8.03.2010

IAF0530 - Susteemide usaldusvaarsus ja veakindlus

IHEH TALLINNA TEHNIKAULIKOOL IR Ch GO 17) HEE) f’ I m p ortant

ati.ttu.ee

v Draft of the report (incl. introductory
S presentation of the topic):

Siisteemide usaldusvdarsus ja veakindlus = March 15

Dependability and fault tolerance))
= Drafts also by e-mail, after the meeting

Loeng 4
Risk reduction. Testing

Gert Jervan
gert.jervan@pld.ttu.ee

Tallinn University of Technology
Department of Computer Engineering
Estonia i
IR TALLINNA TEHNIKAOLIKOOL 2

© Gert Jervan, TTU/ATI IAF0530 - Susteemide usaldusvaarsus ja veakindlus © Gert Jervan, TTU/ATI TAF0530 - Susteemide usaldusvaarsus ja veakindlus

Lecture Outline Hazard and Risk Analysis Process

v Risk Reduction & Design

System
Definition

v Test Economics Hazard
Identifiaction

v Types of Testing

[Cunsequence Analysis] [Frequency Analysis]

Calculated Risk
l Acceptance Criteria H Risk Assessment J—-
b tai 4

v Testing coverage

i (11
T — 3 i

© Gert Jervan, TTU/ATI IAF0530 - Susteemide usaldusvaarsus ja veakindlus © Gert Jervan, TTU/ATI IAF0530 - Susteemide usaldusvaarsus ja veakindlus

Risk Reduction Procedures Hazard Ellimination
v Four main categories of risk reduction strategies, v Before considering safety devices, attempt to
given in the order that they should be applied: eliminate hazards altogether

use of different materials, e.g., non-toxic

use of different process, e.g., endothermic reaction
use of simple design

R reduction of inventory, e.g., stockpiles in Bhopal

= Damage Limitation segregation, e.g., no level crossings

v Only an apprOXimate categorisation, since many eliminate human errors, e.g., for assembly of system use
strategies belong in more than one category colour coded connections

= Hazard Elimination
= Hazard Reduction
= Hazard Control

i
IH'H' TALLINNA TEHNIKAULIKOOL 5

ALLINNA TEHNIKAULIKOOL 6

Gert Jervan, TTU/ATI 1

© Gert Jervan, TTU/ATI IAF0530 - Susteemide usaldusvaarsus ja veakindlus

8.03.2010

© Gert Jervan, TTU/ATI TAF0530 - Suisteemide usaldusvaarsus ja veakindlus

Design Principles

v Familiar

= use tried and trusted technologies, materials techniques
v Simple

= testable (including controllable and observable)

= portable (no use of sole manufacturer components compiler
dependent features)

understandable (behaviour can easily be from
implementation)

= deterministic (use of resources is not random)
predictable (use of resources can be predicted)
= minimal (extra features not provided)

T p— 7

© Gert Jervan, TTU/ATI IAF0530 - Susteemide usaldusvaarsus ja veakindlus

Classes of System Failure

v Random (physical) failures
= due to physical faults
= e.g., wear-out, aging, corrosion
= can be assigned quantitative failure probabilities
v Systematic (design) failures
= due to faults in design and/or requirements
= inevitably due to human error
= usually measured by integrity levels
v Operator failures
= due to human error
= mix of random and systematic failures

T — 5

© Gert Jervan, TTU/ATI IAF0530 - Susteemide usaldusvaarsus ja veakindlus

Design Principles (cont.)

v Structured design techniques
= defined notation for describing behaviour
= identification of system boundary and environment
= problem decomposition
= ease of review
v Design standards
= limit complexity
= increase modularity
v Implementation standards
= presentation and naming conventions
= semantic and syntactic restrictions in software

T .
IR TALLINNA TEHNIKAOLIKOOL 8

© Gert Jervan, TTU/ATI TAF0530 - Susteemide usaldusvaarsus ja veakindlus

Nature of Random Failures

v Arise from random events generated during operation or
manufacture

v Governed by the laws of physics and cannot be eliminated
v Modes of failure are limited and can be anticipated

v Failures occur independently in different components

v Failure rates are often predictable by statistical methods
v Sometimes exhibit graceful degradation

v Treatment is well understood

TALLINNA TEANIKAULIKOOL 10

© Gert Jervan, TTU/ATI IAF0530 - Susteemide usaldusvaarsus ja veakindlus

Treating Random Failures

v Random failures cannot be eliminated and must be
reduced or controlled

v Random failures can be mitigated by:
= predicting failure modes and rates of components
= applying redundancy to achieve overall reliability

= performing preventative maintenance to replace components
before faults arise

= executing on-line or off-line diagnostic checks

TALLINNA TEHNIKAULIKOOL 11

Gert Jervan, TTU/ATI

Nature of Systematic Failures

v Ultimately caused by human error during development,
installation or maintenance

v Appear transient and random since they are triggered under
unusual, random circumstances

v Systematic and will occur again if the required circumstances
arise

v Failures of different components are not independent

v Difficult to predict mode of failure since the possible deviations
in behaviour are large

v Difficult to predict the likelihood of occurrence

TS
|“|I||| TALLINNA TEHNIKAULIKOOL 12

8.03.2010

© Gert Jervan, TTU/ATI

© Gert Jervan, TTU/ATI IAF0530 - Susteemide usaldusvaarsus ja veakindlus

Treating Systematic Failures

In theory, design failures can be eliminated

In practice, perfect design may be too costly

Focus the effort on critical areas

= identify safety requirements using hazard analysis

= assess risk in system and operational context

Eliminate or reduce errors using quality development
processes

= verify compliance with safety requirements

= integrate and test against safety requirements

<

<

AN

<

T p— 1

© Gert Jervan, TTU/ATI IAF0530 - Susteemide usaldusvaarsus ja veakindlus

Common Design Faults

v All forms of software:
= System software
= Application software
= Embedded software (firmware)

v All forms of computing hardware:
= Hardware design faults now dominate
= Degradation faults used to dominate

v Power supply systems

v Component interconnection wiring

T — is

© Gert Jervan, TTU/ATI

IAF0530 - Susteemide usaldusvaarsus ja veakindlus

Design Faults

v Design faults are much more difficult to deal
with than random (degradation) faults
because:
= They are hard to anticipate
m Their effects are hard to predict
= Component failure semantics tend to be undefined

v This makes all forms difficult to tolerate,
especially software faults

T .
IR TALLINNA TEHNIKAOLIKOOL 14

© Gert Jervan, TTU/ATI TAF0530 - Susteemide usaldusvaarsus ja veakindlus

Design Diversity

v Idea:
= Design faults are “aspects” of design
= Different designs, different faults
= Produce multiple designs—independent level.
= Operate in parallel at execution time
v Applies to all types of design fault
v Can be configured using many system architectures,
like NMR, TMR, etc.

T .
IR TALLINNA TENIKAOLIKOOL 16

© Gert Jervan, TTU/ATI

IAF0530 - Susteemide usaldusvaarsus ja veakindlus

Hazard Reduction

v Reduce the likelihood of hazards
v Use of barriers, physical or logical
= Lock-ins
= Lock-outs
= Interlocks
v Failure minimization
= Redundancy
= Recovery

i
|=||h=\ TALLINNA TEHNIKAULIKOOL 17

Gert Jervan, TTU/ATI

IAF0530 - Susteemide usaldusvaarsus ja veakindlus

Forms of Redundancy

v Hardware redundancy

v Software redundancy

v Information redundancy

v Temporal (time) redundancy

v Design diversity, for hardware/software

= Develop different implementations of the same
hardware/software component

= Called N-version programming
= Then apply static or dynamic redundancy

TS
|“|I||| TALLINNA TEHNIKAULIKOOL 18

© Gert Jervan, TTU/ATI IAF0530 - Susteemide usaldusvaarsus ja veakindlus

8.03.2010

© Gert Jervan, TTU/ATL TAF0530 - Siisteemide usaldusvaarsus ja veakindlus

Hardware Redundancy

v Static redundancy
= Component (at least) triplicated
e Triple Modular Redundancy (TMR), N-Modular Redundancy (NMR)
= Voting element used to remove effects of single failure
= Loss Of Unit Implies:
e Removal Or Containment
e Service Provided By Those That Remain
v Dynamic redundancy
= Component has a mirror that is invoked when fault occurs
= Cold or Hot Standby, spares
= Loss Of Unit Implies:
* Removal Or Containment
¢ Introducing Standby Unit

TALLINNA TEHNIKAULIKOOL 19

© Gert Jervan, TTU/ATI IAF0530 - Susteemide usaldusvaarsus ja veakindlus

B777 Primary Flight Computer Architecture
Three Independent Lanes
| |
Power I Power [Power Three Independent Channels
Supply | Supply | Supply
I |
AMD Motorola Intel
29050 + 68040 + 80486
[I NN)
Bus I Bus l Bus
Interface I Interface | Interface
l]
M T LNNA TEHNIKAULKOO! 21

Fault Tolerant System Example

Damage Assessment
Processor .
Errer Detection
Inputs 1 Processor el Voter »| Outputs
Processor State Restoration

Continued Service
Triple Modular Redundant (TMR) System

Risk of single-point failure

1 .
IR TALLINNA TEHNIKAOLIKOOL 20

N Modular Redundancy

Independent development of modules

This is what Boeing did with N = 3 for processors
Operation:

= Parallel—forward error recovery

= Serial—backward error recovery

v In software with forward error recovery, referred to
as N-version programming

In software with backward error recovery, referred to
as recovery block

AN

<

AN

<

1 .
IR TALLINNA TENIKAOLIKOOL 2

© Gert Jervan, TTU/ATI IAF0530 - Susteemide usaldusvaarsus ja veakindlus

© Gert Jervan, TTU/ATI IAF0530 - Susteemide usaldusvaarsus ja veakindlus

B777 PFC CPUs

<

Problem:

= Processors often (essentially always) contain design faults,
need to deal with them

= 777 channel is a TMR system

Three manufacturers, three designs

Are these designs different?

How would you measure the difference?
What metric is there for design diversity?

NN

TALLINNA TEHNIKAULIKOOL 23

Gert Jervan, TTU/ATI

Redundancy

v Software redundancy, e.g. N-version
programming
v Information redundancy, e.g., checksums,

cyclic redundancy codes, error correcting
codes

v Hybrid redundancy

1
|h|||||| TALLINNA TEHNIKAULIKOOL 24

© Gert Jervan, TTU/ATI IAF0530 - Susteemide usaldusvaarsus ja veakindlus

8.03.2010

N-Version Programming

v NMR for software
v Practical issues:
= Cost of development, team separation
= Resources during execution
= Different execution times for different versions

= Different but similar output values
= Different but valid output values (multiple correct
solutions)

T p— 2

© Gert Jervan, TTU/ATI IAF0530 - Susteemide usaldusvaarsus ja veakindlus

Hybrid Redundancy

v N-S modular redundancy with “S" spares
v As members of the N-S fail, spares switched in
v Able to tolerate up to N-2 failures
v Spares may be unpowered:
= Saves power
= Unpowered units much more reliable than powered
= Attention required to infant mortality
v Clearly applicable to:
= Long-duration systems
= Systems with no repair opportunity

T — 2

© Gert Jervan, TTU/ATI IAF0530 - Susteemide usaldusvaarsus ja veakindlus

© Gert Jervan, TTU/ATI TAF0530 - Suisteemide usaldusvaarsus ja veakindlus

N-Version Programming

v Performance:
= Assumed statistical independence
= If not independent, then no lower bound
= Common specification defects
= Common implementation (design) faults
v Problem compounded by comparison
checking during testing

T .
IR TALLINNA TEHNIKAOLIKOOL 26

Space Shuttle Computer System

v Uses combination of

= Redundancy, fault detection and design diversity
v Hardware voting on sensors and actuators
v Five identical computers

= During critical stages, four computers work in NMR with
voting for fault detection

= Fifth computer performs non-critical functions, e.g. comm.
v Fault tolerance
= Tolerates failure of two computers

= In case of third failure, crew/ground control decide which
computer wins

= Fifth computer can take over control, uses different software

T .
IR TALLINNA TENIKAOLIKOOL 28

© Gert Jervan, TTU/ATI IAF0530 - Susteemide usaldusvaarsus ja veakindlus

Recovery

v Can reduce failures by recovering after error
detected but before component or system failure
occurs

v Recovery can only take place after detection of error
= Backward recovery
= Forward recovery

LLINNA TEHNIKAULIKOOL 29

Gert Jervan, TTU/ATI

Error Detection

v Based on check that is independent of
implementation of the system
= coding - parity checks and checksums
= reasonableness - range and invariants
= reversal - calculate square of square root
= diagnostic - hardware built-in tests
= timing - timeouts or watchdogs

TS
|“|I||| TALLINNA TEHNIKAULIKOOL 30

© Gert Jervan, TTU/ATI IAF0530 - Susteemide usaldusvaarsus ja veakindlus

8.03.2010

© Gert Jervan, TTU/ATI TAF0530 - Suisteemide usaldusvaarsus ja veakindlus

Error Detection (cont.)

v Timing of error detection important
= early error detection can be used to prevent propagation
= late error detection requires a check of the entire activity of
system
v Checking may be in several forms

= monitor, acting after a system function, checking outputs
after production but before use

= kernel, encapsulating (safety-critical) functions in a
subsystem that allows all inputs to and outputs from the
kernel to be checked

T p— 31

© Gert Jervan, TTU/ATI IAF0530 - Susteemide usaldusvaarsus ja veakindlus

Forward Recovery

v Corrects errors without reversing previous operations, finding
safe (but possibly degraded) state for system
= data repair, use redundancy in data to perform repairs

= reconfiguration, use redundancy such as backup or alternate
systems

coasting, continue operations ignoring (hopefully transient) errors
exception processing, only continue with selection of (safetycritical)
functions

failsafe, achieve safe state and cease processing

* use passive devices (e.g., deadman switch) instead of active devices
(e.g., motor holding weight up)

T — 5

© Gert Jervan, TTU/ATI IAF0530 - Susteemide usaldusvaarsus ja veakindlus

Backward Recovery

v Corrects errors through reversing previous
operations

Return system to a previous known safe state
Allows retry

Requires checkpoints or saved states (and the
expenses involved with producing them)

Rollback usually impossible with real-time system

AN

<

AN

<

T .
IR TALLINNA TEHNIKAOLIKOOL 32

© Gert Jervan, TTU/ATI TAF0530 - Susteemide usaldusvaarsus ja veakindlus

Hazard Control

v Detect and control hazard before damage occurs
v Reduce the level or duration of the hazard

v Hazard control mechanisms include:

= Limiting exposure: reduce the amount of time that a system
is in an unsafe state (e.g. don't leave rocket in armed state)

= Isolation and containment
= Fail safe design

TALLINNA TEANIKAULIKOOL 34

© Gert Jervan, TTU/ATI IAF0530 - Susteemide usaldusvaarsus ja veakindlus

Damage Limitation

v In addition to eliminating hazards or employing
safety devices, consider
= warning devices
= procedures
= training
= emergency planning
maintenance scheduling
protective measures

TALLINNA TEHNIKAULIKOOL 35

Gert Jervan, TTU/ATI

Architectural Design

v Suitable architectures may allow a high integrity system to be
built from lower integrity components

combinations of components must implement a safety function
independently

overall likelihood of failure should be the same or less
= be wary of common failure causes
v Apportionment approaches can be quantitative and/or
qualitative
= quantitative: numerical calculations
= qualitative: judgement or rules of thumb

TS
|“|I||| TALLINNA TEHNIKAULIKOOL 36

i Department of computer Engineering
MBI TALLINNA TEHNIKAULIKOOL e

Fault Tolerance

© Gert Jervan, TTU/ATI IAF0530 - Susteemide usaldusvaarsus ja veakindlus

Faults

v Faults are there!

v Either prevent, tolerate, remove or forecast

v We need redundancy

= System that is more complex than needed for
performing the required task

T — 3

© Gert Jervan, TTU/ATI IAF0530 - Susteemide usaldusvaarsus ja veakindlus

8.03.2010

© Gert Jervan, TTU/ATL IAF0530 - Susteemide usaldusvaarsus ja veakindlus

Basics

v Computing systems are characterized by five
fundamental properties:
= functionality
= usability
= performance
= cost
= dependability

T .
IR TALLINNA TEHNIKAOLIKOOL 38

Means to Achieve Dependability

v Fault prevention
= Good design processes, avoid design flaws
= Good procedures for runtime faults
v Fault tolerance
= Fault detection
= Redundancy
= Diversity
v Fault removal
= Verification and validation during design
= Corrective/preventive action during maintenance
v Fault forecasting
= Simulation, modelling, prediction
= Analysis based on history statistics

T .
IR TALLINNA TENIKAOLIKOOL 40

© Gert Jervan, TTU/ATI IAF0530 - Susteemide usaldusvaarsus ja veakindlus

Fault Tolerance

v Automobile:
= Spare Tires
= Dual Braking Systems
v Power Supplies:
= UPS/battery backup
= Power-fail interrupts
Multiple engines on aircraft
Emergency lighting in buildings
Tape backups of disk files
Checkpoint/restart of long-running programs
Parity and SECDED in computer memories

A N N

1
I TALLINNA TEHNIKAULIKOOL 41

Gert Jervan, TTU/ATI

Faults

v Random faults (Degradation faults)
= Arise during operation
= Usually hardware component failure
v Systematic faults (Design Faults)
= mistakes in the spec
= mistakes in the hardware
= mistakes in the software

TS
|“||||| TALLINNA TEHNIKAULIKOOL 42

8.03.2010

© Gert Jervan, TTU/ATI IAF0530 - Susteemide usaldusvaarsus ja veakindlus © Gert Jervan, TTU/ATI IAF0530 - Susteemide usaldusvaarsus ja veakindlus

Faults Hardware Faults

v Faults are either permanent, transient or v Use of fault models
intermittent v Decomposition into modules
= Gates, transistors, etc
v Connection faults
= Single stuck-at model, bridging model (shorts), stuck-open

v Design faults are always permanent

v Dealing with faults: v Used to model hardware faults
= During development: fault avoidance & = Design testing schemes for digital circuits
removal = Fault removal coverage usually less than 100%
= During operation: fault tolerance & = Guard against physical defects, not design faults
detection v In safety critical systems

= Combined with Failure Modes and Effects Analysis (FMEA)
= Need fault avoidance by verification...

g 1 d
'“h?[TALLINNA TEHNIKAULIKOOL 43 IR TALLINNA TEHNIKAULIKOOL 44

© Gert Jervan, TTU/ATI IAF0530 - Susteemide usaldusvaarsus ja veakindlus © Gert Jervan, TTU/ATI TAF0530 - Susteemide usaldusvaarsus ja veakindlus

Other Faults Software Faults

v Hardware design and specification faults v Bugs:

= Few fault models available = Software spec faults

Coding fault:
= Many faults cannot be modelled = rodingfau®s)
) = Logical errors within calculations
= System must meet the spec, but spec might be - SiEEk SvERIeNS @F UneErilens
incorrect as well = Uninitialized variables

= Spec errors may manifest as either hardware or v No random failures and it does not degrade with age

software failures .
v Always systematic
= Use of formal methods (formal spec. languages, h]) | . ibl
automata theory, formal verification, model v Exhaustive testing almost impossible
checking, etc.) v Must be tolerated

g 1 .
'“h?[TALLINNA TEHNIKAULIKOOL 45 IR TALLINNA TENIKAOLIKOOL 46

© Gert Jervan, TTU/ATI IAF0530 - Susteemide usaldusvaarsus ja veakindlus © Gert Jervan, TTU/ATI IAF0530 - Susteemide usaldusvaarsus ja veakindlus

SW Testing - i.e. Verification Fault Detection Techniques
v Verification: v Functionality checking
= SW testing = march test

v Consistency checking

= range checking, overflow
v Signal comparison
v Information redundancy

= formal verification
v Functional and structural testing

v Path testing, transaction flow testing, data- = checksums, cyclic redundancy codes, error correcting codes
flow testing, domain testing, mutation testing v Monitoring techniques
etc. = Loopback testing

= Power supply monitoring

i 1
IH'“ TALLINNA TEHNIKAULIKOOL 47 |“|I||| TALLINNA TEHNIKAULIKOOL 48

Gert Jervan, TTU/ATI 8

© Gert Jervan, TTU/ATI TAF0530 - Stisteemide usaldusvaarsus ja veakindlus

© Gert Jervan, TTU/ATI

8.03.2010

Watchdog Timer

v An inexpensive method of error detection

v Process being watched must reset the timer before
the timer expires, otherwise the watched process is
assumed as faulty

v Watchdog timers only detect errors which manifest
themselves as a control-flow error such that the
system does not continue to reset the timer

v Only processes with relatively deterministic runtimes
can be checked, since the error detection is based
entirely on the time between timer resets

T p— 49

© Gert Jervan, TTU/ATI

T .
IR TALLINNA TEHNIKAOLIKOOL 50

IAF0530 - Susteemide usaldusvaarsus ja veakindlus

Heartbeats

v A common approach to detecting process and node
failures in a distributed (networked) computing
environment.

v Periodically, a monitoring entity sends a message (a
heartbeat) to a monitored node or process and waits
for a reply.

v If the monitored node does not respond within a
predefined timeout interval, the node is declared as
failed and appropriate recovery action is initiated.

v Adaptive or smart

IAF0530 - Susteemide usaldusvaarsus ja veakindlus

System Testing
HW Testing SW Testing
HW/SW Testing
(system testing)

Department of computer Engineering
ati.ttu.ee

LY
IHiHI TALLINNA TEHNJKAULIKOOL
ALLINN UNIVERSITY OF 3 ¥

Programmers are in a race with the Universe to
create bigger and better idiot-proof programs.

While the Universe is trying to create bigger and
better idiots.

So far the Universe is winning

&,

Department of computer Engineering f-

npu
H‘*HI TALL[NNA TEF—[N[I‘(AULH\(OO‘L ati.ttu.ee

Software Testing

Gert Jervan, TTU/ATI

© Gert Jervan, TTU/ATI

TS
“IIIII TALLINNA TEHNIKAULIKOOL 54

IAF0530 - Susteemide usaldusvaarsus ja veakindlus

Software Testing Topics

v Test Economics

v Types of Testing

v Testing coverage

© Gert Jervan, TTU/ATI IAF0530 - Susteemide usaldusvaarsus ja veakindlus
Software Life Cycle
Requirements
l
Design
il
Implementation
il
Testing
|
Maintenance
.i.:ﬁi: TALLINNA TEHNIKAULIKOOL 55

8.03.2010

© Gert Jervan, TTU/ATL IAF0530 - Susteemide usaldusvaarsus ja veakindlus

The Product Development Cycle

Customer & market Release
Driven inputs to

Software
manufacture
o e
S,
",
S e,
sc '©|[Hardware M
Development,

/

5 . . Product
M:;(;dg:ﬁ::;e& Engineering Development Verification
Engineering functions functions
inputs
TALLINNA TEHNIKAGLIKOOL 56

© Gert Jervan, TTU/ATI IAF0530 - Susteemide usaldusvaarsus ja veakindlus

Software Development Costs

v For life-critical software
(e.g. flight control,
reactor monitoring),
Testing testing can cost 3 to 5
times as much as all other
activities combined.

Cost

Design and

v Stop testing is a business
Implementation b 9

decision
= There is always
something more to test

. = Risk based decision
Requirements

T rrew e 57

© Gert Jervan, TTU/ATI TAF0530 - Susteemide usaldusvaarsus ja veakindlus
Software Life Cycle Costs
Cost
Maintenance
Development
.iii:.:. TALLINNA TEANIKAGLIKOOL 58

© Gert Jervan, TTU/ATI IAF0530 - Susteemide usaldusvaarsus ja veakindlus

Software Qualities

v Correctness

v Reliability (dependability)

v Robustness

v Safety

v Security (survivability)

v Performance

v Productivity

v Maintainability, portability, interoperability, ...

i
I:'Ih:' TALLINNA TEHNIKAULIKOOL 59

© Gert Jervan, TTU/ATI IAF0530 - Susteemide usaldusvaarsus ja veakindlus

Software Verification and Validation

v Verification
= Are we building the product right?

= Process-oriented

* Does the product of a given phase fulfill the requirements
established during the previous phase?

v Validation
= Are we building the right product?

= Product-oriented

* Does the product of a given phase fulfill the user’s
requirements?

ALLINNA TEHNIKAULIKOOL 60

Gert Jervan, TTU/ATI

10

8.03.2010

© Gert Jervan, TTU/ATI IAF0530 - Susteemide usaldusvaarsus ja veakindlus © Gert Jervan, TTU/ATI IAF0530 - Susteemide usaldusvaarsus ja veakindlus
Techniques for V&V Static Analysis
v Static v Control flow analysis and data flow analysis
= Collects information about a software without = Extensively used for compiler optimization and software
executing it engineering
* Reviews, walkthroughs, and inspections v Examples
« Static analysis = Unreachable statements
e Formallverification = Variables used before initialization
/D . = Variables declared but never used
e = Variables assigned twice but never used between
= Collects information about a software with assignments
executing it = Variables used twice with no intervening assignment
» Testing: finding errors = Possible array bound violations
e Debugging: removing errors
I TALLINNA TEHRIAOL KOO 61 i TALLINNA TERNIKADLKOOL 62

© Gert Jervan, TTU/ATI IAF0530 - Susteemide usaldusvaarsus ja veakindlus © Gert Jervan, TTU/ATI TAF0530 - Susteemide usaldusvaarsus ja veakindlus

Formal Verification Introduction to Testing

v Given a model of a program and a property, v Debugging and testing are not the same

determine whether the model satisfies the thing!

property based on mathematics
v Examples v Testing is a systematic attempt to break a

= Safety program.

. ; _ : ; = Correct, bug-free programs by construction are
iﬂﬁ'}ﬁ'ﬁ%ﬁﬁ{iﬁqiﬂﬁ ;V:S;teés green, then the light for the goal but until that is possible (if ever!) we

have testing.

= Since testing is basically destructive in nature, it
requires that the tester discard preconceived
notions of the correctness of the software to be
tested

= Liveness

« If a request occurs, there should be a response eventually
in the future

g 1 .
'“h?[TALLINNA TEHNIKAULIKOOL 63 IR TALLINNA TENIKAOLIKOOL 64

© Gert Jervan, TTU/ATI IAF0530 - Susteemide usaldusvaarsus ja veakindlus © Gert Jervan, TTU/ATI IAF0530 - Susteemide usaldusvaarsus ja veakindlus

Testing Software Testing Fundamentals

v Testing objectives include
= Testing is a process of executing a program with

Apply input Observe output the intent of finding an error.
= A good test case is one that has a high probability
K j of finding an as yet undiscovered error.
= A successful test is one that uncovers an as yet
\/ undiscovered error.

Validate the observed output

Is the observed output the same as the expected output?

i 1
IH'“ TALLINNA TEHNIKAULIKOOL 65 |“|I||| TALLINNA TEHNIKAULIKOOL 66

Gert Jervan, TTU/ATI 11

© Gert Jervan, TTU/ATI TAF0530 - Stisteemide usaldusvaarsus ja veakindlus

Limitations of Testing (I)

v To test all possible inputs is impractical or impossible

int foo(int x) {
y = very-complex-computation(x);

write(y);
}
v To test all possible paths is impractical or impossible
int foo(int x) {
for (index = 1; index < 10000; index++)
write(x);
}
s T emAvLK0OL 67

8.03.2010

© Gert Jervan, TTU/ATL IAF0530 - Susteemide usaldusvaarsus ja veakindlus

Limitations of Testing (II)

v Dijkstra, 1972

= Testing can be used to show the presence of bugs,
but never their absence

v Goodenough and Gerhart, 1975
m Testing is successful if the program fails
v The (modest) goal of testing

m Testing cannot guarantee the correctness of
software but can be effectively used to find errors
(of certain types)

© Gert Jervan, TTU/ATI IAF0530 - Susteemide usaldusvaarsus ja veakindlus

Economics of Testing (I)

v The characteristic S-curve for error removal

We need

Testing is other techniques
Number of ! .g ! ;
defects effective Cutoff point
found
Time spent testing
.i.:m. TALLINNA TEHNIKAULIKOOL 69

© Gert Jervan, TTU/ATI IAF0530 - Susteemide usaldusvaarsus ja veakindlus

Economics of Testing (III)

v Verification is insensitive to the probability of
occurrence of errors

\
\
\

Number of \
defects \
\
N\ Progress of
Not yet found . verification
Found I —————————————————————
Less likely =
More critical
Iil:Hél TALLINNA TEHNIKAULIKOOL 71

Gert Jervan, TTU/ATI

T .
IR TALLINNA TEHNIKAOLIKOOL 68

© Gert Jervan, TTU/ATI TAF0530 - Susteemide usaldusvaarsus ja veakindlus

Economics of Testing (II)

v Testing tends to intercept errors in order of
their probability of occurrence

Progress of
\ testing
Number of \
defects \
\\
\\
\
AN
N
— T
) Found Not yet found Less likely =
i TALL A TENNIKAGLIKOOL More critical 70

© Gert Jervan, TTU/ATI IAF0530 - Susteemide usaldusvaarsus ja veakindlus

Fundamental Questions in Testing

v When can we stop testing?
= Test coverage

v What should we test?
= Test generation

v Is the observed output correct?
= Test oracle

v How well did we do?
= Test efficiency

v Who should test your program?
= Independent V&V

TS
|“||||| TALLINNA TEHNIKAULIKOOL 72

12

© Gert Jervan, TTU/ATI TAF0530 - Stisteemide usaldusvaarsus ja veakindlus

Types of Testing

Level

regression
acceptance
system

integration aan
. Accessibility
unit
functional
reliability

white grey black

box box box
robustness

performance
usability

Aspect

T p— 7

T : Department of computer Engineering
MBI TALLINNA TEHNIKAULIKOOL e

Questions?

8.03.2010

© Gert Jervan, TTU/ATL IAF0530 - Susteemide usaldusvaarsus ja veakindlus

Important

v Draft of the report (incl. introductory
presentation of the topic):
= March 15
= Drafts also by e-mail, after the meeting

T .
IR TALLINNA TEHNIKAOLIKOOL 113

Gert Jervan, TTU/ATI

13

