
7.03.2011

Gert Jervan, TTÜ/ATI 1

Department of computer Engineering
ati.ttu.ee

IAF0530/IAF9530

Süsteemide usaldusväärsus ja veakindlus
Dependability and fault tolerance

Loeng 4
Fault Tolerance, Software Testing

Gert Jervan

gert.jervan@pld.ttu.ee

Tallinn University of Technology
Department of Computer Engineering

Estonia

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Important

 February 28: Case study topic selection, incl.
preliminary list of literature (by e-mail)

 No lecture on February 28y

2

Department of computer Engineering
ati.ttu.ee

Fault Tolerance

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Basics

 Computing systems are characterized by five
fundamental properties:
 functionality

 usability

4

 performance

 cost

 dependability

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Faults

 Faults are there!

 Either prevent, tolerate, remove or forecast

5

 We need redundancy
 System that is more complex than needed for

performing the required task

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Means to Achieve Dependability
 Fault prevention

 Good design processes, avoid design flaws

 Good procedures for runtime faults

 Fault tolerance
 Fault detection

R d d

6

 Redundancy

 Diversity

 Fault removal
 Verification and validation during design

 Corrective/preventive action during maintenance

 Fault forecasting
 Simulation, modelling, prediction

 Analysis based on history statistics

7.03.2011

Gert Jervan, TTÜ/ATI 2

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Fault Tolerance
 Automobile:

 Spare Tires

 Dual Braking Systems

 Power Supplies:
 UPS/battery backup

P f il i t t

7

 Power-fail interrupts

 Multiple engines on aircraft

 Emergency lighting in buildings

 Tape backups of disk files

 Checkpoint/restart of long-running programs

 Parity and SECDED in computer memories

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Faults

 Random faults (Degradation faults)
 Arise during operation

 Usually hardware component failure

 Systematic faults (Design Faults)

8

 mistakes in the spec

 mistakes in the hardware

 mistakes in the software

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Faults

 Faults are either permanent, transient or
intermittent

 Design faults are always permanent

9

 Dealing with faults:
 During development: fault avoidance &

removal

 During operation: fault tolerance &
detection

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Hardware Faults
 Use of fault models

 Decomposition into modules
 Gates, transistors, etc

 Connection faults
Single stuck at model bridging model (shorts) stuck open

10

 Single stuck-at model, bridging model (shorts), stuck-open

 Used to model hardware faults
 Design testing schemes for digital circuits

 Fault removal coverage usually less than 100%

 Guard against physical defects, not design faults

 In safety critical systems
 Combined with Failure Modes and Effects Analysis (FMEA)

 Need fault avoidance by verification…

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Other Faults

 Hardware design and specification faults
 Few fault models available

 Many faults cannot be modelled

 System must meet the spec, but spec might be
i ll

11

incorrect as well

 Spec errors may manifest as either hardware or
software failures

 Use of formal methods (formal spec. languages,
automata theory, formal verification, model
checking, etc.)

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Software Faults
 Bugs:

 Software spec faults

 Coding faults

 Logical errors within calculations

 Stack overflows or underflows

12

 Uninitialized variables

 No random failures and it does not degrade with age

 Always systematic

 Exhaustive testing almost impossible

 Must be tolerated

7.03.2011

Gert Jervan, TTÜ/ATI 3

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

SW Testing - i.e. Verification

 Verification:
 SW testing

 formal verification

 Functional and structural testing

13

 Path testing, transaction flow testing, data-
flow testing, domain testing, mutation testing
etc.

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Fault Detection Techniques
 Functionality checking

 march test

 Consistency checking
 range checking, overflow

 Signal comparison

14

 Signal comparison

 Information redundancy
 checksums, cyclic redundancy codes, error correcting codes

 Monitoring techniques
 Loopback testing

 Power supply monitoring

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Watchdog Timer
 An inexpensive method of error detection

 Process being watched must reset the timer before
the timer expires, otherwise the watched process is
assumed as faulty

 Watchdog timers only detect errors which manifest

15

 Watchdog timers only detect errors which manifest
themselves as a control-flow error such that the
system does not continue to reset the timer

 Only processes with relatively deterministic runtimes
can be checked, since the error detection is based
entirely on the time between timer resets

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Heartbeats
 A common approach to detecting process and node

failures in a distributed (networked) computing
environment.

 Periodically, a monitoring entity sends a message (a
heartbeat) to a monitored node or process and waits
for a reply

16

for a reply.
 If the monitored node does not respond within a

predefined timeout interval, the node is declared as
failed and appropriate recovery action is initiated.

 Adaptive or smart

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

System Testing

HW Testing SW Testing

17

HW/SW Testing
(system testing)

Department of computer Engineering
ati.ttu.ee

Software Testing

7.03.2011

Gert Jervan, TTÜ/ATI 4

Department of computer Engineering
ati.ttu.ee

Programmers are in a race with the Universe to
create bigger and better idiot-proof programs.

While the Universe is trying to create bigger and
better idiots.

So far the Universe is winning

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Software Testing Topics

 Test Economics

 Types of Testing

20

 Types of Testing

 Testing coverage

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Software Life Cycle

Requirements

Design

21

Implementation

Testing

Maintenance

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

The Product Development Cycle

Software
Development

Customer & market
Driven inputs

Release
to

manufacture

22

System
Spec

New
Product

Idea

HW-SW
Integration

Hardware
Development

Product
Verification

Engineering Development
functions

Product
Verification
functions

Product Line
Management &

Engineering
inputs

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Software Development Costs

 For life-critical software
(e.g. flight control,
reactor monitoring),
testing can cost 3 to 5
times as much as all other
activities combined.

Cost

Testing

23

 Stop testing is a business
decision
 There is always

something more to test
 Risk based decision

Requirements

Design and
Implementation

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Software Life Cycle Costs

Cost

Maintenance

24

Development

7.03.2011

Gert Jervan, TTÜ/ATI 5

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Software Qualities

 Correctness

 Reliability (dependability)

 Robustness

 Safety

25

 Safety

 Security (survivability)

 Performance

 Productivity

 Maintainability, portability, interoperability, …

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Software Verification and Validation

 Verification
 Are we building the product right?

 Process-oriented
• Does the product of a given phase fulfill the requirements

established during the previous phase?

26

established during the previous phase?

 Validation
 Are we building the right product?

 Product-oriented
• Does the product of a given phase fulfill the user’s

requirements?

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Techniques for V&V

 Static
 Collects information about a software without

executing it
• Reviews, walkthroughs, and inspections

• Static analysis

27

• Static analysis

• Formal verification

 Dynamic
 Collects information about a software with

executing it
• Testing: finding errors

• Debugging: removing errors

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Static Analysis
 Control flow analysis and data flow analysis

 Extensively used for compiler optimization and software
engineering

 Examples
 Unreachable statements

28

 Variables used before initialization

 Variables declared but never used

 Variables assigned twice but never used between
assignments

 Variables used twice with no intervening assignment

 Possible array bound violations

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Formal Verification

 Given a model of a program and a property,
determine whether the model satisfies the
property based on mathematics

 Examples

29

 Safety
• If the light for east-west is green, then the light for

south-north should be red

 Liveness
• If a request occurs, there should be a response eventually

in the future

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Introduction to Testing
 Debugging and testing are not the same

thing!

 Testing is a systematic attempt to break a
program

30

program.
 Correct, bug-free programs by construction are

the goal but until that is possible (if ever!) we
have testing.

 Since testing is basically destructive in nature, it
requires that the tester discard preconceived
notions of the correctness of the software to be
tested

7.03.2011

Gert Jervan, TTÜ/ATI 6

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Testing

Software
Apply input Observe output

31

Validate the observed output

Is the observed output the same as the expected output?

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Software Testing Fundamentals

 Testing objectives include
 Testing is a process of executing a program with

the intent of finding an error.

 A good test case is one that has a high probability
of finding an as yet undiscovered error

32

of finding an as yet undiscovered error.

 A successful test is one that uncovers an as yet
undiscovered error.

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Limitations of Testing (I)
 To test all possible inputs is impractical or impossible

int foo(int x) {
y = very-complex-computation(x);
write(y);

}

33

 To test all possible paths is impractical or impossible

}

int foo(int x) {
for (index = 1; index < 10000; index++)

write(x);
}

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Limitations of Testing (II)

 Dijkstra, 1972
 Testing can be used to show the presence of bugs,

but never their absence

 Goodenough and Gerhart, 1975

34

 Testing is successful if the program fails

 The (modest) goal of testing
 Testing cannot guarantee the correctness of

software but can be effectively used to find errors
(of certain types)

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Economics of Testing (I)

 The characteristic S-curve for error removal

We need
th t h i

35

Number of
defects
found

Time spent testing

Cutoff point
Testing is
effective

other techniques

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Economics of Testing (II)

Progress of
testing

 Testing tends to intercept errors in order of
their probability of occurrence

36

Number of
defects

Less likely =
More critical

g

Found Not yet found

7.03.2011

Gert Jervan, TTÜ/ATI 7

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Economics of Testing (III)

 Verification is insensitive to the probability of
occurrence of errors

Number of
d f t

37

defects

Less likely =
More critical

Progress of
verification

Found

Not yet found

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Fundamental Questions in Testing

 When can we stop testing?
 Test coverage

 What should we test?
 Test generation

 Is the observed output correct?

38

 Test oracle

 How well did we do?
 Test efficiency

 Who should test your program?
 Independent V&V

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Types of Testing

Level

integration

system

acceptance

regression

39

Aspect

Accessibility
functional

robustness

performance

reliability

usability

unit

integration

white
box

grey
box

black
box

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Levels of Testing

What users
really need Acceptance testing

40

Requirements

Design

Code

System testing

Integration testing

Unit testing

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Component/Unit Testing (I)

F1(int x1, y1) { Test driver

 A unit of testing
 Functions in procedural programming languages

such as C, Fortran, …

41

……
F2(x1+1, y1-1);

}

F2(int x2, y2) {
……
F3(x2+2, y2-1);

}

F3(int x3, y3) {
……

}

Test stub

Test unit

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Component/Unit Testing (II)

 Require knowledge of code
 High level of detail

 Deliver thoroughly tested components to
integration

42

 Stopping criteria
 Code Coverage

 Quality

7.03.2011

Gert Jervan, TTÜ/ATI 8

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Component/Unit Testing (III)

 Test case
 Input, expected outcome, purpose

 Selected according to a strategy, e.g., branch
coverage

43

 Outcome
 Pass/fail result

 Log, i.e., chronological list of events from
execution

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Integration Testing (I)
 Interactions among units (assembled components

that must be tested and accepted previously)
 Import/export type compatibility

 Import/export range errors
• F1 calls F2 with a parameter of array

44

• F1 assumes array of size 8, while F2 assumes an array of size
10

 Import/export representation
• F1 calls F2 with a parameter Elapsed_time

• F1 thinks in seconds, while F2 thinks in miliseconds

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Integration Testing (II)

 Strategies for integration testing
 Top-down

• Stubs are needed

 Bottom-up
d d

Main

F1 F2

45

• Drivers are needed

 Big-bang

 Functional

 Drivers &
stubs
have to tested as well!

Fm Fn

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

System Testing (I)
 Tests the overall system (the integrated hardware

and software) to determine whether the system
meets its requirements

 Focuses on the use and interaction of system
functionalities rather than details of implementations

46

 Test cases derived from specification

 Should be carried out by a group independent of the
code developers

 Should be planned with the same rigor as other
phases of the software development

 Use-case focus

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

System Testing (II)

 Non-functional testing

 Quality attributes
 Performance, can the system handle required

throughput?

47

 Reliability, obtain confidence that system is
reliable

 Timeliness, testing whether the individual tasks
meet their specified deadlines

 etc.

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Acceptance Testing

 User (or customer) involved

 Environment as close to field use as possible

 Focus on:
 Building confidence

48

Building confidence

 Compliance with defined acceptance criteria in the
contract

7.03.2011

Gert Jervan, TTÜ/ATI 9

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Re-Test and Regression Testing (I)

 Conducted after a change

 Re-test aims to verify whether a fault is
removed
 Re-run the test that revealed the fault

49

 Regression test aims to verify whether new
faults are introduced
 Re-run all tests

 Should preferably be automated

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Re-test & Regression Testing (II)

 Development versus maintenance
 Development costs: 1/3

 Maintenance costs: 2/3

 Testing in maintenance phase

50

 How can we test modified or newly inserted
programs?
• Ignore old test suites and make new ones from the

scratch or

• Reuse old test suites and reduce the number of new test
suites as many as possible

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Accessibility of Testing
 White box testing (structural testing, program-based

testing)

 White box testing is a test case design method that
uses the control structure of the procedural design to
derive test cases. Test cases can be derived that

51

 guarantee that all independent paths within a module have
been exercised at least once,

 exercise all logical decisions on their true and false sides,

 execute all loops at their boundaries and within their
operational bounds, and

 exercise internal data structures to ensure their validity.

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Accessibility of Testing (II)

 Black box testing (functional testing,
specification-based testing)
 Assumes that the program is unavailable or

testers do not want to look at the details of the
program

52

program
• Derives test cases from the requirements of the program

• Controls and observes the program only through external
interfaces

• Ideally done by independent test group (not original
programmer)

 Grey box testing

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Program-Based Testing (I)
 Main steps

 Examine the internal structure of a program
 Design a set of inputs satisfying a coverage criterion
 Apply the inputs to the program and collect the actual

outputs
 Compare the actual outputs with the expected outputs

53

 Compare the actual outputs with the expected outputs

 Limitations
 Cannot catch omission errors

• What requirements are missing in the program?

 Cannot provide test oracles
• What is the expected output for an input?

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Program-Based Testing (II)

Program
Apply input Observe output

54

Validate the observed output against the expected output

Who will take care of test oracles?

7.03.2011

Gert Jervan, TTÜ/ATI 10

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Statement Coverage

 Statement coverage of a set of test cases is
defined to be the proportion of statements in
a unit covered by those test cases.

55

 100% statement coverage for a set of tests
means that all statements are covered by the
tests. That is, all statements will be executed
at least once by running the tests.

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Branch Coverage

 Branch coverage is determined by the
proportion of decision branches that are
exercised by a set of proposed test cases.

56

 100% branch coverage is where every
decision branch in a unit is visited by at least
one test in the set of proposed test cases.

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Example – Branch coverage

A

B C

D E

What branch coverage is achieved
by ABG, ACDFG, ACEFG?

57

D E

F

G

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Example – Branch coverage

A

B C

D E

What branch coverage is achieved
by ABG, ACDFG, ACEFG?

58

D E

F

G

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Example – Branch coverage

A

B C

D E

What branch coverage is achieved
by ABG, ACDFG, ACEFG?

59

D E

F

G

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Example – Branch coverage

A

B C

D E

What branch coverage is achieved
by ABG, ACDFG, ACEFG?

60

D E

F

G

7.03.2011

Gert Jervan, TTÜ/ATI 11

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Example – Branch coverage

A

B C

D E

What branch coverage is achieved
by ABG, ACDFG, ACEFG?

4 in total

61

D E

F

G

4 in total.

4 covered

So 4/4 = 100% branch coverage

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Path Coverage
 Path coverage is determined by assessing the

proportion of execution paths through a unit
exercised by the set of proposed test cases.

 100% path coverage is where every path in the unit
is executed at least once by the set of proposed test

62

cases.

 100% path coverage is achieved by an ideal test set.
As we saw the other week, it is all but impossible or
infeasible in most programs of any size.

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Example – Path coverage

A

B C

D E

What path coverage is achieved by
ABG, ACDFG, ACEFG?

63

D E

F

G

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Example – Path coverage

A

B C

D E

What path coverage is achieved by
ABG, ACDFG, ACEFG?

64

D E

F

G

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Example – Path coverage

A

B C

D E

What path coverage is achieved by
ABG, ACDFG, ACEFG?

3/3=100%

65

D E

F

G

3/3=100%

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Coverage
 It is possible to have 100% statement coverage

without 100% branch coverage

 It is possible to have 100% branch coverage without
100% path coverage

66

 100% path coverage implies 100% branch coverage
and 100% branch coverage implies 100% statement
coverage

7.03.2011

Gert Jervan, TTÜ/ATI 12

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

An example

 Test cases covering
ABDEG and ACDFG cover
4/4 branches (100%)
and 7/7 statements
(100%)

67

(100%)

 They, however, only
cover 2/4 paths (50%).

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

An example

 Test cases covering ABDEG
and ACDFG cover 4/4
branches (100%) and 7/7
statements (100%)

 They however only cover

68

 They, however, only cover
2/4 paths (50%).

 2 more tests are required to
achieve 100% path coverage
 ABDFG

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

An example

 Test cases covering ABDEG
and ACDFG cover 4/4
branches (100%) and 7/7
statements (100%)

 They however only cover

69

 They, however, only cover
2/4 paths (50%).

 2 more tests are required to
achieve 100% path coverage
 ABDFG, ACDEG

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Loop Testing
 It is usually impossible or infeasible to test all paths

in a program involving loops
 Basis Path Testing

 Zero path: Test zero iterations of the loop body (Guard is
negated by loop initialisation)

 One path: Test a single iteration of the loop body (Good idea
t t f 100% th f l b d if l b d i

70

to try for 100% path coverage of loop body if loop body is
not iterative)

 Does not consider maximum iteration termination in many
cases

 Does not consider combinations of loop body paths in
successive iterations

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Mutation testing
 Create a number of mutants, i.e., faulty versions of

program
 Each mutant contains one fault

 Fault created by using mutant operators

 Run test on the mutants (random or selected)

71

()
 When a test case reveals a fault, save test case and remove

mutant from the set, i.e., it is killed

 Continue until all mutants are killed

 Results in a set of test cases with high quality

 Need for automation

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Specification-Based Testing (I)
 Main steps

 Examine the structure of the program’s specification

 Design a set of inputs from the specification satisfying a
coverage criterion

 Apply the inputs to the specification and collect the expected
t t

72

outputs

 Apply the inputs to the program and collect the actual
outputs

 Compare the actual outputs with the expected outputs

 Limitations
 Specifications are not usually available

• Many companies still have only code, there is no other
document.

7.03.2011

Gert Jervan, TTÜ/ATI 13

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Specification-Based Testing (II)

Specification

Apply input

Expected output

73

Program
Actual output

Validate the observed output against the expected output

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Steps to Testing Nirvana
 Think about potential problems as you design and

implement. Make a note of them and develop tests
that will exercise these problem areas.
 Document all loops and their boundary conditions, all arrays

and their boundary conditions, all variables and their range
of permissible values

74

of permissible values.

 Pay special attention to parameters from the command line
and into functions and what are their valid and invalid
values.

 Enumerate the possible combinations and situations for a
piece of code and design tests for all of them.

 GIGO - what happens when garbage goes in?
Kernighan, Pike, “The Practice of Programming”

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Steps to Testing Nirvana

 Test systematically, starting with easy tests
and working up to more elaborate ones.
 Often leads to “bottom up” testing, starting with

simplest modules at the lowest level of calling

When tho e e o king te t thei lle

75

 When those are working, test their callers

 Document (and/or automate) this testing so that
it can be repeated (regression testing) constantly
as the code grows and changes.

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Steps to Testing Nirvana

 Within a module, test incrementally as you
code
 Write, test, add more code, test again, repeat

 The earlier that errors are detected, the easier
the e to lo te nd fi

76

they are to locate and fix.

 Testing is not only concerning code
• Documents and models should also be subject to testing

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Tricks of the Trade
 Test boundary conditions.

 loops and conditional statements should be
checked to ensure that loops are executed the
correct number of times and that branching is
correct

77

 if code is going to fail, it usually fails at a
boundary

 check for off-by-one errors, empty input, empty
output

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

The Budget Coverage Criterion
 A common answer to “when is testing done”

 When the money is used up

 When the deadline is reached

 This is sometimes a rational approach!
 Implication 1: Test selection is more important than

78

 Implication 1: Test selection is more important than
stopping criteria per se.

 Implication 2: Practical comparison of approaches must
consider the cost of test case selection

7.03.2011

Gert Jervan, TTÜ/ATI 14

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Test Selection vs. Test Adequacy

Mutation
Testing
Example

79

 Red fish = real program faults (unknown population)

 Blue fish = seeded faults (e.g., mutations) or representative
behaviors (known population)

 Adequacy: count blue fish caught, estimate red fish

 Misuse for selection: use special bait to catch blue fish

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Test Selection: Standard Advice

 Specification coverage is good for selection
as well as adequacy
 applicable to informal as well as formal specs

 + Fault-based tests

80

 usually ad hoc, sometimes from check-lists

 Program coverage last
 to suggest uncovered cases, not just to achieve a

coverage criterion

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

The Importance of Oracles
 Much testing research has concentrated on

adequacy, and ignored oracles

 Much testing practice has relied on the “eyeball
oracle”
 Expensive, especially for regression testing

81

p , p y g g
• makes large numbers of tests infeasible

 Not dependable

 Automated oracles are essential to cost-effective
testing

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Sources of Oracles
 Specifications

 sufficiently formal (e.g., SCR tables)

 but possibly incomplete (e.g., assertions in Anna, ADL, APP,
Nana)

 Design, models

82

 treated as specifications, as in protocol conformance testing

 Prior runs (capture/replay)
 especially important for regression testing and GUIs; hard

problem is parameterization

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

What can be automated?
 Oracles

 assertions; replay; from some specifications

 Selection (Generation)
 scripting; specification-driven; replay variations

 selective regression test

83

 selective regression test

 Coverage
 statement, branch, dependence

 Management

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Design for Test: Principles

 Observability
 Providing the right interfaces to observe the

behavior of an individual unit or subsystem

 Controllability

t a
nd

 c
hi

p
de

si
gn

84

 Providing interfaces to force behaviors of
interest

 Partitioning
 Separating control and observation of one

component from details of othersA
da

pt
ed

 fr
om

 c
irc

ui

7.03.2011

Gert Jervan, TTÜ/ATI 15

Department of computer Engineering
ati.ttu.ee

Remarks by Bill Gates
17th Annual ACM Conference on Object-Oriented

Programming, Seattle, Washington, November 8, 2002

 “… When you look at a big commercial software company like

Microsoft, there's actually as much testing that goes in as

development. We have as many testers as we have

developers. Testers basically test all the time, and developers

basically are involved in the testing process about half the

time…

 … We've probably changed the industry we're in. We're not in

the software industry; we're in the testing industry, and

writing the software is the thing that keeps us busy doing all

that testing.”

Department of computer Engineering
ati.ttu.ee

Remarks by Bill Gates (cont.)

 “…The test cases are unbelievably expensive; in fact, there's

more lines of code in the test harness than there is in the

program itself. Often that's a ratio of about three to one.”

 “… Well, one of the interesting questions is, when you change

a program, … what portion of these test cases do you need to

run?“

