
20.03.2011

Gert Jervan, TTÜ/ATI 1

Department of computer Engineering
ati.ttu.ee

IAF0530/IAF9530

Süsteemide usaldusväärsus ja veakindlus
Dependability and fault tolerance

Loeng 5
Testing Real-Time Systems

Gert Jervan

gert.jervan@pld.ttu.ee

Tallinn University of Technology
Department of Computer Engineering

Estonia

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

System Testing

HW Testing SW Testing

88

HW/SW Testing
(system testing)

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Real-Time Systems

 Real-Time System – system, which is
required to adhere not only functional but
also tempoal requirements (“timing
constraints” or “deadlines”)

89

 RT-systems:
 Hard RT-systems

 Soft RT-systems

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Real-Time Systems Testing
 Inherits issues from concurrent systems

 Problems becomes harder due to time-constraints
• More sensitive to probe-effects
• Timing/order of inputs become more significant

 Adds new potential problems

90

 Adds new potential problems
 New failure types

• E.g. Missed deadlines, Too early responses…

 Test inputs Execution times
 Faults in real-time scheduling

• Algorithm implementation errors
• Assumption about system wrong

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Real-Time Systems Testing
 Pure time-triggered systems

 Deterministic

 Test-methods for sequential software usually apply

 Fixed priority scheduling
 Non-deterministic

91

 Non deterministic
• Limited set of possible execution orders

 Worst-case w.r.t timeliness can be found from analysis

 Dynamic (online) scheduled systems
 Non-deterministic

• Large set of possible execution orders

 Timeliness needs to be tested

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Testing Timeliness
 Aim : Verification of specified deadlines for individual tasks

 Test if assumptions about system hold
• E.g. worst-case execution time estimates, overheads, context switch

times, hardware acceleration efficency, I/O latency, blocking times,
dependency-assumptions

T t t t l b h i d t

92

 Test system temporal behavior under stress
• E.g. Unexpected job requests, overload management, component

failure, admission control scheme

 Identification of potential worst-case execution orders

 Controllability needed to test worst-case situations efficiently

20.03.2011

Gert Jervan, TTÜ/ATI 2

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Testing Embedded Systems

 System-level testing differs
 Performed on target platform to

keep timing

 Closed-loop testing EnvironmentTest

93

p g
 Test-cases consist of

parameters sent to the
environment simulator

 Open-loop testing
 Test-cases contain sequences

of events that the system
should be able to handle

Simulator

Real-time (control)
system

parameters

Real-time (control)
system

Test Cases

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Distributed Real-Time Systems

...

 Distributed
applications
 On a single cluster
 On several clusters

 Motivation

94

...

 Distributed applications are difficult to...
 Analyze (e.g., guaranteeing timing constraints)

 Design (e.g., efficient implementation)

 Reduce costs:
use resources
efficiently

 Requirements:
close to sensors/
actuators

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Testing Distributed RT-Systems

 Problems with distributed systems:
• Increased complexity

• The difficulties of observing and monitoring

• Non-reproducible behaviour of the system

95

• The lack of synchronized global clock and,
consequently, the difficulties of unambiguously
defining a “global state”

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Testing Distributed RT-Systems

 Observability
 What?

 How?

 When?

96

 Controllability

 Auxiliary outputs, interactive debuggers

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Observability Issues
 Probe effect (Gait,1985)

 “Heisenbergs's principle” - for computer systems

 Common “solutions”

• Compensate

• Leave probes in system

97

p y

• Ignore

 Must observe execution orders
 Gain coverage

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Controllability Issues
 To be able to test correctness of a particular

execution order we need control
 Input data to all tasks

• Initial state of shared data/buffers

98

 Scheduling decisions
• Order synchronization/communication between tasks

20.03.2011

Gert Jervan, TTÜ/ATI 3

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Testing Distributed RT-Systems

 Reproducibility
 Regression testing – retesting after errors have

been corrected
• errors truely corrected

• no new errors

99

• no new errors

 A distributed system may be non-reproducible due
to nondeteminism in it’s hardware, software or
operating system

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Testing Distributed RT-Systems

 Obtaining reproducibility
 Language-based approach

• Enforcing the identified scenarios during execution

• All solutions rely on source code transformations

100

 Implementation based approach
• Collecting all missing information during an execution of

the system

• Event histories or traces

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Testing Distributed RT-Systems

 Disadvantages of implementation based
approach:
 Special dedicated HW (to monitor)

 Large amount of information

 Can we guarantee the correctnes of reply?

101

 Can we guarantee the correctnes of reply?

 Modified programs. What happens with event histories. Are
they still valid?

 Event histories can be used only on target systems

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Testing Distributed RT-Systems

 Interdependence of Obsevability and
Reproducibility

 Not independent!

102

 Probe effect

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Testing Distributed RT-Systems
 The host/target approach

 Host - development

 Target - execution

 Testing on the host system is used for (functional)

103

 Testing on the host system is used for (functional)
unit testing and preliminary integration testing (as
much as possible)

 Testing on the target system involves completing the
integration test and performing the system test. Also
performance, timing, etc.

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Testing Distributed RT-Systems

 Environment simulation (for target system
test)
 Simulated v. real environment:

• Safety and/or cost considerations.

“rare event” situations

104

• “rare event” situations

• More control over simulated environment

• Easier to obtain responses and test results

 On-line v. off-line test data generation:
• Need to generate large amounts of input data

• Runs cost-effectively

20.03.2011

Gert Jervan, TTÜ/ATI 4

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Testing Distributed RT-Systems
 Representativity

 Only small number of real-world scenarios can be anticipated
and taken into account.

 Only a fraction of those anticipated real-world scenarios can
be tested due to the combinatorial explosion of possible
event and input combinations

105

event and input combinations.

 Test coverage - how many of the anticipated real-
time scenarios can be or have been covered by
corresponding test scenarios.

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Self-checking distributed systems

 Run-time checking of the effects of faults on
system behaviors needs to be carried out
continuously.

106

 Reliability – the key to distributed SW quality

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Self-checking distributed systems

 Aspects to design correct SW:
• Reliability with which the SW specifications are

adequately described and correctly implemented
in the actual implementation.

Run-time checking

107

• Run-time checking

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Self-checking distributed systems
 Fault-secure systems are systems, where faults may be

enforced not to propagate.
 Faults are not visible or have no effect

 Faults are visible, but it’s easy to notice that an error exists

 Self-testing – System is self testing when there exists testing

108

 Self-testing – System is self testing when there exists testing
behavior, occurring during the run-time behavior of the system,
such that this fault will be propagated to the output and it’s
easy to notice, that there is a fault (out of predefined set of
values)

 System is self-checking for a set of faults, if whatever a fault
belonging to this set, it is fault-secure and self-testing.

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Self-checking distributed systems

 Worker-observer
 the worker is a classical implementation of the system

behavior

 the observer is a given redundant implementation whose
outputs are comparable with the outputs of the worker.

109

 To obtain observing behavior:
– Redundancy

 Reference

 Visibility
• Worker cooperates with the observer

• Worker behavior can be spied by the observer

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Self-checking distributed systems

 A formal observer is a subsystem designed to
check distributed behaviors where:

• Its sw is independent of the specific protocols to
be checked in the considered system;

It d t e defined b the p oto ol to be

110

• Its data are defined by the protocols to be
checked and this data can be formally specified
and verified.

20.03.2011

Gert Jervan, TTÜ/ATI 5

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Self-checking distributed systems

 Design of the system
• write a description of the beavior of the system to

be implemented;

• Implement the system itself, i.e., the worker;

F h d i i f h k l (b d

111

• From the description of the worker, select (based
on experience) that part of the behavior which
should be observed and write a formal model of it.

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Self-checking distributed systems

 The system is quasi self-checking if
• It is an observer-worker system

• The observer is a formal observer.

 For “real-life” only part of the system will be
modelled.

112

 Formal model must be able to
• Express simplified specifications of distributed systems

• Support verification procedures

• Be able to act as a basis for implementing the observer.

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Few testing criteria exists for concurrent systems

 Number of execution orders grow exponentially with
synchronization primitives in tasks
 Testing criteria needed to bound and selecting subset of

execution orders for testing

 E g B n h / St tement o e ge not ffi ient fo

113

 E.g. Branch / Statement coverage not sufficient for
concurrent software
 Still useful on serializations
 Execution paths may require specific behavior from other

tasks

 Data-flow based testing criteria has been adapted
 E.g. define-use pairs

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Determinism vs. Non-Determinism
 Deterministic systems

 Controllability is high
• input (sequence) suffice

 Coverage can be claimed after single test execution with
inputs

 E.g. Filters, Pure “table-driven” real-time systems

114

 Non-Deterministic systems
 Controllability is generally low
 Statistical methods needed in combination with input

coverage
 E.g.

• Systems that use random heuristics
• Behavior depends on execution times / race conditions

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Test execution in concurrent systems

 Non-deterministic testing
 “Run, Run, Run and Pray”

 Deterministic testing
 Select a particular execution order and force it

115

 E.g. Instrument with extra synchronizations primitives
• (No timing constraints make this possible)

 Prefix-based Testing (and Replay)
 Deterministically run system to a specific (prefix) point
 Start non-deterministic testing at that specific point

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Important

 No lecture on March 14

 March 21: Draft of the report + introductory
presentation of the topic (3-5 min.). p p ()

Participation mandatory!!

116

20.03.2011

Gert Jervan, TTÜ/ATI 6

Department of computer Engineering
ati.ttu.ee

Questions?

