Department of computer Engineering
ati.ttu.ee

1R fots
H!HI TALLINNA TEHNIKAULIKOOL
T ¥ <

ALLINN UNIVERSITY OF TECHNOLOGY

IAF0530/IAF9530

Siisteemide usaldusvaarsus ja veakindlus
Dependability and fault tolerance

Loeng 6
Redundancy (Hardware amd software)

Gert Jervan
gert.jervan@pld.ttu.ee
Tallinn University of Technology

Department of Computer Engineering
Estonia

© Gert Jervan, TTU/ATI

4.04.2011

IAF0530 - Siisteemide usaldusvaarsus ja veakindlus

Lecture Outline

v Introduction

v Hardware Redundancy

v Software Redundancy

v Information Redundancy

v Time Redundancy

TALLINNA TEHNIKADLIKOOL

Some materials from:
Kewal Saluja
Hongyu Sun
Zaipeng Xie
Meng-Lai Yin
Rajesh Gupta
Elena Dubrova

© Gert Jervan, TTU/ATI

IAF0530 - Siusteemide usaldusvaarsus ja veakindlus

Fault Tolerance

v A fault-tolerant system is one that can continue to
correctly perform its specified tasks in the presence
of hardware failures and/or software errors.

v Fault tolerance is the attribute that enables a system
to achieve fault-tolerant operation.

v Fault tolerance is not a new field:
= 1949, the EDVAC computer duplicated the ALU and compare
the results

= 1955, the UNIVAC computer incorporated parity check for
data transfers

= 1952, John von Neumann, lectures on the use of replicated
logic modules to improve system reliability,

= etc.

LT
B 4o reniagikooL 3

© Gert Jervan, TTU/ATI

IAF0530 - Sisteemide usaldusvaarsus ja veakindlus

System Design & Evaluation Top-Level View

System Design

‘ System Requirements ‘

Fault Avoidance ‘

’ Fault Tolerance ‘

System Evaluation

Possible techniques

« Parts selection

* Design reviews

* Quality control

* Design
Methodology

» Documentation

Possible techniques

* Redundancy (Hardware,
Software, Information,
Time)

« Fault detection

« Fault masking

« Fault containment

* Reconfiguration

System level analysis
Subsystem level
analysis

* Module/Component

level analysis

i i Possible Techniques
iie FMEA

FTA
RBD
Markov
Petri net

IS

© Gert Jervan, TTU/ATI

IAF0530 - Siisteemide usaldusvaarsus ja veakindlus

Department of computer Engineering #

1
IHEHI TALLINNA TEHNIKAULIKOOL ati.ttu.ee
NN UNIVERSITY OF TECHNOLOGY

Hardware Redundancy

Hardware Redundancy

v 3 basic forms: passive, active, and hybrid

= Passive: Mask faults rather than detect faults
without requiring any system or operator action

m Active: Fault has to be detected before it can be tolerated.
Actions: location, containment, recovery (for component

removal)

TALLINNA TEHNIKADLIKOOL

Gert Jervan, TTU/ATI

© Gert Jervan, TTU/ATI TAF0530 - Susteemide usaldusvaarsus ja veakindlus

4.04.2011

© Gert Jervan, TTU/ATL

Passive Hardware Redundancy

v Use fault masking to hide the occurrence of
faults and prevent the faults from resulting in
errors

v Mask faults rather than detect faults

v Achieve fault tolerance without requiring any
system or operator action

v Voting mechanisms, majority voting
v Do not need fault detection or reconfiguration
v Many drawbacks

LT
T —————— ;

IAF0530 - Siisteemide usaldusvaarsus ja veakindlus

Passive Hardware Redundancy

v N-Modular Redundancy (generalization of
TMR or Triple Modular Redundancy)

v TMR: Triplicate the hardware and perform a
majority vote to determine the output of the
system
= If one of the modules becomes faulty, the 2

remaining fault-free modules mask the results of

the faulty module when the majority vote is
performed

1
B s veunaouskoon s

© Gert Jervan, TTU/ATI

IAF0530 - Siusteemide usaldusvaarsus ja veakindlus

© Gert Jervan, TTU/ATI

TMR Technique

—

Tolerates N/2 faults

LT
T Teo————— 0

IAF0530 - Sisteemide usaldusvaarsus ja veakindlus

TMR/Voter Structures

0m] [
ora
CLK
2 []
nFa e
® CLK "
Dot e
‘ D1 . -
i fu o
. ‘ 03] -
L ! . g
- ' B———@—CLK e
GND
TR m— 10
i A

© Gert Jervan, TTU/ATI

IAF0530 - Siusteemide usaldusvaarsus ja veakindlus

© Gert Jervan, TTU/ATI

Fault-Tolerance Capability

Assuming perfect voter, how many module faults can the TMR technique
tolerate?

What if 2 modules fail the same way?

Does TMR technique provide fault detection capability?
How about imperfect voter?

Performance impacts from the voter in the TMR technique

Module 1 _ Single Point of Failure

ooz ——— o)

LT
T eo————— u

IAF0530 - Siisteemide usaldusvaarsus ja veakindlus

Reliability of a TMR System

Rryr = RIR2R; +(l —R|JR3R3+R|(I —RZ)R3+R1R'_7(I —R‘:)

- Ruystem
R=R=Ry=R 1
= 1
L i P |
2 p2 3 L ME

Ryyp = 3R — 2R + r i
r / |
L 7 3
BSpmmmmmmmmm—y ‘ !
- 7 !
7 !
r 7 |
L , ! i
2 i |
[/~ i i
E) A

0 9 1 Rpsodute

mii. TALLINNA TEHNIKADLIKOOL 12

Gert Jervan, TTU/ATI

IAF0530 - Slsteemide usaldusvaarsus ja veakindlus

© Gert Jervan, TTU/ATI

Reliability of a TMR System

Rsystem
1

o

MTTF=1/A

0

LT
T eo————— 3

4.04.2011

IAF0530 - Siisteemide usaldusvaarsus ja veakindlus

© Gert Jervan, TTU/ATL

TMR with Triplicated Voters

1
B s veunaouskoon »

© Gert Jervan, TTU/ATI IAF0530 - Siusteemide usaldusvaarsus ja veakindlus

© Gert Jervan, TTU/ATI IAF0530 - Susteemide usaldusvaarsus ja veakindlus

Cascading TMR modules

LT
T Teo————— s

Passive hardware redundancy

v Types of voting
= Majority
¢ in many practical situations it is meaningless

= Average

e can have poor performance if a sensor always provide
very low value

= Mid value
e a good choice - can be very costly to implement in HW

1
B s veunaouskoon 6

© Gert Jervan, TTU/ATI

IAF0530 - Siusteemide usaldusvaarsus ja veakindlus

Passive Hardware Redundancy

v Comparison between hw and sw voter
schemes

HW SW
cost high low
flexibilty inflex flex
synch. tightly loosely
perform. high low

(fast) (slow)
types of majority diff
voting (others costly) (no extra cost)

© Gert Jervan, TTU/ATI

IAF0530 - Susteemide usaldusvaarsus ja veakindlus

Example Systems Using TMR Technique

v JPL STAR (Self-Testing And Repairing
computer)

~.
2 . g
E 4 L,
IS
3 LAY z
3 G =
> -\v.w, o
B oufpul L b
4 m
g \ ®
g \
8 \ :
° \
" Stat d\\
atus an
swirch lines Sy
s,
———————f N
Power
sourcel
1
B TALUNNA TEHNIKADLIKOOL 18
i

Gert Jervan, TTU/ATI

© Gert Jervan, TTU/ATI

IAF0530 - Slsteemide usaldusvaarsus ja veakindlus

4.04.2011

© Gert Jervan, TTU/ATI TAF0530 - Susteemide usaldusvaarsus ja veakindlus

Example Systems Using TMR Technique

v FAA WAAS (Wide Area Augmentation System)

WiAAS Satellite GPS Satellites

|

LT
T eo————— ©

WAAS Block Diagram

Wide-area Master Ground Earth
Station (WMS), (1 of 2) Station (GES)

Wide-area Reference
Station (WRS), 1 of 25

| [le]
':'.SI P
Hera G (] | e i/

Separate GES>\

o&M
]
Lo

(o]

1
B s veunaouskoon 2

© Gert Jervan, TTU/ATI IAF0530 - Stisteemide usaldusvaarsus ja veakindlus

© Gert Jervan, TTU/ATI

IAF0530 - Stisteemide usaldusvaarsus ja veakindlus

Active Hardware Redundancy

v Achieve fault tolerance by detecting the
existence of faults and performing some
action to remove the faulty parts

v Require the system be reconfigured to
tolerate faults

v 3 steps: fault detection, fault location, and
fault recovery

LT
T Teo————— 2

Active Hardware Redundancy

Fault occurs

Error occurs |

1
B s veunaouskoon »

© Gert Jervan, TTU/ATI

IAF0530 - Susteemide usaldusvaarsus ja veakindlus

© Gert Jervan, TTU/ATI IAF0530 - Siisteemide usaldusvaarsus ja veakindlus

Dynamic Redundancy

v Uses Extra Components
v Only 1 Copy Operates At A Times
= Fault Detection
= Fault Recovery
v Spares Are On “Standby”
= Hot Spares
= Cold Spares

LT
T eo————— 2

Duplication with Comparison

v Both modules perform the same computations in parallel and
compare the results

v An error message is generated if the two results disagree
v Only fault detection, no fault tolerance

v Can be used as a fundamental fault detection technique in
active redundancy approach, for example, the pair-and-a-spare
technique

Output

—> Agree/Disagree

Input

1
B s veunaouskoon o

Gert Jervan, TTU/ATI

© Gert Jervan, TTU/ATI

IAF0530 - Slsteemide usaldusvaarsus ja veakindlus

4.04.2011

© Gert Jervan, TTU/ATI TAF0530 - Susteemide usaldusvaarsus ja veakindlus

Reliability of duplication with comparison

Rsystem
l1¢—-- - =

T
N
L

0 Rmodule

LT
T eo——— »s

Duplication with Comparison

v Problems:

= if there is a fault on input line, both modules will
receive the same erroneous signal and produce
the erroneous result
= comparator may not be able to perform an exact
comparison
e synchronisation
* no exact matching

= — comparator is a single point of failure

1
B s veunaouskoon 2

© Gert Jervan, TTU/ATI IAF0530 - Siusteemide usaldusvaarsus ja veakindlus

© Gert Jervan, TTU/ATI

IAF0530 - Susteemide usaldusvaarsus ja veakindlus

Implementation of comparator

v In hardware, a bit-by-bit comparison can be
done using two-input exclusive-or gates

v In software, a comparison can be
implemented with a COMPARE instruction

= commonly found in instruction sets of almost all
microprocessors

LT
T Teo————— 2

Standby Sparing

input 1 —-l Module 1 II

[
; 2
input 2 —’l Module 2 II » §
L[FD}—{ # |— output
—
g
=
input n —'| Module n |I
|
R ——— "

© Gert Jervan, TTU/ATI

IAF0530 - Siusteemide usaldusvaarsus ja veakindlus

Spares

v Hot spares
= all modules are powered up

= spares can be switched into use immediately after the
primary module becomes failed

v Cold spares
= the primary modules are powered up

= the spares are powered down, which are powered up and
switched into use when the primary modules fail

v Warm spares

LT
T —————— 2

© Gert Jervan, TTU/ATI

IAF0530 - Susteemide usaldusvaarsus ja veakindlus

Standby Sparing (standby replacement)

<

Active hardware redundancy

One module is operational and one or more modules
serve as standbys (or spares)

A

AN

Various fault detection or error detection schemes
are used to determine whether a module has become
faulty

Fault location is used to determine exactly which
module, if any, is faulty.

A

i
il TALUNNA TERIKADLIKOOL 30
i

Gert Jervan, TTU/ATI

© Gert Jervan, TTU/ATI

TAF0530 - Susteemide usaldusvaarsus ja veakindlus

4.04.2011

© Gert Jervan, TTU/ATI TAF0530 - Susteemide usaldusvaarsus ja veakindlus

Standby Sparing (standby replacement)

v If a fault is detected and located, then the faulty
module is removed from operation and replaced with
a spare

v The reconfiguration can be viewed as a switch.

v Can bring a system back to full operation after the
occurrence of a fault.

v Require momentary disruption in performance when
reconfiguration is performed.

LT
T —————— 2

Hot Standby Sparing

v In hot standby sparing spares operate in
synchrony with on-line module and are
prepared to take over any time

in = i : out

1
B s veunaouskoon »

© Gert Jervan, TTU/ATL IAF0530 - Stisteemide usaldusvaarsus ja veakindlus

© Gert Jervan, TTU/ATI

IAF0530 - Susteemide usaldusvaarsus ja veakindlus

Cold Standby Sparing

v In cold standby sparing spares are
unpowered until needed to replace a faulty
module

| w1 |

spare H

np
il TALLINNA TEINAUL KOO 33
i v

Hot & Cold Standby Sparing

v Hot standby sparing can minimize the
performance disruption. The spares operate
in synchrony with the on line modules and
are prepared to take over at any time.

v In cold standby sparing, the spares are
unpowered until needed to replace a faulty
module. Hence extra time is required to
bring the module back to operation. The
advantage is that spares do not consume
power until needed. Satellite application is a
good example for cold standby sparing.

1
B 5 s veunaouskoon ”

© Gert Jervan, TTU/ATI

IAF0530 - Siusteemide usaldusvaarsus ja veakindlus

© Gert Jervan, TTU/ATI IAF0530 - Susteemide usaldusvaarsus ja veakindlus

Pair-and-a-spare Technique

v Combine the features in standby sparing and
duplication with comparison

v 2 modules are operated in parallel at all times and
their results are compared to provide the error
protection capability

v The error signal from the comparison is used to
initiate the reconfiguration process (switch) that
removes faulty modules and replaces them with
spares

np
il TALLINNA TEINAUL KOO 35
i v

Pair-and-a-spare scheme

http://www.stratus.com/

1
mn

Gert Jervan, TTU/ATI

© Gert Jervan, TTU/ATI

TAF0530 - Susteemide usaldusvaarsus ja veakindlus

4.04.2011

© Gert Jervan, TTU/ATI TAF0530 - Susteemide usaldusvaarsus ja veakindlus

Example Systems

v Apollo telescope mount pointing computer
v Saturn 5 LVDC memory section
v Compaq Himalaya architecture

LT
T eo————— .

Types of Redundancy

NASA Office of Logic Design - klabs.org

A

Classified on how the redundant elements are
introduced into the circuit

Choice of redundancy type is application specific

Active or Static Redundancy

= External components are not required to perform the
function of detection, decision and switching when an
element or path in the structure fails.

Standby or Dynamic Redundancy

= External elements are required to detect, make a decision
and switch to another element or path as a replacement for
a failed element or path.

1
B 5 s veunsouskoon 3

<

<

A

© Gert Jervan, TTU/ATI

IAF0530 - Siusteemide usaldusvaarsus ja veakindlus

© Gert Jervan, TTU/ATI IAF0530 - Susteemide usaldusvaarsus ja veakindlus

Redundancy Techniques

Redundancy Techniques

Actlve \ﬁl,dbx
Parallel Non-Operating Operating
(7) (R)
Majority Vote Gate Connector Connector

Simple Duplex Bimodal
1) (é')

Simple "Adaptive
[©) ()

np
il TALLINNA THIN AV KOO 39
i v

Hybrid Hardware Redundancy

v Hybrid:
= combine the attractive features of both the
passive and active approaches
« fault masking
o fault detection
e fault location
® recovery

1
B s veunaouskoon 40

© Gert Jervan, TTU/ATI

© Gert Jervan, TTU/ATI

IAF0530 - Siisteemide usaldusvaarsus ja veakindlus

Self-Purging Redundancy

input 1 Module 1 |-1351
input 2 Module 2 12352

Voter s——r Output
input 3 Moadule n Sn

Can mask n-2 module faults

LT
TR .

IAF0530 - Susteemide usaldusvaarsus ja veakindlus

Self Purging Redundancy

v Initially start with NMR

v Purge one unit at at time till arrive at TMR

= can tolerate more faults initially compared to NMR
with spare

= cost of the switch - higher?

1
B s veunaouskoon -

Gert Jervan, TTU/ATI

© Gert Jervan, TTU/ATI

4.04.2011

© Gert Jervan, TTU/ATL

TAF0530 - Susteemide usaldusvaarsus ja veakindlus

Basic Structure of a Switch

v If output of a module disagrees with the
output of the system, its contribution to the
voter is forced to be 0 (threshold voter)

[} o tr 1 o
initialize

LT
T —————— o

IAF0530 - Siisteemide usaldusvaarsus ja veakindlus

Reliability of Self-Purging System

Rsyaif’ru
1¢--—-----—----= A aaie sl
rd |
L // < 7 0
7]
L / 7 ¥ |
/ ’ i
, 4 1
i /) !
/ z !
L I
/I 4 i
/7 4 1 module |
I
r 7 ’/ ----- 3 modules !
T/ / ,'/ — — =5 modules |
v 1
/. = =7 modules,
ea”
- 0 1 Rmmluhc
il TALUNA TENIKAGLKOON 24

© Gert Jervan, TTU/ATI

© Gert Jervan, TTU/ATI

IAF0530 - Siusteemide usaldusvaarsus ja veakindlus

N-Modular Redundancy with Spares

v Most hybrid redundancy are based on the concept of
N-modular redundancy (NMR) with spares

v The idea is to provide N modules arranged in a
voting configuration

v Spares are provided to replace failed modules

v The advantage of NMR with spares is that a voting
configuration can be restored after a fault has
occurred

LT
T Teo————— '

IAF0530 - Susteemide usaldusvaarsus ja veakindlus

N-Modular Redundancy with Spares

input 1 Module 1

input 2 Modnle 2 5
3
B
: 0
= -

mput 7 Module 7 : Voter ‘> outpul
k-]
=
:
&

Spare k
i A 46

© Gert Jervan, TTU/ATI IAF0530 - Siusteemide usaldusvaarsus ja veakindlus

© Gert Jervan, TTU/ATI

NMR with Spares

v System remains in the basic NMR
configuration until the disagreement vector
determines a fault

v The output of the voter is compare to the
individual outputs of the modules

v Module which disagrees is labeled as faulty
and removed from the NMR core

v Spare is switched to replace it

LT
T eo————— o

IAF0530 - Susteemide usaldusvaarsus ja veakindlus

NMR with Spares

v The reliability is maintained as long as the
pool of spares is not exhausted

v 3-modular redundancy with 1 spare can
tolerate 2 faults

v To do it in a passive approach, we would
need to have 5 modules

1
B s veunaouskoon "

Gert Jervan, TTU/ATI

4.04.2011

© Gert Jervan, TTU/ATI IAF0530 - Siisteemide usaldusvaéarsus ja veakindlus © Gert Jervan, TTU/ATI IAF0530 - Siisteemide usaldusvaarsus ja veakindlus

Triplex-duplex Redundancy Triplex-duplex Redundancy
) v TMR allows faults to be masked
inputf, la Module Ta
= performance without interruption
input 1o Module b v Duplication with comparison allows faults to
be detected and faulty module removed form
input 2a Module 2a output voting
. = removal of faulty module allows to tolerate future
input 2b Module 2b faults

v Two module faults can be tolerated

input 3a Module 3a

input 3b Module 3b

1
B s veunaouskoon s

LT
T —————— P

_ © certenan AT [A0530 - Sisteemide ussldusvasreus J2 veskindlus

Introduction

1A ~ Department of computer Engineering
UERHI TALLINNA TEHNIKAULIKOOL Hemes
NN UNIVERSITY OF

v Less understood and less mature than in
hardware

v Software does not degrade over time
v Design faults
v Environment

Software Fault Tolerance

1
B s veunaouskoon s

© Gert Jervan, TTU/ATL IAF0530 - Siusteemide usaldusvaarsus ja veakindlus © Gert Jervan, TTU/ATT IAF0530 - Susteemide usaldusvaarsus ja veakindlus
Introduction Problems
v Many current techniques for software fault v Traditional hardware fault tolerance
tolerance attempt to leverage the experience techniques were developed to fight
of hardware redundancy schemes = permanent components faults primarily
= software N-version programming closely = transient faults caused by environmental factors
resembles hardware N-modular redundancy secondarily.
= recovery blocks use the concept of retrying the v They do not offer sufficient protection against
same operation in expectation that the problem is design and specification faults, which are
resolved after the second try. - ; !
dominant in software.
A EALuasna kv Koo! = il PAiasosa kv koo =

Gert Jervan, TTU/ATI 9

© Gert Jervan, TTU/ATI

TAF0530 - Susteemide usaldusvaarsus ja veakindlus

Concepts for Traditional SFT

v Software design and implementation errors cannot
be detected by simple replication of identical
software units, assuming the same inputs are
provided to each copy.

v Some form of diversity must accompany the
redundancy
= Software redundancy -> Design diversity
= Information or data redundancy - Data diversity
= Temporal redundancy - Temporal diversity
= Environment diversity
= Hardware redundancy

LT
T —————— -

4.04.2011

© Gert Jervan, TTU/ATL

IAF0530 - Siisteemide usaldusvaarsus ja veakindlus

Single- and multi-version

v Software fault-tolerance techniques can be
divided into two groups:
m single-version
= multi-version

v Sin<|_:;|e version techniques aim to improve
fault tolerant capabilities of a single software
module
= fault detection, containment and recovery

mechanisms

v Multi-version techniques employ redundant
software modules, developed following design
diversity rules

1
B s veunaouskoon s

© Gert Jervan, TTU/ATI

IAF0530 - Siusteemide usaldusvaarsus ja veakindlus

Redundancy Allocation

v A number of possibilities have to be examined:

= at which level the redundancy need to be provided

Redundancy can be applied to a procedure, or to a

process, or to the whole software system

= which modules are to be made redundant

Usually, the components which have high probability

of faults are chosen to be made redundant.

v The increase in complexity caused by redundancy
can be quite severe and may diminish the
dependability improvement

<

AN

LT
T ———— .

© Gert Jervan, TTU/ATI

IAF0530 - Susteemide usaldusvaarsus ja veakindlus

Single-Version (Dynamic) Techniques

v Dynamic redundancy kicks in only when an error is
detected.

v Four phases
= 1. Error detection:

fault tolerance techniques effective only when an error is
detected

= 2. Damage assessment and containment:

to what extent the “damage” has spread because of the
delay between a fault and its manifestation/detection?

= 3. Error recovery:

techniques to reach from a corrupted to a safe state
= 4. Fault treatment and continued service:

error correction.

1
mn

© Gert Jervan, TTU/ATI

IAF0530 - Siusteemide usaldusvaarsus ja veakindlus

1 - Error Detection

v The goal is to determine that a fault has
occurred within a system.

v Various types of acceptance tests are used to
detect faults
= the result of a program is subjected to a test

= if the result passes the test, the program
continues its execution

= a failed test indicates a fault

np
il TALLINNA TEINAUL KOO 59
i v

© Gert Jervan, TTU/ATI IAF0530 - Susteemide usaldusvaarsus ja veakindlus

Acceptance Test

v Acceptance test is most effective if it can be
calculated in a simple way and if it is based on
criteria that can be derived independently of the
program application.

v The existing techniques include
= timing checks
= coding checks
= reversal checks
= reasonableness checks
= structural checks
= replication checks
= dynamic reasonableness checks

i
il TALUNNA TERIKADLIKOOL 60
i

Gert Jervan, TTU/ATI

10

TAF0530 - Susteemide usaldusvaarsus ja veakindlus

© Gert Jervan, TTU/ATI

Timing Checks

v Timing checks are applicable to system
whose specification include timing constrains
v Based on these constrains, checks are
developed to indicate a deviation from the
required behavior.
= Watchdog timer is an example of a timing check

= Watchdog timers are used to monitor the
performance of a system and detect lost or locked
out modules.

LT
T —————— o1

4.04.2011

IAF0530 - Siisteemide usaldusvaarsus ja veakindlus

Coding Checks

© Gert Jervan, TTU/ATL

v Coding checks are applicable to system
whose data can be encoded using information
redundancy techniques

v Usually used in cases when the information is
merely transported from one module to
another without changing it content.

= Arithmetic codes can be used to detect errors in
arithmetic operations

1
B s veunaouskoon -

© Gert Jervan, TTU/ATI

IAF0530 - Siusteemide usaldusvaarsus ja veakindlus

Reversal Checks

v In some system, it is possible to reverse the
output values and to compute the
corresponding input values.

v A reversal checks compares the actual inputs
of the system with the computed ones.

= a disagreement indicates a fault.

np
il TALLINNA TEINAUL KOO 63
i v

© Gert Jervan, TTU/ATI IAF0530 - Susteemide usaldusvaarsus ja veakindlus

Reasonableness Checks

v Reasonableness checks use semantic
properties of data to detect fault.

= a range of data can be examined for overflow or
underflow to indicate a deviation from system's

requirements
v Maximum withdrawal sum in bank’s teller
machine
v Address generated by a computer should lie
inside the range of available memory

1
mn

© Gert Jervan, TTU/ATI

IAF0530 - Siusteemide usaldusvaarsus ja veakindlus

Structural Checks

v Structural checks are based on known
properties of data structures
= a humber or elements in a list can be counted, or
links and pointer can be verified
v Structural checks can be made more efficient
by adding redundant data to a data
structure,

= attaching counts on the number of items in a list,
or adding extra pointers

np
il TALLINNA TEINAUL KOO 65
i v

© Gert Jervan, TTU/ATI

IAF0530 - Susteemide usaldusvaarsus ja veakindlus

2 - Damage Assessment & Containment

<

Necessary due to the delay between fault and error
Goal of containment is to minimize damage caused
by a faulty component

= “firewalling”

Assessment closely related to containment
techniques used

Techniques for fault containment:

= modularization

= partitioning

= system closure

= atomic actions

A

AN

<

1
mn

Gert Jervan, TTU/ATI

11

© Gert Jervan, TTU/ATI

TAF0530 - Susteemide usaldusvaarsus ja veakindlus

Modularization

v Software system is divided into modules with
few or no common dependencies between
them

v Modularization attempts to prevent the
propagation of faults

= by limiting the amount of communication between
modules to carefully monitored messages

= by eliminating shared resources

LT
T —————— .

4.04.2011

© Gert Jervan, TTU/ATL

IAF0530 - Siisteemide usaldusvaarsus ja veakindlus

Partitioning

v Modular hierarchy of a software architecture is
partitioned in horizontal or vertical dimensions

v Horizontal partitioning separates the major software
functions into independent branches
= The execution of the functions and the communication

between them is done using control modules

v Vertical partitioning distributes the control and

processing function in a top-down hierarchy.

= High-level modules normally focus on control functions,
while low-level modules perform processing

1
B s veunaouskoon o

© Gert Jervan, TTU/ATI

IAF0530 - Siusteemide usaldusvaarsus ja veakindlus

System Closure

v System closure technique is based on a
principle that no action is permissible unless
explicitly authorized

v In an environment with many restrictions and
strict control all the interactions between the
elements of the system are visible
= prison

v It is easier to locate and disable any fault.

np
il TALLINNA TEINAUL KOO 69
i v

© Gert Jervan, TTU/ATI

IAF0530 - Susteemide usaldusvaarsus ja veakindlus

Atomic Action

v An atomic action among a group of
components in an activity in which the
components interact exclusively with each
other.
= no interaction with the rest of the system

v Two possible outcomes of an atomic action:
= it terminates normally
= it is aborted upon a fault detection

v Fault containment area is defined and fault
recovery is limited to atomic action
components

1!

© Gert Jervan, TTU/ATI

IAF0530 - Siusteemide usaldusvaarsus ja veakindlus

3 Fault Recovery

v Once a fault is detected and contained, a system
attempts to recover from the faulty state and regain
operational status

= If fault detection and containment mechanisms are
implemented properly, the effects of the faults are contained
within a particular set of modules at the moment of fault
detection.

v The knowledge of fault containment region is
essential for the design of effective fault recovery
mechanism

LT
T —————— n

© Gert Jervan, TTU/ATI IAF0530 - Susteemide usaldusvaarsus ja veakindlus

Exception Handling

v Exception handling is the interruption of normal
operation to handle abnormal responses

v Possible events triggering the exceptions:
= Interface exceptions
e signaled by a module when it detects an invalid service request
= Local exceptions

» signaled by a module when its fault detection mechanism
detects a fault

= Failure exceptions

» signaled by a module when it has detected that its fault
recovery mechanism is enable to recover successfully

1
B s veunaouskoon .

Gert Jervan, TTU/ATI

12

© Gert Jervan, TTU/ATI

TAF0530 - Susteemide usaldusvaarsus ja veakindlus

Recovery

v Forward or Backward

v Forward: continues from an erroneous state
by making selective corrections to the system
state
= includes making safe the controlled environment

which may be hazardous or damaged because of
failure

= system specific and depends upon accurate
predictions

= e.g., redundant pointers in data structures, self-
correcting codes

LT
T —————— 7

4.04.2011

© Gert Jervan, TTU/ATI TAF0530 - Susteemide usaldusvaarsus ja veakindlus

Recovery

v Backward: relies on restoring the system to a
previous safe state and executing an alternative
section of the program
= safe functionality but different algorithm
= the point to which a process is restored is called a recovery

point and the act of establishing it is called checkpointing.
= BER can be used to recover from unanticipated faults
including design errors.

State restoration is not always possible in (real-time)
embedded systems.

1
B s veunaouskoon 7a

© Gert Jervan, TTU/ATI

IAF0530 - Siusteemide usaldusvaarsus ja veakindlus

Backward Recovery

v Attempts to return the system to a correct or
error-free state.

v For transient faults Rollback
v Example: -t Recovery
recovery blocks checkpornt paint

(RcB)

Fault
tolerate

LT
T ———— 75

© Gert Jervan, TTU/ATI IAF0530 - Susteemide usaldusvaarsus ja veakindlus

Static Checkpoints

v A static checkpoint takes a single snapshot of
the system state at the beginning of the
program execution and stores it in the
memory.

» If a fault is detected, the system returns to this
state and starts the execution from the beginning.

= Fault detection checks are placed at the output of
the module

1
B s veunaouskoon 76

© Gert Jervan, TTU/ATI

IAF0530 - Siusteemide usaldusvaarsus ja veakindlus

Dynamic Checkpoints

v Dynamic checkpoints are created dynamically
at various points during the execution
m If a fault is detected, the system returns to the
last checkpoint and continues the execution.

= Fault detection checks need to be embedded in
the code and executed before the checkpoints are
created

LT
T —————— 2

© Gert Jervan, TTU/ATI

IAF0530 - Susteemide usaldusvaarsus ja veakindlus

Static vs. Dynamic

v In static approach, the expected time to complete
the execution grows exponentially with the execution
requirements.
= static checkpointing is effective only if the processing

requirement is relatively small.

v In dynamic approach, it is possible to achieve linear
increase in execution time as the processing
requirements grow

1
B s veunaouskoon 78

Gert Jervan, TTU/ATI

13

© Gert Jervan, TTU/ATI TAF0530 - Susteemide usaldusvaarsus ja veakindlus

Strategies for dynamic checkpointing

v Equidistant
= places checkpoints at deterministic fixed time intervals

= the time between checkpoints is chosen depending on the
expected fault rate

v Modular

= places checkpoints at the end of the sub-modules in a
module, after the fault detection checks for the submodule
are completed

= the execution time depends on the distribution of the sub-
modules and expected fault rate

v e Random

LT
T —————— 70

4.04.2011

© Gert Jervan, TTU/ATL

IAF0530 - Siisteemide usaldusvaarsus ja veakindlus

Advantages

v Conceptually simple
v Independent of the damage caused by a fault
v Applicable to unanticipated faults

v General enough to be used at multiple levels
in a system

ALLINNA TEHNIKADLIKOOL 80

© Gert Jervan, TTU/ATI IAF0530 - Siusteemide usaldusvaarsus ja veakindlus

Problems

v Non-recoverable actions exist in some systems
= these actions cannot be compensated by simply reloading the state
and restarting the system
 firing a missile
e soldering a pair of wires
v The recovery from such actions can be done
= by compensating for their consequences
* undoing a solder

= by delaying their output until after additional confirmation checks
are completed

« do a friend-or-foe confirmation before firing

LT
T ———— o1

© Gert Jervan, TTU/ATI

IAF0530 - Susteemide usaldusvaarsus ja veakindlus

Forward Recovery

v Attempts to find a new state from which the system
can continue operation.

v Utilize error compensation based on redundancy to
select or derive the correct answer or an acceptable
answer.

v Example: N-version programming (NVP), N-copy
programming (NCP), and the distributed recovery
block (DRB)

ALLINNA TEHNIKADLIKOOL 82

© Gert Jervan, TTU/ATI

IAF0530 - Siisteemide usaldusvaarsus ja veakindlus

Forward Recovery

v Efficient for predictable errors

— 41_ I

ﬁ?ﬂ It detecting and Imm‘ll'@

np
il TALLINNA TEINAUL KOO 83
i v

TN,
point

Fault tolerted

© Gert Jervan, TTU/ATI

IAF0530 - Susteemide usaldusvaarsus ja veakindlus

4 - Fault Treatment and Continued Service

v Even with recovery, the error may recure. Need to eradicate the
fault from the system

v Automatic treatment of faults is very application specific
v Make some assumptions. For instance:
= all faults are transient
v Fault treatment in two stages
= Fault location
= System repair
v Fault location

= use error detection techniques to trace a fault to a component
(hardware or software)

= System repair
* sometimes it has to be done while the system is in operation.

ALLINNA TEHNIKADLIKOOL 84

Gert Jervan, TTU/ATI

14

TAF0530 - Susteemide usaldusvaarsus ja veakindlus

© Gert Jervan, TTU/ATI

Multi-Version Techniques

v Multi-version techniques use two or more
versions the same software module, which
satisfy design diversity requirements.
= different teams, different coding languages or

different algorithms can be used to maximize the
probability that all the versions do not have
common faults

LT
T eo————— o

4.04.2011

IAF0530 - Siisteemide usaldusvaarsus ja veakindlus

© Gert Jervan, TTU/ATL

Design Diversity

v Higher cost

Input
Variant 1 Variant 2 eee Variant n
Incorrect
Decider
Correct
\mﬁ. TALUNNA TEHNIKAULIKOOL 86

© Gert Jervan, TTU/ATI

IAF0530 - Siusteemide usaldusvaarsus ja veakindlus

SFT Techniques Using Design Diversity

Techniques Abbr. Error Processing
Error detection by AT
Recovery Blocks RcB |and backward
recovery
N-Version NVP | Vote

Programming

Error detection by AT
and forward recovery

N Self-Checking

: NSCP
Programming

AT - Acceptance Test

np
il TALLINNA THIN AV KOO

87

© Gert Jervan, TTU/ATI IAF0530 - Susteemide usaldusvaarsus ja veakindlus

Recovery Blocks

v Combines checkpoint and restart approach with
standby sparing redundancy scheme

v n different implementations of the same program
= Only one of the versions is active

= If an error if detected by the acceptance test, a retry signal
is sent to the switch

= The system in rolled back to the state stored in the
checkpoint memory and the execution is switched to another
module

1
mn

© Gert Jervan, TTU/ATL IAF0530 - Siisteemide usaldusvaarsus ja veakindlus

Recovery Blocks

Exit
*

np
il TALLINNA TEINAUL KOO 89
i v

© Gert Jervan, TTU/ATI

IAF0530 - Susteemide usaldusvaarsus ja veakindlus

Recovery Blocks

Method Recovery block

Error Processing Error detection by AT and backward
Technique recovery

Criteria of Absolute, with respect to specification
Accepting

Result

Execution Scheme |Sequential

Consistency of Implicit, from backward recovery
Input Data principle

i
il TALUNNA TERIKADLIKOOL 20
i

Gert Jervan, TTU/ATI

15

© Gert Jervan, TTU/ATI TAF0530 - Susteemide usaldusvaarsus ja veakindlus

4.04.2011

© Gert Jervan, TTU/ATL

IAF0530 - Siisteemide usaldusvaarsus ja veakindlus

Recovery Blocks

v A language level support for backward error recovery
= blocks in the normal programming language sense, but
= at the entrance to the block is an automatic recovery point and

= at the exit an acceptance test to test that the system is an an
acceptable state

if the acceptance test fails, the program is restored to the recovery
point at the beginning of the block and an alternative module is
executed

= repeat this process with alternative modules

= if all fail, recovery must take place at a higher level
v In terms of four phases of software fault tolerance

m Error detection <-> acceptance test

= Damage assessment <-> not needed due to BER

= Fault treatment <-> stand-by spare code

LT
T —————— o

Recovery Blocks

v Similarly to cold and hot standby sparing, different
version can be executed either serially, or
concurrently
= Serial execution may require the use of checkpoints to

reload the state before the next version is executed
= The cost in time of trying multiple versions serially may be
too expensive, especially for a real-time system.

= A concurrent system requires n redundant hardware
modules, a communications network to connect them and
the use of input and state consistency algorithms.

TALLINNA TEHNIKADLIKOOL 92

© Gert Jervan, TTU/ATI

IAF0530 - Stisteemide usaldusvaarsus ja veakindlus

Syntax of Recovery Blocks

v Recovery blocks can be

=)
g;sure acceptance test nested
=<primary module= v If all alternatives in a
else by nested recovery block
=aliernative module= fail the acceptance test,
else by the outer level recovery
=alizrnative module= point will be restored
= (and an alternative
else by module to that block will
<aliemative module> be executed).
else error
A FLna reaskavuikoor -

© Gert Jervan, TTU/ATI

IAF0530 - Susteemide usaldusvaarsus ja veakindlus

N-Version Programming

v Resembles N-modular hardware redundancy

v N different software implementations of a module
are executed concurrently.

v The selection algorithm (voter) decides which of the
answers is correct
= a voter is application independent

= this is an advantage over recovery block fault detection
mechanism, requiring application dependent acceptance
tests

1
B s veunaouskoon o

© Gert Jervan, TTU/ATL IAF0530 - Siisteemide usaldusvaarsus ja veakindlus

© Gert Jervan, TTU/ATI

IAF0530 - Susteemide usaldusvaarsus ja veakindlus

NVP

|
Enter
¥

Distribute
Inputs

T

| Versioni } & =8 Vervion N-I CRCICR

— 7 =

Fersion N

Version N-i

Exception

Exit Fatiure

np
il TALLINNA TEINAUL KOO 95
i v

N-version Programming

Method N-version programming

Error Processing Vote
Technique

Criteria of

Relative, on variant results
Accepting Result

Execution Scheme |Parallel

Consistency of

Explicit by dedicated
Input Data

mechanisms

TALLINNA TEHNIKADLIKOOL 96

Gert Jervan, TTU/ATI

16

© Gert Jervan, TTU/ATI

TAF0530 - Susteemide usaldusvaarsus ja veakindlus

N-Version Programming

v Consists of independent generation of N (>2) functionally
equivalent programs from same initial specifications
= Design Diversity, Different Programming Language, Methods..
v Programs execute concurrently, results are arrived at by
consensus (majority voting).
v Questions
= How are results compared? How is voting conducted?
v NVP depends upon

= good initial specification, independence of effort, abundance of
effort.

v NVP can be taken further
= compiling, processing, ...

I
Il TALLINNA TEHNIKAULIKOOL 97

4.04.2011

© Gert Jervan, TTU/ATI TAF0530 - Susteemide usaldusvaarsus ja veakindlus

NVP

v Controlled by a driver process
= invokes each of the versions
= waiting for the versions to complete
= comparing and acting on the results
v Problem: assumes programs run to completion!
= So the versions must actually interact (with the driver program)

e Comparison Points: points in the versions when programs must
communicate their votes to the driver process

« Defines granularity of the fault tolerance

= How the versions communicate and synchronize depend upon the
programming language used, its model of concurrency

TALLINNA TEHNIKADLIKOOL 98

© Gert Jervan, TTU/ATI

IAF0530 - Siusteemide usaldusvaarsus ja veakindlus

Vote Comparison in NVP

v Efficiency of vote comparison is critical

v Complicated by comparison procedure
= Not all results are single numeric values
= The “consistent comparison problem”

e When using “thresholds” for comparison the errors can stack
up, resulting different execution paths in all versions.

Two sequential thresholding lead
to different execution paths in all
three versions.

The problem will reappear even
when using inexact comparison
(just have to be near a threshold

<> value).

And what happens when there are
multiple solutions? 99

I
il TALLINNA TEHNIKAULIKOOL

© Gert Jervan, TTU/ATI IAF0530 - Susteemide usaldusvaarsus ja veakindlus

NVP versus RB

NVP is static where as RB is dynamic redundancy
v Both have design overheads

= alternative algorithms

= NVP requires a driver

= RB requires an acceptance test
v Runtime overheads

= NV requires more resources

= RB requires establishing recovery points
v Both susceptible to errors in requirements

Error detection

= vote comparison (NVP) versus acceptance test (RB)
v Atomicity requirement

= NV vote before it outputs to the environment, RB must output only
following the passing of the acceptance test.

TALLINNA TEHNIKADLIKOOL 100

© Gert Jervan, TTU/ATI IAF0530 - Siusteemide usaldusvaarsus ja veakindlus

N Self-Checking Programming

v N self-checking programming combines
recovery block concept with N version
programming

v The checking is performed either by using
acceptance tests, or by using comparison.

v Examples of applications of N self-checking
programming:
= Lucent ESS-5 phone switch
= Airbus A-340 airplane

np
IR TALLINNA TEHNIKAULIKOOL 101

© Gert Jervan, TTU/ATI

IAF0530 - Susteemide usaldusvaarsus ja veakindlus

Enter
Distribute
Inputs
‘ Variant1 H Variant2 ‘ ‘ Variant3 ‘ ‘ Variant4 ‘
Gather results Gather results
gpexception

oot

2 agre®

W, air 02
s

Gather Results

Gather results

Select ouput Exception
Exit Failure
TALLINNA TEHNIKAULIKOOL i

Gert Jervan, TTU/ATI

17

© Gert Jervan, TTU/ATI

TAF0530 - Susteemide usaldusvaarsus ja veakindlus

NSCP

Method

N self-checking programming

Error Processing
Technique

Error detection and result switching
Then, Detection by comparison or by AT(s)

Criteria of Accepting
Result

Relative, on variant results or Absolute
with respect to specification

Execution Scheme

Parallel

Consistency of Input
Data

Explicit, by dedicated mechanisms

np
il TALLINNA TEINAUL KOO

103

4.04.2011

© Gert Jervan, TTU/ATL

IAF0530 - Siisteemide usaldusvaarsus ja veakindlus

Comparison

v N self-checking programming using
acceptance tests
m The use of separate acceptance test for each
version is the main difference of this technique
from recovery blocks
v N self-checking programming using
comparison
= resembles triplex-duplex hardware redundancy

= An advantage over N self-checking programming
using acceptance tests is that the application
independent decision algorithm is used for fault

aoodetection, 104

© Gert Jervan, TTU/ATI

IAF0530 - Stisteemide usaldusvaarsus ja veakindlus

Data Diversity

© Gert Jervan, TTU/ATI

IAF0530 - Susteemide usaldusvaarsus ja veakindlus

SFT Techniques Using Data Diversity

v To complement design diversity

v Using data re-expression algorithms (DRA) to obtain
logically equivalent variants of the input data

X Execute R,

P i)
Plxy)
Plx)

Decompose | Recombine
LS . P["‘J P“E] M"‘”
Data re-expression via decomposition and recombination
A ExLuasna rrnkavLKoo! -

SFT Techniques

Abbr. Error Processing

Retry Biocks

X
Z
vy)

Acceptance test and
Backward recovery

N-Copy Programming

NCP Run the same process
concurrently or
sequentially

ALLINNA TEHNIKADLIKOOL

106

© Gert Jervan, TTU/ATI

IAF0530 - Siisteemide usaldusvaarsus ja veakindlus

Retry Blocks

Initiatize
ehneckpoint

A0 DRA £xh
AND fDeadline
o expired,

Execuie Restare
Algarisiun checkpoint

ek
Baachip

Evuliaie AT
for bk
Discerd
cheigmint
Exception
Fail
e wilre
LT
B TALLINNA TELNIKAULIKOOL 107

© Gert Jervan, TTU/ATI

IAF0530 - Susteemide usaldusvaarsus ja veakindlus

Retry Blocks

Method Retry blocks
Error Processing Error detection by AT and backward
Technique recovery by DRA

Criteria of Accepting
Result

Absolute, with respect to specification

Execution Scheme

Sequential

Consistency of Input
Data

Implicit, from backward retry principle

ALLINNA TEHNIKADLIKOOL

108

Gert Jervan, TTU/ATI

18

© Gert Jervan, TTU/ATI

IAF0530 - Slsteemide usaldusvaarsus ja veakindlus

|
Enter
+
Distribute
Tuputs
' Verstonl | ' Ferston2 aa e Versiom '
Gather resiiits
Select onput .= ‘E“E};’”‘”’
Frit Fuailure
S Ao reesavnsrodk 109

4.04.2011

© Gert Jervan, TTU/ATL

IAF0530 - Siisteemide usaldusvaarsus ja veakindlus

N-copy Programming

Method N-copy programming

Decision mechanism (DM) and
forward recovery

Error Processing
Technique

Criteria of Accepting |Relative, on variant results

Result

Execution Scheme Parallel

Consistency of Input |Explicit by dedicated mechanisms

Data

1
B s veunaouskoon 110

© Gert Jervan, TTU/ATI

IAF0530 - Siusteemide usaldusvaarsus ja veakindlus

Design Diversity

v The most critical issue in multi-version
software fault tolerance techniques is
assuring independence between the different
versions of software through design diversity

v Software systems are vulnerable to common
design faults if they are developed by the
same design team, by applying the same
design rules and using the same software
tools

LT
T Teo————— e

© Gert Jervan, TTU/ATI IAF0530 - Susteemide usaldusvaarsus ja veakindlus

Design Diversity

v Decision to be made when developing a
multiversion software system include
= which modules are to be made redundant
e usually less reliable modules are chosen
= the ievel of redundancy
e procedure, process, whole system
= the required number of redundant versions
= the required diversity

e diverse specification, algorithm, code, programming
language, testing technique

m rules of isolation between the development teams

1
B s veunaouskoon 112

Gert Jervan, TTU/ATI

19

