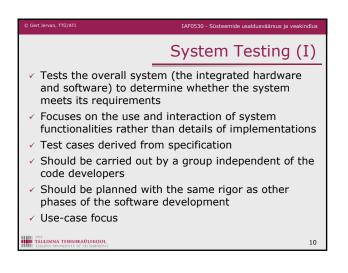
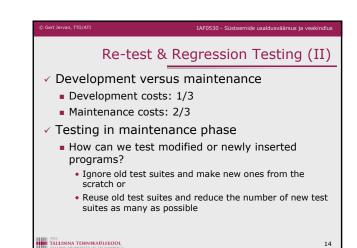

Component/Unit Testing (III)


✓ Test case

- Input, expected outcome, purpose
- Selected according to a strategy, e.g., branch coverage
- Outcome
 - Pass/fail result
 - Log, i.e., chronological list of events from execution

TALLINNA TEHNIKAÜLIKOOL

<section-header> 2 (2 (2) Constrained (2) Con


© Gert Jervan, TTŪ/ATI	IAF0530 - Süsteemide usaldusväärsus ja veakindlus
	Acceptance Testing
✓ User (or customer)	involved
✓ Environment as clo	se to field use as possible
✓ Focus on:	
Building confidence	
 Compliance with de contract 	fined acceptance criteria in the
PIR Tallinna tehnikaülikool	12

Re-Test and Regression Testing (I)

IAF0530 - Süsteemide usaldusväärsus ja vo

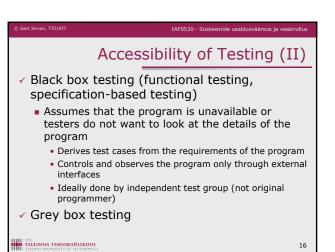
- Conducted after a change
- Re-test aims to verify whether a fault is removed
 - Re-run the test that revealed the fault
- Regression test aims to verify whether new faults are introduced
 - Re-run all tests
 - Should preferably be automated

1918 TALLINNA TEHNIKAÜLIKOOL TALLINN UNIVERSITY OF TECHNOLOGY

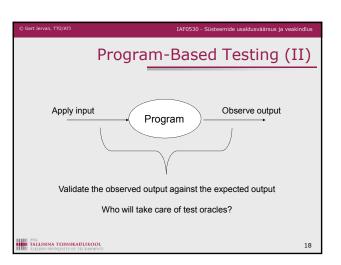
ervan, TTÜ/ATI

Accessibility of Testing

IAF0530 - Süsteemide usaldusväärsus ja veakindlu


- White box testing (structural testing, program-based testing)
- White box testing is a test case design method that uses the control structure of the procedural design to derive test cases. Test cases can be derived that
 - guarantee that all independent paths within a module have been exercised at least once,
 - exercise all logical decisions on their true and false sides,
 - execute all loops at their boundaries and within their operational bounds, and
 - exercise internal data structures to ensure their validity.

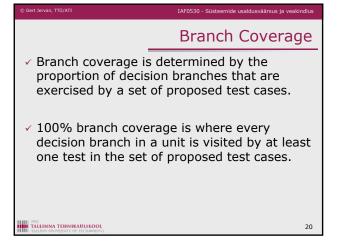
TALLINNA TEHNIKAÜLIKOOL

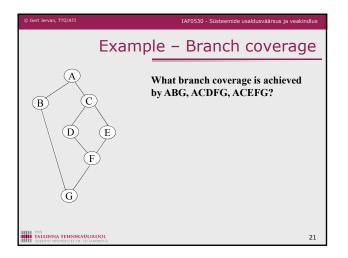

15

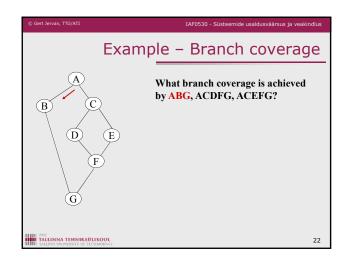
17

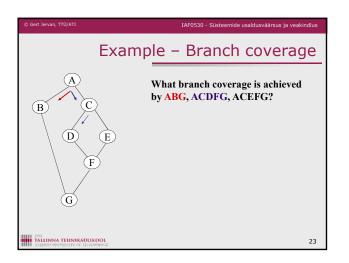
13

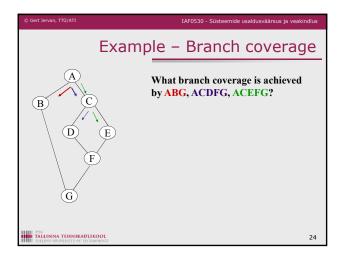
C det Javava, TU/AT C det J

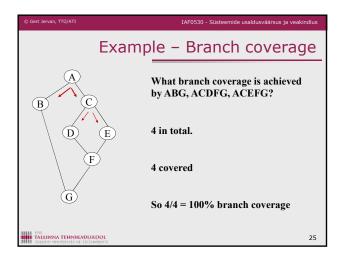

III TALLINNA TEHNIKAÜLIKOOL

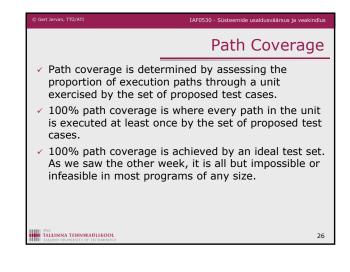

Statement Coverage

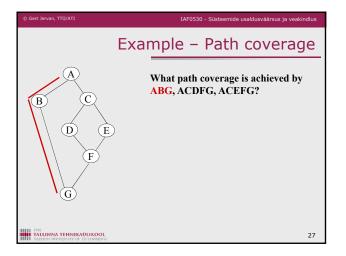

19

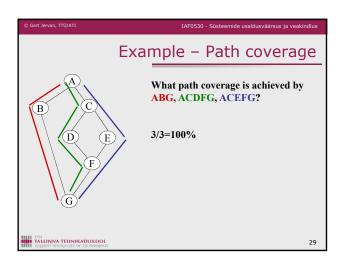

- Statement coverage of a set of test cases is defined to be the proportion of statements in a unit covered by those test cases.
- 100% statement coverage for a set of tests means that all statements are covered by the tests. That is, all statements will be executed at least once by running the tests.

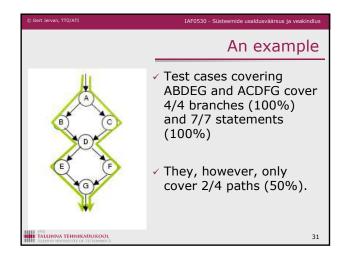

TALLINNA TEHNIKAÜLIKOOL

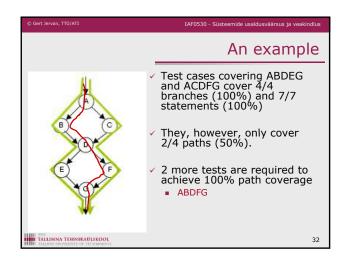


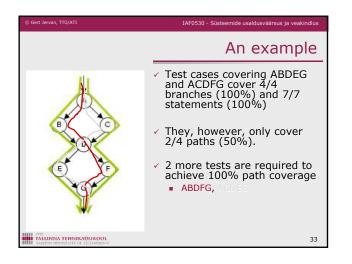


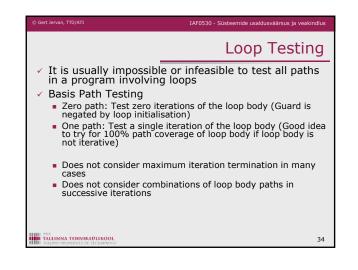




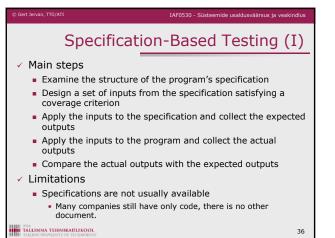


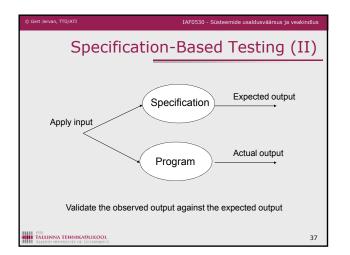


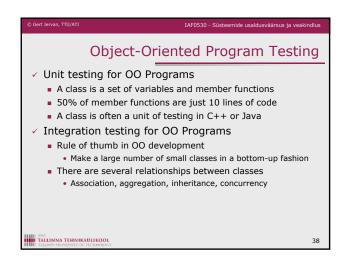




© Gert Jervan, TTŪ/ATI	IAF0530 - Süsteemide usaldusväärsus ja veakindlus
	Coverage
 ✓ It is possible to have 100 without 100% branch cov 	5
 It is possible to have 100 100% path coverage 	% branch coverage without
 100% path coverage imp and 100% branch covera- coverage 	lies 100% branch coverage ge implies 100% statement
IIII 1915 IIII TALINA TEHNIKAÜLIKOOL IIII TALINA ONVESHY OF EGIMOROTY	30




IAF0530 - Süsteemide usaldusväärsus ja veakindlus Mutation testing


- Create a number of mutants, i.e., faulty versions of program
 - Each mutant contains one fault
 - Fault created by using mutant operators
- Run test on the mutants (random or selected)
- When a test case reveals a fault, save test case and remove mutant from the set, i.e., it is killed
- Continue until all mutants are killed
- Results in a set of test cases with high quality
- Need for automation

TALLINNA TEHNIKAÜLIKOOL

35

Gert Jervan, TTÜ/ATI IAF0530 - Süsteemide usaldus	väärsus ja veakindlus	© Gert Jervan, TTŪ/ATI	IAF0530 - Süsteemide usaldusväärsus ja veakindlus
 Coret Jervari, TTÜ/AT1 Think about potential problems as you dess implement. Make a note of them and dev that will exercise these problem areas. Document all loops and their boundary condition and their boundary conditions, all variables and 	Nirvana ign and elop tests ns, all arrays	 Test systematication and working up Often leads to "b 	ally, starting with easy tests to more elaborate ones. bottom up" testing, starting with s at the lowest level of calling
 and their boundary conditions, all variables and of permissible values. Pay special attention to parameters from the co and into functions and what are their valid and values. Enumerate the possible combinations and situal piece of code and design tests for all of them. 	mmand line invalid	When those areDocument (and/	working, test their callers or automate) this testing so that ed (regression testing) constantly
GIGO - what happens when garbage goes in? Kernighan, Pike, "The Practice	e of Programming" 39	THE TALINNA TERNIKAÜLIKOOL	40
		and a second sec	

41

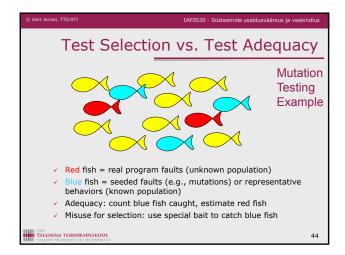
IAF0530 - Süsteemide usaldusväärsus ja veaki Steps to Testing Nirvana

- Within a module, test incrementally as you code
 - Write, test, add more code, test again, repeat
 - The earlier that errors are detected, the easier they are to locate and fix.
 - Testing is not only concerning code • Documents and models should also be subject to testing

IAF0530 - Süsteemide usaldusväärsus ja vo Tricks of the Trade Test boundary conditions. loops and conditional statements should be checked to ensure that loops are executed the correct number of times and that branching is correct if code is going to fail, it usually fails at a boundary check for off-by-one errors, empty input, empty output IIIII TALLINNA TEHNIKAÜLIKOOI 42

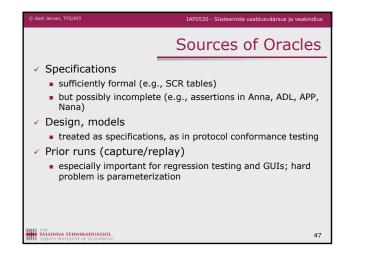
Gert Jervan, TTÜ/ATI

TALLINNA TEHNIKAÜLIKOOL

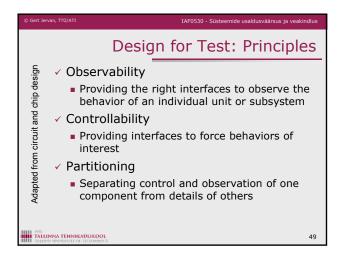

The Budget Coverage Criterion

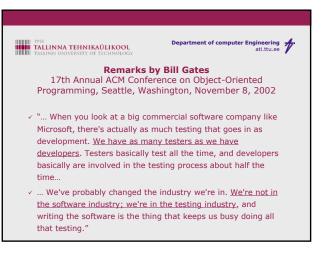
- A common answer to "when is testing done"
 - When the money is used up
 - When the deadline is reached
- This is sometimes a rational approach!
 - Implication 1: Test selection is more important than stopping criteria per se.
 - Implication 2: Practical comparison of approaches must consider the cost of test case selection

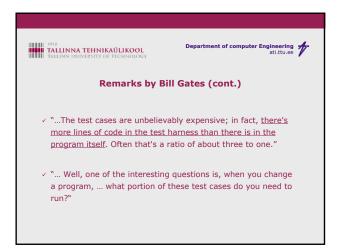
TALLINNA TEHNIKAÜLIKOOL


✓ Sp as

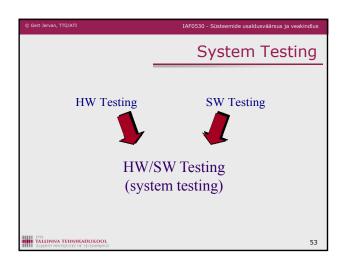
ATTALLIN

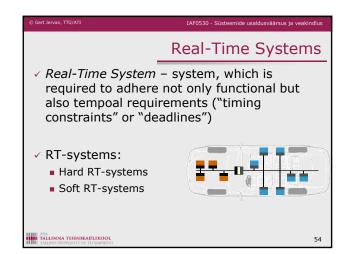

Gert Jervan, TTÜ/ATI IAF0530 - Süsteemide usak	dusväärsus ja veakindlus	© Gert Jervan, TTÜ/ATI	IAF0530 - Süsteemide usaldusväärsus ja veakind
Test Selection: Standard			he Importance of Oracle
 Specification coverage is good for s as well as adequacy applicable to informal as well as forma + Fault-based tests usually ad hoc, sometimes from check Program coverage last to suggest uncovered cases, not just t coverage criterion 	il specs -lists	adequacy, and i Much testing pr oracle" Expensive, espe • makes large n • Not dependable	cactice has relied on the "eyeball ecially for regression testing numbers of tests infeasible
1755 TALINNA TEHNIKAÜLIKOOL LAINEN ERETKII VOI 11. INDENER	45	TALLINNA TEHNIKÄÖLIKOOL TALLINNA TEHNIKÄÖLIKOOL HIIII LALINN MAREISITY OL LOUNARONY	


43



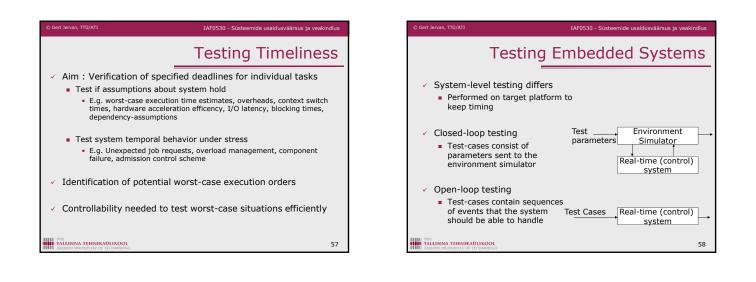
© Gert Jervan, TTÜ/ATI	IAF0530 - Süsteemide usaldusväärsus ja veakindlus
Wh	at can be automated?
 Oracles assertions; replay; fr Selection (Generation scripting; specification selective regression t Coverage statement, branch, d Management 	n) n-driven; replay variations est
PIS TALLINNA TEHNIKAÜLIKOOL TALLINN UNIVERSITY OF TECHNOLOGY	48


Gert Jervan, TTÜ/ATI

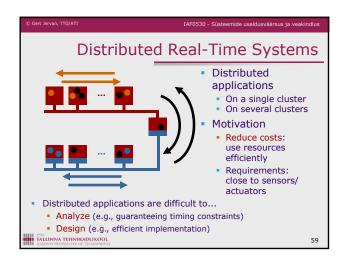


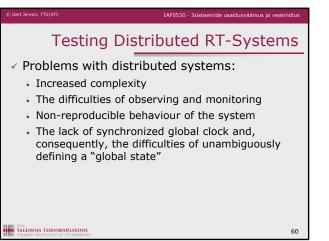
56

Real-Time Systems Testing Inherits issues from concurrent systems Problems becomes harder due to time-constraints More sensitive to probe-effects Timing/order of inputs become more significant Adds new potential problems New failure types

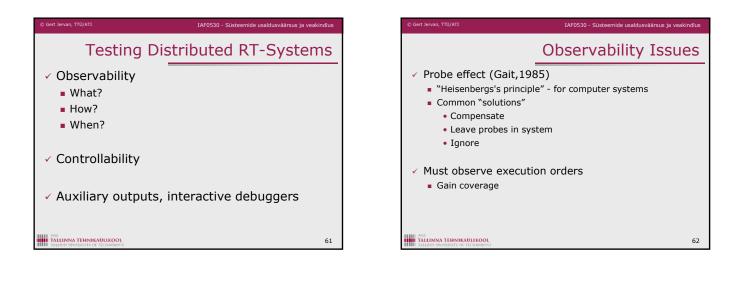

IAF0530 - Süsteemide usaldusväärsus ja veakir

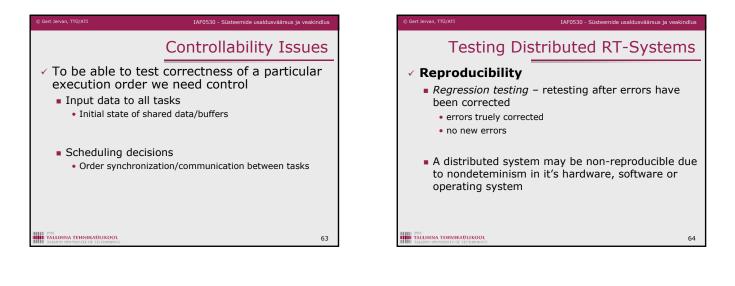
- E.g. Missed deadlines, Too early responses...
- Test inputs → Execution times
- Faults in real-time scheduling
- Algorithm implementation errors
- Assumption about system wrong

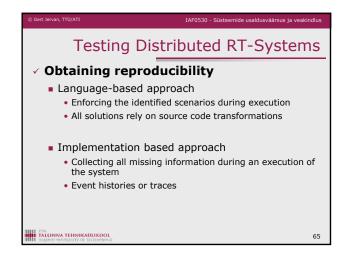

TALLINNA TEHNIKAÜLIKOOL

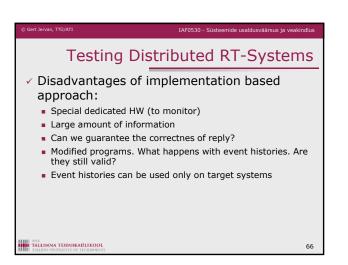

C dett Jervan, TTU/ATI
 C dett Jervan, TT

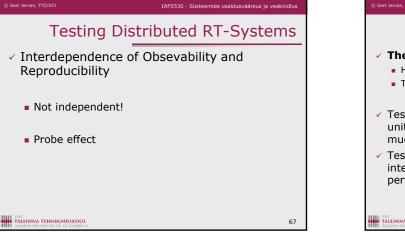
TALLINNA TEHNIKAOLIKOOL

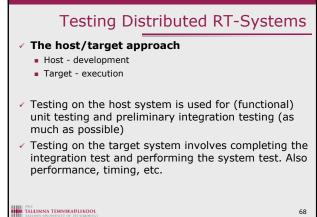


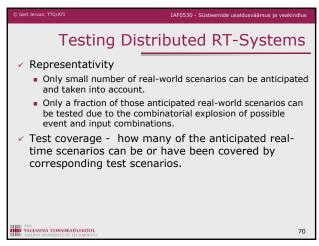

55

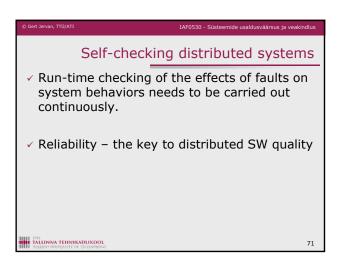


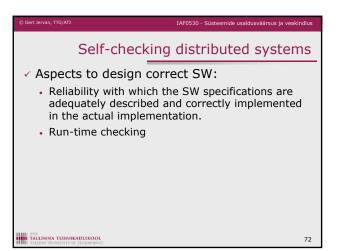



Gert Jervan, TTÜ/ATI









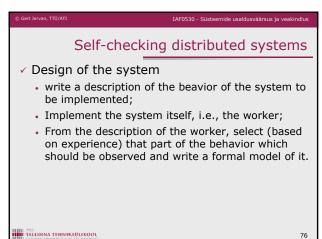
IAF0530 - Süsteemide usaldusväärsus ja vo

© Gert Jervan, TTÜ/ATI IAF0530 - Süsteemide usa	aldusväärsus ja veakindlus
Testing Distributed RT-	Systems
 Environment simulation (for target test) 	: system
 Simulated v. real environment: Safety and/or cost considerations. "rare event" situations More control over simulated environment Easier to obtain responses and test results 	5
 On-line v. off-line test data generation Need to generate large amounts of input of Runs cost-effectively 	
1915 TALLINNA TEHNIKAÜLIKOOL TALLINNA UMPERSITY OF TECHNOL ⁶⁶	69

Self-checking distributed systems

IAF0530 - Süsteemide usaldusväärsus ja veakindl

73


77

- $\checkmark\,$ Fault-secure systems are systems, where faults may be enforced not to propagate.
 - Faults are not visible or have no effect
 - Faults are visible, but it's easy to notice that an error exists
- Self-testing System is self testing when there exists testing behavior, occurring during the run-time behavior of the system, such that this fault will be propagated to the output and it's easy to notice, that there is a fault (out of predefined set of values)
- System is self-checking for a set of faults, if whatever a fault belonging to this set, it is fault-secure and self-testing.

TALLINNA TEHNIKAÜLIKOOL

<section-header><page-header><section-header><section-header><section-header><section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

<section-header><text><section-header>

2 Get Javan, 110/41 3 Get J

Content of execution orders grow exponentially with # synchronization primitives in tasks
Testing criteria needed to bound and selecting subset of execution orders for testing
E.g. Branch / Statement coverage not sufficient for concurrent software
Still useful on serializations
Execution paths may require specific behavior from other tasks
Data-flow based testing criteria has been adapted
E.g. define-use pairs

TALLINNA TEHNIKAÜLIKOOI

Determinism vs. Non-Determinism

- Deterministic systems
 - Controllability is high
 - input (sequence) suffice
 Coverage can be claimed after single test execution with inputs
 - E.g. Filters, Pure "table-driven" real-time systems
- Non-Deterministic systems
 - Controllability is generally low
 - Statistical methods needed in combination with input coverage
 - E.g.
 - Systems that use random heuristics
 - Behavior depends on execution times / race conditions

1918 TALLINNA TEHNIKAÜLIKOOL TALLINN DRIVERSITE OF TECHNOLOG 79

<section-header> 6 deterministic testing * Run, Run, Run and Pray* • Deterministic testing • Select a particular execution order and force it • E.g. Instrument with extra synchronizations primitives • (No timing constraints make this possible) • Prefix-based Testing (and Replay) • Deterministically run system to a specific (prefix) point • Start non-deterministic testing at that specific point

