
22.03.2010

Gert Jervan, TTÜ/ATI 1

Department of computer Engineering
ati.ttu.ee

IAF0530/IAF9530

Süsteemide usaldusväärsus ja veakindlus
Dependability and fault tolerance

Loeng 5
SW Testing. System Testing

Gert Jervan

gert.jervan@pld.ttu.ee

Tallinn University of Technology
Department of Computer Engineering

Estonia

Department of computer Engineering
ati.ttu.ee

Software Testing

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Types of Testing

Level

integration

system

acceptance

regression

3

Aspect

Accessibility
functional

robustness

performance

reliability

usability

unit

integration

white
box

grey
box

black
box

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Levels of Testing

What users
really need Acceptance testing

4

Requirements

Design

Code

System testing

Integration testing

Unit testing

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Component/Unit Testing (I)

F1(int x1, y1) { Test driver

 A unit of testing
 Functions in procedural programming languages

such as C, Fortran, …

5

……
F2(x1+1, y1-1);

}

F2(int x2, y2) {
……
F3(x2+2, y2-1);

}

F3(int x3, y3) {
……

}

Test stub

Test unit

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Component/Unit Testing (II)

 Require knowledge of code
 High level of detail

 Deliver thoroughly tested components to
integration

6

 Stopping criteria
 Code Coverage

 Quality

22.03.2010

Gert Jervan, TTÜ/ATI 2

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Component/Unit Testing (III)

 Test case
 Input, expected outcome, purpose

 Selected according to a strategy, e.g., branch
coverage

7

 Outcome
 Pass/fail result

 Log, i.e., chronological list of events from
execution

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Integration Testing (I)
 Interactions among units (assembled components

that must be tested and accepted previously)
 Import/export type compatibility

 Import/export range errors
• F1 calls F2 with a parameter of array

8

• F1 assumes array of size 8, while F2 assumes an array of size
10

 Import/export representation
• F1 calls F2 with a parameter Elapsed_time

• F1 thinks in seconds, while F2 thinks in miliseconds

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Integration Testing (II)

 Strategies for integration testing
 Top-down

• Stubs are needed

 Bottom-up
D i d d

Main

F1 F2

9

• Drivers are needed

 Big-bang

 Functional

 Drivers &
stubs
have to tested as well!

Fm Fn

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

System Testing (I)
 Tests the overall system (the integrated hardware

and software) to determine whether the system
meets its requirements

 Focuses on the use and interaction of system
functionalities rather than details of implementations

10

 Test cases derived from specification

 Should be carried out by a group independent of the
code developers

 Should be planned with the same rigor as other
phases of the software development

 Use-case focus

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

System Testing (II)

 Non-functional testing

 Quality attributes
 Performance, can the system handle required

throughput?

11

 Reliability, obtain confidence that system is
reliable

 Timeliness, testing whether the individual tasks
meet their specified deadlines

 etc.

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Acceptance Testing

 User (or customer) involved

 Environment as close to field use as possible

 Focus on:
 Building confidence

12

Building confidence

 Compliance with defined acceptance criteria in the
contract

22.03.2010

Gert Jervan, TTÜ/ATI 3

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Re-Test and Regression Testing (I)

 Conducted after a change

 Re-test aims to verify whether a fault is
removed
 Re-run the test that revealed the fault

13

 Regression test aims to verify whether new
faults are introduced
 Re-run all tests

 Should preferably be automated

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Re-test & Regression Testing (II)

 Development versus maintenance
 Development costs: 1/3

 Maintenance costs: 2/3

 Testing in maintenance phase

14

 How can we test modified or newly inserted
programs?
• Ignore old test suites and make new ones from the

scratch or

• Reuse old test suites and reduce the number of new test
suites as many as possible

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Accessibility of Testing
 White box testing (structural testing, program-based

testing)

 White box testing is a test case design method that
uses the control structure of the procedural design to
derive test cases. Test cases can be derived that

15

 guarantee that all independent paths within a module have
been exercised at least once,

 exercise all logical decisions on their true and false sides,

 execute all loops at their boundaries and within their
operational bounds, and

 exercise internal data structures to ensure their validity.

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Accessibility of Testing (II)

 Black box testing (functional testing,
specification-based testing)
 Assumes that the program is unavailable or

testers do not want to look at the details of the
program

16

program
• Derives test cases from the requirements of the program

• Controls and observes the program only through external
interfaces

• Ideally done by independent test group (not original
programmer)

 Grey box testing

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Program-Based Testing (I)
 Main steps

 Examine the internal structure of a program
 Design a set of inputs satisfying a coverage criterion
 Apply the inputs to the program and collect the actual

outputs
 Compare the actual outputs with the expected outputs

17

 Compare the actual outputs with the expected outputs

 Limitations
 Cannot catch omission errors

• What requirements are missing in the program?

 Cannot provide test oracles
• What is the expected output for an input?

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Program-Based Testing (II)

Program
Apply input Observe output

18

Validate the observed output against the expected output

Who will take care of test oracles?

22.03.2010

Gert Jervan, TTÜ/ATI 4

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Statement Coverage

 Statement coverage of a set of test cases is
defined to be the proportion of statements in
a unit covered by those test cases.

19

 100% statement coverage for a set of tests
means that all statements are covered by the
tests. That is, all statements will be executed
at least once by running the tests.

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Branch Coverage

 Branch coverage is determined by the
proportion of decision branches that are
exercised by a set of proposed test cases.

20

 100% branch coverage is where every
decision branch in a unit is visited by at least
one test in the set of proposed test cases.

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Example – Branch coverage

A

B C

D E

What branch coverage is achieved
by ABG, ACDFG, ACEFG?

21

D E

F

G

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Example – Branch coverage

A

B C

D E

What branch coverage is achieved
by ABG, ACDFG, ACEFG?

22

D E

F

G

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Example – Branch coverage

A

B C

D E

What branch coverage is achieved
by ABG, ACDFG, ACEFG?

23

D E

F

G

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Example – Branch coverage

A

B C

D E

What branch coverage is achieved
by ABG, ACDFG, ACEFG?

24

D E

F

G

22.03.2010

Gert Jervan, TTÜ/ATI 5

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Example – Branch coverage

A

B C

D E

What branch coverage is achieved
by ABG, ACDFG, ACEFG?

4 in total

25

D E

F

G

4 in total.

4 covered

So 4/4 = 100% branch coverage

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Path Coverage
 Path coverage is determined by assessing the

proportion of execution paths through a unit
exercised by the set of proposed test cases.

 100% path coverage is where every path in the unit
is executed at least once by the set of proposed test

26

cases.

 100% path coverage is achieved by an ideal test set.
As we saw the other week, it is all but impossible or
infeasible in most programs of any size.

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Example – Path coverage

A

B C

D E

What path coverage is achieved by
ABG, ACDFG, ACEFG?

27

D E

F

G

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Example – Path coverage

A

B C

D E

What path coverage is achieved by
ABG, ACDFG, ACEFG?

28

D E

F

G

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Example – Path coverage

A

B C

D E

What path coverage is achieved by
ABG, ACDFG, ACEFG?

3/3=100%

29

D E

F

G

3/3=100%

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Coverage
 It is possible to have 100% statement coverage

without 100% branch coverage

 It is possible to have 100% branch coverage without
100% path coverage

30

 100% path coverage implies 100% branch coverage
and 100% branch coverage implies 100% statement
coverage

22.03.2010

Gert Jervan, TTÜ/ATI 6

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

An example

 Test cases covering
ABDEG and ACDFG cover
4/4 branches (100%)
and 7/7 statements
(100%)

31

(100%)

 They, however, only
cover 2/4 paths (50%).

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

An example

 Test cases covering ABDEG
and ACDFG cover 4/4
branches (100%) and 7/7
statements (100%)

 They however only cover

32

 They, however, only cover
2/4 paths (50%).

 2 more tests are required to
achieve 100% path coverage
 ABDFG

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

An example

 Test cases covering ABDEG
and ACDFG cover 4/4
branches (100%) and 7/7
statements (100%)

 They however only cover

33

 They, however, only cover
2/4 paths (50%).

 2 more tests are required to
achieve 100% path coverage
 ABDFG, ACDEG

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Loop Testing
 It is usually impossible or infeasible to test all paths

in a program involving loops
 Basis Path Testing

 Zero path: Test zero iterations of the loop body (Guard is
negated by loop initialisation)

 One path: Test a single iteration of the loop body (Good idea
t t f 100% th f l b d if l b d i

34

to try for 100% path coverage of loop body if loop body is
not iterative)

 Does not consider maximum iteration termination in many
cases

 Does not consider combinations of loop body paths in
successive iterations

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Mutation testing
 Create a number of mutants, i.e., faulty versions of

program
 Each mutant contains one fault

 Fault created by using mutant operators

 Run test on the mutants (random or selected)

35

()
 When a test case reveals a fault, save test case and remove

mutant from the set, i.e., it is killed

 Continue until all mutants are killed

 Results in a set of test cases with high quality

 Need for automation

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Specification-Based Testing (I)
 Main steps

 Examine the structure of the program’s specification

 Design a set of inputs from the specification satisfying a
coverage criterion

 Apply the inputs to the specification and collect the expected
t t

36

outputs

 Apply the inputs to the program and collect the actual
outputs

 Compare the actual outputs with the expected outputs

 Limitations
 Specifications are not usually available

• Many companies still have only code, there is no other
document.

22.03.2010

Gert Jervan, TTÜ/ATI 7

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Specification-Based Testing (II)

Specification

Apply input

Expected output

37

Program
Actual output

Validate the observed output against the expected output

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Object-Oriented Program Testing

 Unit testing for OO Programs
 A class is a set of variables and member functions

 50% of member functions are just 10 lines of code

 A class is often a unit of testing in C++ or Java

 Integration testing for OO Programs

38

Integration testing for OO Programs
 Rule of thumb in OO development

• Make a large number of small classes in a bottom-up fashion

 There are several relationships between classes
• Association, aggregation, inheritance, concurrency

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Steps to Testing Nirvana
 Think about potential problems as you design and

implement. Make a note of them and develop tests
that will exercise these problem areas.
 Document all loops and their boundary conditions, all arrays

and their boundary conditions, all variables and their range
of permissible values

39

of permissible values.

 Pay special attention to parameters from the command line
and into functions and what are their valid and invalid
values.

 Enumerate the possible combinations and situations for a
piece of code and design tests for all of them.

 GIGO - what happens when garbage goes in?
Kernighan, Pike, “The Practice of Programming”

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Steps to Testing Nirvana

 Test systematically, starting with easy tests
and working up to more elaborate ones.
 Often leads to “bottom up” testing, starting with

simplest modules at the lowest level of calling

When those a e o king test thei calle s

40

 When those are working, test their callers

 Document (and/or automate) this testing so that
it can be repeated (regression testing) constantly
as the code grows and changes.

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Steps to Testing Nirvana

 Within a module, test incrementally as you
code
 Write, test, add more code, test again, repeat

 The earlier that errors are detected, the easier
the a e to locate and fi

41

they are to locate and fix.

 Testing is not only concerning code
• Documents and models should also be subject to testing

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Tricks of the Trade
 Test boundary conditions.

 loops and conditional statements should be
checked to ensure that loops are executed the
correct number of times and that branching is
correct

42

 if code is going to fail, it usually fails at a
boundary

 check for off-by-one errors, empty input, empty
output

22.03.2010

Gert Jervan, TTÜ/ATI 8

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

The Budget Coverage Criterion
 A common answer to “when is testing done”

 When the money is used up

 When the deadline is reached

 This is sometimes a rational approach!
 Implication 1: Test selection is more important than

43

 Implication 1: Test selection is more important than
stopping criteria per se.

 Implication 2: Practical comparison of approaches must
consider the cost of test case selection

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Test Selection vs. Test Adequacy

Mutation
Testing
Example

44

 Red fish = real program faults (unknown population)

 Blue fish = seeded faults (e.g., mutations) or representative
behaviors (known population)

 Adequacy: count blue fish caught, estimate red fish

 Misuse for selection: use special bait to catch blue fish

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Test Selection: Standard Advice

 Specification coverage is good for selection
as well as adequacy
 applicable to informal as well as formal specs

 + Fault-based tests

45

 usually ad hoc, sometimes from check-lists

 Program coverage last
 to suggest uncovered cases, not just to achieve a

coverage criterion

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

The Importance of Oracles
 Much testing research has concentrated on

adequacy, and ignored oracles

 Much testing practice has relied on the “eyeball
oracle”
 Expensive, especially for regression testing

46

p , p y g g
• makes large numbers of tests infeasible

 Not dependable

 Automated oracles are essential to cost-effective
testing

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Sources of Oracles
 Specifications

 sufficiently formal (e.g., SCR tables)

 but possibly incomplete (e.g., assertions in Anna, ADL, APP,
Nana)

 Design, models

47

 treated as specifications, as in protocol conformance testing

 Prior runs (capture/replay)
 especially important for regression testing and GUIs; hard

problem is parameterization

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

What can be automated?
 Oracles

 assertions; replay; from some specifications

 Selection (Generation)
 scripting; specification-driven; replay variations

 selective regression test

48

 selective regression test

 Coverage
 statement, branch, dependence

 Management

22.03.2010

Gert Jervan, TTÜ/ATI 9

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Design for Test: Principles

 Observability
 Providing the right interfaces to observe the

behavior of an individual unit or subsystem

 Controllability

t a
nd

 c
hi

p
de

si
gn

49

 Providing interfaces to force behaviors of
interest

 Partitioning
 Separating control and observation of one

component from details of othersA
da

pt
ed

 fr
om

 c
irc

ui

Department of computer Engineering
ati.ttu.ee

Remarks by Bill Gates
17th Annual ACM Conference on Object-Oriented

Programming, Seattle, Washington, November 8, 2002

 “… When you look at a big commercial software company like

Microsoft, there's actually as much testing that goes in as

development. We have as many testers as we have

developers. Testers basically test all the time, and developers

basically are involved in the testing process about half the

time…

 … We've probably changed the industry we're in. We're not in

the software industry; we're in the testing industry, and

writing the software is the thing that keeps us busy doing all

that testing.”

Department of computer Engineering
ati.ttu.ee

Remarks by Bill Gates (cont.)

 “…The test cases are unbelievably expensive; in fact, there's

more lines of code in the test harness than there is in the

program itself. Often that's a ratio of about three to one.”

 “… Well, one of the interesting questions is, when you change

a program, … what portion of these test cases do you need to

run?“

Department of computer Engineering
ati.ttu.ee

Testing Real-Time Systems

Distributed

Self-Checking

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

System Testing

HW Testing SW Testing

53

HW/SW Testing
(system testing)

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Real-Time Systems

 Real-Time System – system, which is
required to adhere not only functional but
also tempoal requirements (“timing
constraints” or “deadlines”)

54

 RT-systems:
 Hard RT-systems

 Soft RT-systems

22.03.2010

Gert Jervan, TTÜ/ATI 10

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Real-Time Systems Testing
 Inherits issues from concurrent systems

 Problems becomes harder due to time-constraints
• More sensitive to probe-effects
• Timing/order of inputs become more significant

 Adds new potential problems

55

 Adds new potential problems
 New failure types

• E.g. Missed deadlines, Too early responses…

 Test inputs Execution times
 Faults in real-time scheduling

• Algorithm implementation errors
• Assumption about system wrong

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Real-Time Systems Testing
 Pure time-triggered systems

 Deterministic

 Test-methods for sequential software usually apply

 Fixed priority scheduling
 Non-deterministic

56

 Non deterministic
• Limited set of possible execution orders

 Worst-case w.r.t timeliness can be found from analysis

 Dynamic (online) scheduled systems
 Non-deterministic

• Large set of possible execution orders

 Timeliness needs to be tested

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Testing Timeliness
 Aim : Verification of specified deadlines for individual tasks

 Test if assumptions about system hold
• E.g. worst-case execution time estimates, overheads, context switch

times, hardware acceleration efficency, I/O latency, blocking times,
dependency-assumptions

T t t t l b h i d t

57

 Test system temporal behavior under stress
• E.g. Unexpected job requests, overload management, component

failure, admission control scheme

 Identification of potential worst-case execution orders

 Controllability needed to test worst-case situations efficiently

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Testing Embedded Systems

 System-level testing differs
 Performed on target platform to

keep timing

 Closed-loop testing EnvironmentTest

58

p g
 Test-cases consist of

parameters sent to the
environment simulator

 Open-loop testing
 Test-cases contain sequences

of events that the system
should be able to handle

Simulator

Real-time (control)
system

parameters

Real-time (control)
system

Test Cases

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Distributed Real-Time Systems

...

 Distributed
applications
 On a single cluster
 On several clusters

 Motivation

59

...

 Distributed applications are difficult to...
 Analyze (e.g., guaranteeing timing constraints)

 Design (e.g., efficient implementation)

 Reduce costs:
use resources
efficiently

 Requirements:
close to sensors/
actuators

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Testing Distributed RT-Systems

 Problems with distributed systems:
• Increased complexity

• The difficulties of observing and monitoring

• Non-reproducible behaviour of the system

60

• The lack of synchronized global clock and,
consequently, the difficulties of unambiguously
defining a “global state”

22.03.2010

Gert Jervan, TTÜ/ATI 11

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Testing Distributed RT-Systems

 Observability
 What?

 How?

 When?

61

 Controllability

 Auxiliary outputs, interactive debuggers

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Observability Issues
 Probe effect (Gait,1985)

 “Heisenbergs's principle” - for computer systems

 Common “solutions”

• Compensate

• Leave probes in system

62

p y

• Ignore

 Must observe execution orders
 Gain coverage

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Controllability Issues
 To be able to test correctness of a particular

execution order we need control
 Input data to all tasks

• Initial state of shared data/buffers

63

 Scheduling decisions
• Order synchronization/communication between tasks

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Testing Distributed RT-Systems

 Reproducibility
 Regression testing – retesting after errors have

been corrected
• errors truely corrected

• no new errors

64

• no new errors

 A distributed system may be non-reproducible due
to nondeteminism in it’s hardware, software or
operating system

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Testing Distributed RT-Systems

 Obtaining reproducibility
 Language-based approach

• Enforcing the identified scenarios during execution

• All solutions rely on source code transformations

65

 Implementation based approach
• Collecting all missing information during an execution of

the system

• Event histories or traces

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Testing Distributed RT-Systems

 Disadvantages of implementation based
approach:
 Special dedicated HW (to monitor)

 Large amount of information

 Can we guarantee the correctnes of reply?

66

 Can we guarantee the correctnes of reply?

 Modified programs. What happens with event histories. Are
they still valid?

 Event histories can be used only on target systems

22.03.2010

Gert Jervan, TTÜ/ATI 12

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Testing Distributed RT-Systems

 Interdependence of Obsevability and
Reproducibility

 Not independent!

67

 Probe effect

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Testing Distributed RT-Systems
 The host/target approach

 Host - development

 Target - execution

 Testing on the host system is used for (functional)

68

 Testing on the host system is used for (functional)
unit testing and preliminary integration testing (as
much as possible)

 Testing on the target system involves completing the
integration test and performing the system test. Also
performance, timing, etc.

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Testing Distributed RT-Systems

 Environment simulation (for target system
test)
 Simulated v. real environment:

• Safety and/or cost considerations.

“rare event” situations

69

• “rare event” situations

• More control over simulated environment

• Easier to obtain responses and test results

 On-line v. off-line test data generation:
• Need to generate large amounts of input data

• Runs cost-effectively

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Testing Distributed RT-Systems
 Representativity

 Only small number of real-world scenarios can be anticipated
and taken into account.

 Only a fraction of those anticipated real-world scenarios can
be tested due to the combinatorial explosion of possible
event and input combinations

70

event and input combinations.

 Test coverage - how many of the anticipated real-
time scenarios can be or have been covered by
corresponding test scenarios.

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Self-checking distributed systems

 Run-time checking of the effects of faults on
system behaviors needs to be carried out
continuously.

71

 Reliability – the key to distributed SW quality

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Self-checking distributed systems

 Aspects to design correct SW:
• Reliability with which the SW specifications are

adequately described and correctly implemented
in the actual implementation.

Run-time checking

72

• Run-time checking

22.03.2010

Gert Jervan, TTÜ/ATI 13

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Self-checking distributed systems
 Fault-secure systems are systems, where faults may be

enforced not to propagate.
 Faults are not visible or have no effect

 Faults are visible, but it’s easy to notice that an error exists

 Self-testing – System is self testing when there exists testing

73

 Self-testing – System is self testing when there exists testing
behavior, occurring during the run-time behavior of the system,
such that this fault will be propagated to the output and it’s
easy to notice, that there is a fault (out of predefined set of
values)

 System is self-checking for a set of faults, if whatever a fault
belonging to this set, it is fault-secure and self-testing.

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Self-checking distributed systems

 Worker-observer
 the worker is a classical implementation of the system

behavior

 the observer is a given redundant implementation whose
outputs are comparable with the outputs of the worker.

74

 To obtain observing behavior:
– Redundancy

 Reference

 Visibility
• Worker cooperates with the observer

• Worker behavior can be spied by the observer

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Self-checking distributed systems

 A formal observer is a subsystem designed to
check distributed behaviors where:

• Its sw is independent of the specific protocols to
be checked in the considered system;

Its data a e defined b the p otocols to be

75

• Its data are defined by the protocols to be
checked and this data can be formally specified
and verified.

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Self-checking distributed systems

 Design of the system
• write a description of the beavior of the system to

be implemented;

• Implement the system itself, i.e., the worker;

F h d i i f h k l (b d

76

• From the description of the worker, select (based
on experience) that part of the behavior which
should be observed and write a formal model of it.

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Self-checking distributed systems

 The system is quasi self-checking if
• It is an observer-worker system

• The observer is a formal observer.

 For “real-life” only part of the system will be
modelled.

77

 Formal model must be able to
• Express simplified specifications of distributed systems

• Support verification procedures

• Be able to act as a basis for implementing the observer.

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Few testing criteria exists for concurrent systems

 Number of execution orders grow exponentially with
synchronization primitives in tasks
 Testing criteria needed to bound and selecting subset of

execution orders for testing

 E g B anch / Statement co e age not s fficient fo

78

 E.g. Branch / Statement coverage not sufficient for
concurrent software
 Still useful on serializations
 Execution paths may require specific behavior from other

tasks

 Data-flow based testing criteria has been adapted
 E.g. define-use pairs

22.03.2010

Gert Jervan, TTÜ/ATI 14

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Determinism vs. Non-Determinism
 Deterministic systems

 Controllability is high
• input (sequence) suffice

 Coverage can be claimed after single test execution with
inputs

 E.g. Filters, Pure “table-driven” real-time systems

79

 Non-Deterministic systems
 Controllability is generally low
 Statistical methods needed in combination with input

coverage
 E.g.

• Systems that use random heuristics
• Behavior depends on execution times / race conditions

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Test execution in concurrent systems

 Non-deterministic testing
 “Run, Run, Run and Pray”

 Deterministic testing
 Select a particular execution order and force it

80

 E.g. Instrument with extra synchronizations primitives
• (No timing constraints make this possible)

 Prefix-based Testing (and Replay)
 Deterministically run system to a specific (prefix) point
 Start non-deterministic testing at that specific point

Department of computer Engineering
ati.ttu.ee

Questions?

