

	Faults
 Random faults (Degradation faults) Arise during operation Usually hardware component failure Systematic faults (Design Faults) mistakes in the spec mistakes in the hardware mistakes in the software 	
HITTI PIS TALUNNA TEHNIKAÜLIKOOL HITTI TALURI QUIVESITY OF TEAMANGAT	8

© Gert Jervan, TTÜ/ATI	IAF0530 - Süsteemide usaldusväärsus ja veakindlus	© Gert Jervan, TTÜ/ATI	IAF0530 - Süsteemide usaldusväärsus ja veakindlus
	Faults		Hardware Faults
 ✓ Faults are either intermittent ✓ Design faults are 	permanent, transient or always permanent	 Use of fault models Decomposition into m Gates, transistors, etc Connection faults 	nodules
 Dealing with fault During development removal During operation: detection 	ts: ent: fault avoidance & : fault tolerance &	 Single stuck-at model, Used to model hardw. Design testing scheme Fault removal coverage Guard against physical In safety critical system Combined with Failure 	bridging model (shorts), stuck-open are faults s for digital circuits e usually less than 100% defects, not design faults ems Modes and Effects Analysis (FMEA)
TALLINNA TETINIKAÜLIKOOL TALLINN UNIVERSITY OF TECHNOLOGY	9		10

© Gert Jervan, TTÜ/ATI	IAF0530 - Süsteemide usaldusväärsus ja veakir	ndlus	© Gert Jervan, TTÜ/ATI	IAF0530 - Süsteemide usaldusväärsus ja veakindlu:
 Hardware design Few fault models Many faults cannel System must medincorrect as well Spec errors may software failures Use of formal me automata theory, checking, etc.) 	Other Fault and specification faults available of be modelled et the spec, but spec might be manifest as either hardware or thods (formal spec. languages, formal verification, model	<u>IS</u>	 Bugs: Software spec faults Coding faults Logical errors within ca Stack overflows or und Uninitialized variables No random failures and Always systematic Exhaustive testing all Must be tolerated 	Software Faults alculations lerflows nd it does not degrade with age most impossible
TALLINNA TEHNIKAÜLIKOOL TALINN UNIVERSITY OF TECHNOLOGY		11	TALLINNA TEHNIKAÜLIKOOL	12

Gert Jervan, TTÜ/ATI

14

SW Testing - i.e. Verification

- Verification:
 - SW testing
 - formal verification
- Functional and structural testing
- Path testing, transaction flow testing, dataflow testing, domain testing, mutation testing etc.

PIS TALLINNA TEHNIKAÜLIKOOL

Fault Detection Techniques

- Functionality checking
- march test
- Consistency checking
 range checking, overflow
- Signal comparison
- Information redundancy
 - checksums, cyclic redundancy codes, error correcting codes
- Monitoring techniques
 - Loopback testing
 - Power supply monitoring

TALLINNA TEHNIKAÜLIKOOL

© Gert Jervan, TTÜ/ATI IA	F0530 - Süsteemide usaldusväärsus ja veakindlus
	Watchdog Timer
 An inexpensive method of er 	rror detection
 Process being watched must the timer expires, otherwise assumed as faulty 	reset the timer before the watched process is
 Watchdog timers only detect themselves as a control-flow system does not continue to 	t errors which manifest error such that the reset the timer
 Only processes with relative can be checked, since the er entirely on the time betweer 	ly deterministic runtimes ror detection is based n timer resets
PIIS TALLINNA TETINIKAÜLIKOOL TALLINN UNIVERSITY OF TECHNOLOGY	15

© Gert Jervan, TTŪ/ATI	IAF0530 - Süsteemide usaldusväärsus ja veakindlus
	Heartbeats
 A common approach t failures in a distribute environment. 	o detecting process and node d (networked) computing
 Periodically, a monitor heartbeat) to a monitor for a reply. 	ring entity sends a message (a ored node or process and waits
 If the monitored node predefined timeout int failed and appropriate 	does not respond within a terval, the node is declared as recovery action is initiated.
 Adaptive or smart 	
P18 TALLINNA TEHNIKAÜLIKOOL TALLINN UNIVERSITY OF TECHNOLOGY	16

1918 TALLINNA TEHNIKAÜLIKOOL TALLINN UNIVERSITY OF TECHNOLOGY	Department of computer Engineering di.itu.ee
Softwar	e Testing

26

Software Qualities

- Correctness
- Reliability (dependability)
- Robustness
- Safety
- Security (survivability)
- Performance
- Productivity
- Maintainability, portability, interoperability, ...

TALLINNA TEHNIKAÜLIKOOL

Software Verification and Validation

Verification

- Are we building the product right?
- Process-oriented
 - Does the product of a given phase fulfill the requirements established during the previous phase?

Validation

- Are we building the right product?
- Product-oriented
 - Does the product of a given phase fulfill the user's requirements?

PIS TALLINNA TEHNIKAŪLIKOOL

25

	IAF0530 - Süsteemide usaldusväärsus ja veakindlus		
	Formal Verification		
 Given a model of a determine whether property based on 	program and a property, the model satisfies the mathematics		
 Examples 			
 Safety 			
 If the light for east-west is green, then the light for south-north should be red 			
Liveness			
 If a request occurs, there should be a response eventually in the future 			
TALLINNA TEHNIKAÜLIKOOL TALLINN UNVERSITY OF TECHNOLOGY	29		

Afot30 - Stateemide usaldusväarsus ja veakindus Afot30 - Stateemide usaldusväarsus ja veakindus Debugging and testing are not the same thing! Testing is a systematic attempt to break a program. Correct, bug-free programs by construction are the goal but until that is possible (if ever!) we have testing. Since testing is basically destructive in nature, it requires that the tester discard preconceived

 Since testing is basically destructive in nature, it requires that the tester discard preconceived notions of the correctness of the software to be tested

TALLINNA TEHNIKAÜLIKOOL TALLINN UNIVERSITY OF TECHNOLOG

IAF0530 - Süsteemide usaldusväärsus ja veakindlu

33

Limitations of Testing (I)

✓ To test all possible inputs is impractical or impossible

y = very-complex-computation(x);

To test all possible paths is impractical or impossible

for (index = 1; index < 10000; index++)

int foo(int x) {

int foo(int x) {

write(x);

}

}

TALLINNA TEHNIKAÜLIKOOI

write(y);

Component/Unit Testing (III)

43

- ✓ Test case
 - Input, expected outcome, purpose
 - Selected according to a strategy, e.g., branch coverage
- ✓ Outcome
 - Pass/fail result
 - Log, i.e., chronological list of events from execution

TALLINNA TEHNIKAÜLIKOOL

Gert Jervan, TTU/ATI AF0530 - Süsteemide usaldusväärsus ja veakindus Acceptance Testing Viser (or customer) involved Environment as close to field use as possible
 Acceptance Testing ✓ User (or customer) involved ✓ Environment as close to field use as possible
User (or customer) involvedEnvironment as close to field use as possible
\checkmark Environment as close to field use as possible
✓ Focus on:
 Building confidence
 Compliance with defined acceptance criteria in the contract
178 II TALUNNA TEINIKAÜLIKOOL 48

Re-Test and Regression Testing (I)

- Conducted after a change
- Re-test aims to verify whether a fault is removed
 - Re-run the test that revealed the fault
- Regression test aims to verify whether new faults are introduced
 - Re-run all tests
 - Should preferably be automated

1918 TALLINNA TEHNIKAÜLIKOOL TALLINN UMPERITY OF TECHNOLOGY

56

Statement Coverage

- Statement coverage of a set of test cases is defined to be the proportion of statements in a unit covered by those test cases.
- 100% statement coverage for a set of tests means that all statements are covered by the tests. That is, all statements will be executed at least once by running the tests.

TALLINNA TEHNIKAÜLIKOOL

Branch Coverage Branch coverage is determined by the proportion of decision branches that are exercised by a set of proposed test cases. 100% branch coverage is where every decision branch in a unit is visited by at least one test in the set of proposed test cases.

TALLINNA TEHNIKAÜLIKOOL

55

Gert Jervan, TTÜ/ATI

© Gert Jervan, TTÜ/ATI	IAF0530 - Süsteemide usaldusväärsus ja veakindlus
	Coverage
 It is possible to have 100° without 100% branch cov 	% statement coverage erage
 It is possible to have 100 100% path coverage 	% branch coverage without
 100% path coverage impl and 100% branch coverage coverage 	ies 100% branch coverage ge implies 100% statement
1918 TALLINNA TEHNIKAÜLIKOOL TALLINN UNIVERSITY OF TECHNOLOGY	66

Create a number of mutants, i.e., faulty versions of program Each mutant contains one fault Fault created by using mutant operators Run test on the mutants (random or selected) When a test case reveals a fault, save test case and remove mutant from the set, i.e., it is killed Continue until all enutants a killed

- Continue until all mutants are killed
- Results in a set of test cases with high quality
- Need for automation

```
1916

TALLINNA TEHNIKAÜLIKOOL

TALLINN UNIVERSITY OF TECHNOLOGY
```

Specification-Based Testing (I)

Main steps

- Examine the structure of the program's specification
- Design a set of inputs from the specification satisfying a coverage criterion
- Apply the inputs to the specification and collect the expected outputs
- Apply the inputs to the program and collect the actual outputs
- Compare the actual outputs with the expected outputs
 Limitations
- Limitations

71

- Specifications are not usually available
 Many companies still have only code, there is no other
 - document.

TALLINNA TEHNIKAÜLIKOOL

IAF0530 - Süsteemide usaldusväärsus ja veakindlus

Tricks of the Trade

Test boundary conditions.

- loops and conditional statements should be checked to ensure that loops are executed the correct number of times and that branching is correct
- if code is going to fail, it usually fails at a boundary
- check for off-by-one errors, empty input, empty output

```
1918
Tallinna tehnikaülikool
```


Gert Jervan, TTÜ/ATI	IAF0530 - Süsteemide usaldusväärsus ja veal	kindlus	© Gert Jervan, TTÜ/ATI	IAF0530 - Süsteemide usaldusväärsus ja veak
The	Importance of Oracl	es		Sources of Oracl
 Much testing resea adequacy, and igno Much testing praction oracle" Expensive, especiall makes large numb Not dependable Automated oracles testing 	rch has concentrated on ored oracles ice has relied on the "eyeball ly for regression testing pers of tests infeasible are essential to cost-effective		 Specifications sufficiently formal (e.g. but possibly incomplet Nana) Design, models treated as specification Prior runs (capture/real especially important for problem is parameterial problem is param	g., SCR tables) ie (e.g., assertions in Anna, ADL, A ns, as in protocol conformance test eplay) or regression testing and GUIs; har zation
PHS TALLINNA TEHNIKAÜLIKOOL TALLINN UNIVERSITY OF TEEHNOLOGY		81	1918 TALLINNA TEHNIKAÜLIKOOL TALLINN UNIVERSITY OF TECHNOLOGY	

1918 **TALLINNA TEHNIKAÜLIKOOL** TALLINN UNIVERSITY OF TECHNOLOGY

Department of computer Engineering ati.ttu.ee

Remarks by Bill Gates 17th Annual ACM Conference on Object-Oriented Programming, Seattle, Washington, November 8, 2002

- "... When you look at a big commercial software company like Microsoft, there's actually as much testing that goes in as development. We have as many testers as we have <u>developers</u>. Testers basically test all the time, and developers basically are involved in the testing process about half the time...
- ... We've probably changed the industry we're in. <u>We're not in</u> <u>the software industry; we're in the testing industry</u>, and writing the software is the thing that keeps us busy doing all that testing."

1918 TALLINNA TEHNIKAÜLIKOOL TALLINN UNIVERSITY OF TECHNOLOGY	Department of computer Engineering #
Remarks by Bi	ll Gates (cont.)
 "The test cases are unbelieva more lines of code in the test h program itself. Often that's a r 	ably expensive; in fact, <u>there's</u> narness than there is in the atio of about three to one."
" Well, one of the interesting a program, what portion of t run?"	questions is, when you change hese test cases do you need to