
IEEE TRANSACITONS ON SOFTWARE ENGINEERING. VOL. 20, NO. 12, DECEMBER 1994

Observer-A Concept for Formal On-Line
Validation of Distributed Systems

Michel Diaz, Senior Member, IEEE, Guy Juanole, and Jean-Pierre Courtiat, Member, IEEE

Abstracr- This paper proposes the observer concept for de-
signing self-checking distributed systems, i.e., systems that detect
erroneous behaviors as soon as errors act at some observable
output level. The approach provides a solution to build systems
whose on-line behavior is checked against a formal model derived
from a formal description. In other words, the actual implemen-
tation is continuously checked against a reference, this reference
being a formal and verified model of some adequately selected
aspects of the system behavior. The corresponding methodology,
the software concepts and some applications of the observer are
presented. General definitions are given first that theoretically de-
fine self-checking systems as systems that include and implement
complete on-line validation. The basic concepts and the difficulties
to implement self-checking validation are then given. In order
to provide simple implementations, the previous definitions will
be weakened to design quasi self-checking observers for LAN’s
using a broadcast service. Three specific applications are given
to illustrate the proposed approach: testing a virtual ring MAC
protocol, checking the Link and Transport layers in an industrial
LAN, and managing a complete OS1 layering, from layer 2 to
layer 6 in an open system architecture.

Index Temsaistributed systems, run-time validation, testing,
verification, Petri nets based models, performance measurements,
layered distributed architectures, formal description techniques.

I. INTRODUCTION

ECENT developments lead to the design of complex R distributed systems where functional and performance
validations are of high importance. Designing such systems
features, as an ultimate goal, the validation of actual imple-
mentations, which consists in certifying the conformance of
the implemented system with respect to some predetermined
specifications. The conformance is usually carried out by
defining, during the design, a set of adequate test suites
that are applied to the system that will then react to these
specific stimuli. Of course, such testing experiments are always
performed while stopping the normal behavior of the system.

Moreover, as faults or errors of any sort can occur during
the life of the system, it is obvious that they cannot be tested
at the very moment they occur by using those conventional
approaches. This is because run-time checking of the effects
of faults on system behaviors needs to be carried-out contin-
uously. Enforcing on-line testing would allow one to detect,
during normal behavior and as soon as they occur at some
observable level, the influence of hardware failures, software

Manuscript received July, 1989; revised May, 1993.
The authors are with the Laboratoire d’Analyse et d’Architecture des

Systkmes, Centre National de la Recherche Scientifique, 3 1077 Toulouse-
Cedex, France.

IEEE Log Number 9406729.

bugs or human malfunctions. As checking is continuous, it
is also able to provide a simple way to obtain experimental
figures about actual system reliability and actual system per-
formances. This paper aims at proposing the observer concept
for validating run-time behaviors of distributed systems, and
more precisely for designing self-checking communicating
systems, i.e., systems that detect erroneous behaviors as soon
as errors act at some observable output level. The given
approach also provides a way to design systems whose on-
line behavior is checked against a formal model derived from
a formal description. In other words, the actual implementation
is continuously checked against a reference, this reference
being a formal and verified model.

In distributed systems, distributed processes run in parallel
on several distant processors, and the interactions taking
place between these processes can be very complex. Hence,
enforcing on-line behavioral validation is quite challenging
and important: distributed architectures are very difficult to
define, build, and test, due to their geographical distances and
intricate interactions. Because of their interests, this paper only
addresses distributed systems and shows how their interactions
can be formally described and processed in order to derive
formal run-time checking.

The observer concept was first proposed for parallel, non
distributed systems [11, and afterwards extended to distributed
systems [17]. This paper generalises the previous work by
presenting a general design methodology, applicable to any
distributed system. The corresponding approach starts from
the formal concept of self-checking systems. Unfortunately,
on-line self-checking systems appear to be quite difficult to
implement. It is then shown how the formal on-line checking
definitions can be weakened in order to lead to a real and
simple implementation of an on-line observer. Developing
the observer provides an efficient method for designing quasi
self-checking distributed systems. It also includes the devel-
opment of a implementation support tool that proved to be
able to debug, observe and evaluate the system behavior.
The designed on-line checked system is made up of two
parts: a worker, which is the actual implementation, and an
observer, which is defined as a design of selected distributed
mechanisms. As illustrative examples, some applications in
industrial distributed control and office automation networks
will be given. Experiments on another important application
area, electronic switching systems, appear in [2].

Section I1 discusses the general validation problem in dis-
tributed systems and gives the main principles that define
formal observation and formal checking of communicating

0098-5589/94$04.00 0 1994 IEEE

DIAZ et al.: FORMAL ON-LINE VALIDATION OF DISTRIBUTED SYSTEMS 90 1

systems. It defines in the most general way on-line self-
checking systems, introduces the observer concept, and em-
phasises its interests for on-line checking. The conceptual
difficulties are then discussed and a weaker solution is pro-
posed that leads to the concept of quasi self-checking systems.
It is then shown how the needed formal observers can be
designed and easily implemented to validate the behavior of
multilayered LAN’s based on the use of a broadcast service.

Section I11 gives two significant areas of application of the
observer. The first one presents a protocol observer for a local
network, REBUS, used in order to check a MAC (Media
Access Control) layer, a token-bus protocol, and reports some
significant results. The design of an open multilayered protocol
observer is given in the second part and applied to two specific
LAN’s of interest: a multilevel industrial LAN and an open
office automation LAN. These multilayered observers are able
to separately consider each of the protocol layers and provide,
as main facilities, run-time checking and performance analysis.

11. FORMAL OBSERVATION OF DISTRIBUTED SYSTEMS

The key to distributed software quality is reliability [4].
Two aspects must be investigated in order to design correct
software. The first one concems the reliability with which the
software specifications are adequately described and correctly
implemented in the actual implementation; the second one
deals with checking, during run time, the correct behavior
of the implemented system in actual environments including
hardware failures, software bugs and human errors. This paper
also gives an approach that relates these two design phases.

Usually, distributed systems are tested by suspending either
the whole system operation or part of it [5]. Starting with
hardware, different studies have been carried out in order to
handle errors on-line, at run time. Those studies are based
on the concepts of self-checking systems or, more generally,
on the concepts of distinctness [8]-[lo], where distinctness
globally means altemative ways of performing a specific task,
by using as far as possible separate hardware and different
softwares.

Previous approaches developed for system validation either
do not address run time checking by using formal approaches
or do not consider distributed systems, as validation functions
are located in different processes and are unable to check the
global behavior.

The on-line validation approach for complex distributed
systems considered in this paper uses as a starting basis the
concepts resulting from hardware self-checking systems. The
following definitions extend to distributed systems the ones
proposed for sequential machines [26], [27]. They will serve
as the main basis for discussing distributed on-line checking.

Let us consider a given system and assume that some
outputs belong to a well defined set of admissible values S .

Definition 1: A system is fault-secure for a set of faults F ,
if for any fault f belonging to F , and for any run time behavior
B of the system, the outputs deliver:

a) either the correct value, as if there were no fault,
b) or one or more erroneous faulty values, but these faulty

values are such that they do not belong to the admissible
value set S.

Then, fault-secure systems are systems where faults may be
enforced not to propagate. This is because: either the faults
are not visible and have no effect; or the faults have visible
effects that affect the outputs, but it is easy to notice that
an error exists at the output (and if needed take appropriate
action) as the output value is outside the known admissible
set of error free values.

Fault-secureness is a safety property: undetected output
errors cannot occur as an output value cannot at the same
time be faulty and belong to the set of the nonfaulty values.
It follows that either the output is correct or the output is
incorrect but the false value can be detected as soon as it
appears at the output level.

Note that one possible mechanism for such a detection is
to use adequate coding at the output level: if the fault has an
effect, then the output value must not belong to the selected
code.

Definition 2: A system is self-testing for a set of faults F ,
if whatever a fault f belonging to F , there exists a specific
testing behavior Bt, occurring during the run-time behavior
of the system, such that this fault will be propagated to the
output as a value out of the admissible set S .

This property is of importance as it enforces the detection of
all faults in a selected set F of fault assumptions. This results
because, assuming that fault f l exists and is not detected, then
another fault f 2 can occur and the resulting compound fault
“fl together with f2” may possibly be out of the selected
fault set F . The effects of the “fl together with f2” fault
has not been considered during the design because of the fault
assumption, and the resulting output value resulting from the
“fl together with f 2 ” fault may be wrong, i.e., faulty and
belonging to the set of admissible values. In the case of a parity
coding, such a possible behavior is obtained when two errors
arise and leads to a value which is false but belong to the code.

Self-testing is a liveness property as it implies that any fault
will eventually be propagated as a faulty output value.

Note that self-testing alone allows the fault, before being
propagated out of S, to give a wrong undetected output value,
i.e., an output value different from the output value without
fault but where this output value belongs to the set S. Self-
testing is not sufficient as: if the system is only self-testing,
then faults should appear at the output as a value out of S;
the problem is that, as nothing else is stated, before becoming
observable at the output, the faults may give output values
which are both false and belong to S, so are not detected.

From the previous comments, it follows that an adequate
system behavior is obtained by the following definition.

Definition 3: A system is self-checking for a set of faults
F , if whatever a fault f belonging to F , it is fault-secure and
self-testing.

A self-checking system has safeness and liveness properties
regarding the effects of its faults. Definitions 1 and 2 show
that B and Bt behaviors are of fundamental importance. It
will be shown that the difficulty come with Definition 2,
because of Bt, the set of the test behavior, that includes the
needed test sequences: as checking is performed on-line then
the sequences in Bt must belong to the set of the sequences
that occur during run-time behavior.

902 IEEE TRANSACXIONS ON SOFTWARE ENGINEERING. VOL. 20. NO. 12, DECEMBER 1994

Definition 1 can be fulfilled by using coding. Unfortunately,
it is generally quite difficult to define and process coded values
in distributed software.

As an extension of the duplication principle in hardware, a
possible solution, that will be the one considered in this paper,
is to restrict the classes of self-checking implementations to
the ones that use the distinctness concept: the system to
be validated is designed as being composed of two distinct
subsystems, a worker and an observer.

Definition 4: An observer-worker system is a (potentially
run time checked) system that is constituted of two dis-
tinct components, a worker and an observer: the worker is
a classical- implementation of the system behavior and the
observer is- a given redundant implementation whose outputs
are comparable with the outputs of the worker.

a
SELF-CHECKING SYSTEM

Fig. 1. Principle of a simple self-checking.
\

An attempt to use type a) cooperation appears in [2] .
Fig. 1 gives the basic design architecture. From Fig. 1 and
the previous definitions, it follows:

A. Observer Principle

quires:
Comparing outputs implies observing behaviors. This re-

Redundancy. If a system has redundant copies, run-time
faults occumng within one copy lead to a discrepancy
between the behavior of this copy and the behavior of
the nonfaulty copies. Detecting the fault means detecting
the different behavior of the faulty copy. Consequently,
the simplest redundant system can be implemented using
two distinct copies, here called the worker and the
observer.
Reference. The behavior of the subsystem that is being
checked must be precisely known and defined. It will be
shown in the sequel how this well defined representation
of the global behavior, the observational model, can be
derived from a formal specification.
Visibility. Checking the worker behavior implies that
the observer must know and access given events of
the worker. The resulting observer-worker relationship
which has to be implemented can be of two different
types:
a) the worker cooperates with the observer by explic-

itly informing the observer when significant events
occur,

b) the worker behavior can be spied by the observer,
needing no specific action from the worker.

An observer-worker cooperation of type a) enables the
observer to get any information it needs from the worker but
both the worker design and its software have to be modified
to send this adequate information to the observer.

In the observer-worker cooperation of type b), the knowl-
edge of the worker behavior is obtained from some set of the
worker information that is directly accessible to the observer.
The worker is not modified by the presence of the observer:

--observer and worker designs and implementations can
be made independent, and can be performed by distinct
approaches and teams,
-the same observer can be used for checking different
implementations of the worker.
As a consequence, type b) spying cooperation will be

considered in this paper.

Property 1: In a observer-worker system, if
a) F is the set of all faults occumng only in one of the

b) each subsystem is such that its set of fault detection
two distinct subsystems,

sequences are applied during run time,
then the global system is self-checking.

Proof: Fault secureness follows because the design is
fault-secure: a fault in one of the two subsystems will only
affect its outputs; checking its output values with respect to
the ones of the non faulty part enforces the needed detection.

Fault testing comes from the fact that each of the two
subsystems is tested during run time, giving an erroneous
output. Comparing the erroneous tested outputs with the
correct ones of the other component indicates the error. Self-
checking follows from Definition 3.

Of course, part b) of Property 1 needs the system to be
designed in a specific way. The difficult assumption to be
fulfilled is to enforce that all possible faults in one (each)
component are tested during run-time. Furthermore, from the
definitions, this set of tests must be applied before one fault
occurs in the other subsystem. This is because if another
fault occurs, the resulting compound fault falsifies the fault
assumption: both faults, one in each subpart, may compensate
each other and give a global output whose value could be
wrong and could have equal (identical) values.

Due to the resulting complexity for large systems, such a
formally proved run-time checked design, although possible,
will not be considered here. For sake of applicability to
any distributed systems, it is assumed in what follows that
the worker is not designed in any specific way, and as a
consequence can be any distributed system implementation.

It follows that as many as possible different sequences
should be applied to the worker during its usual behavior in
order to (as soon as possible) detect faults that may occur.

Let us now consider the design of the observer. Part b) of
Property 1 implies that a run-time tested implementation of the
observer also needs a nonclassical, specific test based design.
Again, such a specific design, although simpler that the one of

DIAZ et al.: FORMAL ON-LINE VALIDATION OF DISTRIBUTED SYSTEMS 903

the worker, still seems not easy to realize for observing any
complex distributed system.

Although being of interest for highly reliable systems,
the approach developed here does not consider such a self-
test based design, but instead proposes to develop a quasi
self-checking observer, called a formal observer: this quasi
self-checking observer will be designed as reliable as pos-
sible, being based on a formal model and on an exhaustive
verification of this formal model.

Definition 5: A formal observer is a subsystem designed to
check distributed behaviors where:

a) its software is independent of the specific protocols to

b) its data are defined by the protocols to be checked and

Property a) implies that the observer can be built and used
for a family of distributed systems. So it can be made very
reliable.

From property b), there must exist a method to specify and
verify the correctness of the observer data, i.e., the specific
system data depending of the distributed system protocols,
before these data are given as an observation input to the
observer. Such a formal observer can be seen as a correct
implementation of the formal model of some observed aspects
of the behavior. It will be seen that Petri nets have been used
to build the formal models. It follows that the design of the
system consists of the following steps: write a description
of the behavior of the system to be implemented; implement
the system itself, i.e., the worker; from the description of the
worker, select (based on experience) that part of the behavior
which should be observed and write a formal model of it. This
specific formal model, corresponding to the selected behavior,
defines the data of the observer.

be checked in the considered system;

this data can be formally specified and verified.

Definition 6: A system is quasi self-checking if
a) it is an observer-worker system, and
b) the observer is a formal observer.
Of course, the input data of the observer are of prime

importance. It is proposed in this paper to use formal models
of the behaviors to be checked as input data for the observer.
These inputs, being used as references for checking behaviors,
must be reliable and correct: formal models must be used, as
they provide precise descriptions and support validation and
verification algorithms. In order to be fully integrated in the
software life cycle, formal models will be derived from system
specifications: the relationships between the specification, the
implementation and the observer are given in Fig. 2(a) that
shows how an observer is related to a system specification.

It follows that comparing the worker and observer behav-
iors, the former being the actual implementation and the latter
being a formal model, provides a basic on-line mechanism
able to detect any discrepancy between both behaviors. This
quasi self-checking approach owns some features of interest:

a) on-line fault detection follows from detecting a mis-
match between the two subsystem behaviors, one being
formally described,

b) well defined events can be selected for validation and
run-time checking and appear in the formal model.

FORMAL REQUIREMENTS

FORMAL SPECIFICATION

1
AWALSOFIWARE ky OBSERVATIONAL
IMPLEMENTATION CHOICES

(MODEL): (CLASSICAL SOFIWARE
DEVELOPMENT):

WORKER OBSERVER

COMPARE BOTH IMPLEMENTATIONS
FOR DISCREPANCIES :

SELFCHECKING SOFIWARE

(a)

SPEC LEVEL 0

4
i

SPEC LEVEL 1

FORMAL MODEL OF
I OBSERVATIONAL CHOICES
I

I VERIFICATION
I

SPEC LEVEL i

I I
I c

OBSERVATIONAL MODEL

1 i
SPEZoLE;;N: tQ- OBSERVER

IMLEMENTATION :

ERROR

(b)

Fig. 2.
and checking. (b) The levels of specification and observation.

Relationship between implementation and checking. (a) Observation

For actual complex implementations, it does not make any
sense to observe the complete behavior of the distributed
systems. Too many events may occur in the worker. Many
of these events can be classified as intemal, with little in-
terest, and in practice cannot be traced during run-time.
Consequently, observational models do not need to represent
complete behaviors but only partial behaviors of interest
[Fig. 2(b)]. With this in mind, selecting the formal model
becomes one important design choice. It should be able to
specify at some level of detail, any system specifications and
be validated with respect to requirements of correctness.

It follows that the formal model must be able:
-to express simplified specifications of distributed systems;
-to support verification procedures;
-to be able to act as a basis for implementing the observer.
Different formal models and description techniques [121

have been developed to specify behaviors of distributed sys-
tems. The most known ones are Extended State Machines [131,
[15], Petri nets based models [l l] , [14], the IS0 and CCITT
formal description techniques ESTELLE, LDS, and LOTOS
[201, 1211, 1301.

Petri nets have been selected in this paper for defining the
observer models as they can be:

IEEE TRANSACrIONS ON SORWARE ENGINEERING, VOL. 20, NO. 12, DECEMBER 1994 904

Site N Observer l zG52 -analyzed by efficient methods and tools,
-animated by easy to implement simulators,
--derived as observational models from protocol descrip-
tions.
Classical Place-Transition Petri nets do not represent data.

Then if Place-Transition Petri nets are used, Only Control
structures can be taken into account by such Petri net based
observers, as it will be shown later on.

sophisticated models must be used in a similar way as ob-
servational models. For instance, should an observer have to

represented by Petri nets, then Predicate-Transition Petri nets

at the expense Of a more
difficult verification.

per-
forming the required behavior and that the observer contains an
observational Petri net model, also called the mission model,
derived from the specifications of the communicating system.
Let us now consider how to derive the observational model.

Fig. 3. ne observer on a bus architecture.

Of course, if more descriptive power is needed, then more that the difference with classical hardware protocol monitors
is that the observer is at a very high level of
description by using the formal model: then any change of the

model.

shared broadcast support as simply as any functional node
of the network. Any broadcast information becomes directly
available to the observer as, by listening to the physical layer
bus, it can follow all exchanges of messages between the
communicating processes: it must be able to receive at the
physical layer all messages which are sent on the broadcast
medium.

Of course, layered architecture means that, starting from the
physical layer, the observer has to check a hierarchy of proto-
cols. Let us note that, for simplicity, it seems adequate to debug
and validate the system by considering one layer at a time.

1) Protocol Filtering: In the general case, all observed soft-
ware protocols are those of all layers of the hierarchy. Let us
consider for instance layer N . To check the layer N protocol,
the observer must receive the corresponding N-layer protocol
data units, the N-PDU’s. For the messages to be received
at layer N , the observer has to perform a set of lower layer
functions, i.e., the €unctions of layers 1 to N which are needed
in order to build the considered N-PDU’s from the physical
(layer 1) PDU’s. The observer has to capture the physical
messages, the physical PDU’s, and derive from them the N -
PDU’s, as indicated in Fig. 4 [24]. Note that in the case where
a broadcast service is available at layer K , with K < N, the
Observer has to restore the N-PDU’s from the K-PDU’s’

sages, a basic filtering set of functions, named (N) - F , to be
associated to each layer3 from to N 9 has been identified‘

One Of these layers. The set Of functions is
derived from the general model of layer M by considering all
functions related to the up-down information transfer between

check data, and as data be protocol to be checked will only mean to modify the formal

r i 4 i 7 the Descriptions Techniques [201 Or The observer be to the worker though the
‘211’ be

It follOws here that the worker is an

B . Observers in Distributed Systems

Validation of distributed systems must account for all global
interactions and must address all properties related to the com-
munications occuring among processes. As processes interact
using protocols, observing the global system behavior means
observing the protocols, i.e., the way processes communicate.

The more general framework in which quasi self-checking
distributed systems could be developed is heterogeneous open
architectures. As a consequence, it was decided to design
the observer concept inside the ISO-CCITT OS1 Reference
Model framework [7]. The OS1 Reference Model assumes a
layered architecture and defines a set of layers, each layer
providing services to the layer above it; within a layer, the
corresponding entities communicate by exchanging messages
following a given protocol and using the services of the layer
below. It seems that such a structuring, consisting of a given
set of layers, is the only way to successfully design complex
communication systems.

In layered architectures, the worker is the set of processes
distributed on several processors which perform all application
functions and the observer is a dedicated processor.

As the spying cooperation mode has been selected (see
Paragraph 11-l), it follows that any layered architecture has to
provide a way to read the required information. Considering
protocols, and given the fact that workers cannot be modified,
then the observer must be made able to know all or some of
the exchanged information, i.e., the messages.

For achieving a simple design of the observer concept, it
will be assumed here that observers are designed in order to be
applied to distributed systems that communicate using broad-
cast mechanisms among the worker processors, for instance
using a physical bus in local area networks. Of course, spying
observers will then be easy to implement as all exchanged
messages are potentially able to be received by an observer
connected to the broadcast service (Fig. 3). It will be shown

In Order to upper layer PDU’s from physical

us note

ISo adjacent layers [Fig. 4(a)l.
’Ikese functions are:
--concatenation and separation, which perform the mapping
between (M - 1)-SDUs and (M)-PDU’s
-encoding and decoding, which translate (M)-PDU’s from
their extemal representation into the intemal representation
of layer M and conversely;
-mapping of connections or associations, between layer
(M-1) and layer (M), using SAP and connection identifiers
as source and destination references;
-segmenting and reassembling, which implement the map-
ping between the data of the (M)-PDU’s and of the (M) -
USER-DATA;

DlAZ ef al.: FORMAL ON-LINE VALIDATION OF DISTRIBUTED SYSTEMS

N-PDUs

905

N-SDU. N-Address

REASSEMBLING Q
DISCRIMDJATION

N-PDU, N-Address

MAPPING

N-PDUs, P (N-])-Address

+
SEPARATION-DECODING L

(a)
N-PDU, N-Address

4

(N)-PDU, (N-2)-Address

(N)-SM

(N-I)-SDU, (N-l)-Addre~~

(N-I)-F

t
2-SDUs, 2 Address

(7J-F ‘;7 Ph-SDU, physical Address

(b)
Fig. 4.
(b) From layer 1 to layer N.

Protocol filtering for layer B. (a) From layer (2%’ - 1) to layer N .

-protocol control of the exchange of data between peer
(M)-entities and between adjacent layers; this function
includes the resequencing, the retransmission of transferred
data PDU’s if needed, and the delivery to layer (M + 1) of
the valid data contained in (M)-PDU’s.

ORIGINAL SPEC I-4 r-1

N-SDUs F
(N-1) layer

Fig. 5. Methodology for deriving observational models

As the observer only receives messages and do not send
data, the basic filtering functions (M) - F , associated with layer
M , are derived from the layer M functions that are required
only for receiving data.

Hence (M) - F is built up by elementary functions which are:
- (M)-SM: separating and decoding machine for layer M ;
these two functions are joined functions as separation of
PDU’s is an implicit result of decoding;
-(M)-MM: mapping machine for layer M , handling the
association between (M - 1) addresses and (M) addresses;
-(M)-DM: discrimination machine, the reduction of the M
protocol control function to a simple mechanism that orders
the sequence of valid data from the received data PDU’s;
-(M)-RM: reassembling machine for layer M which de-
tects complete sequences of data segments and builds (M)
SDUs.
The main feature of these functions is that except for (M) -

SM all functions are protocol independent; this is because
the (M)-SM function translates protocol specific extemal
representations into common intemal representations.

Finally, protocol filtering capability for layer N is obtained
by layering the basic filtering functions (M)-F from the
broadcast service, for instance layer 2 in a bus architecture, to
layer M as shown in Fig. 4(b). This design allows the observer
to receive, for any layer M between 2 and N , all M-PDU’s
derived from the physical PDU’s.

2) Modeling Technique: As the observer can then validate
any of the M-protocols, it needs as an input an observable
model of these protocols, i.e., of the exchanged PDU’s. It
is proposed to obtain the formal observational model for
one layer using the following three main steps methodology
illustrated in the first part of Fig. 5 [l l] , [131, [221, [231:

906 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 20, NO. 12, DECEMBER 1994

S-1) At any layer, each distinct protocol entity is represented
by a labelled Petri net deduced from the protocol specifications
(finite state machines are a specific case of Petri nets). Hence
a hierarchy of local models, one for each protocol entity, is
obtained. The corresponding descriptions, i.e., the descriptions
of the entities, are simplifications of the complete behavior of
the entities, these simplification being based on a set of rele-
vant observable mechanisms. For instance, the establishment
and release of the connections could be part of the model, as
any designer could find relevant to validate and control them.

S-2) The models of the peer entities are connected together
using a Petri net description of the service provided by
the adjacent lower layer, i.e., their abstract communication
medium. Note that a model of the underlying service has to
be provided to the designer. Hence a global model of the
layer is constructed. The correctness of the global model,
i.e., the model that has been build by connecting together the
local models and the service model, can be checked using
exhaustive simulation or formal verification, e.g., by checking
boundedness, liveness and proving temporal logic properties
[l l] , [13], [14]. For instance, these sets of properties can be
verified using appropriate software tools as PIPN [31].

S-3) After having been shown correct, the global models of
the interacting entities are defined to be the data to be given as
input to the observer. For instance, the model of layer M will
be used to control the valid on-line behavior, i.e., the validity
of the actual sequencing of the M-PDU’s. Let us now consider
the relationships that exist between the model and the actual
behavior of the protocol on a LAN.

While listening to the broadcast medium, the observer is
able to receive all events transmitted on this media and can
derive all needed M-PDU’s. The problem is that the observer
is not aware of the events that are intemal to any processor.
Now, the formal descriptions that are built in the general case
use all needed events, including the intemal ones. Starting
from the global model including all needed events, the set of
events will have to be partitioned into two subsets, the subset
of events intemal to the processors, and the subset of events
that are sent on the media. The latter set then defines for the
observer the set of the observable events: this set can include
all the PDU’s that are exchanged between the communicating
entities on the bus and does not include all primitives and
exchange of information that are local to the processors.

Definition 7: Observable events in broadcast systems are
those which lead to a partial or complete message sent on the
broadcast service. Note that this defines “sending messages”
events.

Deriving the observational model from the global model
and the set of observable events implies keeping the
names of the observable events and labelling as don’t
care, on the global model, the transitions which represent
the nonobservable events, i.e., the events not visible by
the observer;
Of course, the complexity of the corresponding models
depends on the don’t care transitions and on the set of
mechanisms that have been selected. When a model is
too complex, it is proposed to use reduced observable
models, which are equivalent and simpler descriptions.

Finding simpler models equivalent to the global one
means keeping only the set of the observable transitions
and so eliminating as much as possible the transitions
that are marked as don’t care transitions.

Let us note that for unconfirmed services, sent messages
are not always received. The observer will be able to notice
their losts by noticing that the new message (received after the
lost one) is not the expected message and corresponds to one
following the lost one, and so does not belong to the normal
behavior.

3) Observational Models: Two altematives exist for imple-
menting the selected model.

Case I : Implementing the observational model means sim-
ulating the behavior of the global Petri net. Starting from the
initial state, i.e., the initial marking, the model has to evolve
by firing the firable and not observable transitions until the
model reaches a state where an observable event (the sending
of a message) is enabled (is firable, in terms of Petri nets).
Then the firing mechanism of the Petri net is stopped before
firing this transition and the model simulator waits until:

a) the corresponding observable event occurs, i.e., the cor-
responding message is received by the observer. When
this event occurs the model simulator fires this transition
and subsequently starts again firing the internal tran-
sitions until another new observable event is reached,
where the firing again waits for this new event, and so
on.

b) an observable event occurs which is not expected, i.e.,
does not correspond to a PDU labelling one of the firable
transitions of the model. This means that the worker and
its model are not in agreement: an error is being detected
and all present and past needed state information are
saved. There is a discrepancy between the specification
and the actual behavior and predefined signatures will
be delivered to the users and designers.

Case 2: The observable model is too complex. Then, it can
be simplified by deleting from it as many unuseful events as
possible, i.e., as many nonobservable events as possible. This
can be done by deriving a reduced model, equivalent to the
global one, but containing a minimum number of unobservable
events.

Deriving an observable model means deriving a model that
is, in some sense, equivalent to the global one, and is a
simplification of it. A lot of equivalence relations exist [32].
Trace equivalence [33], [34] and observational equivalence
[35] are the main proposals, defined on labelled transition
systems. They are defined by selecting specific observable
events amongst the set of all events.

Definition 8: Two labelled transition systems P and Q are
trace equivalent when they have the same set of traces (when
Traces(P) = Traces(Q)). Two labelled transition systems P
and Q are observational equivalent when they are related by
a bisimulation [35].

When the observer receives messages from the bus or
from the broadcast service as any normal user, it receives
the messages one after the other. If one message at a time
is received for conducting the observation, then the observer

DIAZ ef al.: FORMAL ON-LINE VALIDATION OF DISTRIBUTED SYSTEMS 907

receives a flow of words belonging to a language, the language
of the PDU’s that are sent on the bus, i.e., that are generated
by the observable events [17].

Many equivalence relations can be selected [32]. From the
previous reasons, the one that has been selected for deriving
the observational models is the equivalence with respect to
sequential traces, or trace-equivalence. This is because the
observer receives the messages from the broadcast medium
one after the other, in sequence. The observation becomes
equivalent to checking the correctness of the traces on the bus
that represent the run-time behavior of the distributed system
implementation.

The following procedure can be used to derive the simple
observational model (second part of Fig. 5):

-describe and validate the global model of the protocol,
-the marking graph, the labelled reachability graph, of the
global Petri net model is defined,
-all nonobservable transitions in this graph are labelled by
a specific word, for instance the empty word,
-the minimal state machine, which generates the same
traces for the set of all visible events, equivalent to this
one, is derived.
Note that this procedure can first lead to a nondeterministic

state machine. If so, the nondetenninistic state machine has to
be translated into an equivalent deterministic machine, as there
always exists a deterministic machine which is equivalent to
a nondeterministic one [33].

As an example, in Fig. 6(a), 3 processes are defined; they
communicate by exchanging messages A, B, F and E. Let us
assume that they use a very simple service, a datagram without
loss, where every sent message is received. Fig. 6(b) is a Petri
net model of such an ideal medium. The interconnection of
the 3 processes by the selected medium leads to the Petri net
of Fig. 6(c). This global model can be analyzed by adequate
techniques such as reachability graph and invariants [141. The
model of Fig. 6(c) can be proved correct.

From Fig. 6(c), applying the simplification procedure leads
to the observational state machine given in Fig. 6(d). This
machine makes clear that, in this simple example, the observer
has to control the sequential sending of messages A, B, F and
E. Any other order between these four messages reveals an
incorrect behavior of the system.

As the observable events are the exchanged messages, i.e.,
the Protocol Data Units, the globa€ corresponding methodolog-
ical approach for checking the behavior of protocols is given
in Fig. 5. Note there that the same basic approach could be
used to derive the model of a service, if a service could be
defined by projecting on the set of the Service primitives, that
are observable events.

4) Handling Complex Models: It follows from the previous
arguments that the observer needs such an observable model
for each observed protocol.

Theoretically, one protocol of one OS1 layer can be rep-
resented by one model. Nevertheless, in practice, it can be
difficult to describe many mechanisms inside one layer by a
single model. Furthermore, complex and complete protocol
behaviors can hardly be represented by only one Petri net. In

P1

?F

P3

!M -,-

(d)

Fig. 6. An example of the design steps. (a) The communicating processes.
(b) The service model. (c) The global model to be verified. (d) The projected
observational model.

such a case, the protocol description can be handled by parts,
as in [25]. For instance, in [25], the connection-establishment,
connection-release and data transfer phases of the Transport

908 IEEE TRANSACTIONS ON SOITWARE ENGINEERING, VOL. 20. NO. 12, DECEMBER 1994

protocol have been modelled separately. Also, the Session
protocol has been partitioned into its functional units.

In OS1 systems, the behavior of one layer will be considered
as a set of connections between protocol entities. Let one N -
connection be called a dialogue within layer N . All dialogues
run the same protocol and only one Petri net based model,
representing one dialogue, needs to be used to represent the
layer. Nevertheless, as there are many concurrent dialogues,
the observer includes dynamic process management to concur-
rently run as many dialogues as needed using the same Petri
net model: one process, simulating one Petri net, represents
one dialogue. There will be as many concurrently simulated
Petri nets as there are concurrent dialogues.

The creation and release of the dialogues are detected on
!ne by the observer by analyzing the exchanged PDU’s. For
instance:

-at the Data Link layer a dialogue may be created only
once and never deleted if a connectionless protocol is used;
-at the Transport layer, each dialogue corresponds to
one transport connection: the beginning and the end of a
dialogue in this layer are deduced by the observer from
the reception of the connection-request and disconnection-
request TPDU’s.

C . Functions of the Observer Tool

Basically, an observer tool is able to support three main
functions: audit-trail, run-time checking and performance anal-
ysis.

Audit-trail function simply delivers all PDU’s exchanged-
between user selected entities at a selected communication
layer- as obtained after protocol filtering. Some additional
facilities as pattem matching, triggering, time stamping and
mass storing of results are possible. This is a rather classical
protocol analysis function.

Run-time checking is realized on the basis of the observer
principle with respect to some selected models representing a
set of given layers. The observer is simply adapted to new
protocols by modifying the observable model of the new
protocols.

Performance analysis facility may be added as it consists
in measuring time instants, i.e., times elapsed between typical
protocol PDU’s. Of course, these PDU events are the ones
which appears in the Petri net model when they are able to
characterize and provide significant performance figures, such
as the transfer throughput of the layer. Each PDU received by
the observer is associated with some time value. The difference
between the reception times of adequate PDU’s gives the
actual duration of protocol phases. Throughput is for instance
computed from the ratio of the number of data transfered
PDU’s to the duration of the data transfer phase.

The original feature of this performance measurement tech-
nique is that the beginning and the end of each measurement
is performed on a Petri net driven scheme. Then performance
analysis becomes a formally defined facility and furthermore
uses the same model (and tool) than the checking facility.
Moreover the Petri net based model used for performance
analysis is only slightly extended with respect to the validation

Petri net model: to each transition of the Petri net is associated
a simple performance command. When a performance related
transition is fired by the observer, the performance command
is executed. Performance related commands contain one of
the following actions:

-store the reception time of the current message,
-calculate the difference between a previously stored time
and the reception time of the current message,
-increment the number of transfered data PDU’s,
+tc.
The execution of these actions directly follows from the

Petri net model, and protocol performance can be formally
defined by defining the events that are labels of the Petri net.

111. EXAMPLES OF APPLICATION

This section gives three applications of the observer for
on-line debugging, behavioral testing and performance mea-
surements. The first tool was used in REBUS, an experimental
LAN for real time control, for debugging and on-line checking
a token bus protocol. The second example presents a prototype
related to an open LAN for industrial applications [16]; it
allowed the testing and the performance evaluation figures of
a Link and a Transport layers. The last tool has been applied
to a multilayered system, including the layers 2 to 6 of the
IS0 protocols.

A. REBUS
The observer concept has been developed to support the

implementation of REBUS [181. Some features of the worker,
of the observer, and some experimental results are given
below.

I) The Worker: The worker is the local area network im-
plementation. REBUS was an experimental system developed
for designing fault tolerant bus access software. The hardware
consisted of two (duplicated) serial busses as the physical
media and of Serial Bus Interface (SBI) processors where the
communication software resided.

The mechanism which has been selected and actually
checked by the observer, because of its importance, is the
MAC (Media Access Control) protocol, a fault tolerant virtual
ring protocol. This protocol is based on a token passing
scheme, so token passing was on-line tested.

2) The Observed Protocol: The Fault-Tolerant Virtual Ring-
for Bus Allocation: The token passing protocol is based on a
(programmable) “privilege” circulating on a virtual ring. One
unit at a time becomes primary, i.e., is able to access the bus,
whereas the other units are secondary and are allowed to send
only response messages to the primary unit. At the end of
its privilege, the primary unit sends the token (the primary
status) to its successor on the virtual ring. The virtual ring
is a logical organization, ordered in a circular fashion, of the
interface units (SBI). This ordering is virtual as the token must
follow the ring; functional messages sent by the units may be
transmitted to any unit and no particular organization of the
communication media is implied.

Let I be the primary unit. It keeps the privilege for a limited
amount of time. When time elapses or when it has no more

DIAZ er al.: FORMAL ON-LINE VALIDATION OF DISTRIBUTED SYSTEMS 909

TABLE I
FIRST EXPERIMENT

TYPE OF EVENT PERCENTAGE
message primary status 99.6

successful recovery 0.173
incorrect recovery 0.003
unsuccessful recovery 0.024
duplication of master 0

message become primary 0.2

message to send, it relinquishes the primary status by sending
the broadcast message “primarystatus-(S(1))” -where S(1)
means Successor of unit I on the virtual ring-. It then loses its
privilege and becomes secondary. By receiving this message
the unit successor of I , S (I) , becomes primary.

If the unit successor of S (I) , S (S (I)) , detects that the
primary status has not been normally transmitted from unit
I to unit S (I) after a given time limit-for instance if unit I
is dumb-then unit S (S (I)) sends a recovery message “become
primary” to unit S (I) . When receiving this message, unit S (I)
becomes the new primary, if it has not previously received
the message “primary status (S(I))” or it simply ignores the
message “become primary”, if it has already received the
primary status-note that in this latter case, S (S (I)) is faulty.

The model and the validation of this protocol appears in
[18]. It has been formally shown that the protocol satisfies the
following properties:

-mutual exclusion: at any time, only one of the SBI’s has
the possibility of getting the access to the bus, i.e., of being
primary,
-robustness: this primary status can be temporarily lost but
will be recovered within a finite time,
-fairness: every nonfaulty SBI processor will in tum
receive the primary status.
3) The Observer: The observer has been developed on an

INTEL processor connected to an SBI board as the other
functional processors (see Fig. 3).

The kemel of the observer software is a simple Petri net
simulator. The tool contains general purpose functions such
as:

-man-machine dialogue for on-line diagnosis and control
display,
-statistical processing and storage of the received mes-
sages.
4) Experimental Results: Two sets of results are provided,

the first one collected during the debugging phase, early in the
implementation process, and the second one collected much
later, during normal behavior, when the system was released.

a) First Results: The first results (Table I) showed some
frequent existing malfunctioning, while the corresponding
faults were recovered and not visible for the users, as the
service provided to the users was correct. The on-line detec-
tions of the observer were very useful because if they were
not detected, the accumulation of these not visible faults could
have later induced errors on the extemal behavior, i.e., on the
provided service.

Unsuccessful recoveries resulted from the losses or the
nonacceptation of the recovery messages (the “become pri-

TABLE I1
SECOND EXPERIMENT

TYPE OF EVENT PERCENTAGE
PHASE B PHASE A

message primary status 99.9992 99.995
message become primary 4.10-4 8.10-4
successful recovery 4.10-4 6.10-4
incorrect recovery 0 28.10-4
unsuccessful recovery 0 1.10-4
duplication of master 0 1.10-4

mary” messages) which have been always followed by suc-
cessful recoveries and found to be nonmalignant.

Incorrect recoveries revealed a violation due to an erroneous
recovery attempt by the S (I) after a token passing which was
undetected by S (I) . The examination of the observed traces
showed an intermittent malfunctioning of one SBI.

b) Second Results: For the second set of experiments, the
protocol behavior has been correct until the bus primary status
became once duplicated. The results are given in Table 11:
phase A consists of the results collected from the beginning
of the second set till the detection of this error, and phase B
gives the results related to the error.

Checking the observer outputs showed that the origin of
the error was a particular unit. The corresponding analysis
revealed an incorrect memory operation: the unit that was
the current primary was stopped after executing a “Halt”
instruction, which did not exist in the actual program, and
resulted into an incorrect read operation. When the execu-
tion on this unit was suspended due to the Halt instruction,
the primary status was recovered by the other units: then
a hardware interrupt resumed execution of the faulty unit.
Duplication appeared between this unit which continued to
act as a primary while the other recovered unit had become
primary as a consequence of the recovery mechanism. This
example should clearly show how the observer helped to detect
this nontrivial hardware error.

B . Application to Layered Systems
This section describes the design of a debugging and testing

prototype tool for an industrial LAN and gives the observer
which has been developed for checking a complete lay-
ered architecture of an office automation open system based
on Ethemet, including layers 1 to 6 of the OS1 Reference
model.

1) Industrial LAN: The LAN is a layered open system
architecture, developed for real time control, and includes the
Data Link and Transport layer protocols. The observer has
been build to separately check the two main protocol layers,
Data Link and Transport, and to offer performance analysis
facility derived from the Petri net observational model [16].

The LAN has a double coaxial cable bus with identical
cable interface units (CIU). The communication software is
implemented on the CIU and up to four users can be connected
to each CIU.

At the MAC sublayer of Data Link layer, a CSMAKD-like
priority based mechanism manages the medium access. The
LLC (logical link control) sublayer of data link layer consists

910 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 20, NO. 12, DECEMBER 1994

of a connectionless protocol. At the transport layer a subset of
the IS0 transport protocol and service were implemented.

a) Observable Model of the Transport Layer: The ob-
servable model of the transport layer consists of two basic
observable models. Resulting from the modelling technique
described before, they represent the connection establishment
phase, the release phase and the data transfer phase.

Sending each PDU of the connection establishment and
release phases (CR, CC, DR, DC) was represented by a distinct
transition; sending all data transfer PDU’s (DT, AK, FREE,
AKANDTREE) was represented by one transition labelled
by “Initiator ! DTPDU” for the initiator (resp. “Responder !
DTPDU” for the responder).

Finally the model of the connection establishment-release
phases and-the model of the data transfer phase were con-
nected together by merging each transition of the data transfer
phase model which are labelled by “Initiator ! PDU;” (resp.
“Responder ! PDUi”) with the transition of the connection
establishment-release phases model labelled by “Initiator !
DTPDU” (resp. “Responder ! DTPDU”).

b) The Observer: For multilevel communication sys-
tems, it appeared difficult to directly implement the observer
concept as stated. It was decided to implement both
observations (Data link and Transport) but only one at a
time: observing the system means observing altematively one
of the two layers.

As seen before, the observer required protocol filtering in
order to restore the Transport PDU’s from the information di-
rectly available on the physical medium. The layered behavior
of the system is considered as a set of dialogues between
protocol entities. Each N-dialogue corresponds to one N -
connection and all dialogues follow the same protocol. Hence,
only one formal model representing one dialogue represents
the whole layer.

c) Protocol Filtering: For observing the LLC sublayer,
LPDU’s are restored by executing the same delimiting, syn-
chronisation and error detection functions as in the worker,
because the observer supports the same sublayers as other
CIU’S.

At the Transport layer, interactions exchanged in the system,
i.e., TPDU’s, were restored from LPDU’s by:

-recombining each Transport connection splitted on two
Data Link connections by setting up the mapping between
these two layers,
-detecting and discarding the duplications inherent to the
Data Link layer; thus, when a data transfer LPDU is
retransmitted by the Data Link layer, only the data (TPDU)
conveyed by the first LPDU must be considered and the
data carried by retransmitted LPDU’s must be discarded.
The Petri net representing all dialogues at one layer was

a re-entrant program, where several identical processes cor-
responded to the several actual dialogues taking place in the
system.

At the Data Link layer each dialogue is created only once
and never deleted, because a connectionless protocol is used.
At the Transport layer each dialogue corresponds to one
Transport connection.

The creation and the deletion of dialogues are detected
through the corresponding exchanged PDU’s.

d) Performance Analysis Facility: This function mea-
sured the time elapsed between typical protocol events and
computed the data transfer throughput for each layer.

Each Link or Transport PDU received by the observer was
associated with a value of a timer. The difference between
the reception times gave the duration of the phases and the
throughput was derived from the ratio of the number of
transferred data PDU’s to the duration of the data transfer
phase.

The original feature of this technique is that the detection
of the beginning and the end of each phase is performed on a
Petri net driven scheme. Performance analysis facility uses the
same structure including protocol filtering, dynamic process
management and Petri net simulation than the checking func-
tion. Hence, the execution of these actions in the Petri net
model provides the formal performance analysis facility.

hardware
support of the observer is a standard CIU connected to the
shared communication media. The tasks performing checking
and performance analysis functions are implemented in
the CIU and supported by a multitasking executive. Other
functions are human interface and message storage.

2) OfSlce Automation Open System: This second connec-
tion oriented system consisted of an Ethemet LAN linking
together terminals and servers connected to the outside world
through a PABX interface or a packet switching interface. This
network included two server stations (messages and archives)
and allowed to access the X25 TRANSPAC network through
a gateway.

The architecture was organized according to the OS1 model.
The implemented protocols in the different layers were:

e) The Implementation of the Observer: The

Session: IS0 Session protocol
Transport: IS0 Transport protocol (Class 0 and 2)
Network: X25 protocol
Data link: IEEE 802.2 protocol (type 1 and 2)

For example, two simplified observable models derived
from a Petri net model representing the Connection Estab-
lishment and Release phases of X25 and IEEE 802.2 type 2
(for the perfect case, i.e., without loosing PDU’s) are given
in Fig. 7(a) and (b).

The following comments can be given. Only left hand parts
of the figures are considered as right parts are symmetric
(changing A and B roles).

a) IEEE 802.2 type 2 [Fig. 7(a)]

Path 1-3-5 represents the connection establish-
ment initiated by A (A!SABM) and accepted by
B (B!UA); note that the transition from state 3 to
4 expresses the refusal of B (B!DM);

Path 1-3-6-8-5 gives the scenario related to the
connection establishment crossing;

Path 5-9-4 and path 5-1 1- 12-4 represent the dis-
connection scenarios initiated by A, respectively
in the case of acceptance by B and in the case of
disconnection crossing.

DIAZ et al.: FORMAL ON-LINE VALIDATION OF DISTRIBUTED SYSTEMS

b) X25 protocol [Fig. 7(b)]

- Path Pl-P3-P5 gives the scenario of the connec-
tion establishment initiated by A (by A!Connect
Request) and accepted by B (B!Connect Con-
firm);

- Path Pl-P3-P7-P5 represents the collision problem
where A has initiated a connection establishment
and receives a connection establishment request
from B; according to the highest priority (A or
B), the transition from W to P5 can be either
B!Connect Confirm or A!Connect Confirm;
Path Pl-P3-P4 shows an unsuccessful connection
establishment initiated by A where B refuses the
connection by B!Clear Request and A accepts this
refusal by A!Clear Confirm ; note that the transi-
tion from P4 to P1, A!Clear Request, corresponds
to the case where the disconnection is initiated by
A in parallel with redeiving the refusal from B;

- Transition from P5 to P12 starts, after the con-
nection establishment, the normal disconnection
phase requested by A; the scenarios starting from
States P3 and W, leading to States P6 and P13
model the disconnection requested by A, whereas
A has not yet received the answer to its connection
establishment request.

-

Note that in addition to communications intemal to the
LAN, communications with entities extemal to the LAN using
X25 through the local network can be observed for layers from
Network to Session. So, the general case of protocol filtering
has been implemented.

The observer has been run on a UNIX processor [24]
consisting of one Ethemet interface unit, one processing unit
and one graphic interface unit. It included all the models [25]
of the 4 layers, from Data Link to Session, given before. It
allowed audit trial, checking and performance measurements
for all layers.

IV. CONCLUSION

From these experiments, two important aspects can be
emphasized. First, the observer proved to be quite useful for
debugging communication software during.. the development
phase; second, even when debugging was considered com-
plete, the observer still had been quite helpful for detecting
malfunctioning coming from hardware faults or software errors
that occurred at run time. It also appeared that the observer
concept is fully consistent with the formal methodologies
presently defined for formally designing distributed systems.
The observer is also of interest for measurements and mainte-
nance during the system life cycle.

Also some subtle aspects have to be developed further, such
as the use of more complex and more complete observable
models. Also, the observer recovery, (when the observer itself
loses messages), as well as the definition of sets of multiple
cooperating observers, for no broadcast services, still need to
be investigated.

911

(b)

Fig. 7.
and Release phases.

Observers of the IEEE 802.2 and X25 Connection Establishment

ACKNOWLEDGMENT

The authors would like to thank J. M. Ayache and R.
Molva who were greatly involved in the developments and
implementations presented in this paper, as well as all other
people who were involved in this work.

REFERENCES

J. M. Ayache, P. Azema, and M. D i u , “Observer, a concept for on line
detection for control errors in concurrent systems,” in 9rh Int. Symp.
FTC, Madison, June 1979.
J. M. Ayache er al., “Software redundancy for error detection in
distributed systems,” CongrCs FiabilirC er Maintenabilite‘, Toulouse, Sep.
1982.
G. Lamarche and P. Tallibert, “IDA: Software test language and asso-
ciated tools,” in 1st Colloque GCnie Logiciel, June 1982.

912 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 20, NO. 12, DECEMBER 1994

[4] D. L. Pamas, “The use of precise specifications in the development of
software,” Proc. IFIP, 1977, pp. 861, 867.

[SI D. Rayner, “Towards standardised OS1 conformance tests,” Protocol
Specifrcation, Testing and Validation, V. Diaz, Ed. Amsterdam, Nether-
lands: North Holland, 1986.

[6] B. Pradin et al., “OGIVE un outil graphique interactif de vtrification des
systtmes paralleles decrits par des reseaux de Petri,” Revue MICADO
Sep. 1980.

[7] H. Zimmermann, “OS1 reference model-The IS0 model of architecture
for open systems interconnection,” IEEE Trans. Commun., vol. COM-28,
pp. 651460, Apr. 1980.

[8] M. A. Fischler, 0. Firchtein, and D. L. Drew, “Distinct software: an
approach to reliable computing,” in 2nd USA-Japan Comp. Conf., pp.

(91 B. Randell, “System structure for software fault tolerance,” IEEE Trans.
Sofhvare Eng., I:2, pp. 22tL232, June 1975.

[lo] J. R. Kane and S. S. Yau, ‘‘Concurrent software fault detection,” IEEE
Trans. Software Eng.. I : l , pp. 87-99, Mar. 1975.

[I l l M. Diaz, “Specification and validation of communication and co-
operation protocols using Petri net based models,” Computer Networks,
Dec. 1982.

[121 G. V. Bochmann and C. A. Sunshine, “Formal methods in communica-
tion protocol design,” IEEE Trans. Commun., vol. COM-28, no. 4, pp.
624-631, Apr. 1980.

[131 A. S. Danthine, “Protocol representation with finite-state models,” IEEE
Trans. Commun., vol. COM-28, no. 4, pp. 632443.

[141 H. J. Genrich and K. Lautenbach, “The analysis of distributed systems
by means of predicate/transition nets,” in Semantics of Concurrent
Computation, G. Kahn Ed. New York: Springer-Verlag, 1979, pp.
123-146; also in Lect. Notes in Computer Sciences, vol. 70.

[151 G. V. Bochmann, “A general transition model for protocols and com-
munication services,” IEEE Trans. Commun., vol. COM-28, no. 4, pp.
643450, Apr. 1980.

[I61 Manuel de prksentation de FACTOR, APTOR (1984).
[I71 J. M. Ayache, J. P. Courtiat, and M. Diaz, “Self-checking software in

distributed systems,’’ 3rd Int. Conf. Distrib. Comput. Syst. IEEE, Oct.
1983.

[I81 J. M. Ayache, J. P. Courtiat, and M. Diaz, “REBUS, a fault-tolerant dis-
tributed system for industrial real-time control,” IEEE Trans. Comput.,
Special Issue on Fault Tolerant computing, vol. 3 I , no. 7, Jul. 1982.

[191 P. Azema et al., “Specification and validation of distributed systems
using PROLOG interpreted Petri nets-PIPN,” 7th Int. Conf. Software
Eng., Orlando, FL, Mar. 1984.

[20] ISO, “Estelle, a formal description technique based on an extended state
transition model,” ISO-TC97-SC2I-WG1, DIS 9074.

(211 ISO, “LOTOS, a formal description technique based on an extended
state transition model,” ISO-TC97-SC21 -WGI, DIS 8807.

[22] G. Juanole and B. Algayres. “Protocol design and modeling,” in 4th
European Workshop on Application and Theory of Petri Nets, Toulouse,
Sept. 1983.

[23] M. Diaz, “Petri net based models in the specification and verification
of protocols,” LNCS, no. 255, Advances in Petri Nets, E. Brauer et al.,
Eds. New York: Springer-Verlag, 1987.

[24] R. Molva, “Conception et realisation d’un observateur d’architectures
multicouches,” Thtse de Doctorat, Univ. Paul Sabatier, Toulouse, Oct.
1986.

[25] J. M. Novali, “Modeles d’observation pour les architectures multi-
couches,” Thtse de Docteur-Ingknieur. Toulouse, lNSA, Nov. 1986.

[26] D. A. Anderson and G. Metze, “Design of totally self-checking circuits
for m-out-of-n codes,” IEEE Trans. Compur., vol. 22, Mar. 1973.

[27] M. Diaz, P. Azema, and J. M. Ayache, “Unified design of self-checking
and fail safe combinational circuits and sequential machines,” IEEE
Trans. Comput., vol. 28, no. 3, pp. 276-281, Mar. 1979.

[28] N. G. Levenson, “Safety analysis using Petri nets,’’ IEEE Trans. Soft-
ware. Eng., vol. SE-13, pp. 386397, Mar. 1987.

[29] F. Biairdi, N. D. Francesco, and G. Vaglini, “Development of a debugger
for a concurrent language,” IEEE Trans. Software Eng., vol. SE-12, pp.
547-553, Apr. 1986.

[30] M. Diaz and C. Vissers, “SEDOS, Estelle and LOTOS environments
for the design of open distributed systems,” IEEE Sofhoare Eng., vol.
15, Nov. 1989.

[31] J. C. Lloret and P. Azema, “Incremental verification of token ring
protocol,” in 6th Int. Workshop on Protocol Specifrcation, Testing and
Validation, Montreal, June 1986.

[32] R. J. van Glabbeek, “The linear-branching time spectrum,’’ in Proc.
CONCUR89, LNCS 458, J. Baeten k J. Klop Eds. New York:
Springer-Verlag. 1990, pp. 278-287.

27-4-1, 27-4-7.

[33] 2. Kohavi, “Switching and finite automata theory,” Computer Science
series. New York: McGraw-Hill, 1970.

[34] M. Hennessy and R. Milner, “Algebraic laws for nondeterminism and
concurrency,” 1. ACM, vol. 32, no. 1, pp. 137-161, Jan. 1985.

[35] R. Milner, “Communication and Concurrency,” Int. Series in Computer
Science. Englewood Cliffs, NJ: Prentice-Hall, 1989.

Michel Diaz (SM’92) is Directeur de Recherche at
the Centre National de la Recherche Scientifique
(CNRS) and leads the Research Group “Com-
munications Softwares and Tools” at Laboratoire
d’Automatique et d’Analyse des Systemes du
C.N.R.S., Toulouse. He has been working on the
development of formal methodologies, techniques
and tools for designing distributed systems during
the last ten years. In 1989 and 1990, he spent a
year as visiting staff at the University of Delaware
at Newark and at the Universitv of Califomia at
Berkeley.

Dr. Diaz is a member of many Program Committees; he served
as a Chairman of the Program Committee for the IFIP Congres on
“Protocol Specification, Testing and Verification,” the European Workshop
on “Application and Theory of Petri Nets,” and the Intemational Conference
on Distributed Computing Systems, in Area “Software Engineering“, the
IFIP congres FORTE on Formal Description Techniques. He is a Technical
Editor for the joumals Reseaux er Informatique Repartie, A n d e s des
Telecommunications, and Communications Magazine. From 1984 to 1988, he
was the prime manager of the SEDOS project (Software Environments for the
Design of Open distributed Systems, in which the Formal Techniques Estelle
and LOTOS have been developed) within the ESPRIT programme of the
CEC. He has written one book and more than 100 technical publications. He
is the editor of the North Holland volume on Protocol Specifrcation, Testing
and Verification, 1985, co-editor of two North Holland volumes dedicated
respectively to the Formal Description Techniques Estelle and LOTOS, 1990,
and co-editor of the North Holland volume on Formal Description Techniques,
1992. He has received the Silver Core of the IHP and is listed in the Who’s
Who in Science and Engineering. He is presently Director of the French
Research Coordination Group on “Parallelism, Networks and Systems” (GDR
“Parallelisme, Reseaux et Systemes) and the co-head of the French CNET-
CNRS project CESAME on the formal design of high speed multimedia
cooperative systems.

Guy Juanole received the “Doctor es Sciences” degree from Ihc University
Paul Sabatier. Toulouse. France, in 1978.

He is, at the present time. Professor at the University Paul Sabatier (lectures
in Automatic Control, Computer Communication Networks. Formal Models
for the Analysis of Distributed Systems (Petri Nets. Queuing Nelworks,
Stochastic Petri Nets) and researcher at the Laboratory LAAS (Laboratoire
d’Architecwre et d’Analyse des Systemes) of the CNRS (Centre National de
la Recherche Scientifique) in Toulouse. His rescarch interests are in the area of
the Petri nets based models with a major emphasis on Timed and: Stochastic
Petri nets and hei r applications to communication networks and protocols
(high sped networks - industrial networks).
Dr. Juande has been Program Co-chairman of the 5th Intemational

Workshop on Petri Nets and Performance Models.

DIAZ er al.: FORMAL ON-LINE VALIDATION OF DISTRIBUTED SYSTEMS 913

Jean-Pierre Courtiat (M’88) graduated in com-
puter science from ENSEEIHT in 1973 He received
the Ph.D. and Doctorat d’Etat degrees in computer
science from the University of Toulouse, France, In
1976 and 1986, respectively.

After having been a researcher at LAAS/CNRS
from 1973 to 1976, he has been an expert of the
French technical cooperation from 1976 to 1980
with an appointment at the Federal University of
Rio de Janeiro, as Professor of Computer Science.
In 1980, he came back to LAAS, as “charge de

recherche au CNRS” (a research position of the French National Council
of Scientific Research). At LAAS, he works in the OLC (Software and
Communication) research group, where he leads the SFP (Formal Specification
of Protocols) research team. His research interests include the design of
protocols, as well as the definition and application of formal methods for
the specification, venfication and testing of protocols and distnbuted systems,
areas in which he has authored or co-authored more than 70 intemational
publications. Currently, he participates to several researches dealing with the
semantics of concurrency and the expression of time-constraints in the formal
descnption techniques, as well as the application of these techniques to the
formal design of co-operative high speed multimedia distnbuted systems. In
carrying out these researches, he has taken several responsibilities in different
European research projects, and has participated to standardization activities,
as an expert of AFNOR and 1.50. He is currently one of the co-managers of
CESAME, a CNET-CNRS collaborative project on High Speed Multimedia
Systems sponsored by France-Telecom.

Dr. Courtiat is a member of ACM.

