
8.03.2010

Gert Jervan, TTÜ/ATI 1

Department of computer Engineering
ati.ttu.ee

IAF0530/IAF9530

Süsteemide usaldusväärsus ja veakindlus
Dependability and fault tolerance

Loeng 4
Risk reduction. Testing

Gert Jervan

gert.jervan@pld.ttu.ee

Tallinn University of Technology
Department of Computer Engineering

Estonia

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Important

 Draft of the report (incl. introductory
presentation of the topic):
 March 15

 Drafts also by e-mail, after the meeting

2

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Lecture Outline
 Risk Reduction & Design

 Test Economics

3

 Types of Testing

 Testing coverage

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Hazard and Risk Analysis Process

System
Definition

Hazard
Identifiaction

System
Definition

Hazard
Identifiaction

4

Consequence Analysis Frequency Analysis

Calculated Risk

Acceptance Criteria System ModificationRisk Assessment

Consequence Analysis Frequency Analysis

Calculated Risk

Acceptance Criteria System ModificationRisk Assessment

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Risk Reduction Procedures
 Four main categories of risk reduction strategies,

given in the order that they should be applied:
 Hazard Elimination

 Hazard Reduction

 Hazard Control

5

 Damage Limitation

 Only an approximate categorisation, since many
strategies belong in more than one category

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Hazard Ellimination
 Before considering safety devices, attempt to

eliminate hazards altogether
 use of different materials, e.g., non-toxic
 use of different process, e.g., endothermic reaction
 use of simple design

reduction of inventory e g stockpiles in Bhopal

6

 reduction of inventory, e.g., stockpiles in Bhopal
 segregation, e.g., no level crossings
 eliminate human errors, e.g., for assembly of system use

colour coded connections

8.03.2010

Gert Jervan, TTÜ/ATI 2

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Design Principles
 Familiar

 use tried and trusted technologies, materials techniques

 Simple
 testable (including controllable and observable)
 portable (no use of sole manufacturer components compiler

dependent features)

7

p)
 understandable (behaviour can easily be from

implementation)
 deterministic (use of resources is not random)
 predictable (use of resources can be predicted)
 minimal (extra features not provided)

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Design Principles (cont.)
 Structured design techniques

 defined notation for describing behaviour

 identification of system boundary and environment

 problem decomposition

 ease of review

 Design standards

8

 Design standards
 limit complexity

 increase modularity

 Implementation standards
 presentation and naming conventions

 semantic and syntactic restrictions in software

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Classes of System Failure
 Random (physical) failures

 due to physical faults

 e.g., wear-out, aging, corrosion

 can be assigned quantitative failure probabilities

 Systematic (design) failures
d t f lt i d i d/ i t

9

 due to faults in design and/or requirements

 inevitably due to human error

 usually measured by integrity levels

 Operator failures
 due to human error

 mix of random and systematic failures

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Nature of Random Failures
 Arise from random events generated during operation or

manufacture

 Governed by the laws of physics and cannot be eliminated

 Modes of failure are limited and can be anticipated

 Failures occur independently in different components

10

 Failure rates are often predictable by statistical methods

 Sometimes exhibit graceful degradation

 Treatment is well understood

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Treating Random Failures
 Random failures cannot be eliminated and must be

reduced or controlled

 Random failures can be mitigated by:
 predicting failure modes and rates of components

 applying redundancy to achieve overall reliability

11

applying redundancy to achieve overall reliability

 performing preventative maintenance to replace components
before faults arise

 executing on-line or off-line diagnostic checks

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Nature of Systematic Failures
 Ultimately caused by human error during development,

installation or maintenance

 Appear transient and random since they are triggered under
unusual, random circumstances

 Systematic and will occur again if the required circumstances
arise

12

arise

 Failures of different components are not independent

 Difficult to predict mode of failure since the possible deviations
in behaviour are large

 Difficult to predict the likelihood of occurrence

8.03.2010

Gert Jervan, TTÜ/ATI 3

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Treating Systematic Failures
 In theory, design failures can be eliminated
 In practice, perfect design may be too costly
 Focus the effort on critical areas

 identify safety requirements using hazard analysis
 assess risk in system and operational context

13

 Eliminate or reduce errors using quality development
processes
 verify compliance with safety requirements
 integrate and test against safety requirements

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Design Faults

 Design faults are much more difficult to deal
with than random (degradation) faults
because:
 They are hard to anticipate

h ff h d d

14

 Their effects are hard to predict

 Component failure semantics tend to be undefined

 This makes all forms difficult to tolerate,
especially software faults

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Common Design Faults

 All forms of software:
 System software

 Application software

 Embedded software (firmware)

15

 All forms of computing hardware:
 Hardware design faults now dominate

 Degradation faults used to dominate

 Power supply systems

 Component interconnection wiring

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Design Diversity
 Idea:

 Design faults are “aspects” of design

 Different designs, different faults

 Produce multiple designs—independent level.

 Operate in parallel at execution time

16

p p

 Applies to all types of design fault

 Can be configured using many system architectures,
like NMR, TMR, etc.

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Hazard Reduction
 Reduce the likelihood of hazards

 Use of barriers, physical or logical
 Lock-ins

 Lock-outs

 Interlocks

17

 Interlocks

 Failure minimization
 Redundancy

 Recovery

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Forms of Redundancy
 Hardware redundancy
 Software redundancy
 Information redundancy
 Temporal (time) redundancy

18

 Design diversity, for hardware/software
 Develop different implementations of the same

hardware/software component
 Called N-version programming
 Then apply static or dynamic redundancy

8.03.2010

Gert Jervan, TTÜ/ATI 4

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Hardware Redundancy
 Static redundancy

 Component (at least) triplicated
• Triple Modular Redundancy (TMR), N-Modular Redundancy (NMR)

 Voting element used to remove effects of single failure

 Loss Of Unit Implies:
• Removal Or Containment

19

Removal Or Containment

• Service Provided By Those That Remain

 Dynamic redundancy
 Component has a mirror that is invoked when fault occurs

 Cold or Hot Standby, spares

 Loss Of Unit Implies:
• Removal Or Containment

• Introducing Standby Unit

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Fault Tolerant System Example

20
Risk of single-point failure

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

B777 Primary Flight Computer Architecture

21

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

N Modular Redundancy
 Independent development of modules
 This is what Boeing did with N = 3 for processors
 Operation:

 Parallel—forward error recovery
 Serial—backward error recovery

22

 In software with forward error recovery, referred to
as N-version programming

 In software with backward error recovery, referred to
as recovery block

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

B777 PFC CPUs
 Problem:

 Processors often (essentially always) contain design faults,
need to deal with them

 777 channel is a TMR system

 Three manufacturers, three designs

23

 Are these designs different?

 How would you measure the difference?

 What metric is there for design diversity?

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Redundancy

 Software redundancy, e.g. N-version
programming

 Information redundancy, e.g., checksums,
cyclic redundancy codes, error correcting

d

24

codes

 Hybrid redundancy

8.03.2010

Gert Jervan, TTÜ/ATI 5

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

N-Version Programming

 NMR for software

 Practical issues:
 Cost of development, team separation

 Resources during execution

25

 Different execution times for different versions

 Different but similar output values

 Different but valid output values (multiple correct
solutions)

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

N-Version Programming

 Performance:
 Assumed statistical independence

 If not independent, then no lower bound

 Common specification defects

26

 Common implementation (design) faults

 Problem compounded by comparison
checking during testing

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Hybrid Redundancy
 N-S modular redundancy with ‘‘S’’ spares

 As members of the N-S fail, spares switched in

 Able to tolerate up to N-2 failures

 Spares may be unpowered:

27

 Saves power

 Unpowered units much more reliable than powered

 Attention required to infant mortality

 Clearly applicable to:
 Long-duration systems

 Systems with no repair opportunity

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Space Shuttle Computer System
 Uses combination of

 Redundancy, fault detection and design diversity

 Hardware voting on sensors and actuators

 Five identical computers
During critical stages four computers work in NMR with

28

 During critical stages, four computers work in NMR with
voting for fault detection

 Fifth computer performs non-critical functions, e.g. comm.

 Fault tolerance
 Tolerates failure of two computers

 In case of third failure, crew/ground control decide which
computer wins

 Fifth computer can take over control, uses different software

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Recovery
 Can reduce failures by recovering after error

detected but before component or system failure
occurs

 Recovery can only take place after detection of error
 Backward recovery

29

y

 Forward recovery

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Error Detection
 Based on check that is independent of

implementation of the system
 coding - parity checks and checksums

 reasonableness - range and invariants

 reversal - calculate square of square root

30

 diagnostic - hardware built-in tests

 timing - timeouts or watchdogs

8.03.2010

Gert Jervan, TTÜ/ATI 6

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Error Detection (cont.)
 Timing of error detection important

 early error detection can be used to prevent propagation
 late error detection requires a check of the entire activity of

system

 Checking may be in several forms
it ti ft t f ti h ki t t

31

 monitor, acting after a system function, checking outputs
after production but before use

 kernel, encapsulating (safety-critical) functions in a
subsystem that allows all inputs to and outputs from the
kernel to be checked

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Backward Recovery
 Corrects errors through reversing previous

operations

 Return system to a previous known safe state

 Allows retry

 Requires checkpoints or saved states (and the

32

 Requires checkpoints or saved states (and the
expenses involved with producing them)

 Rollback usually impossible with real-time system

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Forward Recovery
 Corrects errors without reversing previous operations, finding

safe (but possibly degraded) state for system
 data repair, use redundancy in data to perform repairs

 reconfiguration, use redundancy such as backup or alternate
systems

 coasting, continue operations ignoring (hopefully transient) errors

33

g, p g g (p y)

 exception processing, only continue with selection of (safetycritical)
functions

 failsafe, achieve safe state and cease processing
• use passive devices (e.g., deadman switch) instead of active devices

(e.g., motor holding weight up)

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Hazard Control
 Detect and control hazard before damage occurs

 Reduce the level or duration of the hazard

 Hazard control mechanisms include:
 Limiting exposure: reduce the amount of time that a system

is in an unsafe state (e.g. don’t leave rocket in armed state)

34

is in an unsafe state (e.g. don t leave rocket in armed state)

 Isolation and containment

 Fail safe design

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Damage Limitation
 In addition to eliminating hazards or employing

safety devices, consider
 warning devices

 procedures

 training

35

 emergency planning

 maintenance scheduling

 protective measures

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Architectural Design
 Suitable architectures may allow a high integrity system to be

built from lower integrity components
 combinations of components must implement a safety function

independently

 overall likelihood of failure should be the same or less

 be wary of common failure causes

36

y

 Apportionment approaches can be quantitative and/or
qualitative
 quantitative: numerical calculations

 qualitative: judgement or rules of thumb

8.03.2010

Gert Jervan, TTÜ/ATI 7

Department of computer Engineering
ati.ttu.ee

Fault Tolerance

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Basics

 Computing systems are characterized by five
fundamental properties:
 functionality

 usability

38

 performance

 cost

 dependability

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Faults

 Faults are there!

 Either prevent, tolerate, remove or forecast

39

 We need redundancy
 System that is more complex than needed for

performing the required task

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Means to Achieve Dependability
 Fault prevention

 Good design processes, avoid design flaws

 Good procedures for runtime faults

 Fault tolerance
 Fault detection

R d d

40

 Redundancy

 Diversity

 Fault removal
 Verification and validation during design

 Corrective/preventive action during maintenance

 Fault forecasting
 Simulation, modelling, prediction

 Analysis based on history statistics

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Fault Tolerance
 Automobile:

 Spare Tires

 Dual Braking Systems

 Power Supplies:
 UPS/battery backup

P f il i t t

41

 Power-fail interrupts

 Multiple engines on aircraft

 Emergency lighting in buildings

 Tape backups of disk files

 Checkpoint/restart of long-running programs

 Parity and SECDED in computer memories

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Faults

 Random faults (Degradation faults)
 Arise during operation

 Usually hardware component failure

 Systematic faults (Design Faults)

42

 mistakes in the spec

 mistakes in the hardware

 mistakes in the software

8.03.2010

Gert Jervan, TTÜ/ATI 8

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Faults

 Faults are either permanent, transient or
intermittent

 Design faults are always permanent

43

 Dealing with faults:
 During development: fault avoidance &

removal

 During operation: fault tolerance &
detection

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Hardware Faults
 Use of fault models

 Decomposition into modules
 Gates, transistors, etc

 Connection faults
Single stuck at model bridging model (shorts) stuck open

44

 Single stuck-at model, bridging model (shorts), stuck-open

 Used to model hardware faults
 Design testing schemes for digital circuits

 Fault removal coverage usually less than 100%

 Guard against physical defects, not design faults

 In safety critical systems
 Combined with Failure Modes and Effects Analysis (FMEA)

 Need fault avoidance by verification…

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Other Faults

 Hardware design and specification faults
 Few fault models available

 Many faults cannot be modelled

 System must meet the spec, but spec might be
i ll

45

incorrect as well

 Spec errors may manifest as either hardware or
software failures

 Use of formal methods (formal spec. languages,
automata theory, formal verification, model
checking, etc.)

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Software Faults
 Bugs:

 Software spec faults

 Coding faults

 Logical errors within calculations

 Stack overflows or underflows

46

 Uninitialized variables

 No random failures and it does not degrade with age

 Always systematic

 Exhaustive testing almost impossible

 Must be tolerated

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

SW Testing - i.e. Verification

 Verification:
 SW testing

 formal verification

 Functional and structural testing

47

 Path testing, transaction flow testing, data-
flow testing, domain testing, mutation testing
etc.

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Fault Detection Techniques
 Functionality checking

 march test

 Consistency checking
 range checking, overflow

 Signal comparison

48

 Signal comparison

 Information redundancy
 checksums, cyclic redundancy codes, error correcting codes

 Monitoring techniques
 Loopback testing

 Power supply monitoring

8.03.2010

Gert Jervan, TTÜ/ATI 9

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Watchdog Timer
 An inexpensive method of error detection

 Process being watched must reset the timer before
the timer expires, otherwise the watched process is
assumed as faulty

 Watchdog timers only detect errors which manifest

49

 Watchdog timers only detect errors which manifest
themselves as a control-flow error such that the
system does not continue to reset the timer

 Only processes with relatively deterministic runtimes
can be checked, since the error detection is based
entirely on the time between timer resets

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Heartbeats
 A common approach to detecting process and node

failures in a distributed (networked) computing
environment.

 Periodically, a monitoring entity sends a message (a
heartbeat) to a monitored node or process and waits
for a reply

50

for a reply.
 If the monitored node does not respond within a

predefined timeout interval, the node is declared as
failed and appropriate recovery action is initiated.

 Adaptive or smart

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

System Testing

HW Testing SW Testing

51

HW/SW Testing
(system testing)

Department of computer Engineering
ati.ttu.ee

Software Testing

Department of computer Engineering
ati.ttu.ee

Programmers are in a race with the Universe to
create bigger and better idiot-proof programs.

While the Universe is trying to create bigger and
better idiots.

So far the Universe is winning

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Software Testing Topics

 Test Economics

 Types of Testing

54

 Types of Testing

 Testing coverage

8.03.2010

Gert Jervan, TTÜ/ATI 10

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Software Life Cycle

Requirements

Design

55

Implementation

Testing

Maintenance

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

The Product Development Cycle

Software
Development

Customer & market
Driven inputs

Release
to

manufacture

56

System
Spec

New
Product

Idea

HW-SW
Integration

Hardware
Development

Product
Verification

Engineering Development
functions

Product
Verification
functions

Product Line
Management &

Engineering
inputs

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Software Development Costs

 For life-critical software
(e.g. flight control,
reactor monitoring),
testing can cost 3 to 5
times as much as all other
activities combined.

Cost

Testing

57

 Stop testing is a business
decision
 There is always

something more to test
 Risk based decision

Requirements

Design and
Implementation

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Software Life Cycle Costs

Cost

Maintenance

58

Development

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Software Qualities

 Correctness

 Reliability (dependability)

 Robustness

 Safety

59

 Safety

 Security (survivability)

 Performance

 Productivity

 Maintainability, portability, interoperability, …

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Software Verification and Validation

 Verification
 Are we building the product right?

 Process-oriented
• Does the product of a given phase fulfill the requirements

established during the previous phase?

60

established during the previous phase?

 Validation
 Are we building the right product?

 Product-oriented
• Does the product of a given phase fulfill the user’s

requirements?

8.03.2010

Gert Jervan, TTÜ/ATI 11

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Techniques for V&V

 Static
 Collects information about a software without

executing it
• Reviews, walkthroughs, and inspections

• Static analysis

61

• Static analysis

• Formal verification

 Dynamic
 Collects information about a software with

executing it
• Testing: finding errors

• Debugging: removing errors

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Static Analysis
 Control flow analysis and data flow analysis

 Extensively used for compiler optimization and software
engineering

 Examples
 Unreachable statements

62

 Variables used before initialization

 Variables declared but never used

 Variables assigned twice but never used between
assignments

 Variables used twice with no intervening assignment

 Possible array bound violations

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Formal Verification

 Given a model of a program and a property,
determine whether the model satisfies the
property based on mathematics

 Examples

63

 Safety
• If the light for east-west is green, then the light for

south-north should be red

 Liveness
• If a request occurs, there should be a response eventually

in the future

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Introduction to Testing
 Debugging and testing are not the same

thing!

 Testing is a systematic attempt to break a
program

64

program.
 Correct, bug-free programs by construction are

the goal but until that is possible (if ever!) we
have testing.

 Since testing is basically destructive in nature, it
requires that the tester discard preconceived
notions of the correctness of the software to be
tested

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Testing

Software
Apply input Observe output

65

Validate the observed output

Is the observed output the same as the expected output?

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Software Testing Fundamentals

 Testing objectives include
 Testing is a process of executing a program with

the intent of finding an error.

 A good test case is one that has a high probability
of finding an as yet undiscovered error

66

of finding an as yet undiscovered error.

 A successful test is one that uncovers an as yet
undiscovered error.

8.03.2010

Gert Jervan, TTÜ/ATI 12

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Limitations of Testing (I)
 To test all possible inputs is impractical or impossible

int foo(int x) {
y = very-complex-computation(x);
write(y);

}

67

 To test all possible paths is impractical or impossible

}

int foo(int x) {
for (index = 1; index < 10000; index++)

write(x);
}

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Limitations of Testing (II)

 Dijkstra, 1972
 Testing can be used to show the presence of bugs,

but never their absence

 Goodenough and Gerhart, 1975

68

 Testing is successful if the program fails

 The (modest) goal of testing
 Testing cannot guarantee the correctness of

software but can be effectively used to find errors
(of certain types)

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Economics of Testing (I)

 The characteristic S-curve for error removal

We need
th t h i

69

Number of
defects
found

Time spent testing

Cutoff point
Testing is
effective

other techniques

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Economics of Testing (II)

Progress of
testing

 Testing tends to intercept errors in order of
their probability of occurrence

70

Number of
defects

Less likely =
More critical

g

Found Not yet found

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Economics of Testing (III)

 Verification is insensitive to the probability of
occurrence of errors

Number of
d f t

71

defects

Less likely =
More critical

Progress of
verification

Found

Not yet found

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Fundamental Questions in Testing

 When can we stop testing?
 Test coverage

 What should we test?
 Test generation

 Is the observed output correct?

72

 Test oracle

 How well did we do?
 Test efficiency

 Who should test your program?
 Independent V&V

8.03.2010

Gert Jervan, TTÜ/ATI 13

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Types of Testing

Level

integration

system

acceptance

regression

73

Aspect

Accessibility
functional

robustness

performance

reliability

usability

unit

integration

white
box

grey
box

black
box

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Important

 Draft of the report (incl. introductory
presentation of the topic):
 March 15

 Drafts also by e-mail, after the meeting

113

Department of computer Engineering
ati.ttu.ee

Questions?

