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Abstracr- This paper proposes the observer concept for de- 
signing self-checking distributed systems, i.e., systems that detect 
erroneous behaviors as soon as errors act at some observable 
output level. The approach provides a solution to build systems 
whose on-line behavior is checked against a formal model derived 
from a formal description. In other words, the actual implemen- 
tation is continuously checked against a reference, this reference 
being a formal and verified model of some adequately selected 
aspects of the system behavior. The corresponding methodology, 
the software concepts and some applications of the observer are 
presented. General definitions are given first that theoretically de- 
fine self-checking systems as systems that include and implement 
complete on-line validation. The basic concepts and the difficulties 
to implement self-checking validation are then given. In order 
to provide simple implementations, the previous definitions will 
be weakened to design quasi self-checking observers for LAN’s 
using a broadcast service. Three specific applications are given 
to illustrate the proposed approach: testing a virtual ring MAC 
protocol, checking the Link and Transport layers in an industrial 
LAN, and managing a complete OS1 layering, from layer 2 to 
layer 6 in an open system architecture. 

Index Temsaistributed systems, run-time validation, testing, 
verification, Petri nets based models, performance measurements, 
layered distributed architectures, formal description techniques. 

I. INTRODUCTION 

ECENT developments lead to the design of complex R distributed systems where functional and performance 
validations are of high importance. Designing such systems 
features, as an ultimate goal, the validation of actual imple- 
mentations, which consists in certifying the conformance of 
the implemented system with respect to some predetermined 
specifications. The conformance is usually carried out by 
defining, during the design, a set of adequate test suites 
that are applied to the system that will then react to these 
specific stimuli. Of course, such testing experiments are always 
performed while stopping the normal behavior of the system. 

Moreover, as faults or errors of any sort can occur during 
the life of the system, it is obvious that they cannot be tested 
at the very moment they occur by using those conventional 
approaches. This is because run-time checking of the effects 
of faults on system behaviors needs to be carried-out contin- 
uously. Enforcing on-line testing would allow one to detect, 
during normal behavior and as soon as they occur at some 
observable level, the influence of hardware failures, software 
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bugs or human malfunctions. As checking is continuous, it 
is also able to provide a simple way to obtain experimental 
figures about actual system reliability and actual system per- 
formances. This paper aims at proposing the observer concept 
for validating run-time behaviors of distributed systems, and 
more precisely for designing self-checking communicating 
systems, i.e., systems that detect erroneous behaviors as soon 
as errors act at some observable output level. The given 
approach also provides a way to design systems whose on- 
line behavior is checked against a formal model derived from 
a formal description. In other words, the actual implementation 
is continuously checked against a reference, this reference 
being a formal and verified model. 

In distributed systems, distributed processes run in parallel 
on several distant processors, and the interactions taking 
place between these processes can be very complex. Hence, 
enforcing on-line behavioral validation is quite challenging 
and important: distributed architectures are very difficult to 
define, build, and test, due to their geographical distances and 
intricate interactions. Because of their interests, this paper only 
addresses distributed systems and shows how their interactions 
can be formally described and processed in order to derive 
formal run-time checking. 

The observer concept was first proposed for parallel, non 
distributed systems [ 11, and afterwards extended to distributed 
systems [17]. This paper generalises the previous work by 
presenting a general design methodology, applicable to any 
distributed system. The corresponding approach starts from 
the formal concept of self-checking systems. Unfortunately, 
on-line self-checking systems appear to be quite difficult to 
implement. It is then shown how the formal on-line checking 
definitions can be weakened in order to lead to a real and 
simple implementation of an on-line observer. Developing 
the observer provides an efficient method for designing quasi 
self-checking distributed systems. It also includes the devel- 
opment of a implementation support tool that proved to be 
able to debug, observe and evaluate the system behavior. 
The designed on-line checked system is made up of two 
parts: a worker, which is the actual implementation, and an 
observer, which is defined as a design of selected distributed 
mechanisms. As illustrative examples, some applications in 
industrial distributed control and office automation networks 
will be given. Experiments on another important application 
area, electronic switching systems, appear in [2]. 

Section I1 discusses the general validation problem in dis- 
tributed systems and gives the main principles that define 
formal observation and formal checking of communicating 
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systems. It defines in the most general way on-line self- 
checking systems, introduces the observer concept, and em- 
phasises its interests for on-line checking. The conceptual 
difficulties are then discussed and a weaker solution is pro- 
posed that leads to the concept of quasi self-checking systems. 
It is then shown how the needed formal observers can be 
designed and easily implemented to validate the behavior of 
multilayered LAN’s based on the use of a broadcast service. 

Section I11 gives two significant areas of application of the 
observer. The first one presents a protocol observer for a local 
network, REBUS, used in order to check a MAC (Media 
Access Control) layer, a token-bus protocol, and reports some 
significant results. The design of an open multilayered protocol 
observer is given in the second part and applied to two specific 
LAN’s of interest: a multilevel industrial LAN and an open 
office automation LAN. These multilayered observers are able 
to separately consider each of the protocol layers and provide, 
as main facilities, run-time checking and performance analysis. 

11. FORMAL OBSERVATION OF DISTRIBUTED SYSTEMS 

The key to distributed software quality is reliability [4]. 
Two aspects must be investigated in order to design correct 
software. The first one concems the reliability with which the 
software specifications are adequately described and correctly 
implemented in the actual implementation; the second one 
deals with checking, during run time, the correct behavior 
of the implemented system in actual environments including 
hardware failures, software bugs and human errors. This paper 
also gives an approach that relates these two design phases. 

Usually, distributed systems are tested by suspending either 
the whole system operation or part of it [5]. Starting with 
hardware, different studies have been carried out in order to 
handle errors on-line, at run time. Those studies are based 
on the concepts of self-checking systems or, more generally, 
on the concepts of distinctness [8]-[ lo], where distinctness 
globally means altemative ways of performing a specific task, 
by using as far as possible separate hardware and different 
softwares. 

Previous approaches developed for system validation either 
do not address run time checking by using formal approaches 
or do not consider distributed systems, as validation functions 
are located in different processes and are unable to check the 
global behavior. 

The on-line validation approach for complex distributed 
systems considered in this paper uses as a starting basis the 
concepts resulting from hardware self-checking systems. The 
following definitions extend to distributed systems the ones 
proposed for sequential machines [26], [27]. They will serve 
as the main basis for discussing distributed on-line checking. 

Let us consider a given system and assume that some 
outputs belong to a well defined set of admissible values S .  

Definition 1: A system is fault-secure for a set of faults F ,  
if for any fault f belonging to F ,  and for any run time behavior 
B of the system, the outputs deliver: 

a) either the correct value, as if there were no fault, 
b) or one or more erroneous faulty values, but these faulty 

values are such that they do not belong to the admissible 
value set S. 

Then, fault-secure systems are systems where faults may be 
enforced not to propagate. This is because: either the faults 
are not visible and have no effect; or the faults have visible 
effects that affect the outputs, but it is easy to notice that 
an error exists at the output (and if needed take appropriate 
action) as the output value is outside the known admissible 
set of error free values. 

Fault-secureness is a safety property: undetected output 
errors cannot occur as an output value cannot at the same 
time be faulty and belong to the set of the nonfaulty values. 
It follows that either the output is correct or the output is 
incorrect but the false value can be detected as soon as it 
appears at the output level. 

Note that one possible mechanism for such a detection is 
to use adequate coding at the output level: if the fault has an 
effect, then the output value must not belong to the selected 
code. 

Definition 2: A system is self-testing for a set of faults F ,  
if whatever a fault f belonging to F ,  there exists a specific 
testing behavior Bt, occurring during the run-time behavior 
of the system, such that this fault will be propagated to the 
output as a value out of the admissible set S .  

This property is of importance as it enforces the detection of 
all faults in a selected set F of fault assumptions. This results 
because, assuming that fault f l  exists and is not detected, then 
another fault f 2  can occur and the resulting compound fault 
“fl together with f2”  may possibly be out of the selected 
fault set F .  The effects of the “fl together with f2”  fault 
has not been considered during the design because of the fault 
assumption, and the resulting output value resulting from the 
“fl together with f 2 ”  fault may be wrong, i.e., faulty and 
belonging to the set of admissible values. In the case of a parity 
coding, such a possible behavior is obtained when two errors 
arise and leads to a value which is false but belong to the code. 

Self-testing is a liveness property as it implies that any fault 
will eventually be propagated as a faulty output value. 

Note that self-testing alone allows the fault, before being 
propagated out of S, to give a wrong undetected output value, 
i.e., an output value different from the output value without 
fault but where this output value belongs to the set S. Self- 
testing is not sufficient as: if the system is only self-testing, 
then faults should appear at the output as a value out of S;  
the problem is that, as nothing else is stated, before becoming 
observable at the output, the faults may give output values 
which are both false and belong to S, so are not detected. 

From the previous comments, it follows that an adequate 
system behavior is obtained by the following definition. 

Definition 3: A system is self-checking for a set of faults 
F ,  if whatever a fault f belonging to F ,  it is fault-secure and 
self-testing. 

A self-checking system has safeness and liveness properties 
regarding the effects of its faults. Definitions 1 and 2 show 
that B and Bt behaviors are of fundamental importance. It 
will be shown that the difficulty come with Definition 2, 
because of Bt, the set of the test behavior, that includes the 
needed test sequences: as checking is performed on-line then 
the sequences in Bt must belong to the set of the sequences 
that occur during run-time behavior. 
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Definition 1 can be fulfilled by using coding. Unfortunately, 
it is generally quite difficult to define and process coded values 
in distributed software. 

As an extension of the duplication principle in hardware, a 
possible solution, that will be the one considered in this paper, 
is to restrict the classes of self-checking implementations to 
the ones that use the distinctness concept: the system to 
be validated is designed as being composed of two distinct 
subsystems, a worker and an observer. 

Definition 4: An observer-worker system is a (potentially 
run time checked) system that is constituted of two dis- 
tinct components, a worker and an observer: the worker is 
a classical- implementation of the system behavior and the 
observer is- a given redundant implementation whose outputs 
are comparable with the outputs of the worker. 

a 
SELF-CHECKING SYSTEM 

Fig. 1. Principle of a simple self-checking. 
\ 

An attempt to use type a) cooperation appears in [ 2 ] .  
Fig. 1 gives the basic design architecture. From Fig. 1 and 
the previous definitions, it follows: 

A. Observer Principle 

quires: 
Comparing outputs implies observing behaviors. This re- 

Redundancy. If a system has redundant copies, run-time 
faults occumng within one copy lead to a discrepancy 
between the behavior of this copy and the behavior of 
the nonfaulty copies. Detecting the fault means detecting 
the different behavior of the faulty copy. Consequently, 
the simplest redundant system can be implemented using 
two distinct copies, here called the worker and the 
observer. 
Reference. The behavior of the subsystem that is being 
checked must be precisely known and defined. It will be 
shown in the sequel how this well defined representation 
of the global behavior, the observational model, can be 
derived from a formal specification. 
Visibility. Checking the worker behavior implies that 
the observer must know and access given events of 
the worker. The resulting observer-worker relationship 
which has to be implemented can be of two different 
types: 
a) the worker cooperates with the observer by explic- 

itly informing the observer when significant events 
occur, 

b) the worker behavior can be spied by the observer, 
needing no specific action from the worker. 

An observer-worker cooperation of type a) enables the 
observer to get any information it needs from the worker but 
both the worker design and its software have to be modified 
to send this adequate information to the observer. 

In the observer-worker cooperation of type b), the knowl- 
edge of the worker behavior is obtained from some set of the 
worker information that is directly accessible to the observer. 
The worker is not modified by the presence of the observer: 

--observer and worker designs and implementations can 
be made independent, and can be performed by distinct 
approaches and teams, 
-the same observer can be used for checking different 
implementations of the worker. 
As a consequence, type b) spying cooperation will be 

considered in this paper. 

Property 1:  In a observer-worker system, if 
a) F is the set of all faults occumng only in one of the 

b) each subsystem is such that its set of fault detection 
two distinct subsystems, 

sequences are applied during run time, 
then the global system is self-checking. 

Proof: Fault secureness follows because the design is 
fault-secure: a fault in one of the two subsystems will only 
affect its outputs; checking its output values with respect to 
the ones of the non faulty part enforces the needed detection. 

Fault testing comes from the fact that each of the two 
subsystems is tested during run time, giving an erroneous 
output. Comparing the erroneous tested outputs with the 
correct ones of the other component indicates the error. Self- 
checking follows from Definition 3. 

Of course, part b) of Property 1 needs the system to be 
designed in a specific way. The difficult assumption to be 
fulfilled is to enforce that all possible faults in one (each) 
component are tested during run-time. Furthermore, from the 
definitions, this set of tests must be applied before one fault 
occurs in the other subsystem. This is because if another 
fault occurs, the resulting compound fault falsifies the fault 
assumption: both faults, one in each subpart, may compensate 
each other and give a global output whose value could be 
wrong and could have equal (identical) values. 

Due to the resulting complexity for large systems, such a 
formally proved run-time checked design, although possible, 
will not be considered here. For sake of applicability to 
any distributed systems, it is assumed in what follows that 
the worker is not designed in any specific way, and as a 
consequence can be any distributed system implementation. 

It follows that as many as possible different sequences 
should be applied to the worker during its usual behavior in 
order to (as soon as possible) detect faults that may occur. 

Let us now consider the design of the observer. Part b) of 
Property 1 implies that a run-time tested implementation of the 
observer also needs a nonclassical, specific test based design. 
Again, such a specific design, although simpler that the one of 
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the worker, still seems not easy to realize for observing any 
complex distributed system. 

Although being of interest for highly reliable systems, 
the approach developed here does not consider such a self- 
test based design, but instead proposes to develop a quasi 
self-checking observer, called a formal observer: this quasi 
self-checking observer will be designed as reliable as pos- 
sible, being based on a formal model and on an exhaustive 
verification of this formal model. 

Definition 5: A formal observer is a subsystem designed to 
check distributed behaviors where: 

a) its software is independent of the specific protocols to 

b) its data are defined by the protocols to be checked and 

Property a) implies that the observer can be built and used 
for a family of distributed systems. So it can be made very 
reliable. 

From property b), there must exist a method to specify and 
verify the correctness of the observer data, i.e., the specific 
system data depending of the distributed system protocols, 
before these data are given as an observation input to the 
observer. Such a formal observer can be seen as a correct 
implementation of the formal model of some observed aspects 
of the behavior. It will be seen that Petri nets have been used 
to build the formal models. It follows that the design of the 
system consists of the following steps: write a description 
of the behavior of the system to be implemented; implement 
the system itself, i.e., the worker; from the description of the 
worker, select (based on experience) that part of the behavior 
which should be observed and write a formal model of it. This 
specific formal model, corresponding to the selected behavior, 
defines the data of the observer. 

be checked in the considered system; 

this data can be formally specified and verified. 

Definition 6:  A system is quasi self-checking if 
a) it is an observer-worker system, and 
b) the observer is a formal observer. 
Of course, the input data of the observer are of prime 

importance. It is proposed in this paper to use formal models 
of the behaviors to be checked as input data for the observer. 
These inputs, being used as references for checking behaviors, 
must be reliable and correct: formal models must be used, as 
they provide precise descriptions and support validation and 
verification algorithms. In order to be fully integrated in the 
software life cycle, formal models will be derived from system 
specifications: the relationships between the specification, the 
implementation and the observer are given in Fig. 2(a) that 
shows how an observer is related to a system specification. 

It follows that comparing the worker and observer behav- 
iors, the former being the actual implementation and the latter 
being a formal model, provides a basic on-line mechanism 
able to detect any discrepancy between both behaviors. This 
quasi self-checking approach owns some features of interest: 

a) on-line fault detection follows from detecting a mis- 
match between the two subsystem behaviors, one being 
formally described, 

b) well defined events can be selected for validation and 
run-time checking and appear in the formal model. 

FORMAL REQUIREMENTS 

FORMAL SPECIFICATION 

1 
AWALSOFIWARE ky OBSERVATIONAL 
IMPLEMENTATION CHOICES 

(MODEL): (CLASSICAL SOFIWARE 
DEVELOPMENT): 

WORKER OBSERVER 

COMPARE BOTH IMPLEMENTATIONS 
FOR DISCREPANCIES : 

SELFCHECKING SOFIWARE 

(a) 

SPEC LEVEL 0 

4 
i 

SPEC LEVEL 1 

FORMAL MODEL OF 
I OBSERVATIONAL CHOICES 
I 

I VERIFICATION 
I 

SPEC LEVEL i 

I I 
I c 

OBSERVATIONAL MODEL 

1 i 
SPEZoLE;;N: tQ- OBSERVER 

IMLEMENTATION : 

ERROR 

(b) 

Fig. 2. 
and checking. (b) The levels of specification and observation. 

Relationship between implementation and checking. (a) Observation 

For actual complex implementations, it does not make any 
sense to observe the complete behavior of the distributed 
systems. Too many events may occur in the worker. Many 
of these events can be classified as intemal, with little in- 
terest, and in practice cannot be traced during run-time. 
Consequently, observational models do not need to represent 
complete behaviors but only partial behaviors of interest 
[Fig. 2(b)]. With this in mind, selecting the formal model 
becomes one important design choice. It should be able to 
specify at some level of detail, any system specifications and 
be validated with respect to requirements of correctness. 

It follows that the formal model must be able: 
-to express simplified specifications of distributed systems; 
-to support verification procedures; 
-to be able to act as a basis for implementing the observer. 
Different formal models and description techniques [ 121 

have been developed to specify behaviors of distributed sys- 
tems. The most known ones are Extended State Machines [ 131, 
[15], Petri nets based models [ l l ] ,  [14], the IS0 and CCITT 
formal description techniques ESTELLE, LDS, and LOTOS 
[201, 1211, 1301. 

Petri nets have been selected in this paper for defining the 
observer models as they can be: 
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Site N Observer l zG52 -analyzed by efficient methods and tools, 
-animated by easy to implement simulators, 
--derived as observational models from protocol descrip- 
tions. 
Classical Place-Transition Petri nets do not represent data. 

Then if Place-Transition Petri nets are used, Only Control 
structures can be taken into account by such Petri net based 
observers, as it will be shown later on. 

sophisticated models must be used in a similar way as ob- 
servational models. For instance, should an observer have to 

represented by Petri nets, then Predicate-Transition Petri nets 

at the expense Of a more 
difficult verification. 

per- 
forming the required behavior and that the observer contains an 
observational Petri net model, also called the mission model, 
derived from the specifications of the communicating system. 
Let us now consider how to derive the observational model. 

Fig. 3. ne observer on a bus architecture. 

Of course, if more descriptive power is needed, then more that the difference with classical hardware protocol monitors 
is that the observer is at a very high level of 
description by using the formal model: then any change of the 

model. 

shared broadcast support as simply as any functional node 
of the network. Any broadcast information becomes directly 
available to the observer as, by listening to the physical layer 
bus, it can follow all exchanges of messages between the 
communicating processes: it must be able to receive at the 
physical layer all messages which are sent on the broadcast 
medium. 

Of course, layered architecture means that, starting from the 
physical layer, the observer has to check a hierarchy of proto- 
cols. Let us note that, for simplicity, it seems adequate to debug 
and validate the system by considering one layer at a time. 

1) Protocol Filtering: In the general case, all observed soft- 
ware protocols are those of all layers of the hierarchy. Let us 
consider for instance layer N .  To check the layer N protocol, 
the observer must receive the corresponding N-layer protocol 
data units, the N-PDU’s. For the messages to be received 
at layer N ,  the observer has to perform a set of lower layer 
functions, i.e., the €unctions of layers 1 to N which are needed 
in order to build the considered N-PDU’s from the physical 
(layer 1) PDU’s. The observer has to capture the physical 
messages, the physical PDU’s, and derive from them the N -  
PDU’s, as indicated in Fig. 4 [24]. Note that in the case where 
a broadcast service is available at layer K ,  with K < N, the 
Observer has to restore the N-PDU’s from the K-PDU’s’ 

sages, a basic filtering set of functions, named ( N ) - F ,  to be 
associated to each layer3 from to N 9  has been identified‘ 

One Of these layers. The set Of functions is 
derived from the general model of layer M by considering all 
functions related to the up-down information transfer between 

check data, and as data be protocol to be checked will only mean to modify the formal 

r i 4 i 7  the Descriptions Techniques [201 Or The observer be to the worker though the 
‘211’ be 

It follOws here that the worker is an 

B .  Observers in Distributed Systems 

Validation of distributed systems must account for all global 
interactions and must address all properties related to the com- 
munications occuring among processes. As processes interact 
using protocols, observing the global system behavior means 
observing the protocols, i.e., the way processes communicate. 

The more general framework in which quasi self-checking 
distributed systems could be developed is heterogeneous open 
architectures. As a consequence, it was decided to design 
the observer concept inside the ISO-CCITT OS1 Reference 
Model framework [7]. The OS1 Reference Model assumes a 
layered architecture and defines a set of layers, each layer 
providing services to the layer above it; within a layer, the 
corresponding entities communicate by exchanging messages 
following a given protocol and using the services of the layer 
below. It seems that such a structuring, consisting of a given 
set of layers, is the only way to successfully design complex 
communication systems. 

In layered architectures, the worker is the set of processes 
distributed on several processors which perform all application 
functions and the observer is a dedicated processor. 

As the spying cooperation mode has been selected (see 
Paragraph 11-l), it follows that any layered architecture has to 
provide a way to read the required information. Considering 
protocols, and given the fact that workers cannot be modified, 
then the observer must be made able to know all or some of 
the exchanged information, i.e., the messages. 

For achieving a simple design of the observer concept, it 
will be assumed here that observers are designed in order to be 
applied to distributed systems that communicate using broad- 
cast mechanisms among the worker processors, for instance 
using a physical bus in local area networks. Of course, spying 
observers will then be easy to implement as all exchanged 
messages are potentially able to be received by an observer 
connected to the broadcast service (Fig. 3). It will be shown 

In Order to upper layer PDU’s from physical 

us note 

ISo adjacent layers [Fig. 4(a)l. 
’Ikese functions are: 
--concatenation and separation, which perform the mapping 
between ( M  - 1)-SDUs and (M)-PDU’s 
-encoding and decoding, which translate (M)-PDU’s from 
their extemal representation into the intemal representation 
of layer M and conversely; 
-mapping of connections or associations, between layer 
(M-1) and layer (M), using SAP and connection identifiers 
as source and destination references; 
-segmenting and reassembling, which implement the map- 
ping between the data of the (M)-PDU’s and of the (M) -  
USER-DATA; 
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N-PDUs 

905 

N-SDU. N-Address 

REASSEMBLING Q 
DISCRIMDJATION 

N-PDU, N-Address 

MAPPING 

N-PDUs, P (N- ])-Address 

+ 
SEPARATION-DECODING L 

(a) 
N-PDU, N-Address 

4 

(N)-PDU, (N-2)-Address 

(N)-SM 

(N-I)-SDU, (N-l)-Addre~~ 

(N-I)-F 

t 
2-SDUs, 2 Address 

(7J-F ‘;7 Ph-SDU, physical Address 

(b) 
Fig. 4. 
(b) From layer 1 to layer N. 

Protocol filtering for layer B. (a) From layer (2%’ - 1) to layer N .  

-protocol control of the exchange of data between peer 
(M)-entities and between adjacent layers; this function 
includes the resequencing, the retransmission of transferred 
data PDU’s if needed, and the delivery to layer ( M  + 1) of 
the valid data contained in (M)-PDU’s. 

ORIGINAL SPEC I-4 r-1 

N-SDUs F 
(N-1) layer 

Fig. 5. Methodology for deriving observational models 

As the observer only receives messages and do not send 
data, the basic filtering functions ( M ) - F ,  associated with layer 
M ,  are derived from the layer M functions that are required 
only for receiving data. 

Hence ( M ) - F  is built up by elementary functions which are: 
- (M)-SM: separating and decoding machine for layer M ;  
these two functions are joined functions as separation of 
PDU’s is an implicit result of decoding; 
-(M)-MM: mapping machine for layer M ,  handling the 
association between ( M  - 1) addresses and ( M )  addresses; 
-(M)-DM: discrimination machine, the reduction of the M 
protocol control function to a simple mechanism that orders 
the sequence of valid data from the received data PDU’s; 
-(M)-RM: reassembling machine for layer M which de- 
tects complete sequences of data segments and builds ( M )  
SDUs. 
The main feature of these functions is that except for ( M ) -  

SM all functions are protocol independent; this is because 
the (M)-SM function translates protocol specific extemal 
representations into common intemal representations. 

Finally, protocol filtering capability for layer N is obtained 
by layering the basic filtering functions (M)-F from the 
broadcast service, for instance layer 2 in a bus architecture, to 
layer M as shown in Fig. 4(b). This design allows the observer 
to receive, for any layer M between 2 and N ,  all M-PDU’s 
derived from the physical PDU’s. 

2 )  Modeling Technique: As the observer can then validate 
any of the M-protocols, it needs as an input an observable 
model of these protocols, i.e., of the exchanged PDU’s. It 
is proposed to obtain the formal observational model for 
one layer using the following three main steps methodology 
illustrated in the first part of Fig. 5 [l l] ,  [131, [221, [231: 
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S-1) At any layer, each distinct protocol entity is represented 
by a labelled Petri net deduced from the protocol specifications 
(finite state machines are a specific case of Petri nets). Hence 
a hierarchy of local models, one for each protocol entity, is 
obtained. The corresponding descriptions, i.e., the descriptions 
of the entities, are simplifications of the complete behavior of 
the entities, these simplification being based on a set of rele- 
vant observable mechanisms. For instance, the establishment 
and release of the connections could be part of the model, as 
any designer could find relevant to validate and control them. 

S-2) The models of the peer entities are connected together 
using a Petri net description of the service provided by 
the adjacent lower layer, i.e., their abstract communication 
medium. Note that a model of the underlying service has to 
be provided to the designer. Hence a global model of the 
layer is constructed. The correctness of the global model, 
i.e., the model that has been build by connecting together the 
local models and the service model, can be checked using 
exhaustive simulation or formal verification, e.g., by checking 
boundedness, liveness and proving temporal logic properties 
[l l] ,  [13], [14]. For instance, these sets of properties can be 
verified using appropriate software tools as PIPN [31]. 

S-3) After having been shown correct, the global models of 
the interacting entities are defined to be the data to be given as 
input to the observer. For instance, the model of layer M will 
be used to control the valid on-line behavior, i.e., the validity 
of the actual sequencing of the M-PDU’s. Let us now consider 
the relationships that exist between the model and the actual 
behavior of the protocol on a LAN. 

While listening to the broadcast medium, the observer is 
able to receive all events transmitted on this media and can 
derive all needed M-PDU’s. The problem is that the observer 
is not aware of the events that are intemal to any processor. 
Now, the formal descriptions that are built in the general case 
use all needed events, including the intemal ones. Starting 
from the global model including all needed events, the set of 
events will have to be partitioned into two subsets, the subset 
of events intemal to the processors, and the subset of events 
that are sent on the media. The latter set then defines for the 
observer the set of the observable events: this set can include 
all the PDU’s that are exchanged between the communicating 
entities on the bus and does not include all primitives and 
exchange of information that are local to the processors. 

Definition 7: Observable events in broadcast systems are 
those which lead to a partial or complete message sent on the 
broadcast service. Note that this defines “sending messages” 
events. 

Deriving the observational model from the global model 
and the set of observable events implies keeping the 
names of the observable events and labelling as don’t 
care, on the global model, the transitions which represent 
the nonobservable events, i.e., the events not visible by 
the observer; 
Of course, the complexity of the corresponding models 
depends on the don’t care transitions and on the set of 
mechanisms that have been selected. When a model is 
too complex, it is proposed to use reduced observable 
models, which are equivalent and simpler descriptions. 

Finding simpler models equivalent to the global one 
means keeping only the set of the observable transitions 
and so eliminating as much as possible the transitions 
that are marked as don’t care transitions. 

Let us note that for unconfirmed services, sent messages 
are not always received. The observer will be able to notice 
their losts by noticing that the new message (received after the 
lost one) is not the expected message and corresponds to one 
following the lost one, and so does not belong to the normal 
behavior. 

3 )  Observational Models: Two altematives exist for imple- 
menting the selected model. 

Case I : Implementing the observational model means sim- 
ulating the behavior of the global Petri net. Starting from the 
initial state, i.e., the initial marking, the model has to evolve 
by firing the firable and not observable transitions until the 
model reaches a state where an observable event (the sending 
of a message) is enabled (is firable, in terms of Petri nets). 
Then the firing mechanism of the Petri net is stopped before 
firing this transition and the model simulator waits until: 

a) the corresponding observable event occurs, i.e., the cor- 
responding message is received by the observer. When 
this event occurs the model simulator fires this transition 
and subsequently starts again firing the internal tran- 
sitions until another new observable event is reached, 
where the firing again waits for this new event, and so 
on. 

b) an observable event occurs which is not expected, i.e., 
does not correspond to a PDU labelling one of the firable 
transitions of the model. This means that the worker and 
its model are not in agreement: an error is being detected 
and all present and past needed state information are 
saved. There is a discrepancy between the specification 
and the actual behavior and predefined signatures will 
be delivered to the users and designers. 

Case 2: The observable model is too complex. Then, it can 
be simplified by deleting from it as many unuseful events as 
possible, i.e., as many nonobservable events as possible. This 
can be done by deriving a reduced model, equivalent to the 
global one, but containing a minimum number of unobservable 
events. 

Deriving an observable model means deriving a model that 
is, in some sense, equivalent to the global one, and is a 
simplification of it. A lot of equivalence relations exist [32]. 
Trace equivalence [33], [34] and observational equivalence 
[35] are the main proposals, defined on labelled transition 
systems. They are defined by selecting specific observable 
events amongst the set of all events. 

Definition 8: Two labelled transition systems P and Q are 
trace equivalent when they have the same set of traces (when 
Traces(P) = Traces( Q)). Two labelled transition systems P 
and Q are observational equivalent when they are related by 
a bisimulation [35]. 

When the observer receives messages from the bus or 
from the broadcast service as any normal user, it receives 
the messages one after the other. If one message at a time 
is received for conducting the observation, then the observer 
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receives a flow of words belonging to a language, the language 
of the PDU’s that are sent on the bus, i.e., that are generated 
by the observable events [17]. 

Many equivalence relations can be selected [32]. From the 
previous reasons, the one that has been selected for deriving 
the observational models is the equivalence with respect to 
sequential traces, or trace-equivalence. This is because the 
observer receives the messages from the broadcast medium 
one after the other, in sequence. The observation becomes 
equivalent to checking the correctness of the traces on the bus 
that represent the run-time behavior of the distributed system 
implementation. 

The following procedure can be used to derive the simple 
observational model (second part of Fig. 5): 

-describe and validate the global model of the protocol, 
-the marking graph, the labelled reachability graph, of the 
global Petri net model is defined, 
-all nonobservable transitions in this graph are labelled by 
a specific word, for instance the empty word, 
-the minimal state machine, which generates the same 
traces for the set of all visible events, equivalent to this 
one, is derived. 
Note that this procedure can first lead to a nondeterministic 

state machine. If so, the nondetenninistic state machine has to 
be translated into an equivalent deterministic machine, as there 
always exists a deterministic machine which is equivalent to 
a nondeterministic one [33]. 

As an example, in Fig. 6(a), 3 processes are defined; they 
communicate by exchanging messages A, B, F and E. Let us 
assume that they use a very simple service, a datagram without 
loss, where every sent message is received. Fig. 6(b) is a Petri 
net model of such an ideal medium. The interconnection of 
the 3 processes by the selected medium leads to the Petri net 
of Fig. 6(c). This global model can be analyzed by adequate 
techniques such as reachability graph and invariants [ 141. The 
model of Fig. 6(c) can be proved correct. 

From Fig. 6(c), applying the simplification procedure leads 
to the observational state machine given in Fig. 6(d). This 
machine makes clear that, in this simple example, the observer 
has to control the sequential sending of messages A, B, F and 
E. Any other order between these four messages reveals an 
incorrect behavior of the system. 

As the observable events are the exchanged messages, i.e., 
the Protocol Data Units, the globa€ corresponding methodolog- 
ical approach for checking the behavior of protocols is given 
in Fig. 5. Note there that the same basic approach could be 
used to derive the model of a service, if a service could be 
defined by projecting on the set of the Service primitives, that 
are observable events. 

4) Handling Complex Models: It follows from the previous 
arguments that the observer needs such an observable model 
for each observed protocol. 

Theoretically, one protocol of one OS1 layer can be rep- 
resented by one model. Nevertheless, in practice, it can be 
difficult to describe many mechanisms inside one layer by a 
single model. Furthermore, complex and complete protocol 
behaviors can hardly be represented by only one Petri net. In 

P1 

?F 

P3 

!M -,- 

(d) 

Fig. 6. An example of the design steps. (a) The communicating processes. 
(b) The service model. (c) The global model to be verified. (d) The projected 
observational model. 

such a case, the protocol description can be handled by parts, 
as in [25]. For instance, in [25], the connection-establishment, 
connection-release and data transfer phases of the Transport 
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protocol have been modelled separately. Also, the Session 
protocol has been partitioned into its functional units. 

In OS1 systems, the behavior of one layer will be considered 
as a set of connections between protocol entities. Let one N -  
connection be called a dialogue within layer N .  All dialogues 
run the same protocol and only one Petri net based model, 
representing one dialogue, needs to be used to represent the 
layer. Nevertheless, as there are many concurrent dialogues, 
the observer includes dynamic process management to concur- 
rently run as many dialogues as needed using the same Petri 
net model: one process, simulating one Petri net, represents 
one dialogue. There will be as many concurrently simulated 
Petri nets as there are concurrent dialogues. 

The creation and release of the dialogues are detected on 
!ne by the observer by analyzing the exchanged PDU’s. For 
instance: 

-at the Data Link layer a dialogue may be created only 
once and never deleted if a connectionless protocol is used; 
-at the Transport layer, each dialogue corresponds to 
one transport connection: the beginning and the end of a 
dialogue in this layer are deduced by the observer from 
the reception of the connection-request and disconnection- 
request TPDU’s. 

C .  Functions of the Observer Tool 

Basically, an observer tool is able to support three main 
functions: audit-trail, run-time checking and performance anal- 
ysis. 

Audit-trail function simply delivers all PDU’s exchanged- 
between user selected entities at a selected communication 
layer- as obtained after protocol filtering. Some additional 
facilities as pattem matching, triggering, time stamping and 
mass storing of results are possible. This is a rather classical 
protocol analysis function. 

Run-time checking is realized on the basis of the observer 
principle with respect to some selected models representing a 
set of given layers. The observer is simply adapted to new 
protocols by modifying the observable model of the new 
protocols. 

Performance analysis facility may be added as it consists 
in measuring time instants, i.e., times elapsed between typical 
protocol PDU’s. Of course, these PDU events are the ones 
which appears in the Petri net model when they are able to 
characterize and provide significant performance figures, such 
as the transfer throughput of the layer. Each PDU received by 
the observer is associated with some time value. The difference 
between the reception times of adequate PDU’s gives the 
actual duration of protocol phases. Throughput is for instance 
computed from the ratio of the number of data transfered 
PDU’s to the duration of the data transfer phase. 

The original feature of this performance measurement tech- 
nique is that the beginning and the end of each measurement 
is performed on a Petri net driven scheme. Then performance 
analysis becomes a formally defined facility and furthermore 
uses the same model (and tool) than the checking facility. 
Moreover the Petri net based model used for performance 
analysis is only slightly extended with respect to the validation 

Petri net model: to each transition of the Petri net is associated 
a simple performance command. When a performance related 
transition is fired by the observer, the performance command 
is executed. Performance related commands contain one of 
the following actions: 

-store the reception time of the current message, 
-calculate the difference between a previously stored time 
and the reception time of the current message, 
-increment the number of transfered data PDU’s, 
+tc. 
The execution of these actions directly follows from the 

Petri net model, and protocol performance can be formally 
defined by defining the events that are labels of the Petri net. 

111. EXAMPLES OF APPLICATION 

This section gives three applications of the observer for 
on-line debugging, behavioral testing and performance mea- 
surements. The first tool was used in REBUS, an experimental 
LAN for real time control, for debugging and on-line checking 
a token bus protocol. The second example presents a prototype 
related to an open LAN for industrial applications [16]; it 
allowed the testing and the performance evaluation figures of 
a Link and a Transport layers. The last tool has been applied 
to a multilayered system, including the layers 2 to 6 of the 
IS0 protocols. 

A. REBUS 
The observer concept has been developed to support the 

implementation of REBUS [ 181. Some features of the worker, 
of the observer, and some experimental results are given 
below. 

I )  The Worker: The worker is the local area network im- 
plementation. REBUS was an experimental system developed 
for designing fault tolerant bus access software. The hardware 
consisted of two (duplicated) serial busses as the physical 
media and of Serial Bus Interface (SBI) processors where the 
communication software resided. 

The mechanism which has been selected and actually 
checked by the observer, because of its importance, is the 
MAC (Media Access Control) protocol, a fault tolerant virtual 
ring protocol. This protocol is based on a token passing 
scheme, so token passing was on-line tested. 

2) The Observed Protocol: The Fault-Tolerant Virtual Ring- 
for Bus Allocation: The token passing protocol is based on a 
(programmable) “privilege” circulating on a virtual ring. One 
unit at a time becomes primary, i.e., is able to access the bus, 
whereas the other units are secondary and are allowed to send 
only response messages to the primary unit. At the end of 
its privilege, the primary unit sends the token (the primary 
status) to its successor on the virtual ring. The virtual ring 
is a logical organization, ordered in a circular fashion, of the 
interface units (SBI). This ordering is virtual as the token must 
follow the ring; functional messages sent by the units may be 
transmitted to any unit and no particular organization of the 
communication media is implied. 

Let I be the primary unit. It keeps the privilege for a limited 
amount of time. When time elapses or when it has no more 
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TABLE I 
FIRST EXPERIMENT 

TYPE OF EVENT PERCENTAGE 
message primary status 99.6 

successful recovery 0.173 
incorrect recovery 0.003 
unsuccessful recovery 0.024 
duplication of master 0 

message become primary 0.2 

message to send, it relinquishes the primary status by sending 
the broadcast message “primarystatus-(S(1))” -where S(1)  
means Successor of unit I on the virtual ring-. It then loses its 
privilege and becomes secondary. By receiving this message 
the unit successor of I ,  S ( I ) ,  becomes primary. 

If the unit successor of S ( I ) ,  S ( S ( I ) ) ,  detects that the 
primary status has not been normally transmitted from unit 
I to unit S ( I )  after a given time limit-for instance if unit I 
is dumb-then unit S ( S ( I ) )  sends a recovery message “become 
primary” to unit S ( I ) .  When receiving this message, unit S ( I )  
becomes the new primary, if it has not previously received 
the message “primary status (S(I))” or it simply ignores the 
message “become primary”, if it has already received the 
primary status-note that in this latter case, S ( S ( I ) )  is faulty. 

The model and the validation of this protocol appears in 
[18]. It has been formally shown that the protocol satisfies the 
following properties: 

-mutual exclusion: at any time, only one of the SBI’s has 
the possibility of getting the access to the bus, i.e., of being 
primary, 
-robustness: this primary status can be temporarily lost but 
will be recovered within a finite time, 
-fairness: every nonfaulty SBI processor will in tum 
receive the primary status. 
3 )  The Observer: The observer has been developed on an 

INTEL processor connected to an SBI board as the other 
functional processors (see Fig. 3). 

The kemel of the observer software is a simple Petri net 
simulator. The tool contains general purpose functions such 
as: 

-man-machine dialogue for on-line diagnosis and control 
display, 
-statistical processing and storage of the received mes- 
sages. 
4 )  Experimental Results: Two sets of results are provided, 

the first one collected during the debugging phase, early in the 
implementation process, and the second one collected much 
later, during normal behavior, when the system was released. 

a )  First Results: The first results (Table I) showed some 
frequent existing malfunctioning, while the corresponding 
faults were recovered and not visible for the users, as the 
service provided to the users was correct. The on-line detec- 
tions of the observer were very useful because if they were 
not detected, the accumulation of these not visible faults could 
have later induced errors on the extemal behavior, i.e., on the 
provided service. 

Unsuccessful recoveries resulted from the losses or the 
nonacceptation of the recovery messages (the “become pri- 

TABLE I1 
SECOND EXPERIMENT 

TYPE OF EVENT PERCENTAGE 
PHASE B PHASE A 

message primary status 99.9992 99.995 
message become primary 4.10-4 8.10-4 
successful recovery 4.10-4 6.10-4 
incorrect recovery 0 28.10-4 
unsuccessful recovery 0 1.10-4 
duplication of master 0 1.10-4 

mary” messages) which have been always followed by suc- 
cessful recoveries and found to be nonmalignant. 

Incorrect recoveries revealed a violation due to an erroneous 
recovery attempt by the S ( I )  after a token passing which was 
undetected by S ( I ) .  The examination of the observed traces 
showed an intermittent malfunctioning of one SBI. 

b )  Second Results: For the second set of experiments, the 
protocol behavior has been correct until the bus primary status 
became once duplicated. The results are given in Table 11: 
phase A consists of the results collected from the beginning 
of the second set till the detection of this error, and phase B 
gives the results related to the error. 

Checking the observer outputs showed that the origin of 
the error was a particular unit. The corresponding analysis 
revealed an incorrect memory operation: the unit that was 
the current primary was stopped after executing a “Halt” 
instruction, which did not exist in the actual program, and 
resulted into an incorrect read operation. When the execu- 
tion on this unit was suspended due to the Halt instruction, 
the primary status was recovered by the other units: then 
a hardware interrupt resumed execution of the faulty unit. 
Duplication appeared between this unit which continued to 
act as a primary while the other recovered unit had become 
primary as a consequence of the recovery mechanism. This 
example should clearly show how the observer helped to detect 
this nontrivial hardware error. 

B .  Application to Layered Systems 
This section describes the design of a debugging and testing 

prototype tool for an industrial LAN and gives the observer 
which has been developed for checking a complete lay- 
ered architecture of an office automation open system based 
on Ethemet, including layers 1 to 6 of the OS1 Reference 
model. 

1) Industrial LAN: The LAN is a layered open system 
architecture, developed for real time control, and includes the 
Data Link and Transport layer protocols. The observer has 
been build to separately check the two main protocol layers, 
Data Link and Transport, and to offer performance analysis 
facility derived from the Petri net observational model [16]. 

The LAN has a double coaxial cable bus with identical 
cable interface units (CIU). The communication software is 
implemented on the CIU and up to four users can be connected 
to each CIU. 

At the MAC sublayer of Data Link layer, a CSMAKD-like 
priority based mechanism manages the medium access. The 
LLC (logical link control) sublayer of data link layer consists 
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of a connectionless protocol. At the transport layer a subset of 
the IS0 transport protocol and service were implemented. 

a )  Observable Model of the Transport Layer: The ob- 
servable model of the transport layer consists of two basic 
observable models. Resulting from the modelling technique 
described before, they represent the connection establishment 
phase, the release phase and the data transfer phase. 

Sending each PDU of the connection establishment and 
release phases (CR, CC, DR, DC) was represented by a distinct 
transition; sending all data transfer PDU’s (DT, AK, FREE, 
AKANDTREE) was represented by one transition labelled 
by “Initiator ! DTPDU” for the initiator (resp. “Responder ! 
DTPDU” for the responder). 

Finally the model of the connection establishment-release 
phases and-the model of the data transfer phase were con- 
nected together by merging each transition of the data transfer 
phase model which are labelled by “Initiator ! PDU;” (resp. 
“Responder ! PDUi”) with the transition of the connection 
establishment-release phases model labelled by “Initiator ! 
DTPDU” (resp. “Responder ! DTPDU”). 

b) The Observer: For multilevel communication sys- 
tems, it appeared difficult to directly implement the observer 
concept as stated. It was decided to implement both 
observations (Data link and Transport) but only one at a 
time: observing the system means observing altematively one 
of the two layers. 

As seen before, the observer required protocol filtering in 
order to restore the Transport PDU’s from the information di- 
rectly available on the physical medium. The layered behavior 
of the system is considered as a set of dialogues between 
protocol entities. Each N-dialogue corresponds to one N -  
connection and all dialogues follow the same protocol. Hence, 
only one formal model representing one dialogue represents 
the whole layer. 

c )  Protocol Filtering: For observing the LLC sublayer, 
LPDU’s are restored by executing the same delimiting, syn- 
chronisation and error detection functions as in the worker, 
because the observer supports the same sublayers as other 
CIU’S. 

At the Transport layer, interactions exchanged in the system, 
i.e., TPDU’s, were restored from LPDU’s by: 

-recombining each Transport connection splitted on two 
Data Link connections by setting up the mapping between 
these two layers, 
-detecting and discarding the duplications inherent to the 
Data Link layer; thus, when a data transfer LPDU is 
retransmitted by the Data Link layer, only the data (TPDU) 
conveyed by the first LPDU must be considered and the 
data carried by retransmitted LPDU’s must be discarded. 
The Petri net representing all dialogues at one layer was 

a re-entrant program, where several identical processes cor- 
responded to the several actual dialogues taking place in the 
system. 

At the Data Link layer each dialogue is created only once 
and never deleted, because a connectionless protocol is used. 
At the Transport layer each dialogue corresponds to one 
Transport connection. 

The creation and the deletion of dialogues are detected 
through the corresponding exchanged PDU’s. 

d )  Performance Analysis Facility: This function mea- 
sured the time elapsed between typical protocol events and 
computed the data transfer throughput for each layer. 

Each Link or Transport PDU received by the observer was 
associated with a value of a timer. The difference between 
the reception times gave the duration of the phases and the 
throughput was derived from the ratio of the number of 
transferred data PDU’s to the duration of the data transfer 
phase. 

The original feature of this technique is that the detection 
of the beginning and the end of each phase is performed on a 
Petri net driven scheme. Performance analysis facility uses the 
same structure including protocol filtering, dynamic process 
management and Petri net simulation than the checking func- 
tion. Hence, the execution of these actions in the Petri net 
model provides the formal performance analysis facility. 

hardware 
support of the observer is a standard CIU connected to the 
shared communication media. The tasks performing checking 
and performance analysis functions are implemented in 
the CIU and supported by a multitasking executive. Other 
functions are human interface and message storage. 

2 )  OfSlce Automation Open System: This second connec- 
tion oriented system consisted of an Ethemet LAN linking 
together terminals and servers connected to the outside world 
through a PABX interface or a packet switching interface. This 
network included two server stations (messages and archives) 
and allowed to access the X25 TRANSPAC network through 
a gateway. 

The architecture was organized according to the OS1 model. 
The implemented protocols in the different layers were: 

e )  The Implementation of the Observer: The 

Session: IS0 Session protocol 
Transport: IS0 Transport protocol (Class 0 and 2) 
Network: X25 protocol 
Data link: IEEE 802.2 protocol (type 1 and 2) 

For example, two simplified observable models derived 
from a Petri net model representing the Connection Estab- 
lishment and Release phases of X25 and IEEE 802.2 type 2 
(for the perfect case, i.e., without loosing PDU’s) are given 
in Fig. 7(a) and (b). 

The following comments can be given. Only left hand parts 
of the figures are considered as right parts are symmetric 
(changing A and B roles). 

a) IEEE 802.2 type 2 [Fig. 7(a)] 

Path 1-3-5 represents the connection establish- 
ment initiated by A (A!SABM) and accepted by 
B (B!UA); note that the transition from state 3 to 
4 expresses the refusal of B (B!DM); 

Path 1-3-6-8-5 gives the scenario related to the 
connection establishment crossing; 

Path 5-9-4 and path 5-1 1- 12-4 represent the dis- 
connection scenarios initiated by A,  respectively 
in the case of acceptance by B and in the case of 
disconnection crossing. 
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b) X25 protocol [Fig. 7(b)] 

- Path Pl-P3-P5 gives the scenario of the connec- 
tion establishment initiated by A (by A!Connect 
Request) and accepted by B (B!Connect Con- 
firm); 

- Path Pl-P3-P7-P5 represents the collision problem 
where A has initiated a connection establishment 
and receives a connection establishment request 
from B; according to the highest priority (A or 
B), the transition from W to P5 can be either 
B!Connect Confirm or A!Connect Confirm; 
Path Pl-P3-P4 shows an unsuccessful connection 
establishment initiated by A where B refuses the 
connection by B!Clear Request and A accepts this 
refusal by A!Clear Confirm ; note that the transi- 
tion from P4 to P1, A!Clear Request, corresponds 
to the case where the disconnection is initiated by 
A in parallel with redeiving the refusal from B; 

- Transition from P5 to P12 starts, after the con- 
nection establishment, the normal disconnection 
phase requested by A; the scenarios starting from 
States P3 and W, leading to States P6 and P13 
model the disconnection requested by A, whereas 
A has not yet received the answer to its connection 
establishment request. 

- 

Note that in addition to communications intemal to the 
LAN, communications with entities extemal to the LAN using 
X25 through the local network can be observed for layers from 
Network to Session. So, the general case of protocol filtering 
has been implemented. 

The observer has been run on a UNIX processor [24] 
consisting of one Ethemet interface unit, one processing unit 
and one graphic interface unit. It included all the models [25] 
of the 4 layers, from Data Link to Session, given before. It 
allowed audit trial, checking and performance measurements 
for all layers. 

IV. CONCLUSION 

From these experiments, two important aspects can be 
emphasized. First, the observer proved to be quite useful for 
debugging communication software during.. the development 
phase; second, even when debugging was considered com- 
plete, the observer still had been quite helpful for detecting 
malfunctioning coming from hardware faults or software errors 
that occurred at run time. It also appeared that the observer 
concept is fully consistent with the formal methodologies 
presently defined for formally designing distributed systems. 
The observer is also of interest for measurements and mainte- 
nance during the system life cycle. 

Also some subtle aspects have to be developed further, such 
as the use of more complex and more complete observable 
models. Also, the observer recovery, (when the observer itself 
loses messages), as well as the definition of sets of multiple 
cooperating observers, for no broadcast services, still need to 
be investigated. 

911 
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Fig. 7. 
and Release phases. 

Observers of the IEEE 802.2 and X25 Connection Establishment 
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