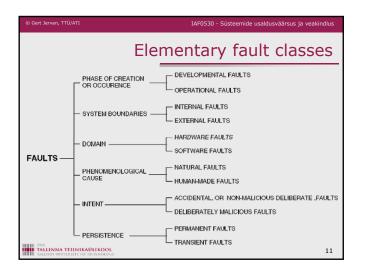
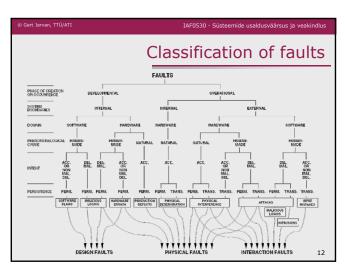
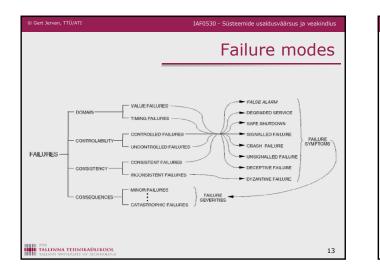
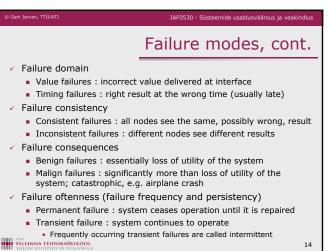


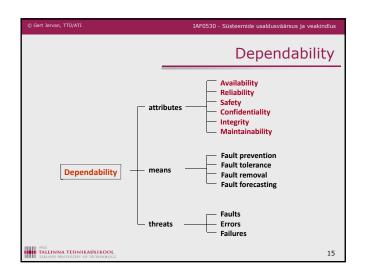
Three-universe model

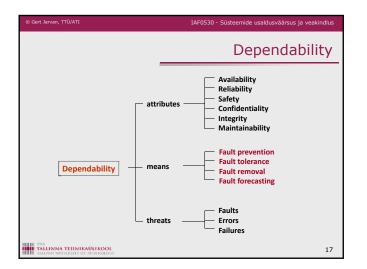

Physical universe: where the faults occur

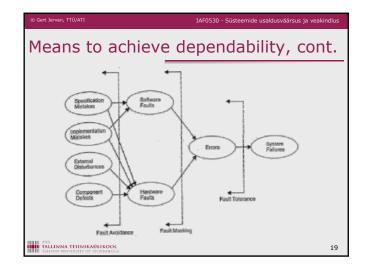

- Physical entities: semiconductor devices, mechanical elements, displays, printers, power supplies
- A fault is a physical defect or alteration of some component in the physical universe
- ✓ Informational universe: where the error occurs
 - Units of information: bits, data words
 - An error has occurred when some unit of information becomes incorrect
- ✓ External (user's universe): where failures occur
 - User sees the effects of faults and errors
 - The failure is any deviation from the desired or expected behavior

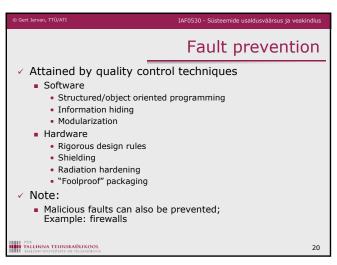

TALLINNA TEHNIKAÜLIKOO TALLINN UNIVERSITY OF TECHNOLO

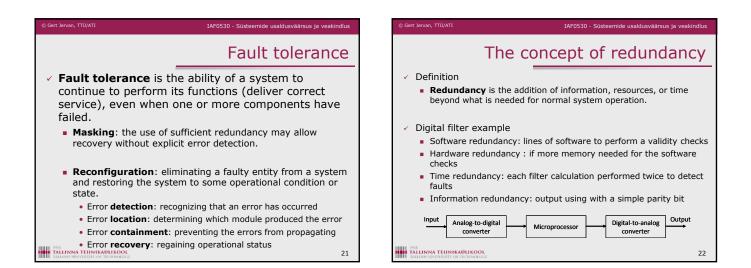



© Gert Jervan, TTÜ/ATI	IAF0530 - Süsteemide usaldusväärsus ja veakindlu	ZL	© Gert Jervan, TTÜ/ATI	IAF0530 - Süsteemide usaldusväärsus ja veakindlus
C	Causes of faults, cont			Causes of faults, cont.
 Specification mistake 	S		 Component defe 	cts
 Incorrect algorithms, a design specifications 	architectures, hardware or software		 Manufacturing im component wear 	nperfections, random device defects, -out
	er of a digital circuit incorrectly specified		 Most commonly of 	considered causes of faults
the timing characteri	stics of some of the circuit's components		 Examples: bon metal 	ds breaking within the circuit, corrosion of the
 Implementation mist 	akes			
	ess of turning the hardware and		 External disturbation 	ance
5	physical hardware and actual code			omagnetic interference, operator mistakes,
	ponent selection, poor construction,			ktremes, battle damage
	kes oding error, a printed circuit board is adjacent lines of a circuit are shorted		• Example: lightr	ing
TALLINNA TEHNIKAÜLIKOOL		9	1918 TALLINNA TEHNIKAÜLIKOOL TALINN UNIVERSITY OF TECHNOLOGY	10








© Gert Jervan, TTŪ/ATI	IAF0530 - Süsteemide usaldusväärsus ja veakindlus
	Dependability attributes
Availability: re	eadiness for correct service
 Reliability: cor 	ntinuity of correct service
 Safety: absence and the environ 	e of catastrophic consequences on the user(s) ment
 Confidentiality information 	y: absence of unauthorized disclosure of
 Integrity: abset 	ence of improper system alterations
 Maintainabilit 	y: ability to undergo, modifications, and repairs
authorized user	concurrent existence of (a) availability for 's only, (b) confidentiality, and (c) integrity with n as meaning 'unauthorized'.
1918 Tallinna tehnikaülikool	16

© Gert Jervan, TTÜ/ATI IAF0530 - Süsteemide usaldusväär	sus ja veakindlus
Means to achieve dependation	ability
 Fault-prevention: how to prevent, by const fault occurrence. 	ruction,
 Fault-tolerance: how to provide, by redund service complying with the specification in sp faults having occurred or occurring. 	l <mark>ancy</mark> , pite of
 Fault-removal: how to minimize, by verification, the presence of latent faults. 	ation and
 Fault-forecasting: how to minimize, by eva the presence, the creation and the conseque faults. 	<mark>luation</mark> , nces of
HIMI PIA TATI TALINA TEHNIKAÜLIKOOL HIMI TALINA MATTANTY OL ILGIMAANOO	18

© Gert Jervan, TTÜ/ATI	IAF0530 - Süsteemide usaldusväärsus ja veaki	© Gert Jervan, TTÜ
	TA 0550 - Susceentide Usaldusvaatsus ja veakii	Ger Servall, Ind
	Error detectio	n
 Two ways to detect a priori knowledge at comparing results of 		 Val •
 Notes 		 Activa Rec
domain.	the value domain and/or in the ti	
present, is called the The time interval bet	an error is detected, provided it is error detection coverage. ween the start of an error and the is the error detection latency.	 Worst Mu: A p det
PIE TALLINNA TEHNIKAÜLIKOOL TALLINN UNIVERSITY OF TECHNOLOGY		23

A Priori Knowledge exibility vs. error-detection coverage code space tests es of the controlled object
code space
tests
s of the controlled object
l processes, plausibility of data sets
utation
tern, e.g., frequency of updates
requency and clock synchronisation
the second -> detect missing event
of tasks
real-time schedules
the execution of a task can be used for

© Gert Jervan, TTÜ/ATI IAF0530 - Süsteemide usaldusväärsus ja veakindlus						
Redundant Computations						
Type of Redundancy Implementation Type of Detected Errors						
Time redundancy	Same software executed on the same hardware during two different time-intervals	Errors caused by transient physical faults in hardware with a duration less than one execution time slot				
Hardware redundancy	The same software executes on two independent hardware channels	Errors caused by transient and permanent physical hardware errors				
Diverse software on the same hardware	Different software versions are executed on the same hardware during two different time intervals	Errors caused by independent software faults and transient physical faults in the hardware with a duration less than one execution time slot				
Diverse software on diverse hardware	Two different versions of software are executed on two independent hardware channels	Errors caused by independent software faults and by transient and permanent physical hardware faults				
1918 TALLINNA TEHNIKAÜLIKOOL TALLINN UNIVERSITY OF TECHNOLOGY		25				

Recovery
tate without detected errors and
e (checkpoint) y to eliminate the error ors is a new state
se of errors, location and type exclusion of the faulty components s in spares or re-assigns tasks updates and records the new

© Gert Jervan, TTÜ/ATI	IAF0530 - Süsteemide usaldusväärsus ja veakindlus	© Gert Jervan, TTÜ/ATI	IAF0530 - Süsteemide usaldusväärsus ja veakindlus
	Fault removal		Fault Forecasting
 Static: does not exer 	ections, walkthroughs, model checking : inputs are symbolic	fault occurrence Qualitative evalua Identifies, classifie combinations that	ystem behavior with respect to tion is, ranks the failure modes or the event lead to system failures : Failure mode and effect analysis, fault-tree
 Validation: "Are we Checking the specific 	e building the right system?"	the dependability	ation s of probabilities the extent to which some of are satisfied (measures dependability) : Markov chains, reliability block diagrams 28

Definitions of Safety
· losses" letely safe in absolute sense s safe enough, given limited resources ner than risk
mputer Systems: numan life or environment" g hazards than actual accidents
ial to cause accidents
3(

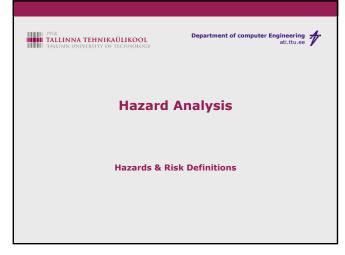
Safety requirements

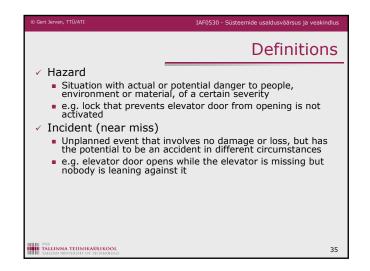
In order to determine safety requirements:

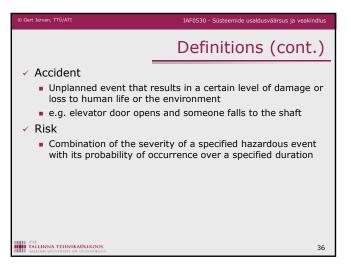
- Identification of the hazards associated with the system
- Classification of these hazards
- Determination of methods for dealing with the hazards
- Assignment of appropriate reliability and availability requirements
- Determination of an appropriate safety integrity level
- Specification of development methods appropriate to this integrity level
- ✓ Helping staff to ensure that a product meets a
- Helping staff to ensure that a product meets a certain level of quality
- Helping to establish that a product has been developed using methods of known effectiveness
- Promoting a uniformity of approach between different teams
- Providing guidance on design and development techniques

TALLINNA TEHNIKAÜLIKOOL

31

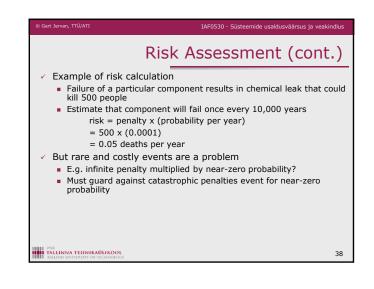

33

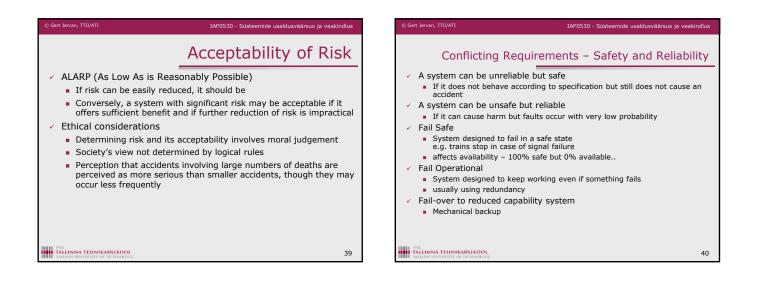

Providing some legal basis in the case of a dispute


TALLINNA TEHNIKAÜLIKOOL

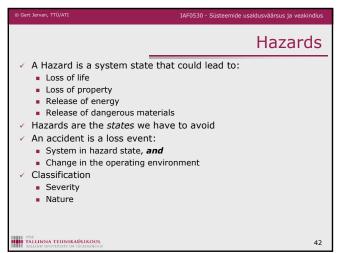
TALLINNA TEHNIKAÜLIKOOI

2602 - Süsteemide usaldusväärsus ja veakindus
 Conflicting requirements
 High performance v low cost
 Reliability ≠ safety
 BUT
 System must be reliable AND safe
 Hazard analysis and risk analysis to identify acceptable levels of safety and reliability

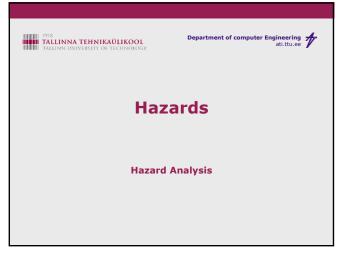


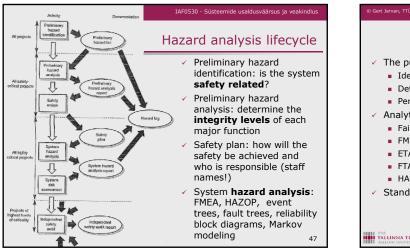


Risk Assessment

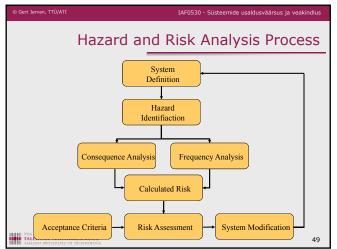

- ✓ Risk = penalty x likelihood
 - Penalty can be measured in money, lives, injuries, amount of deadline...
 - Likelihood is the probability that a particular hazard will be activated and result in an undesirable outcome
 - Pareto ranking: 80% of problems are from 20% of the risks...

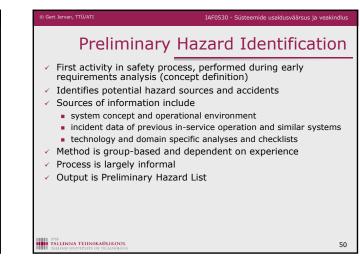
TALLINNA TEHNIKAÜLIKOOL

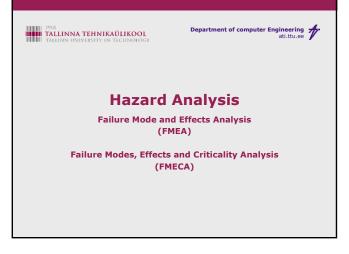


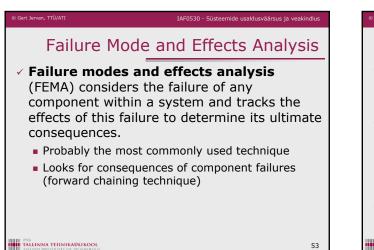


©	⊖ Gert Jervan, TTÜ/ATI IAF0530 - Süsteemide usaldusväärsus ja veakindlus						
	Hazard Categories for Civil Aircraft						
	DESCRIPTION	CATEGORY	DEFINITION	PROBABILITY			
	CATASTROPHIC	I	Loss of Lives, Loss of Aircraft	10 ⁻⁹ /hr			
	HAZARDOUS	п	Severe Injuries, Major aircraft Damage	10 ⁻⁷ /hr			
	MAJOR	ш	Minor injury, minor aircraft or system damage	10 ⁻⁵ /hr			
	MINOR	IV	Less than minor injury, less than minor aircraft or system damage	10 ⁻³ /hr			
	NO EFFECT	v	No change to operational capability	10 ⁻² /hr			
				© G.F. Marsters			
	PIS TALLINNA TEHNIKAÜLIKC TALLINN UNIVERSITY OF TECHNO			43			


Hazard Categories for Civil Aircrat					
Frequency of Occurrence	Level	Specific Item	Fleet or Inventory	Failure Probability per Flight Hour	
Frequent A Likely to occur frequently			Continuously experienced	≥1 x 10 ⁻³	
Reasonably Probable	в	Will occur several times in the life of each item	Will occur frequently	< 1 x 10 ⁻³ to ≥1 x 10 ⁻⁵	
		Unlikely but possible to occur in the life of an item	Unlikely but can reasonably be expected to occur	<1 x 10 ⁻⁵ to ≥1 x 10 ⁻⁷	
Extremely Remote	D	So unlikely it can be assumed that the occurrence may not be experienced	Unlikely to occur, but possible	< 10 ⁻⁷ to ≥1 x 10 ⁻⁹	
Extremely Improbable	E	Should never happen in the life of all the items in the fleet	Not expected to occur during life of all aircraft of this type	<1 x 10 ⁻⁹	
				© G.F. Marste	


© Gert Jervan, TTÜ/ATI			IAF0530 - Süsteemide usaldusväärsus ja veakindlus			
	Hazard Risk Inde					x
	Duckskiliter		Severity Classification			
	Probability	Catastrophic	Hazardous	Major	Minor	
	Frequent	1	3	7	13	
	Reasonably Probable	2	5	9	16	
	Remote	4	6	11	18	
	Extremely Remote	8	10	14	19	
	Extremely Improbable	12	15	17	20	
	 Acceptable - only ALARP actions considered Acceptable - use ALARP principle and consider further investigations Not acceptable - risk reducing measures required 					
TALLINN TALLINN	A TEINIKAÜLIKOOL		reducing med.	Sures requi	, cu	45


© Gert Jervan, TTÜ/ATI	IAF0530 - Süsteemide usaldusväärsus ja veakindlus
	Hazard Analysis
 The purpose Identify events that may Determine impact on syst Performed throughout the Analytical Techniques Failure modes and effects FMECA: Failure modes, effects ETA: Event tree analysis FTA: Fault tree analysis (HAZOP: Hazard and oper Standards 	tem e life cycle s analysis (FMEA) ffects and criticality analysis (FMECA) (ETA) FTA)
PIS TALLINNA TEHNIKAÜLIKOOL TALLINN UNIVERSITY OF TECHNOLOGY	48



eterterevent, titterevent, titterev

51

© Gert Jervan, TTŪ/ATI	IAF0530 ·	- Süsteemide usaldusväärsus ja veakindlus
		FMEA
 Manual analysis Identify component, module or Determine consequences Performed bottom-up 	system	failures
 Outputs Spreadsheet noting each failure mode possible causes consequences possible remedies Usually computer records kept Standardised by IEC (Internation Commission) 	onal Ele	ectrotechnical
Pia TALINNA TEHNIKAÜLIKOOL TALINN UNIVERITY OF TICHMOLOGY		54

TALLINNA TEHNIKAÜLIKOOI

antial antiac

ol on a

wah s

56

58

60

FMEA Example **FMEA** Votes FMEA for a mix Can be applied at any stage of the design process and at any Init Failun Possible Local level within the system Tool guard a) fauity Teams of four to eight engineers Limitations: Lot of unnecessary work, it considers all components/failure modes Requires expert knowledge to decide what to analyze Short-ci o be Usually do not consider multiple failures u) exu. curre ageing witchsensin state d b) prolon high

55

57

nide usaldusväärsus ja veakindlu Background Failure Modes, Effects and Criticality Analysis FMECA was one of the first systematic techniques for failure ✓ FMFCA: analysis Extension to FMEA $\ensuremath{\mathsf{FMECA}}\xspace$ was developed by the U.S. Military. The first guideline Takes into account importance of each component was Military Procedure MIL-P-1629 "Procedures for performing a Determines probability/frequency of occurrence of failures failure mode, effects and criticality analysis" dated November 9, 1949 Problems FMECA is the most widely used reliability analysis technique in Measuring reliability of components difficult the initial stages of product/system development Models often too simplistic FMECA is usually performed during the conceptual and initial Tool support needed design phases of the system in order to assure that all potential Used as input to fault tree analysis failure modes have been considered and the proper provisions have been made to eliminate these failures Standardised

IIIII TALLINNA TEHNIKAŪLIKOOL

TALLINNA TEHNIKAÜLIKOOL

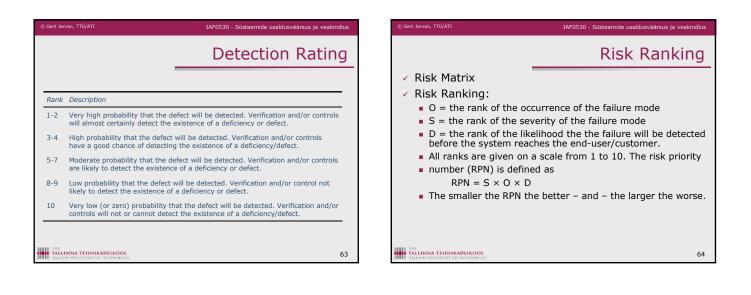
TALLIN

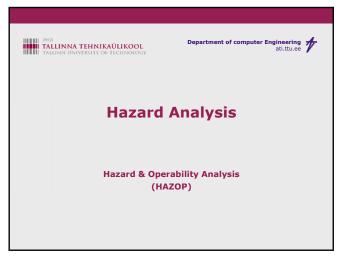
TALLINNA TEHNIKAÜLIKOOL

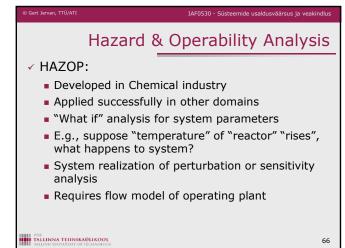
TALLINNA TEHNIKAÜLIKOOL

IAF0530 - Süsteemide usaldusväärsus ja veakindlus What can FMECA be used for?

- Assist in selecting design alternatives with high reliability and high safety potential during the early design phases
- Ensure that all conceivable failure modes and their effects on operational success of the system have been considered
- List potential failures and identify the severity of their effects
- Develop early criteria for test planning and requirements for test equipment
- Provide historical documentation for future reference to aid in analysis of field failures and consideration of design changes
- Provide a basis for maintenance planning
- Provide a basis for quantitative reliability and availability 59


Tanalyses autikool


Types of FMECA


- Design FMECA is carried out to eliminate failures during equipment design, taking into account all types of failures during the whole life-span of the equipment
- Process FMECA is focused on problems stemming from how the equipment is manufactured, maintained or operated
- System FMECA looks for potential problems and bottlenecks in larger processes, such as entire production lines

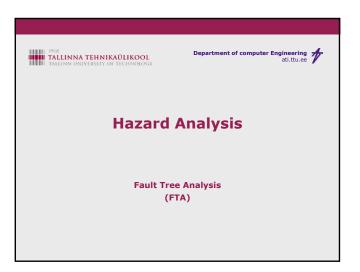
© Gert Jervan, TTÜ/AT	I	IAF0530 - Süsteemide usaldusväärsus ja ve						veakindlus
		_		FME(C)/	4 (Ch	art
Failure Modes	and Effect Ar	alysis						
Product Name	DeWalt Tra	desman Drill		Part name: R	ear Ve	ent		
Function	Failure Mode	Effects of Failure	Causes of Failure	Current Controls	s	0	D	RPN
Allow Additional Air Flow	Filter Blocked	Overheated Motor	User Error	Visual Inspection	4	1	5	20
Prevent Dangerous Usage	Filter Not In Place	Larger Opening to Motor	User Error	Visual Inspection	8	4	1	32
Filter dust	Defective Filter	Additional dust flows into shell	Poor Materials	Visual Inspection	1	1	7	7
S = Severity rating (1 to 10) O = Occurrence frequency (1 to 10) D = Detection Rating (1 to 10) RPN = Risk Priority Number (1 to 1000)								
TALLINNA TEHN	OF TECHNOLOGY							61

© Gert Jerva	an, TTŪ/ATI		IAF0530 - Süsteemide usaldusväärsus ja veaki	ndlus
			Severity Ratin	<u>Ig</u>
	Rank	Severity class	Description	
	10	Catastrophic	Failure results in major injury or death of personnel.	_
	7-9	Critical	Failure results in minor injury to personnel, personnel exposure to harmful chemicals or radiation, or fire or a release of chemical to the environment.	
	4-6	Major	Failure results in a low level of exposure to personnel, or activates facility alarm system.	
	1-3	Minor	Failure results in minor system damage but does not cause injury to personnel, allow any kind of exposure to operational or service personnel or allow any release of chemicals into the environment	
Pis TALLIN TALLINN	INA TEHNII UNIVERSITY O	AŪLIKOOL FTECHNOLOGY		62



Hazard & Operability Analysis

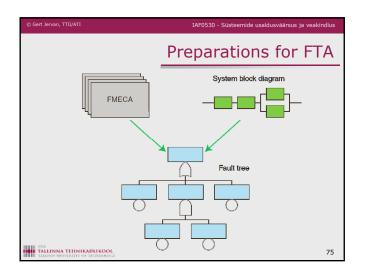
- Flowing items are "entities"
- Entities have characteristic properties known as "attributes"
- Analysis based on possible deviations of attribute values
- "Guide words" used to guide the analysis— designed to capture dimensions of variation
- Supplementary adjectives add temporal element
- Different word sets for different applications


1918 TALLINNA TEHNIKAÜLIKOOL TALUNN UNIVERSITY OF TECHNOLOGY

HAZ	OP	guide word	d interpretat	ion
	Guide word	Chemical plant	Computer-based system	
	No	No part of the intended result is achieved	No data or control signal exchanged	
	More	A quantitative increase in the physical quantity	A signal magnitude or a data rate is too high	
	Less	A quantitative decrease in the physical quantity	A signed magnitude or a data rate is too low	
	As well as	The intended activity occurs, but with additional results	Redundant data sent in addition to intended value	
	Part of	Only part of the intended activity occurs	Incomplete data transmitted	
	Reverse	The opposite of what was intended occurs, for example reverse flow within a pipe	Polarity of magnitude changes reversed	
	Other than	No part of the intended activity occurs, and something else happens instead	Data complete but incorrect	
	Early	Not used	Signal arrives too garly with reference to clock time	
	Laix	Not und	Signal arrives too late with seference to clock time	
	Before	Not used	Signal arrives earlier than intended within a sequence	
	After	Not used	Signal arrives later than intended within a sequence	

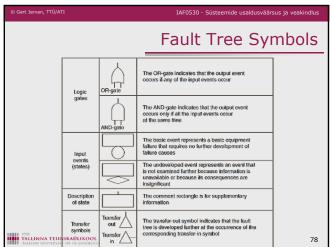
© Gert Jerva	n, TTŪ/ATI		IAF0530 - Süsteemide usaldusväärsus ja veak	indlus
		_	HAZOP attribute	es
	Attribuse	Guide word	Possible meaning	
	Data flow	More Less	More data is passed than expected Less data is passed than expected	
	Data rate	More Less	The data rate is too high The data rate is too low	
	Data value	More Less	The data value is too high The data value is too low	
	Repetition time	More Less	The time between output updates is too high The time between output updates is too low	
	Response time	More Less	The response time is longer than required The response time is shorter than required	
	NA TEHNIKAÜLIKOOL UNIVERSITY OF TECHNOLOGY			70

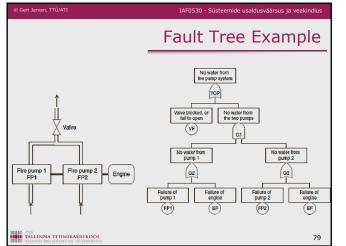
Gert Jervan, TTÜ	/ATI				IAF05	530 - Süsteemide ι	isaldusväärsus ja	veakindl
					ł	HAZOP	Exam	ple
	Nem	Inter- contraction	Attribute	Guide word	Cause	Consequence	Recommendation	1
	1	Sensor aupply line	Supply voltage	Nic 	PSU, regulator or cable fault	Lack of sensor signal detected and system shuts down		
	2			blore	Regulator fault	Possible damage to sensor	Conelder overvoltage protection	
	3			Loss	PSU or regulator fault	Incorrect temperature reading	Include voltage snonitoring	
	4		Sensor current	Mona	Sensor fault	Incorrect temperature reading, possible leading of sapply	Monitor supply aurrent	
	5			Less	Sentrar fault	Inconsect temperature reading	Aaabove	
	δ	Sensor output	Voltage	No	PSU, sensor or cable fault	Look of sensor signal detected and system shuts down		
	7		-	More	Sensor fault	Temperature reading too high - results in decrease in plant efficiency	Consider use of duplicate sensor	
1918 TALLINNA TI TALLINN UNIVE	8 11NIK	AŬLIKOOL		Less	Sensor mounted Incorrectly or sensor failure	Temperature reading too low – could result in overheating and possible plant failure	As above	7

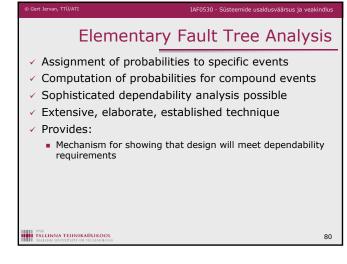

Fault Tree Analysis

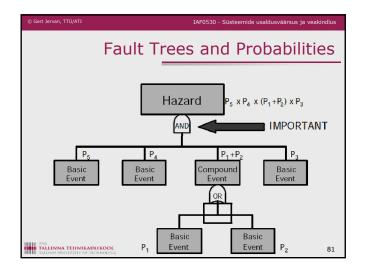
- Fault tree analysis (FTA) is a top-down approach to failure analysis, starting with a potential undesirable event (accident) called a TOP event, and then determining all the ways it can happen.
- The analysis proceeds by determining how the TOP event can be caused by individual or combined lower level failures or events.
- The causes of the TOP event are "connected" through logic gates
- FTA is the most commonly used technique for causal analysis in risk and reliability studies.

TALLINNA TEHNIKAÜLIKOOL

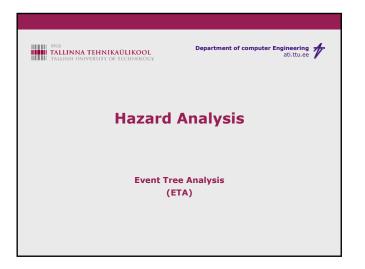


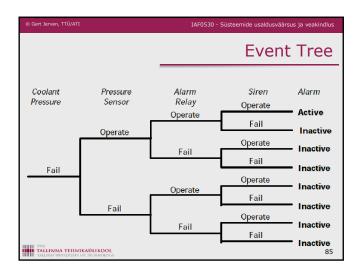

TALLINNA TEHNIKAŪLIKOOL

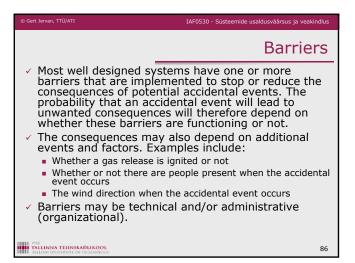



© Gert Jervan, TTŪ/ATI	IAF0530 - Süsteemide usaldusväärsus ja veakindlus			
	Boundary Conditions			
• •	daries of the system (Which parts included in the analysis, and which			
 The initial conditions (What is the operational stat of the system when the TOP event is occurring?) 				
(What type of exte	ns with respect to external stresses ernal stresses should be included in , sabotage, earthquake, lightning,			
✓ The level of resolu analysis be?)	tion (How detailed should the			

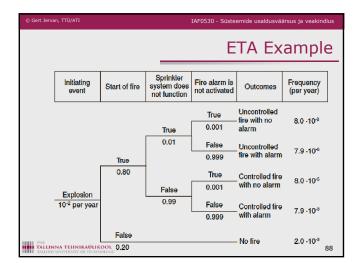
Gert Jervan, TTÜ/ATI	IAF0530 - Süsteemide usaldusväärsus ja veakindlus
Fai	ult Tree Construction
-	oxidation reactor"
 Connect via a logic gate Proceed in this way to an a Appropriate level: Independent basic events Events for which we have 	
PIIS TALLINNA TEIINIKAÜLIKOOL TALLINN UMIVERSIY OF TECHNOROGY	77







© Gert Jervan, TTŪ/ATI	IAF0530 - Süsteemide usaldusväärsus ja veakindlus				
	Practical Fault Trees				
 Developed by human 	analysis				
✓ Tend to be very large	e for real systems				
 Evolve as insight is gained 					
Many analysis techniques possible:					
 Hazard probability can be calculated if probabilities associated with all basic events 					
 Tables of probabilities available for degradation faults for common components 					
 Recall, infeasible for d 	esign faults				
PIR TALLINNA TEHNIKAÜLIKOOL TALLINN UNIVERSITY OF TECHNOLOGY	82				



🛛 Gert Jervan, TTÜ/ATI

Event Tree Analysis

IAF0530 - Süsteemide usaldusväärsus ja veakindlus

- An event tree analysis (ETA) is an inductive procedure that shows all possible outcomes resulting from an accidental (initiating) event, taking into account whether installed safety barriers are functioning or not, and additional events and factors.
- By studying all relevant accidental events (that have been identified by a preliminary hazard analysis, a HAZOP, or some other technique), the ETA can be used to identify all potential accident scenarios and sequences in a complex system.
- Design and procedural weaknesses can be identified, and probabilities of the various outcomes from an accidental event can be determined.

IAF0530 - Süsteemide usaldusväärsus ja veakindlus

ETA Pros and Cons

87

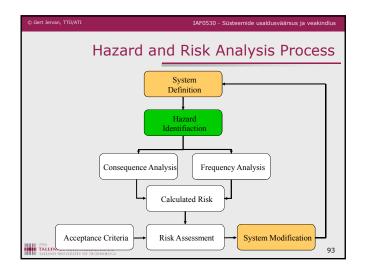
89

Positive

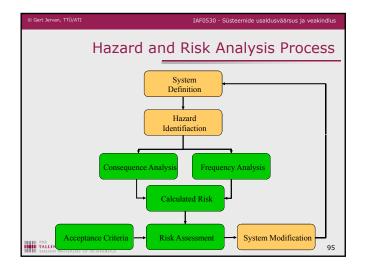
TALLINNA TEHNIKAÜLIKOOL

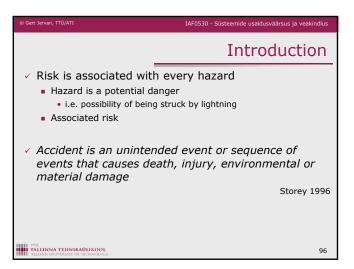
- Visualize event chains following an accidental event
- Visualize barriers and sequence of activation
- Good basis for evaluating the need for new / improved procedures and safety functions
- Negative
 - No standard for the graphical representation of the event tree
 - Only one initiating event can be studied in each analysis
 - Easy to overlook subtle system dependencies
 - Not well suited for handling common cause failures in the quantitative analyses
 - The event tree does not show acts of omission

TALLINNA TEHNIKAÜLIKOOL


Hazard Analysis in the Life Cycle

✓ FME(C)A


- Used to generate event trees and fault trees
- FME(C)A, FTA, ETA
- Appropriate when functional design complete
- Preliminary HAZOP
 - Early in the life-cycle
- Identify hazards, take account of them in the design
- Full HAZOP
 - Later in the life-cycle
 - Identify further hazards, feed back into design design


TALLINNA TEHNIKAÜLIKOOL TALLINN UNIVERSITY OF TECHNOLOG

	© Gert Jervan, TTÜ/ATI	AF0530 - Süsteemide usaldusväärsus ja veakindlus
PIE Department of computer Engineering the atituue		Risk Analysis
Risk Analysis	 The purpose Associate risk with given haza Consequence of malfunction - Probability of malfunction - fr Ensure nature of risks is well Ensure safety targets can be set Techniques Qualitative Qualitative, risk classification Integrity classification Safety Integrity Levels (SILs) ALARP Standards IEC 1508, IEC 61508 	severity equency understood

© Gert Jervan, TTÜ/ATI	IAF0530 - Süsteemide usaldusväärsus ja veakindlus
	Flashback
 A Hazard is a system sf Loss of life Loss of property Release of energy Release of dangerous Hazards are the states An accident is a loss ev System in hazard state Change in the operatin Classification Severity Nature 	materials we have to avoid ent: e, and
1918 TALLINNA TEHNIKAÜLIKOOL TALLINN UNIVERSITY OF TECHNOLOGY	94

Introduction

97


- Hazard analysis identifies accident scenarios: sequences of events that lead to an accident
- Risk is a combination of the severity of a specified hazardous event with its probability of occurence over a specified duration
 - Qualitative or quantitative

TALLINNA TEHNIKAÜLIKOOL

Risk Calculation Quantify probability/frequency of occurence: number of events per hour/year of operation number of events per lifetime number of failures on demand Ex 1: Failure of a particular component results in explosion that could kill 100 people. Estimate that component will fail once every 10,000 years 1 failure per 10,000 years = 0.0001 failures per year Risk = penalty x (probability per year) = 100 x (0.0001) = 0.01 deaths per year TALLINNA TEHNIKAŪLIKOOL 98

© Gert Jervan, TTÜ/ATI	IAF0530 - Süsteemide usaldusväärsus ja veakindlus
	Risk Calculation
✓ Ex 2:	
 Country with population 	on of 50,000,000
 Approx. 25 people are 25/50,000,000=5x10⁻¹ 	each year killed by lightning i.e. 7
Risk:	
 every individual has p lightning at any giver 	proabability of 5x10 ⁻⁷ to be killed by 1 year
 Population is exposed 	to risk of 5x10 ⁻⁷ deaths per person year
 Qualitative: 	
 intolerable, undesirable 	e, tolerable
TALLINNA TETINIKAÜLIKOOL TALLINN UNIVERSITY OF TECHNOLOGY	99

ert Jervan, TTÜ/ATI IAF0530 - Süsteemide usaldusväärsus ja veakin				
	Levels of	Fatal Risk		
Risk		Chance per million		
Risk of being killed by a fa	lling aircraft	0.02 cpm		
Risk of death by lightening		0.1 cpm		
Risk of being killed by an insect or snake bite		0.1 cpm		
Risk of death in a fire cathe home	used by a cooking appliance in	1 cpm		
Risk of death in an accid parts of industry	ent at work in the very safest	10 cpm		
General risk of death in a t	raffic accident	100 cpm		
Risk of death in high risk industries such as mining	groups within relatively risky	1,000 cpm		
Risk of fatality from smoki	ng 20 cigarettes per day	5,000 cpm		
Risk of death from 5 hou weekend	irs of solo rock climbing every	10,000 cpm		
PIE TALLINNA TEHNIKAÜLIKOOL		10		

Quantitative Risk Assessment

- Predict frequency of hardware failures
- Compare with tolerable risk target
- If not satisfied, modify the design
- - The probability that airbag fails when activated
- The frequency of the interconnecting switch failing per lifetime
- Even if target met by random hardware failure
 - Hardware could have embedded software, potential for systemic failure
 - Engineer's judgment called for in IEC 61508 (IEC 61508 - Functional Safety - www.iec.ch)

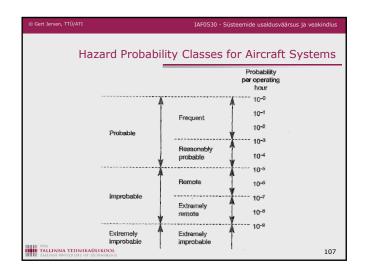
```
TALLINNA TEHNIKAÜLIKOOL
```

Quantitative risk assessment

- ✓ Quantify probability/frequency of occurence:
 - number of events per hour/year of operation
 - number of events per lifetime
 - number of failures on demand

Example:

- Failure of a particular component results in explosion that could kill 100 people. Estimate that component will fail once every 10,000
 - years 1 failure per 10,000 years = 0.0001 failures per year
 - Risk = penalty x (probability per year)
 - = 100 x (0.0001)
 - = 0.01 deaths per year


TALLINNA TEHNIKAÜLIKOOL

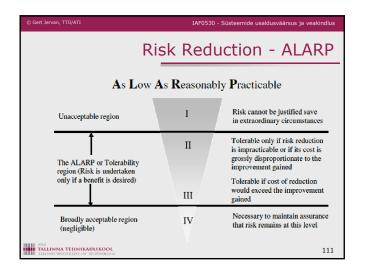
- Qualitative Risk Assessment
- When cannot estimate the probability
- How it works
 - Classify risk into risk classes
 - Define tolerable/intolerable risks
 - Define tolerable/intolerable frequencies
 - Set standards and processes for evaluation and minimization of risks
- Example
 - Catastrophic, multiple deaths
 - Critical, single death
 - Marginal, single severe injury
 - Negligible, single minor injury
- Aims to deal with systemic failures

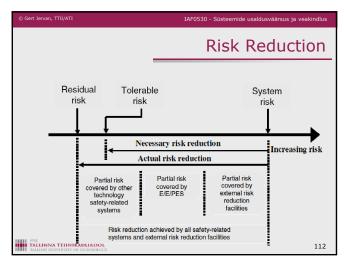
TALLINNA TEHNIKAŪLIKOOL

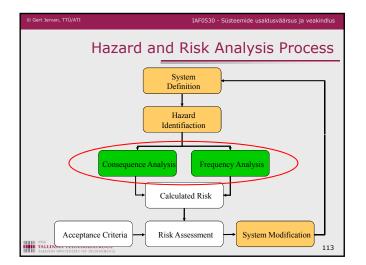
			Ri	sk Ma	nage	ment		
	Risk			Probability				
	KISK	Very High	High	Medium	Low	Very Low		
	Very High	Very High	Very High	High	High	Medium		
	High	Very High	High	Medium	Medium	Low		
Conse- quence	Medium	High	Medium	Medium	Low	Low		
	Low	High	Medium	Low	Low	Very Low		
	Very Low	Medium	Low	Low	Very Low	Very Low		

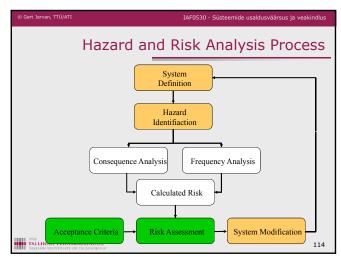
Category	Definition	
Catastrophic	Failure condition which would prevent continued safe flight and landing	
Hazardoos	Failure conditions which would reduce the capability of the interaft or the ability of the occet to cope with adverse operating conditions, to the extent that there would be: (1) a keys reduction in safety margins on functional capabilities (2) physical diverses or higher workload such that the fight new could not be relied on to perform their tasks accountery or completely on occupants, including serious or potentially fallal injuries to a small number of those occupants	
Major	Fullner conditions which world reduce the apphility of the aircraft or the ability of the crew to copy with adverse operating conditions to the actant that there would be, for example, a depinions treduction in safety angrigues or functional capability, a significant increase in even workload or in conditions impairing a crew efficiency, or disconfort to coexpands, noosibly including imprires	
Minor	Fullnes couldinoss which would not significantly reduce aircraft safety, and which would involve crea sations that are well within their copabilities. Minor failure conditions may include, for example, a slight reduction in a farty margins or functional capabilities, a slight increase ia reve wockload, such ar costine fight plan changes, or some inconvenience to occeptants.	
No effect	Failure conditions which do not affect the operational capability of the aircraft or increase crew workload	

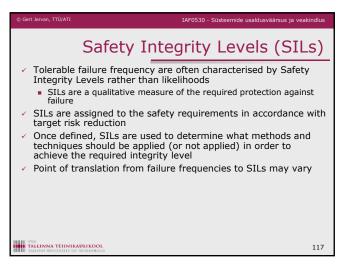
© Gert Jervan, TTŪ/ATI	IAF0530 - Süsteemide usaldusväärsus ja veakindlus
Risk Ma	anagement Advice
 Identify risks and track them 	
 Avoid "unknown" risks at all cos 	ts!
 Approaches to risk 	
 Mitigate, i.e. perform risk reduction 	tion
 E.g. solve the problem, obtain in 	nsurance, etc
 Avoid 	
 Use a less risky approach - not 	always possible
 Accept 	
Decide that expected cost is notOften sensible choice	worth reducing further
 Ignore 	
 Proceed ahead blindly – uninfor 	med acceptance
1918 TALLINNA TEHNIKAÜLIKOOL TALINNA UNIVERSITY OF TECHNONOGY	108

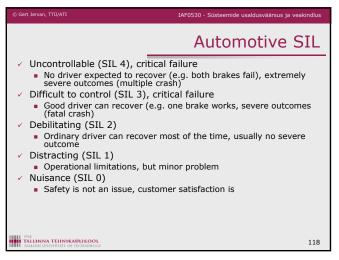

Acceptability of Risk

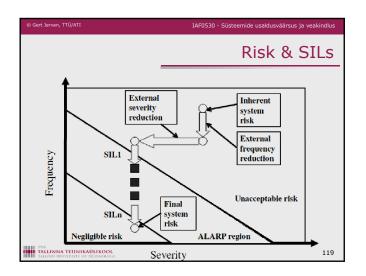

109


- Acceptability of risk is a complex issue involving
 - social factors, e.g., value of life and limb
 - legal factors, e.g., responsibility of riskeconomic factors, e.g., cost of risk reduction
- ✓ Ideally these tasks are performed by policy makers, not engineers!
- Engineers provide the information on which such complex decisions can be made
- At beginning of project, accurate estimates of risks and costs are difficult to achieve


TALLINNA TEHNIKAÜLIKOOL



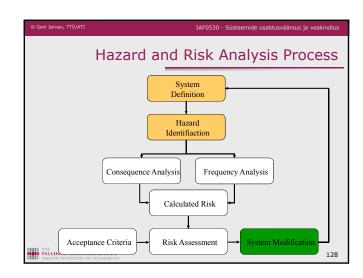


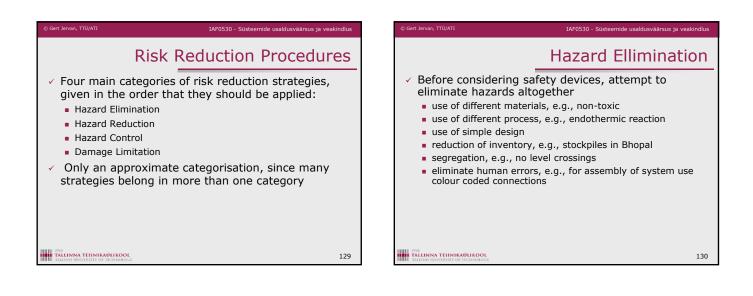


© Gert Jervan, TTÜ/ATI	IAF0530 - Süsteemide usaldusväärsus ja veakindlus
	IEC 61508 Standard
 New main standard for soft Can be tailored to different Comprehensive Includes SILs, including fai Covers recommended tech 	domains (automotive, chemical, etc) lure rates
 IEC = International Electro 	technical Commission
 E/E/PES = electrical/electro related systems 	onic/programmable electronic safety
PIR TALLINNA TEIINIKAÜLIKOOL	120

© Gert Jervan, TTÜ/ATI				IAF0530 - Süsteemide usaldusväärsu	ıs ja veakindlus
Sa	ifety-	Ir	itegrity	Table of IEC 6	51508
	Safety Integrity Level	(At		nand mode of operation ure to perform its design function on demand)	
	4	≥ 10) ⁻⁶ to < 10 ⁻⁴	(> 99.99 % reliable)	
	3	≥10	0 ⁻⁴ to < 10 ⁻³	(> 99.9 % reliable)	
	2	≥10	0 ⁻⁸ to < 10 ⁻²	(> 99% reliable)	
	1 ≥10) ¹² to < 10 ⁻¹	(> 90% reliable)	
	Safety Intogrity Level			ode or continuous mode of operation lity of dangerous failure per hour)	
	4		≥ 10 ⁻⁹ to < 10 ⁻⁸		
	3		≥ 10 ⁻⁸ to < 10 ⁻⁷		
	2		≥ 10 ^{.7} to < 10 ^{.6}		
	1		≥ 10 ⁻⁶ to < 10 ⁻⁵		
 ✓ High c ✓ Low d 	lemand fo	or e or e	.g. car brak .g. airbag, cı	to meet the standard es, critical boundary SIL 3 ritical boundary is SIL 3, a	

© Gert Jervan, TTŪ/ATI	IAF0530 - Süsteemide usaldusväärsus ja veakindlu
	SIL
 SILs 3 and 4 are critic 	al
 SIL activities at lower 	levels may be needed
✓ SIL 1	
 Relatively easy to act 	hieve, if ISO 9001 practices apply,
✓ SIL 2	
 Not dramatically hard test, and hence cost 	der than SIL 1, but involves more review and
✓ SIL 3	
 Substantial increment 	t of effort and cost
✓ SIL 4	
 Includes state of the verification, cost extr 	art practices such as formal methods and emely high
1918	
TALLINN UNIVERSITY OF TECHNOLOGY	12


©	Gert Jervan, TTÜ/ATI	IAF	0530 - Süste	emide usald	usväärsus ja	a veakindlus		
	Techniques and Measures							
	Clause 7.7 : So	oftware Saf	ety Valida	tion				
	TECHNIQUE/MEASURE	Ref	SIL1	SIL2	SIL3	SIL4		
	1. Probabilistic Testing	B.47		R	R	HR		
	2. Simulation/Modelling	D.6	R	R	HR	HR		
	3. Functional and Black-Box Testing	D.3	HR	HR	HR	HR		
	NOTE: One or more of these techniques shall be selected to satisfy the safety integrity level being used.							
	 Implementing the recommended techniques and measures should result in software of the associated integrity level. 							
	 For example, if the software was required to be validated to be of Integrity level 3, Simulation and Modelling are Highly Recommended Practices, as is Functional and Black-Box Testing. 							
	II 1918 II TALLINNA TEHINIKAÜLIKOOL III TALINN UNVERSITY OF TECHNOLOGY					123		


© Gert Jervan, TTÜ/ATI	IAF0530 - Süsteemide usaldusväärsus ja veakindlus
	ack-box testing
1918 TALLINNA TEHNIKAÜLIKOOL IALINN URIVERSITY ÖL TECHNOLOGY	124

ert Jervan, TTÜ/ATI	IAF	0530 - Süstı			ja veakindli eling
D.6 : Mod	elling Reference	d by Claus	es 7.6		
TECHNIQUE/MEASURE	Ref	SIL1	SIL2	SIL3	SIL4
1. Data Flow Diagrams	B.12	R	R	R	R
2. Finite State Machines	B.29		HR	HR	HR
3. Formal Methods	B.30		R	R	HR
4. Performance Modelling	B.45	R	R	R	HR
5. Time Petri Nets	B.64		HR	HR	HR
6. Prototyping/Animation	B.49	R	R	R	R
7. Structure Diagrams	B.59	R	R	R	HR
NOTE: One or more of the above technique	es should be used	l.			

© Gert Jervan, TTÜ/ATI IAF0530 - Süsteemide usaldusväärsus ja	veakindlus
S	SILs
✓ What does it all mean?	
 SIL 4 system should have a duration of about 10⁻⁹ hou between critical failures 	irs
 If established SIL 4 needed, used all the techniques 	
 But there is no measurement that the results actually achieves the target 	
 Standard assumes that you are competent in all metho and apply everything possible 	ods
 Except that these may be insufficient or not affordable 	
「「」」 「」 「」 「」 「」 「」 「」 「」 「」	126

	The Engineering	Council's Code of Practice or Risk Issue
	Desferient normanibility	Exercise reasonable professional skill and care
1	Professional responsibility	
2	Law	Know about and comply with the law
3	Conduct	Act in accordance with the codes of conduct
4	Approach	Take a systematic approach to risk issues
5	Judgement	Use professional judgement and experience
6	Communication	Communicate within your organization
7	Management	Contribute effectively to corporate risk management
8	Evaluation	Assess the risk implications of alternatives
9	Professional development	Keep up to date by seeking education and training
	Public awareness	Encourage public understanding of risk issues

© Gert Jervan, TTÜ/ATI	IAF0530 - Süsteemide usaldusväärsus ja veakindlus	© Gert Jervan, TTŪ/ATI	IAF0530 - Süsteemide usaldusväärsus ja veakindlus
 Familiar use tried and trusted to 	Design Principles		Design Principles (cont.) esign techniques tation for describing behaviour
 portable (no use of so dependent features) understandable (beha implementation) deterministic (use of r 	esources is not random) sources can be predicted)	 identification problem de ease of rev Design stand limit compliance increase m Implementat presentation 	on of system boundary and environment ecomposition view lards lexity
PIE TALLINNA TEHNIKAÜLIKOOL	131	PIE TALLINNA TEHNIKAÜLIKI TALLINN UNIYEESITY OF TECHNI	00L 132

Classes of System Failure

- Random (physical) failures
 - due to physical faults
 - e.g., wear-out, aging, corrosion
 - can be assigned quantitative failure probabilities
- Systematic (design) failures
 - due to faults in design and/or requirements
 - inevitably due to human error
 - usually measured by integrity levels
 - Operator failures
 - due to human error
 - mix of random and systematic failures

TALLINNA TEHNIKAÜLIKOOL

Nature of Random Failures

- Arise from random events generated during operation or manufacture
- Governed by the laws of physics and cannot be eliminated
- Modes of failure are limited and can be anticipated
- Failures occur independently in different components
- Failure rates are often predictable by statistical methods
- Sometimes exhibit graceful degradation
- Treatment is well understood

1918 Tallinna tehnikaülikool

133

135

134

IAF0530 - Süsteemide usaldusväärsus ja veakindlus **Treating Random Failures**

- Random failures cannot be eliminated and must be reduced or controlled
- Random failures can be mitigated by:
 - predicting failure modes and rates of components
 - applying redundancy to achieve overall reliability
 - performing preventative maintenance to replace components before faults arise
 - executing on-line or off-line diagnostic checks

TALLINNA TEHNIKAÜLIKOOL

IAF0530 - Süsteemide usaldusväärsus ja veakindlus

- In theory, design failures can be eliminated
- In practice, perfect design may be too costly
- Focus the effort on critical areas
 - identify safety requirements using hazard analysis
 - assess risk in system and operational context
- Eliminate or reduce errors using quality development processes
 - verify compliance with safety requirements
 - integrate and test against safety requirements

```
TALLINNA TEHNIKAÜLIKOOL
```

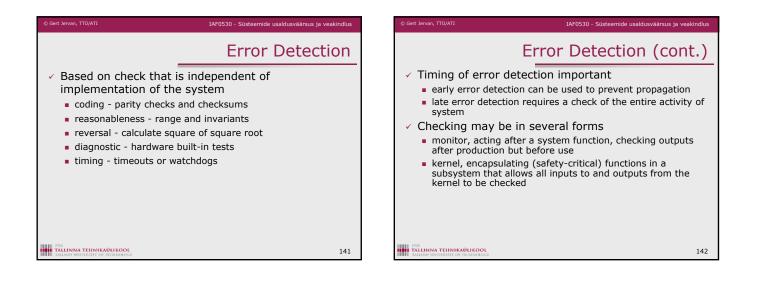
Nature of Systematic Failures

- Ultimately caused by human error during development, installation or maintenance
- Appear transient and random since they are triggered under unusual, random circumstances
- Systematic and will occur again if the required circumstances arise
- Failures of different components are not independent
- Difficult to predict mode of failure since the possible deviations in behaviour are large
- Difficult to predict the likelihood of occurrence

TALLINNA TEHNIKAÜLIKOO

136

138


Treating Systematic Failures 137 1918 Tallinna tehnikaülikool

IAF0530 - Süsteemide usaldusväärsus ja veakindlus

Hazard Reduction

- Reduce the likelihood of hazards
- Use of barriers, physical or logical
 - Lock-ins
 - Lock-outs
 - Interlocks
- Failure minimization
 - Redundancy
 - Recovery

© Gert Jervan, TTÜ/ATI	IAF0530 - Süsteemide usaldusväärsus ja veakindlu	us	© Gert Jervan, TTÜ/ATI	IAF0530 - Süsteemide usaldusväärsus ja veakindlus
	Redundancy	/		Recovery
 Dynamic redundancy, 	g. triple modular redundancy		detected but occurs	ailures by recovering after error before component or system failure n only take place after detection of error
	ncy, e.g., checksums, cyclic rror correcting codes		 Backward rec Forward reco 	
TALINNA TEINIKAÜLIKOOL TALINNA OBEVLÄHTY OF JELINGKISAY	13	39	11 11 1916 TALLINNA TEHNIKAÜLIKOOL 11 TALINN OLAVESITI OP TESIMOROJA	

iert Jervan, TTÜ/ATI	IAF0530 - Süsteemide usaldusväärsus ja	veakindlus	© Gert Jervan, TTÜ/ATI
	Backward Recov	/ery	
Allows retry Requires checkpoints expenses involved wit	revious known safe state or saved states (and the	em	 Corrects err safe (but po a data repa reconfigur systems coasting, exception functions failsafe, a use par (e.g., r
1918 TALLINNA TEHNIKAÜLIKOOL TALINN URIVERSITY OF ITEBNOLOGY		143	TALLINNA TEHNIKAÜLI TALLINN UNIVERSITY OF TECH

Gert Jervan, TTŪ/ATI	IAF0530 - Süsteemide usaldusväärsus ja veakindlus
_	Forward Recovery
 Corrects errors without reve safe (but possibly degraded 	ersing previous operations, finding) state for system
 data repair, use redundanc 	y in data to perform repairs
 reconfiguration, use redund systems 	dancy such as backup or alternate
 coasting, continue operatio 	ns ignoring (hopefully transient) errors
 exception processing, only functions 	continue with selection of (safetycritical)
 failsafe, achieve safe state 	and cease processing
 use passive devices (e.g., (e.g., motor holding weigh 	deadman switch) instead of active devices t up)
11 1918	

~

Hazard Control

- Detect and control hazard before damage occurs
- Reduce the level or duration of the hazard
- Hazard control mechanisms include:
 - Limiting exposure: reduce the amount of time that a system is in an unsafe state (e.g. don't leave rocket in armed state)
 - Isolation and containment
 - Fail safe design

Damage Limitation

- In addition to eliminating hazards or employing safety devices, consider
 - warning devices
 - procedures
 - training

TALLINNA TEHNIKAŪLIKOOL

- emergency planning
- maintenance scheduling
- protective measures

TALLINNA TEHNIKAÜLIKOOL

IAF0530 - Süsteemide usaldusväärsus ja veakindlus Architectural Design Conclusions Suitable architectures may allow a high integrity system to be ✓ Hazards built from lower integrity components Hazard Analysis combinations of components must implement a safety function independently ✓ Risks overall likelihood of failure should be the same or less be wary of common failure causes Risk Analysis Apportionment approaches can be quantitative and/or Risk Management qualitative quantitative: numerical calculations ✓ Safety qualitative: judgement or rules of thumb Risk Reduction TALLINNA TEHNIKAÜLIKOOL 147 IIIII TALLINNA TEHNIKAŪLIKOOL 148

