
22.03.2010

Gert Jervan, TTÜ/ATI 1

Department of computer Engineering
ati.ttu.ee

IAF0530/IAF9530

Süsteemide usaldusväärsus ja veakindlus
Dependability and fault tolerance

Loeng 5
SW Testing. System Testing

Gert Jervan

gert.jervan@pld.ttu.ee

Tallinn University of Technology
Department of Computer Engineering

Estonia

Department of computer Engineering
ati.ttu.ee

Software Testing

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Types of Testing

Level

integration

system

acceptance

regression

3

Aspect

Accessibility
functional

robustness

performance

reliability

usability

unit

integration

white
box

grey
box

black
box

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Levels of Testing

What users
really need Acceptance testing

4

Requirements

Design

Code

System testing

Integration testing

Unit testing

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Component/Unit Testing (I)

F1(int x1, y1) { Test driver

 A unit of testing
 Functions in procedural programming languages

such as C, Fortran, …

5

……
F2(x1+1, y1-1);

}

F2(int x2, y2) {
……
F3(x2+2, y2-1);

}

F3(int x3, y3) {
……

}

Test stub

Test unit

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Component/Unit Testing (II)

 Require knowledge of code
 High level of detail

 Deliver thoroughly tested components to
integration

6

 Stopping criteria
 Code Coverage

 Quality

22.03.2010

Gert Jervan, TTÜ/ATI 2

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Component/Unit Testing (III)

 Test case
 Input, expected outcome, purpose

 Selected according to a strategy, e.g., branch
coverage

7

 Outcome
 Pass/fail result

 Log, i.e., chronological list of events from
execution

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Integration Testing (I)
 Interactions among units (assembled components

that must be tested and accepted previously)
 Import/export type compatibility

 Import/export range errors
• F1 calls F2 with a parameter of array

8

• F1 assumes array of size 8, while F2 assumes an array of size
10

 Import/export representation
• F1 calls F2 with a parameter Elapsed_time

• F1 thinks in seconds, while F2 thinks in miliseconds

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Integration Testing (II)

 Strategies for integration testing
 Top-down

• Stubs are needed

 Bottom-up
D i d d

Main

F1 F2

9

• Drivers are needed

 Big-bang

 Functional

 Drivers &
stubs
have to tested as well!

Fm Fn

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

System Testing (I)
 Tests the overall system (the integrated hardware

and software) to determine whether the system
meets its requirements

 Focuses on the use and interaction of system
functionalities rather than details of implementations

10

 Test cases derived from specification

 Should be carried out by a group independent of the
code developers

 Should be planned with the same rigor as other
phases of the software development

 Use-case focus

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

System Testing (II)

 Non-functional testing

 Quality attributes
 Performance, can the system handle required

throughput?

11

 Reliability, obtain confidence that system is
reliable

 Timeliness, testing whether the individual tasks
meet their specified deadlines

 etc.

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Acceptance Testing

 User (or customer) involved

 Environment as close to field use as possible

 Focus on:
 Building confidence

12

Building confidence

 Compliance with defined acceptance criteria in the
contract

22.03.2010

Gert Jervan, TTÜ/ATI 3

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Re-Test and Regression Testing (I)

 Conducted after a change

 Re-test aims to verify whether a fault is
removed
 Re-run the test that revealed the fault

13

 Regression test aims to verify whether new
faults are introduced
 Re-run all tests

 Should preferably be automated

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Re-test & Regression Testing (II)

 Development versus maintenance
 Development costs: 1/3

 Maintenance costs: 2/3

 Testing in maintenance phase

14

 How can we test modified or newly inserted
programs?
• Ignore old test suites and make new ones from the

scratch or

• Reuse old test suites and reduce the number of new test
suites as many as possible

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Accessibility of Testing
 White box testing (structural testing, program-based

testing)

 White box testing is a test case design method that
uses the control structure of the procedural design to
derive test cases. Test cases can be derived that

15

 guarantee that all independent paths within a module have
been exercised at least once,

 exercise all logical decisions on their true and false sides,

 execute all loops at their boundaries and within their
operational bounds, and

 exercise internal data structures to ensure their validity.

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Accessibility of Testing (II)

 Black box testing (functional testing,
specification-based testing)
 Assumes that the program is unavailable or

testers do not want to look at the details of the
program

16

program
• Derives test cases from the requirements of the program

• Controls and observes the program only through external
interfaces

• Ideally done by independent test group (not original
programmer)

 Grey box testing

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Program-Based Testing (I)
 Main steps

 Examine the internal structure of a program
 Design a set of inputs satisfying a coverage criterion
 Apply the inputs to the program and collect the actual

outputs
 Compare the actual outputs with the expected outputs

17

 Compare the actual outputs with the expected outputs

 Limitations
 Cannot catch omission errors

• What requirements are missing in the program?

 Cannot provide test oracles
• What is the expected output for an input?

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Program-Based Testing (II)

Program
Apply input Observe output

18

Validate the observed output against the expected output

Who will take care of test oracles?

22.03.2010

Gert Jervan, TTÜ/ATI 4

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Statement Coverage

 Statement coverage of a set of test cases is
defined to be the proportion of statements in
a unit covered by those test cases.

19

 100% statement coverage for a set of tests
means that all statements are covered by the
tests. That is, all statements will be executed
at least once by running the tests.

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Branch Coverage

 Branch coverage is determined by the
proportion of decision branches that are
exercised by a set of proposed test cases.

20

 100% branch coverage is where every
decision branch in a unit is visited by at least
one test in the set of proposed test cases.

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Example – Branch coverage

A

B C

D E

What branch coverage is achieved
by ABG, ACDFG, ACEFG?

21

D E

F

G

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Example – Branch coverage

A

B C

D E

What branch coverage is achieved
by ABG, ACDFG, ACEFG?

22

D E

F

G

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Example – Branch coverage

A

B C

D E

What branch coverage is achieved
by ABG, ACDFG, ACEFG?

23

D E

F

G

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Example – Branch coverage

A

B C

D E

What branch coverage is achieved
by ABG, ACDFG, ACEFG?

24

D E

F

G

22.03.2010

Gert Jervan, TTÜ/ATI 5

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Example – Branch coverage

A

B C

D E

What branch coverage is achieved
by ABG, ACDFG, ACEFG?

4 in total

25

D E

F

G

4 in total.

4 covered

So 4/4 = 100% branch coverage

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Path Coverage
 Path coverage is determined by assessing the

proportion of execution paths through a unit
exercised by the set of proposed test cases.

 100% path coverage is where every path in the unit
is executed at least once by the set of proposed test

26

cases.

 100% path coverage is achieved by an ideal test set.
As we saw the other week, it is all but impossible or
infeasible in most programs of any size.

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Example – Path coverage

A

B C

D E

What path coverage is achieved by
ABG, ACDFG, ACEFG?

27

D E

F

G

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Example – Path coverage

A

B C

D E

What path coverage is achieved by
ABG, ACDFG, ACEFG?

28

D E

F

G

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Example – Path coverage

A

B C

D E

What path coverage is achieved by
ABG, ACDFG, ACEFG?

3/3=100%

29

D E

F

G

3/3=100%

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Coverage
 It is possible to have 100% statement coverage

without 100% branch coverage

 It is possible to have 100% branch coverage without
100% path coverage

30

 100% path coverage implies 100% branch coverage
and 100% branch coverage implies 100% statement
coverage

22.03.2010

Gert Jervan, TTÜ/ATI 6

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

An example

 Test cases covering
ABDEG and ACDFG cover
4/4 branches (100%)
and 7/7 statements
(100%)

31

(100%)

 They, however, only
cover 2/4 paths (50%).

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

An example

 Test cases covering ABDEG
and ACDFG cover 4/4
branches (100%) and 7/7
statements (100%)

 They however only cover

32

 They, however, only cover
2/4 paths (50%).

 2 more tests are required to
achieve 100% path coverage
 ABDFG

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

An example

 Test cases covering ABDEG
and ACDFG cover 4/4
branches (100%) and 7/7
statements (100%)

 They however only cover

33

 They, however, only cover
2/4 paths (50%).

 2 more tests are required to
achieve 100% path coverage
 ABDFG, ACDEG

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Loop Testing
 It is usually impossible or infeasible to test all paths

in a program involving loops
 Basis Path Testing

 Zero path: Test zero iterations of the loop body (Guard is
negated by loop initialisation)

 One path: Test a single iteration of the loop body (Good idea
t t f 100% th f l b d if l b d i

34

to try for 100% path coverage of loop body if loop body is
not iterative)

 Does not consider maximum iteration termination in many
cases

 Does not consider combinations of loop body paths in
successive iterations

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Mutation testing
 Create a number of mutants, i.e., faulty versions of

program
 Each mutant contains one fault

 Fault created by using mutant operators

 Run test on the mutants (random or selected)

35

()
 When a test case reveals a fault, save test case and remove

mutant from the set, i.e., it is killed

 Continue until all mutants are killed

 Results in a set of test cases with high quality

 Need for automation

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Specification-Based Testing (I)
 Main steps

 Examine the structure of the program’s specification

 Design a set of inputs from the specification satisfying a
coverage criterion

 Apply the inputs to the specification and collect the expected
t t

36

outputs

 Apply the inputs to the program and collect the actual
outputs

 Compare the actual outputs with the expected outputs

 Limitations
 Specifications are not usually available

• Many companies still have only code, there is no other
document.

22.03.2010

Gert Jervan, TTÜ/ATI 7

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Specification-Based Testing (II)

Specification

Apply input

Expected output

37

Program
Actual output

Validate the observed output against the expected output

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Object-Oriented Program Testing

 Unit testing for OO Programs
 A class is a set of variables and member functions

 50% of member functions are just 10 lines of code

 A class is often a unit of testing in C++ or Java

 Integration testing for OO Programs

38

Integration testing for OO Programs
 Rule of thumb in OO development

• Make a large number of small classes in a bottom-up fashion

 There are several relationships between classes
• Association, aggregation, inheritance, concurrency

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Steps to Testing Nirvana
 Think about potential problems as you design and

implement. Make a note of them and develop tests
that will exercise these problem areas.
 Document all loops and their boundary conditions, all arrays

and their boundary conditions, all variables and their range
of permissible values

39

of permissible values.

 Pay special attention to parameters from the command line
and into functions and what are their valid and invalid
values.

 Enumerate the possible combinations and situations for a
piece of code and design tests for all of them.

 GIGO - what happens when garbage goes in?
Kernighan, Pike, “The Practice of Programming”

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Steps to Testing Nirvana

 Test systematically, starting with easy tests
and working up to more elaborate ones.
 Often leads to “bottom up” testing, starting with

simplest modules at the lowest level of calling

When those a e o king test thei calle s

40

 When those are working, test their callers

 Document (and/or automate) this testing so that
it can be repeated (regression testing) constantly
as the code grows and changes.

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Steps to Testing Nirvana

 Within a module, test incrementally as you
code
 Write, test, add more code, test again, repeat

 The earlier that errors are detected, the easier
the a e to locate and fi

41

they are to locate and fix.

 Testing is not only concerning code
• Documents and models should also be subject to testing

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Tricks of the Trade
 Test boundary conditions.

 loops and conditional statements should be
checked to ensure that loops are executed the
correct number of times and that branching is
correct

42

 if code is going to fail, it usually fails at a
boundary

 check for off-by-one errors, empty input, empty
output

22.03.2010

Gert Jervan, TTÜ/ATI 8

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

The Budget Coverage Criterion
 A common answer to “when is testing done”

 When the money is used up

 When the deadline is reached

 This is sometimes a rational approach!
 Implication 1: Test selection is more important than

43

 Implication 1: Test selection is more important than
stopping criteria per se.

 Implication 2: Practical comparison of approaches must
consider the cost of test case selection

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Test Selection vs. Test Adequacy

Mutation
Testing
Example

44

 Red fish = real program faults (unknown population)

 Blue fish = seeded faults (e.g., mutations) or representative
behaviors (known population)

 Adequacy: count blue fish caught, estimate red fish

 Misuse for selection: use special bait to catch blue fish

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Test Selection: Standard Advice

 Specification coverage is good for selection
as well as adequacy
 applicable to informal as well as formal specs

 + Fault-based tests

45

 usually ad hoc, sometimes from check-lists

 Program coverage last
 to suggest uncovered cases, not just to achieve a

coverage criterion

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

The Importance of Oracles
 Much testing research has concentrated on

adequacy, and ignored oracles

 Much testing practice has relied on the “eyeball
oracle”
 Expensive, especially for regression testing

46

p , p y g g
• makes large numbers of tests infeasible

 Not dependable

 Automated oracles are essential to cost-effective
testing

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Sources of Oracles
 Specifications

 sufficiently formal (e.g., SCR tables)

 but possibly incomplete (e.g., assertions in Anna, ADL, APP,
Nana)

 Design, models

47

 treated as specifications, as in protocol conformance testing

 Prior runs (capture/replay)
 especially important for regression testing and GUIs; hard

problem is parameterization

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

What can be automated?
 Oracles

 assertions; replay; from some specifications

 Selection (Generation)
 scripting; specification-driven; replay variations

 selective regression test

48

 selective regression test

 Coverage
 statement, branch, dependence

 Management

22.03.2010

Gert Jervan, TTÜ/ATI 9

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Design for Test: Principles

 Observability
 Providing the right interfaces to observe the

behavior of an individual unit or subsystem

 Controllability

t a
nd

 c
hi

p
de

si
gn

49

 Providing interfaces to force behaviors of
interest

 Partitioning
 Separating control and observation of one

component from details of othersA
da

pt
ed

 fr
om

 c
irc

ui

Department of computer Engineering
ati.ttu.ee

Remarks by Bill Gates
17th Annual ACM Conference on Object-Oriented

Programming, Seattle, Washington, November 8, 2002

 “… When you look at a big commercial software company like

Microsoft, there's actually as much testing that goes in as

development. We have as many testers as we have

developers. Testers basically test all the time, and developers

basically are involved in the testing process about half the

time…

 … We've probably changed the industry we're in. We're not in

the software industry; we're in the testing industry, and

writing the software is the thing that keeps us busy doing all

that testing.”

Department of computer Engineering
ati.ttu.ee

Remarks by Bill Gates (cont.)

 “…The test cases are unbelievably expensive; in fact, there's

more lines of code in the test harness than there is in the

program itself. Often that's a ratio of about three to one.”

 “… Well, one of the interesting questions is, when you change

a program, … what portion of these test cases do you need to

run?“

Department of computer Engineering
ati.ttu.ee

Testing Real-Time Systems

Distributed

Self-Checking

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

System Testing

HW Testing SW Testing

53

HW/SW Testing
(system testing)

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Real-Time Systems

 Real-Time System – system, which is
required to adhere not only functional but
also tempoal requirements (“timing
constraints” or “deadlines”)

54

 RT-systems:
 Hard RT-systems

 Soft RT-systems

22.03.2010

Gert Jervan, TTÜ/ATI 10

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Real-Time Systems Testing
 Inherits issues from concurrent systems

 Problems becomes harder due to time-constraints
• More sensitive to probe-effects
• Timing/order of inputs become more significant

 Adds new potential problems

55

 Adds new potential problems
 New failure types

• E.g. Missed deadlines, Too early responses…

 Test inputs  Execution times
 Faults in real-time scheduling

• Algorithm implementation errors
• Assumption about system wrong

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Real-Time Systems Testing
 Pure time-triggered systems

 Deterministic

 Test-methods for sequential software usually apply

 Fixed priority scheduling
 Non-deterministic

56

 Non deterministic
• Limited set of possible execution orders

 Worst-case w.r.t timeliness can be found from analysis

 Dynamic (online) scheduled systems
 Non-deterministic

• Large set of possible execution orders

 Timeliness needs to be tested

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Testing Timeliness
 Aim : Verification of specified deadlines for individual tasks

 Test if assumptions about system hold
• E.g. worst-case execution time estimates, overheads, context switch

times, hardware acceleration efficency, I/O latency, blocking times,
dependency-assumptions

T t t t l b h i d t

57

 Test system temporal behavior under stress
• E.g. Unexpected job requests, overload management, component

failure, admission control scheme

 Identification of potential worst-case execution orders

 Controllability needed to test worst-case situations efficiently

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Testing Embedded Systems

 System-level testing differs
 Performed on target platform to

keep timing

 Closed-loop testing EnvironmentTest

58

p g
 Test-cases consist of

parameters sent to the
environment simulator

 Open-loop testing
 Test-cases contain sequences

of events that the system
should be able to handle

Simulator

Real-time (control)
system

parameters

Real-time (control)
system

Test Cases

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Distributed Real-Time Systems

...

 Distributed
applications
 On a single cluster
 On several clusters

 Motivation

59

...

 Distributed applications are difficult to...
 Analyze (e.g., guaranteeing timing constraints)

 Design (e.g., efficient implementation)

 Reduce costs:
use resources
efficiently

 Requirements:
close to sensors/
actuators

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Testing Distributed RT-Systems

 Problems with distributed systems:
• Increased complexity

• The difficulties of observing and monitoring

• Non-reproducible behaviour of the system

60

• The lack of synchronized global clock and,
consequently, the difficulties of unambiguously
defining a “global state”

22.03.2010

Gert Jervan, TTÜ/ATI 11

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Testing Distributed RT-Systems

 Observability
 What?

 How?

 When?

61

 Controllability

 Auxiliary outputs, interactive debuggers

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Observability Issues
 Probe effect (Gait,1985)

 “Heisenbergs's principle” - for computer systems

 Common “solutions”

• Compensate

• Leave probes in system

62

p y

• Ignore

 Must observe execution orders
 Gain coverage

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Controllability Issues
 To be able to test correctness of a particular

execution order we need control
 Input data to all tasks

• Initial state of shared data/buffers

63

 Scheduling decisions
• Order synchronization/communication between tasks

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Testing Distributed RT-Systems

 Reproducibility
 Regression testing – retesting after errors have

been corrected
• errors truely corrected

• no new errors

64

• no new errors

 A distributed system may be non-reproducible due
to nondeteminism in it’s hardware, software or
operating system

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Testing Distributed RT-Systems

 Obtaining reproducibility
 Language-based approach

• Enforcing the identified scenarios during execution

• All solutions rely on source code transformations

65

 Implementation based approach
• Collecting all missing information during an execution of

the system

• Event histories or traces

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Testing Distributed RT-Systems

 Disadvantages of implementation based
approach:
 Special dedicated HW (to monitor)

 Large amount of information

 Can we guarantee the correctnes of reply?

66

 Can we guarantee the correctnes of reply?

 Modified programs. What happens with event histories. Are
they still valid?

 Event histories can be used only on target systems

22.03.2010

Gert Jervan, TTÜ/ATI 12

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Testing Distributed RT-Systems

 Interdependence of Obsevability and
Reproducibility

 Not independent!

67

 Probe effect

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Testing Distributed RT-Systems
 The host/target approach

 Host - development

 Target - execution

 Testing on the host system is used for (functional)

68

 Testing on the host system is used for (functional)
unit testing and preliminary integration testing (as
much as possible)

 Testing on the target system involves completing the
integration test and performing the system test. Also
performance, timing, etc.

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Testing Distributed RT-Systems

 Environment simulation (for target system
test)
 Simulated v. real environment:

• Safety and/or cost considerations.

“rare event” situations

69

• “rare event” situations

• More control over simulated environment

• Easier to obtain responses and test results

 On-line v. off-line test data generation:
• Need to generate large amounts of input data

• Runs cost-effectively

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Testing Distributed RT-Systems
 Representativity

 Only small number of real-world scenarios can be anticipated
and taken into account.

 Only a fraction of those anticipated real-world scenarios can
be tested due to the combinatorial explosion of possible
event and input combinations

70

event and input combinations.

 Test coverage - how many of the anticipated real-
time scenarios can be or have been covered by
corresponding test scenarios.

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Self-checking distributed systems

 Run-time checking of the effects of faults on
system behaviors needs to be carried out
continuously.

71

 Reliability – the key to distributed SW quality

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Self-checking distributed systems

 Aspects to design correct SW:
• Reliability with which the SW specifications are

adequately described and correctly implemented
in the actual implementation.

Run-time checking

72

• Run-time checking

22.03.2010

Gert Jervan, TTÜ/ATI 13

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Self-checking distributed systems
 Fault-secure systems are systems, where faults may be

enforced not to propagate.
 Faults are not visible or have no effect

 Faults are visible, but it’s easy to notice that an error exists

 Self-testing – System is self testing when there exists testing

73

 Self-testing – System is self testing when there exists testing
behavior, occurring during the run-time behavior of the system,
such that this fault will be propagated to the output and it’s
easy to notice, that there is a fault (out of predefined set of
values)

 System is self-checking for a set of faults, if whatever a fault
belonging to this set, it is fault-secure and self-testing.

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Self-checking distributed systems

 Worker-observer
 the worker is a classical implementation of the system

behavior

 the observer is a given redundant implementation whose
outputs are comparable with the outputs of the worker.

74

 To obtain observing behavior:
– Redundancy

 Reference

 Visibility
• Worker cooperates with the observer

• Worker behavior can be spied by the observer

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Self-checking distributed systems

 A formal observer is a subsystem designed to
check distributed behaviors where:

• Its sw is independent of the specific protocols to
be checked in the considered system;

Its data a e defined b the p otocols to be

75

• Its data are defined by the protocols to be
checked and this data can be formally specified
and verified.

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Self-checking distributed systems

 Design of the system
• write a description of the beavior of the system to

be implemented;

• Implement the system itself, i.e., the worker;

F h d i i f h k l (b d

76

• From the description of the worker, select (based
on experience) that part of the behavior which
should be observed and write a formal model of it.

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Self-checking distributed systems

 The system is quasi self-checking if
• It is an observer-worker system

• The observer is a formal observer.

 For “real-life” only part of the system will be
modelled.

77

 Formal model must be able to
• Express simplified specifications of distributed systems

• Support verification procedures

• Be able to act as a basis for implementing the observer.

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Few testing criteria exists for concurrent systems

 Number of execution orders grow exponentially with
synchronization primitives in tasks
 Testing criteria needed to bound and selecting subset of

execution orders for testing

 E g B anch / Statement co e age not s fficient fo

78

 E.g. Branch / Statement coverage not sufficient for
concurrent software
 Still useful on serializations
 Execution paths may require specific behavior from other

tasks

 Data-flow based testing criteria has been adapted
 E.g. define-use pairs

22.03.2010

Gert Jervan, TTÜ/ATI 14

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Determinism vs. Non-Determinism
 Deterministic systems

 Controllability is high
• input (sequence) suffice

 Coverage can be claimed after single test execution with
inputs

 E.g. Filters, Pure “table-driven” real-time systems

79

 Non-Deterministic systems
 Controllability is generally low
 Statistical methods needed in combination with input

coverage
 E.g.

• Systems that use random heuristics
• Behavior depends on execution times / race conditions

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Test execution in concurrent systems

 Non-deterministic testing
 “Run, Run, Run and Pray”

 Deterministic testing
 Select a particular execution order and force it

80

 E.g. Instrument with extra synchronizations primitives
• (No timing constraints make this possible)

 Prefix-based Testing (and Replay)
 Deterministically run system to a specific (prefix) point
 Start non-deterministic testing at that specific point

Department of computer Engineering
ati.ttu.ee

Questions?

