
8.03.2010

Gert Jervan, TTÜ/ATI 1

Department of computer Engineering
ati.ttu.ee

IAF0530/IAF9530

Süsteemide usaldusväärsus ja veakindlus
Dependability and fault tolerance

Loeng 4
Risk reduction. Testing

Gert Jervan

gert.jervan@pld.ttu.ee

Tallinn University of Technology
Department of Computer Engineering

Estonia

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Important

 Draft of the report (incl. introductory
presentation of the topic):
 March 15

 Drafts also by e-mail, after the meeting

2

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Lecture Outline
 Risk Reduction & Design

 Test Economics

3

 Types of Testing

 Testing coverage

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Hazard and Risk Analysis Process

System
Definition

Hazard
Identifiaction

System
Definition

Hazard
Identifiaction

4

Consequence Analysis Frequency Analysis

Calculated Risk

Acceptance Criteria System ModificationRisk Assessment

Consequence Analysis Frequency Analysis

Calculated Risk

Acceptance Criteria System ModificationRisk Assessment

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Risk Reduction Procedures
 Four main categories of risk reduction strategies,

given in the order that they should be applied:
 Hazard Elimination

 Hazard Reduction

 Hazard Control

5

 Damage Limitation

 Only an approximate categorisation, since many
strategies belong in more than one category

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Hazard Ellimination
 Before considering safety devices, attempt to

eliminate hazards altogether
 use of different materials, e.g., non-toxic
 use of different process, e.g., endothermic reaction
 use of simple design

reduction of inventory e g stockpiles in Bhopal

6

 reduction of inventory, e.g., stockpiles in Bhopal
 segregation, e.g., no level crossings
 eliminate human errors, e.g., for assembly of system use

colour coded connections

8.03.2010

Gert Jervan, TTÜ/ATI 2

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Design Principles
 Familiar

 use tried and trusted technologies, materials techniques

 Simple
 testable (including controllable and observable)
 portable (no use of sole manufacturer components compiler

dependent features)

7

p)
 understandable (behaviour can easily be from

implementation)
 deterministic (use of resources is not random)
 predictable (use of resources can be predicted)
 minimal (extra features not provided)

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Design Principles (cont.)
 Structured design techniques

 defined notation for describing behaviour

 identification of system boundary and environment

 problem decomposition

 ease of review

 Design standards

8

 Design standards
 limit complexity

 increase modularity

 Implementation standards
 presentation and naming conventions

 semantic and syntactic restrictions in software

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Classes of System Failure
 Random (physical) failures

 due to physical faults

 e.g., wear-out, aging, corrosion

 can be assigned quantitative failure probabilities

 Systematic (design) failures
d t f lt i d i d/ i t

9

 due to faults in design and/or requirements

 inevitably due to human error

 usually measured by integrity levels

 Operator failures
 due to human error

 mix of random and systematic failures

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Nature of Random Failures
 Arise from random events generated during operation or

manufacture

 Governed by the laws of physics and cannot be eliminated

 Modes of failure are limited and can be anticipated

 Failures occur independently in different components

10

 Failure rates are often predictable by statistical methods

 Sometimes exhibit graceful degradation

 Treatment is well understood

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Treating Random Failures
 Random failures cannot be eliminated and must be

reduced or controlled

 Random failures can be mitigated by:
 predicting failure modes and rates of components

 applying redundancy to achieve overall reliability

11

applying redundancy to achieve overall reliability

 performing preventative maintenance to replace components
before faults arise

 executing on-line or off-line diagnostic checks

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Nature of Systematic Failures
 Ultimately caused by human error during development,

installation or maintenance

 Appear transient and random since they are triggered under
unusual, random circumstances

 Systematic and will occur again if the required circumstances
arise

12

arise

 Failures of different components are not independent

 Difficult to predict mode of failure since the possible deviations
in behaviour are large

 Difficult to predict the likelihood of occurrence

8.03.2010

Gert Jervan, TTÜ/ATI 3

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Treating Systematic Failures
 In theory, design failures can be eliminated
 In practice, perfect design may be too costly
 Focus the effort on critical areas

 identify safety requirements using hazard analysis
 assess risk in system and operational context

13

 Eliminate or reduce errors using quality development
processes
 verify compliance with safety requirements
 integrate and test against safety requirements

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Design Faults

 Design faults are much more difficult to deal
with than random (degradation) faults
because:
 They are hard to anticipate

h ff h d d

14

 Their effects are hard to predict

 Component failure semantics tend to be undefined

 This makes all forms difficult to tolerate,
especially software faults

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Common Design Faults

 All forms of software:
 System software

 Application software

 Embedded software (firmware)

15

 All forms of computing hardware:
 Hardware design faults now dominate

 Degradation faults used to dominate

 Power supply systems

 Component interconnection wiring

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Design Diversity
 Idea:

 Design faults are “aspects” of design

 Different designs, different faults

 Produce multiple designs—independent level.

 Operate in parallel at execution time

16

p p

 Applies to all types of design fault

 Can be configured using many system architectures,
like NMR, TMR, etc.

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Hazard Reduction
 Reduce the likelihood of hazards

 Use of barriers, physical or logical
 Lock-ins

 Lock-outs

 Interlocks

17

 Interlocks

 Failure minimization
 Redundancy

 Recovery

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Forms of Redundancy
 Hardware redundancy
 Software redundancy
 Information redundancy
 Temporal (time) redundancy

18

 Design diversity, for hardware/software
 Develop different implementations of the same

hardware/software component
 Called N-version programming
 Then apply static or dynamic redundancy

8.03.2010

Gert Jervan, TTÜ/ATI 4

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Hardware Redundancy
 Static redundancy

 Component (at least) triplicated
• Triple Modular Redundancy (TMR), N-Modular Redundancy (NMR)

 Voting element used to remove effects of single failure

 Loss Of Unit Implies:
• Removal Or Containment

19

Removal Or Containment

• Service Provided By Those That Remain

 Dynamic redundancy
 Component has a mirror that is invoked when fault occurs

 Cold or Hot Standby, spares

 Loss Of Unit Implies:
• Removal Or Containment

• Introducing Standby Unit

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Fault Tolerant System Example

20
Risk of single-point failure

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

B777 Primary Flight Computer Architecture

21

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

N Modular Redundancy
 Independent development of modules
 This is what Boeing did with N = 3 for processors
 Operation:

 Parallel—forward error recovery
 Serial—backward error recovery

22

 In software with forward error recovery, referred to
as N-version programming

 In software with backward error recovery, referred to
as recovery block

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

B777 PFC CPUs
 Problem:

 Processors often (essentially always) contain design faults,
need to deal with them

 777 channel is a TMR system

 Three manufacturers, three designs

23

 Are these designs different?

 How would you measure the difference?

 What metric is there for design diversity?

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Redundancy

 Software redundancy, e.g. N-version
programming

 Information redundancy, e.g., checksums,
cyclic redundancy codes, error correcting

d

24

codes

 Hybrid redundancy

8.03.2010

Gert Jervan, TTÜ/ATI 5

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

N-Version Programming

 NMR for software

 Practical issues:
 Cost of development, team separation

 Resources during execution

25

 Different execution times for different versions

 Different but similar output values

 Different but valid output values (multiple correct
solutions)

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

N-Version Programming

 Performance:
 Assumed statistical independence

 If not independent, then no lower bound

 Common specification defects

26

 Common implementation (design) faults

 Problem compounded by comparison
checking during testing

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Hybrid Redundancy
 N-S modular redundancy with ‘‘S’’ spares

 As members of the N-S fail, spares switched in

 Able to tolerate up to N-2 failures

 Spares may be unpowered:

27

 Saves power

 Unpowered units much more reliable than powered

 Attention required to infant mortality

 Clearly applicable to:
 Long-duration systems

 Systems with no repair opportunity

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Space Shuttle Computer System
 Uses combination of

 Redundancy, fault detection and design diversity

 Hardware voting on sensors and actuators

 Five identical computers
During critical stages four computers work in NMR with

28

 During critical stages, four computers work in NMR with
voting for fault detection

 Fifth computer performs non-critical functions, e.g. comm.

 Fault tolerance
 Tolerates failure of two computers

 In case of third failure, crew/ground control decide which
computer wins

 Fifth computer can take over control, uses different software

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Recovery
 Can reduce failures by recovering after error

detected but before component or system failure
occurs

 Recovery can only take place after detection of error
 Backward recovery

29

y

 Forward recovery

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Error Detection
 Based on check that is independent of

implementation of the system
 coding - parity checks and checksums

 reasonableness - range and invariants

 reversal - calculate square of square root

30

 diagnostic - hardware built-in tests

 timing - timeouts or watchdogs

8.03.2010

Gert Jervan, TTÜ/ATI 6

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Error Detection (cont.)
 Timing of error detection important

 early error detection can be used to prevent propagation
 late error detection requires a check of the entire activity of

system

 Checking may be in several forms
it ti ft t f ti h ki t t

31

 monitor, acting after a system function, checking outputs
after production but before use

 kernel, encapsulating (safety-critical) functions in a
subsystem that allows all inputs to and outputs from the
kernel to be checked

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Backward Recovery
 Corrects errors through reversing previous

operations

 Return system to a previous known safe state

 Allows retry

 Requires checkpoints or saved states (and the

32

 Requires checkpoints or saved states (and the
expenses involved with producing them)

 Rollback usually impossible with real-time system

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Forward Recovery
 Corrects errors without reversing previous operations, finding

safe (but possibly degraded) state for system
 data repair, use redundancy in data to perform repairs

 reconfiguration, use redundancy such as backup or alternate
systems

 coasting, continue operations ignoring (hopefully transient) errors

33

g, p g g (p y)

 exception processing, only continue with selection of (safetycritical)
functions

 failsafe, achieve safe state and cease processing
• use passive devices (e.g., deadman switch) instead of active devices

(e.g., motor holding weight up)

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Hazard Control
 Detect and control hazard before damage occurs

 Reduce the level or duration of the hazard

 Hazard control mechanisms include:
 Limiting exposure: reduce the amount of time that a system

is in an unsafe state (e.g. don’t leave rocket in armed state)

34

is in an unsafe state (e.g. don t leave rocket in armed state)

 Isolation and containment

 Fail safe design

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Damage Limitation
 In addition to eliminating hazards or employing

safety devices, consider
 warning devices

 procedures

 training

35

 emergency planning

 maintenance scheduling

 protective measures

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Architectural Design
 Suitable architectures may allow a high integrity system to be

built from lower integrity components
 combinations of components must implement a safety function

independently

 overall likelihood of failure should be the same or less

 be wary of common failure causes

36

y

 Apportionment approaches can be quantitative and/or
qualitative
 quantitative: numerical calculations

 qualitative: judgement or rules of thumb

8.03.2010

Gert Jervan, TTÜ/ATI 7

Department of computer Engineering
ati.ttu.ee

Fault Tolerance

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Basics

 Computing systems are characterized by five
fundamental properties:
 functionality

 usability

38

 performance

 cost

 dependability

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Faults

 Faults are there!

 Either prevent, tolerate, remove or forecast

39

 We need redundancy
 System that is more complex than needed for

performing the required task

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Means to Achieve Dependability
 Fault prevention

 Good design processes, avoid design flaws

 Good procedures for runtime faults

 Fault tolerance
 Fault detection

R d d

40

 Redundancy

 Diversity

 Fault removal
 Verification and validation during design

 Corrective/preventive action during maintenance

 Fault forecasting
 Simulation, modelling, prediction

 Analysis based on history statistics

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Fault Tolerance
 Automobile:

 Spare Tires

 Dual Braking Systems

 Power Supplies:
 UPS/battery backup

P f il i t t

41

 Power-fail interrupts

 Multiple engines on aircraft

 Emergency lighting in buildings

 Tape backups of disk files

 Checkpoint/restart of long-running programs

 Parity and SECDED in computer memories

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Faults

 Random faults (Degradation faults)
 Arise during operation

 Usually hardware component failure

 Systematic faults (Design Faults)

42

 mistakes in the spec

 mistakes in the hardware

 mistakes in the software

8.03.2010

Gert Jervan, TTÜ/ATI 8

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Faults

 Faults are either permanent, transient or
intermittent

 Design faults are always permanent

43

 Dealing with faults:
 During development: fault avoidance &

removal

 During operation: fault tolerance &
detection

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Hardware Faults
 Use of fault models

 Decomposition into modules
 Gates, transistors, etc

 Connection faults
Single stuck at model bridging model (shorts) stuck open

44

 Single stuck-at model, bridging model (shorts), stuck-open

 Used to model hardware faults
 Design testing schemes for digital circuits

 Fault removal coverage usually less than 100%

 Guard against physical defects, not design faults

 In safety critical systems
 Combined with Failure Modes and Effects Analysis (FMEA)

 Need fault avoidance by verification…

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Other Faults

 Hardware design and specification faults
 Few fault models available

 Many faults cannot be modelled

 System must meet the spec, but spec might be
i ll

45

incorrect as well

 Spec errors may manifest as either hardware or
software failures

 Use of formal methods (formal spec. languages,
automata theory, formal verification, model
checking, etc.)

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Software Faults
 Bugs:

 Software spec faults

 Coding faults

 Logical errors within calculations

 Stack overflows or underflows

46

 Uninitialized variables

 No random failures and it does not degrade with age

 Always systematic

 Exhaustive testing almost impossible

 Must be tolerated

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

SW Testing - i.e. Verification

 Verification:
 SW testing

 formal verification

 Functional and structural testing

47

 Path testing, transaction flow testing, data-
flow testing, domain testing, mutation testing
etc.

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Fault Detection Techniques
 Functionality checking

 march test

 Consistency checking
 range checking, overflow

 Signal comparison

48

 Signal comparison

 Information redundancy
 checksums, cyclic redundancy codes, error correcting codes

 Monitoring techniques
 Loopback testing

 Power supply monitoring

8.03.2010

Gert Jervan, TTÜ/ATI 9

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Watchdog Timer
 An inexpensive method of error detection

 Process being watched must reset the timer before
the timer expires, otherwise the watched process is
assumed as faulty

 Watchdog timers only detect errors which manifest

49

 Watchdog timers only detect errors which manifest
themselves as a control-flow error such that the
system does not continue to reset the timer

 Only processes with relatively deterministic runtimes
can be checked, since the error detection is based
entirely on the time between timer resets

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Heartbeats
 A common approach to detecting process and node

failures in a distributed (networked) computing
environment.

 Periodically, a monitoring entity sends a message (a
heartbeat) to a monitored node or process and waits
for a reply

50

for a reply.
 If the monitored node does not respond within a

predefined timeout interval, the node is declared as
failed and appropriate recovery action is initiated.

 Adaptive or smart

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

System Testing

HW Testing SW Testing

51

HW/SW Testing
(system testing)

Department of computer Engineering
ati.ttu.ee

Software Testing

Department of computer Engineering
ati.ttu.ee

Programmers are in a race with the Universe to
create bigger and better idiot-proof programs.

While the Universe is trying to create bigger and
better idiots.

So far the Universe is winning

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Software Testing Topics

 Test Economics

 Types of Testing

54

 Types of Testing

 Testing coverage

8.03.2010

Gert Jervan, TTÜ/ATI 10

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Software Life Cycle

Requirements

Design

55

Implementation

Testing

Maintenance

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

The Product Development Cycle

Software
Development

Customer & market
Driven inputs

Release
to

manufacture

56

System
Spec

New
Product

Idea

HW-SW
Integration

Hardware
Development

Product
Verification

Engineering Development
functions

Product
Verification
functions

Product Line
Management &

Engineering
inputs

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Software Development Costs

 For life-critical software
(e.g. flight control,
reactor monitoring),
testing can cost 3 to 5
times as much as all other
activities combined.

Cost

Testing

57

 Stop testing is a business
decision
 There is always

something more to test
 Risk based decision

Requirements

Design and
Implementation

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Software Life Cycle Costs

Cost

Maintenance

58

Development

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Software Qualities

 Correctness

 Reliability (dependability)

 Robustness

 Safety

59

 Safety

 Security (survivability)

 Performance

 Productivity

 Maintainability, portability, interoperability, …

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Software Verification and Validation

 Verification
 Are we building the product right?

 Process-oriented
• Does the product of a given phase fulfill the requirements

established during the previous phase?

60

established during the previous phase?

 Validation
 Are we building the right product?

 Product-oriented
• Does the product of a given phase fulfill the user’s

requirements?

8.03.2010

Gert Jervan, TTÜ/ATI 11

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Techniques for V&V

 Static
 Collects information about a software without

executing it
• Reviews, walkthroughs, and inspections

• Static analysis

61

• Static analysis

• Formal verification

 Dynamic
 Collects information about a software with

executing it
• Testing: finding errors

• Debugging: removing errors

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Static Analysis
 Control flow analysis and data flow analysis

 Extensively used for compiler optimization and software
engineering

 Examples
 Unreachable statements

62

 Variables used before initialization

 Variables declared but never used

 Variables assigned twice but never used between
assignments

 Variables used twice with no intervening assignment

 Possible array bound violations

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Formal Verification

 Given a model of a program and a property,
determine whether the model satisfies the
property based on mathematics

 Examples

63

 Safety
• If the light for east-west is green, then the light for

south-north should be red

 Liveness
• If a request occurs, there should be a response eventually

in the future

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Introduction to Testing
 Debugging and testing are not the same

thing!

 Testing is a systematic attempt to break a
program

64

program.
 Correct, bug-free programs by construction are

the goal but until that is possible (if ever!) we
have testing.

 Since testing is basically destructive in nature, it
requires that the tester discard preconceived
notions of the correctness of the software to be
tested

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Testing

Software
Apply input Observe output

65

Validate the observed output

Is the observed output the same as the expected output?

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Software Testing Fundamentals

 Testing objectives include
 Testing is a process of executing a program with

the intent of finding an error.

 A good test case is one that has a high probability
of finding an as yet undiscovered error

66

of finding an as yet undiscovered error.

 A successful test is one that uncovers an as yet
undiscovered error.

8.03.2010

Gert Jervan, TTÜ/ATI 12

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Limitations of Testing (I)
 To test all possible inputs is impractical or impossible

int foo(int x) {
y = very-complex-computation(x);
write(y);

}

67

 To test all possible paths is impractical or impossible

}

int foo(int x) {
for (index = 1; index < 10000; index++)

write(x);
}

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Limitations of Testing (II)

 Dijkstra, 1972
 Testing can be used to show the presence of bugs,

but never their absence

 Goodenough and Gerhart, 1975

68

 Testing is successful if the program fails

 The (modest) goal of testing
 Testing cannot guarantee the correctness of

software but can be effectively used to find errors
(of certain types)

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Economics of Testing (I)

 The characteristic S-curve for error removal

We need
th t h i

69

Number of
defects
found

Time spent testing

Cutoff point
Testing is
effective

other techniques

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Economics of Testing (II)

Progress of
testing

 Testing tends to intercept errors in order of
their probability of occurrence

70

Number of
defects

Less likely =
More critical

g

Found Not yet found

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Economics of Testing (III)

 Verification is insensitive to the probability of
occurrence of errors

Number of
d f t

71

defects

Less likely =
More critical

Progress of
verification

Found

Not yet found

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Fundamental Questions in Testing

 When can we stop testing?
 Test coverage

 What should we test?
 Test generation

 Is the observed output correct?

72

 Test oracle

 How well did we do?
 Test efficiency

 Who should test your program?
 Independent V&V

8.03.2010

Gert Jervan, TTÜ/ATI 13

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Types of Testing

Level

integration

system

acceptance

regression

73

Aspect

Accessibility
functional

robustness

performance

reliability

usability

unit

integration

white
box

grey
box

black
box

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Important

 Draft of the report (incl. introductory
presentation of the topic):
 March 15

 Drafts also by e-mail, after the meeting

113

Department of computer Engineering
ati.ttu.ee

Questions?

