity among the N versions of an NVS unit, and 
(3) to elaborate efficient error detection and recovery 
mechanisms. The first two procedures serve to reduce 
the chances of related software faults being introduced 
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Table 1: N-version programming studies at UCLA 

Diversity Language Versions Size 

into two or more versions via potential “fault leak” 
links, such as casual conversations or mail exchanges, 
common flaws in training or in manuals, use of the 
same faulty compiler, etc. The last procedure serves 
to increase the possibilities of discovering manifested 
errors before they can cause an incorrect decision and 
consequent failure. 

In Figure 4, the NVP paradigm is shown to be com- 
posed of two categories of activities. The first cate- 
gory, represented by boxes and single-line arrows at 
the left, contains standard software development pro- 
cedures. The second category, represented by ovals 
and double-line arrows at the right, specifies the con- 
current implementation of various fault tolerance tech- 
niques unique to N-version programming. The de- 
scriptions of the incorporated activities and guidelines 
are presented next. 

5.1 System Requirement Phase : Deter- 
mine Method of NVS Supervision 

The NVS Execution Ehvironment has to be deter- 
mined in the system requirement phase in order to 
evaluate the overall system impact and to provide re- 
quired support facilities. There are three aspects of 
this step: 

(1) Choose NVS execution method and allo- 
cate resources. The overall system architec- 
ture is defined during system requirement phase, 
and the software configuration items are identi- 
fied. The number of software versions and their 
interaction is determined. 

(2) Develop support mechanisms and tools. 
An existing NVX may be adapted, or a new one 
developed according to the application. The NVX 
may be implemented in software, in hardware, 
or in a combination of both. The basic func- 

tions that the NVX must provide for NVS exe- 
cution are: (a) the decision algorithm, or set of 
algorithms; (b) assurance of input consistency for 
all versions; (c) interversion communications; (d) 
version synchronization and enforcement of tim- 
ing constraints; (e) local supervision for each ver- 
sion; (f) the global executive and decision func- 
tion for version error recovery; and (g) a user 
interface for observation, debugging, injection of 
stimuli, and data collection during N-version ex- 
ecution of applications programs. The nature of 
these functions was extensively illustrated in the 
descriptions of the DEDIX testbed system [23]. 

(3) Select hardware architecture. Special dedi- 
cated hardware processors may be needed for the 
execution of NVS systems, especially when the 
NVS supporting environments need to operate 
under stringent requirements (e.g., accurate su- 
pervision, efficient CPUs, etc.). The options of 
integrating NVX with hardware fault tolerance in 
a hybrid configuration also must be considered. 

5.2 Software Requirement Phase : Select 
Soft ware Diver sit y Dimensions 

The major reason for specifying software diversity 
is to eliminate the commonalities between the sepa- 
rate programming efforts, as they have the potential 
to cause related faults among the multiple versions. 
Three steps of the selection process are identified. 

(1) Assess random diversity vs. required di- 
versity. Different dimensions of diversity could 
be achieved either by randomness or by require- 
ment. The random diversity, such as that pro- 
vided by independent personnel, causes dissim- 
ilarity because of an individual’s training and 
thinking process. The diversity is achieved in an 
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Figure 4: A design paradigm for N-version programming (NVP) 

uncontrolled manner. The required diversity, on 
the other hand, considers different aspects of di- 
versity, and requires them to be implemented into 
different program versions. The purpose of such 
required diversity is to minimize the opportuni- 
ties for common causes of software faults in two 
or more versions (e.g., compiler bugs, ambiguous 
algorithm statements, etc.), and to increase the 
probabilities of significantly diverse approaches to 
version implementation. 

(2) Evaluate required design diversity. There 
are four phases in which design diversity could be 
applied: specification, design, coding, and test- 
ing. Different implementors, different languages, 
different tools, different algorithms, and differ- 
ent software development methodologies, includ- 
ing phase-by-phase software engineering, proto- 
typing, computer-aided software engineering, or 
even the “clean room” approach may be chosen 
for every phase. Since adding more diversity im- 
plies higher cost, it is necessary to evaluate cost- 
effectiveness of the added diversity along each di- 

mension and phase. 

(3) Specify diversity under application con- 
straints. After the preceding assessments, the 
final combination of diversity can be determined 
under specific project constraints. Typical con- 
straints are: cost, schedule, and required depend- 
ability. This decision presently involves substan- 
tial qualitative judgment, since quantitative mea- 
sures for design diversity and its cost impact are 
not yet developed. 

5.3 Software Specification Phase : Install 
Error Detection and Recovery Algo- 
rit hms 

The specification of the member versions, to be 
called “V-spec,” needs to state the functional require- 
ments completely and unambiguously, while leaving 
the widest possible choice of implementations to the 
N programming efforts. Sufficient error detection and 
recovery algorithms have to be selected and specified 
in order to detect errors that could potentially lead to 
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system failures. Three aspects are considered below. 

(1) Specify the matching features needed by 
NVX. Each V-spec rnust prescribe the match- 
zng features that are needed by the NVX to ex- 
ecute the member versions as an NVS unit in a 
fault-tolerant manner The V-spec defines: (a) 
the functaons to be implemented, the time con- 
straints, the inputs, and the initial state of a 
member version; (b) requirements for internal 
error detectaon and etceptzon handlang (if any) 
within the version; (c) the dzversaty requirements; 
(d) the cross-check poanis (“cc-points”) at which 
the NVX decision algorithm will be applied to 
specified outputs of all versions; (e) the recovery 
poznts (“r-points”) at which the NVX can exe- 
cute communaty error recovery for a failed version; 
(f) the choice of the NVX deczszon algorrthm and 
its parameters to be used at each cc-point and r- 
point; (g) the response to each possible outcome 
of an NVX decision, including absence of consen- 
sus; and (h) the safeguards against the Conszstent 
Comparason problem [24]. 

(2) Avoid diversity-limiting factors. The specifi- 
cations for simplex software tend to contain guid- 
ance not only (‘what” needs to be done, but also 
“how” the solution ought to be approachled. Such 
specific suggestions of “how” reduce the chances 
for diversity among the versions and should be 
eliminated from the V-spec. Another potential 
diversity-limiting factor is the over-specification 
of cc-points and r-points. The installation of cc- 
points and r-points enhances error detection and 
recovery capability, but it imposes common con- 
straints to the programs and may limit design di- 
versity, The choice o f  the number of these points 
and their placement depend on the siize of the 
software, the control flow of the application, the 
number of variables to be checked and recovered, 
and the time overhead allowed to perform these 
operations. 

(3) Diversify the specification. The use of two 
or more distinct V-specs, derived from the same 
set of user requirements, can provide extensive 
protection against specification errors. TWO ex- 
amples are: a set of three V-specs (formal alge- 
braic OBJ, semi-formal PDL, and English) that 
were derived together [6], and a set of two V-specs 
that were derived by two independent efforts [25]. 
These approaches ]provide additional means for 
the verification of the V-specs, and oRer diverse 
starting points for version implementors. 

5.4 Design and Coding Phase : Conduct 
NVS Development Protocol 

In this phase, multiple programming teams (P- 
teams) start to develop the NVS concurrently accord- 
ing to the V-spec. The main concern here is to max- 
imize the isolation and independence of each version, 
and to smooth the overall software development. A co- 
ordinating team (C-team) is formed to supervise the 
effort. The steps are : 

(1) Impose a set of mandatory rules of iso- 
lation. The purpose of imposing such rules on 
the P-teams is to assure the independent genera- 
tion of programs, which means that programming 
efforts are carried out by individuals or groups 
that do not interact with respect to the program- 
ming process. The rules of isolation are intended 
to identify and avoid potential “fault leak” links 
between the P-teams. The development of the 
rules in an ongoing process, and the rules are en- 
hanced when a previously unknown “fault leak” 
is discovered and its cause pinpointed. Current 
isolation rules include: prohibition of any discus- 
sion of technical work between P-teams, widely 
separated working areas (offices, computer termi- 
nals, etc.) for each P-team, use of different host 
machines for software development, protection of 
all on-line computer files, and safe deposit of tech- 
nical documents. 

(2) Define a rigorous communication and doc- 
umentation (C&D) protocol. The C&D pro- 
tocol imposes rigorous control on all necessary in- 
formation flow and documentation efforts. The 
goal of the C&D protocol is to avoid opportuni- 
ties for one P-team to influence another P-team in 
an uncontrollable, and unnoticed manner. In ad- 
dition, the C&D protocol documents communica- 
tions in sufficient detail to allow a search for “fault 
leaks” if potentially related faults are discovered 
in two or more versions at some later time. 

(3) Form a coordinating team (C-team). The 
C-team is the executor of the C&D protocol. The 
major functions of this team are: (a) to prepare 
the final texts of the V-specs and of the test data 
sets; (b) to set up the implementation of the C&D 
protocol; (c) to acquaint all P-teams with the 
NVP process, especially rules of isolation and the 
C&D protocol; (d) to distribute the V-specs, test 
data sets, and all other information needed by 
the P-teams; (e) to collect all P-team inquiries 
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regarding the V-specs, the test data, and all mat- 
ters of procedure; (f) to evaluate the inquiries 
(with help from expert consultants) and to re- 
spond promptly either to the inquiring P-team 
only, or to all P-teams via a broadcast; (g) to 
conduct formal reviews, to provide feedback when 
needed, and to maintain synchronization between 
P-teams; (h) to gather and evaluate all required 
documentation, and to conduct acceptance tests 
for every version. 

5.5 Testing Phase : Exploit the Presence 
of NVS 

A promising application of NVS is its use to rein- 
force current software verification and validation pro- 
cedures during the testing phase, which is one of the 
hardest problems of any software development. The 
uses of multiple versions are: 

(1) Support for verification procedures. During 
software verification, the NVS provides a thor- 
ough means for error detection since every dis- 
crepaiicy among versions needs to be resolved. 
Moreover, it is observed that consensus decision 
of the existing NVS may be more reliable than 
that of a “gold” model or version that is usually 
provided by an application expert. 

(2) Opportunities for “back-to-back” testing. 
It is possible to execute two or three versions 
“back-to-back” in a testing environment. How- 
ever, there is a risk that if the versions are brought 
together prematurely, the independence of pro- 
gramming efforts may be compromised and “fault 
leaks” might be created among the versions. If 
this scheme is applied in a project, it must be 
done by a testing team independent of the P- 
teams (e.g., the C-team), and the testing results 
should not be revealed to a P-team, if they con- 
tain information from other versions that would 
influence this P-team. 

5.6 Evaluation and Acceptance Phase : 
Assess the Dependability of NVS 

Evaluation of the software fault-tolerance at- 
tributes of an NVS system is performed by means of 
analytic modeling, simulation, experiments, or com- 
binations of those techniques. The evaluation issues 
are: 

(1) Define NVS acceptance criteria. The accep- 
tance criteria of the NVS system depend on the 

validity of the conjecture that residual software 
faults in separate versions will cause very few, if 
any, similar errors at the same cc-points. These 
criteria depend on the applications and must be 
elaborated case by case. 

(2) Assess evidence of diversity. Diversity 
requirements support the objective of indepen- 
dence, since they provide more natural isolation 
against “fault leaks” between the teams of pro- 
grammers. Furthermore, it is conjectured that 
the probability of random, independent faults 
that produce the same erroneous results in two or 
more versions is less when the versions are more 
diverse. Another conjecture is that even if re- 
lated faults are introduced, the diversity of mem- 
ber versions may cause the erroneous results not 
to be similar at the NVX decision. Therefore, 
evidence and effectiveness of diversity need to be 
identified and assessed [26]. 

(3) Make NVS dependability predictions. For 
dependability prediction of NVS, there are two 
essential aspects: the choice of suitable software 
dependability models, and the definition of quan- 
titative measures. Usually, the dependability pre- 
diction of the NVS system is compared to that of 
the single-version baseline system. 

5.7 Operational Phase : Choose and Im- 
plement an NVS Maintenance Policy 

The maintenance of NVS during its lifetime offers 
a special challenge. The two key issues are: 

(1) Assure and monitor NVX functionality. 
The functionality of NVX should be properly 
assured and monitored during the operational 
phase. ,-Critical parts of the NVS supervisory sys- 
tem NVX could themselves be protected by the 
NVP technique. Operational status of the NVX 
running NVS should be carefully monitored to as- 
sure its functionality. Any anomalies are recorded 
for further investigation. 

(2) Follow the NVP paradigm for NVS mod- 
ification. For the modification of the NVS 
unit, the same design paradigm is to be followed, 
i.e., a common specification of the modification 
should be implemented by independent mainte- 
nance teams. The cost of such a policy is higher, 
but it is hypothesized that the extra cost in main- 
tenance phase, compared with that for single ver- 
sion, is relatively lower than the extra cost during 
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the development phase. This is due to two rea- 
sons: (a) the achieved NVS reliability is higher 
than that of a single version, leaving fewer costly 
operational failures to1 be experienced; (13) when 
adding new features to the operating software, 
the existence of multiple program versions should 
make the testing and certification tasks eatsier and 
more cost-effective. 

6 Conclusion 

Fault tolerance is the eissential technique to assure 
dependability of systems that are far too complex for 
proofs of design correctness or for exhaustive testing. 
However, imperfections in the implementatioin of fault 
tolerance pose a lethal threat, and the utmost rigor 
needs to be applied when fault tolerance is being in- 
troduced during system design. The design paradigms 
described above are a first step in that direction, and 
further steps remain a challenge to the builders of fu- 
ture systems that we can justifiably trust to deliver 
the required services when they are needed. 
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