
2012-02-07

1

IAF0530/IAF9530

Süsteemide usaldusväärsus ja
veakindlus
Dependability and fault tolerance p y

Gert Jervan
Department of Computer Engineering
Tallinn University of Technology

General Information

• Contents:
Dependability and fault tolerance

www.pld.ttu.ee/IAF0530

• Lecturer & Examiner:

©
G

er
t

Je
rv

a
n

Gert Jervan
IT-229 620 2261

gert.jervan@pld.ttu.ee
www.pld.ttu.ee/~gerje

2

Course Plan

• 16 occasions, á 1,5 hours
Tuesdays 12:00-13:30

• 8 Lectures (No meetings on Feb 28,
March 13, May 8)

©
G

er
t

Je
rv

a
n

y)

• Case Studies
− Introductory presentation (5 min)
− 20 min/30 min presentation of the final

report
− Written report (6 pages, using predefined

template; 10 pages for PhD students)

• Exam (sort of)
3

Reading

• Various papers (on the course
homepage)

www.pld.ttu.ee/IAF0530

T tb k

©
G

er
t

Je
rv

a
n

• Textbooks
• Incident/accident reports
• Web pages

4

Textbooks

• Safety-critical Computer Systems
− Neil Storey
− Addison Wesley, 1996.

− An introductory text which provides

©
G

er
t

Je
rv

a
n

overview of safety related aspects and
methods in computer systems
development.

5

Textbooks

• Reliability Engineering:
Theory and Practice.
− Alessandro Birolini
− Springer
− 2010 (6th ed.), 2007 (5th ed.)

©
G

er
t

Je
rv

a
n

− This book shows how to build in,
evaluate, and demonstrate reliability
& availability of components,
equipment, systems. It presents
the state-of-the-art of reliability
engineering, both in theory and practice

6

2012-02-07

2

Textbooks

• Fault-Tolerant Systems
− Israel Koren and C. Mani

Krishna
− Morgan-Kaufman Publishers,

2007

©
G

er
t

Je
rv

a
n

7

This book covers comprehensively the design of fault-
tolerant hardware and software, use of fault-tolerance
techniques to improve manufacturing yields and design and
analysis of networks. Additionally it includes material on
methods to protect against threats to encryption
subsystems used for security purposes.

Case Studies

• Topic categories:
− Accident analysis
− System safety analysis
− Literature survey
− Something else (implementation, tool

©
G

er
t

Je
rv

a
n

g (p
study, etc.)

− Requires prior ack.

Literature and sample (!) topics on the
webpage

8

Case Studies

• Some examples:
− Clock synchronization
− Atomic and reliable broadcast
− Algorithmic based fault-tolerance
− System level diagnosis - distributed algorithms
− Fault-tolerant transaction processing systems

©
G

er
t

Je
rv

a
n

p g y
− Measures of software reliability
− Validation and verification techniques
− CAN (Controller Area Network) protocol
− Fault-Tolerance in E-Commerce Web Servers
− Fault tolerance in wired and wireless systems
− Nano tubes
− ...

9

Case Studies

• Topic selection:
− February 28 (via e-mail, no lecture at that

day)

• Draft of the report (incl. introductory
presentation of the topic, 1 page):

h 20

©
G

er
t

Je
rv

a
n

− March 20

• Presentations:
− April 24 – May 15

• Final Report:
− May 31st
− The best reports will be published in A&A

(selected topics only, preferably in Estonian)

10

Course Outline (Preliminary)

• Feb 7: Introduction
• Feb 14, Feb 21: Lectures II and III
• Feb 28: No lecture – topic selection (via e-

mail)
• March 6: Lecture IV
• March 13: No lecture

©
G

er
t

Je
rv

a
n

March 13: No lecture
• March 20: Introductory presentation of the

topic (5 min each)
• March 27 – April 17: Lectures V - VIII
• April 24 – May 15: Case study

presentations

11

Course overview

12

2012-02-07

3

Course Overview

• Reliability: increasing concern
− Historical

• High reliability in computers was needed in
critical applications: space missions, telephone
switching, process control etc.

©
G

er
t

Je
rv

a
n

− Contemporary
• Extraordinary dependence on computers: on-

line banking, commerce, cars, planes,
communications etc.

• Hardware is increasingly more fault-prone
(complexity, technology, environment)

• Software is increasingly more complex
• Things simply do not work without special

reliability measures

13

Hardware - Background

• Chip designers, device engineers and the high-
reliability community recognize that reliability
concerns ultimately limit the scalability of any
generation of microelectronics technology

• Statistical methods and reliability physics
provide the foundation for better understanding
the next generation of scaled microelectronics

©
G

er
t

Je
rv

a
n

the next generation of scaled microelectronics
− Microelectronics device physics
− Reliability analysis and modeling
− Experimentation
− Accelerated testing
− Failure analysis

• The design, fabrication and implementation of
highly aggressive advanced microelectronics
requires expert controls, modern reliability
approaches and novel qualification strategies

14

Scaling Trends & Reliability
Considerations
• A lot of technology concerns:

− Reduced gate oxide thicknesses
− Increased thermal/power densities
− Reduced interconnect dimensions
− Higher device operating temperatures

©
G

er
t

Je
rv

a
n

g p g p
− Increased sensitivity to defects and

statistical process variations
− Introduction of new materials with each

new generation, replacing proven
materials

• e.g. Cu and low K inter-level dielectrics for Al
and SiO2

15

Scaling Trends & Reliability
Considerations
• Dramatic increase in processing steps with each

new generation
− approx. 50 more steps per generation and a

new metal level every 2 generations
• Rush to market - Less time to characterize new

materials than in the past

©
G

er
t

Je
rv

a
n

− e.g. reliability issues with new materials not
fully understood and potential new failure
modes

• Manufacturers’ trends to provide ‘just enough’
lifetime, reliability, and environmental specs for
commercial & industrial applications
− e.g. 3-5 yr product lifetimes, trading off

‘excess’ reliability margins for performance

16

Scaling Trends & Reliability
Considerations
• Significant rise in the amount of proprietary

technology and data developed by
manufacturers, reluctance to share information
with hi-relevance customers
− e.g. process recipes, process controls,

process flows, design margins, MTTF

©
G

er
t

Je
rv

a
n

• Next generation microelectronics focus on the
performance needs of the commercial customer,
with little or no emphasis on the extreme needs
− e.g. extended life, extreme environments,

high reliability
• Increasingly difficult testability challenges due to

device complexity

17

Correct or Defective?

Theory:

©
G

er
t

Je
rv

a
n

18

Reality:

2012-02-07

4

Product Technical Trends

©
G

er
t

Je
rv

a
n

19*MRQW-2002, Bernstein

Software complexity is a
challenge

• Boeing 747  0.4 M LOC
• Boeing 777  4 M LOC
• Technology Review 2002

• Exponential increase in

Aviation: Automotive:
 2010 Premium  100 M LOC

 1995 – 2000  52%/Year

 2001 – 2010  35%/Year
Tony Scott, GM CIO

Exponential increase in
software complexity

• In some areas code size is
doubling every 9 months [ST
Microelectronics, Medea
Workshop, Fall 2003]

• ... > 70% of the development
cost for complex systems such
as automotive electronics and
communication systems are
due to software development
[A. Sangiovanni-Vincentelli,
1999]

Rob van Ommering, COPA Tutorial, as cited by: Gerrit Müller:
Opportunities and challenges in embedded systems,
Eindhoven Embedded Systems Institute, 2004

 2011 – BMW is the first
manufacturer to break the 1Gb
barrier

Course Overview

• To get an insight into the broad area of system
safety

• We cover techniques for high availability, fault
tolerance, monitoring, detection, diagnosis, and
confinement of failure, ways to improve
availability through fast recovery and graceful

i d d ti d t h i f i

©
G

er
t

Je
rv

a
n

service degradation, and techniques for using
redundancy and replication.

• We also discuss the utopia of flawless software,
the impact of scale on availability, ways to cope
with human operator error, and metrics for
evaluating dependability.

21

Contents

• Fault tolerance
• System reliability
• Hardware redundancy
• Error detection techniques
• Coding techniques

©
G

er
t

Je
rv

a
n

• Processor-level detection and recovery
• Disk arrays
• Checkpointing and recovery
• Software fault tolerance
• Testing distributed real-time systems
• ...

22

Lecture Outline

 Historical perspective and
f i id t / id t

• Basic terminology

23

famous incidents/accidents

Murphy’s Law

• “If something can go wrong, it will go
wrong”

Major Edward A. Murphy, Jr.
US Air Force, 1949

©
G

er
t

Je
rv

a
n

• “Every component than can be installed
backward, eventually will be”

24

2012-02-07

5

Genesis Space Capsule

• $260 million Genesis capsule was collecting
samples of the solar wind over 3 years period

• Crashed in Sept 2004 due to the failure of the
parachutes

• Reason: the
deceleration sensors

the accelerometers

©
G

er
t

Je
rv

a
n

25

— the accelerometers
— were all installed
backwards. The craft’s
autopilot never got a
clue that it had hit an
atmosphere and that
hard ground was just
ahead.

Mars Orbiter

• One of the Mars Orbiter probes crashed
into the planet in 1999.

• It did turn out that engineers who built
the Mars Climate Orbiter had provided a
data table in "pound-force" rather than

©
G

er
t

Je
rv

a
n

newtons, the metric measure of force.
• NASA flight controllers at the Jet

Propulsion Laboratory in Pasadena,
Calif., had used the faulty table for their
navigation calculations during the long
coast from Earth to Mars.

26

Lockheed Martin Titan 4

• In 1998, a LockMart Titan 4 booster
carrying a $1 billion LockMart Vortex-
class spy satellite pitched sideways and
exploded 40 seconds after liftoff from
Cape Canaveral, Fla.

©
G

er
t

Je
rv

a
n

• Reason: frayed wiring that apparently
had not been inspected. The guidance
systems were without power for a
fraction of a second.

27

Therac-25

• Therac-25:
− the most serious computer-related accidents

to date (at least nonmilitary and admitted)
− machine for radiation therapy (treating

cancer)
− between June 1985 and January 1987 (at

©
G

er
t

Je
rv

a
n

y (
least) six patients received severe overdoses
(two died shortly afterward, two might have
died but died because of cancer, the other
two had permanent disabilities)

− scanning magnets are used to spread the
beam and vary the beam energy

− dual-mode: electron beams for surface
tumors, X-ray for deep tumors

28

©
G

er
t

Je
rv

a
n

29

Denver Airport

• Denver International Airport, Colorado:
intelligent luggage transportation
system with 4000 “Telecars”, 35km
rails, controlled by a network of 100
computers with 5000 sensors, 400 radio
antennas and 56 barcode readers

©
G

er
t

Je
rv

a
n

antennas, and 56 barcode readers.
Price: $186 million (BAE Automated
Systems).

• Due to SW problems about one year
delay which costs $1.1 million per day
(1993).

• Abondoned in 2005 to save $1 million
per month on maintenance

30

2012-02-07

6

Lecture Outline

 Historical perspective and
famous incidents/accidents

31

• Basic terminology

Embedded Systems

• Computing systems are everywhere
• Most of us think of “desktop” computers

− PC’s
− Laptops
− Mainframes

©
G

er
t

Je
rv

a
n

− Servers

• But there’s another type of computing
system
− Far more common...

32

General-Purpose vs. Embedded

General purpose
(ca 300 mln. processors)

Microprocessor
market shares

98 %

©
G

er
t

Je
rv

a
n

33

Embedded processors
(ca 9000 mln. processors)

2 %

Embedded Systems, cont.

• Embedded computing
systems
− Computing systems

embedded within
electronic devices
H d t d fi N l

©
G

er
t

Je
rv

a
n

− Hard to define. Nearly any
computing system other
than a desktop computer

− Billions of units produced
yearly, versus millions of
desktop units

− Perhaps 50 per household
and per automobile

34

A “Short List” of Embedded
Systems

Anti-lock brakes
Auto-focus cameras
Automatic teller machines
Automatic toll systems
Automatic transmission
Avionic systems
Battery chargers
Camcorders
Cell phones
Cell-phone base stations
Cordless phones

Modems
MPEG decoders
Network cards
Network switches/routers
On-board navigation
Pagers
Photocopiers
Point-of-sale systems
Portable video games
Printers
Satellite phones

35
Our daily lives depend on embedded systems

Cordless phones
Cruise control
Curbside check-in systems
Digital cameras
Disk drives
Electronic card readers
Electronic instruments
Electronic toys/games
Factory control
Fax machines
Fingerprint identifiers
Home security systems
Life-support systems
Medical testing systems

Satellite phones
Scanners
Smart ovens/dishwashers
Speech recognizers
Stereo systems
Teleconferencing systems
Televisions
Temperature controllers
Theft tracking systems
TV set-top boxes
VCR’s, DVD players
Video game consoles
Video phones
Washers and dryers

What is an Embedded System?

• Definition
− an embedded system special-purpose computer

system, part of a larger system which it controls.

• Notes
− A computer is used in such devices primarily as a

means to simplify the system design and to
id fl ibilit

©
G

er
t

Je
rv

a
n

provide flexibility.
− Often the user of the device is not even aware that

a computer is present.

36

2012-02-07

7

Characteristics of Embedded
Systems
• Single-functioned

− Dedicated to perform a single function

• Complex functionality
− Often have to run sophisticated algorithms or

multiple algorithms.
• Cell phone, laser printer.

©
G

er
t

Je
rv

a
n

• Tightly-constrained
− Low cost, low power, small, fast, etc.

• Reactive and real-time
− Continually reacts to changes in the system’s

environment
− Must compute certain results in real-time without

delay

• Safety-critical
− Must not endanger human life and the

environment 37

Real-Time Systems

• Time
− The correctness of the system behavior

depends not only on the logical results of the
computations, but also on the time at which
these results are produced.

©
G

er
t

Je
rv

a
n

• Real
− The reaction to the outside events must occur

during their evolution. The system time must
be measured using the same time scale used
for measuring the time in the controlled
environment.

38

Hard vs. Soft Real-Time

• Definitions
− A real-time task is said to be hard if missing

its deadline may cause catastrophic
consequences on the environment under
control.

− A real-time task is said to be soft if meeting
its deadline is desirable for performance

©
G

er
t

Je
rv

a
n

its deadline is desirable for performance
reasons, but missing its deadline does not
cause serious damage to the environment
and does not jeopardize correct system
behaviour.

• Definition
− A real-time system that is able to handle hard

real-time tasks is called a hard real-time
system.

39

Hard vs. soft, cont.

• Examples of hard activities
− Sensory data acquisition
− Detection of critical conditions
− Actuator serving
− Low-level control of critical system components
− Planning sensory-motor actions that tightly

interact with the environment

©
G

er
t

Je
rv

a
n

interact with the environment
• Examples of soft activities

− The command interpreter of the user interface
− Handling input data from the keyboard
− Displaying messages on the screen
− Representation of system state variables
− Graphical activities
− Saving report data

40

Functional vs. Non-Functional
Requirements

• Functional requirements
− output as a function of input

• Non-functional requirements:

©
G

er
t

Je
rv

a
n

Non functional requirements:
− Time required to compute output
− Reliability, availability, integrity,

maintainability, dependability
− Size, weight, power consumption, etc.

41

Fault Tolerance

• A fault-tolerant system is one that can
continue to correctly perform its
specified tasks in the presence of
failures:
− hardware

©
G

er
t

Je
rv

a
n

− software
− user errors
− environmental, input, ...

• Fault tolerance is the attribute that
enables a system to achieve fault
tolerant operation.

42

2012-02-07

8

Basic Concepts

• Fault Tolerance is closely related to the
notion of “Dependability”. This is
characterized under a number of
headings:
− Availability – the system is ready to be

used immediately.

©
G

er
t

Je
rv

a
n

y
− Reliability – the system can run

continuously without failure.
− Safety – if a system fails, nothing

catastrophic will happen.
− Maintainability – when a system fails, it

can be repaired easily and quickly (and,
sometimes, without its users noticing the
failure).

43

Faults, Errors & Failures

• Fault: a defect within the system or a
situation that can lead to the failure

• Error: manifestation of the fault – an
unexpected behavior

©
G

er
t

Je
rv

a
n

• Failure: system not performing its
intended function

Fault  Error  Failure

44

Fault Examples

• Bit flips in hardware due to cosmic
radiation
− A person on an airplane over the Atlantic

at 35,000 ft working on a laptop with 256
Mbytes (2 Gbits) of memory. At this
altitude the SER of 600 FITs per megabit

©
G

er
t

Je
rv

a
n

altitude, the SER of 600 FITs per megabit
becomes 100,000 FITs per megabit,
resulting in a potential error every five
hours.

− 1 FIT (failures in time), is the number of
failures in 1 billion device-operation
hours. A measurement of 1000 FITs
corresponds to a MTTF (mean time to
failure) of approximately 114 years.

45

Fault Examples

• Year 2000 bug
• Loose wire
• Aircraft retracting

its landing gear
while on ground

• Effects in time:
− Permanent
− Transient
− Intermittent

g

46

Permanent

• A permanent fault or failure is one which
is stable and continuous.

• Permanent hardware failures require
some component to be replaced or

©
G

er
t

Je
rv

a
n

p p
repaired.

• An example of a permanent fault would
be a VLSI chip with a manufacturing
defect, causing one input pin to be stuck
high (stuck-at-1).

47

Transient

• A transient fault is one which results
from a temporary environmental
condition.

• For example, a voltage spike might

©
G

er
t

Je
rv

a
n

p g p g
cause a sensor to report an incorrect
value for a few milliseconds before
reporting correctly.

48

2012-02-07

9

Transient faults

 Happen for a short time

 Corruptions of data,
miscalculation in logic

 Do not cause a permanent

49

Radiation

Electromagnetic interference (EMI)

Lightning storms

damage of circuits

 Causes are outside system
boundaries

Intermittent

• An intermittent fault is one which only
manifests occasionally, due to unstable
hardware or certain system states.

• A loose contact on a connector will often
cause an intermittent fault.

©
G

er
t

Je
rv

a
n

• Intermittent electrical faults, as a rule,
are notoriously difficult to
detect. Typically, whenever the fault
doctor shows up, the system works fine.

50

Intermittent faults

Crosstalk Manifest similar as
transient faults

 Happen repeatedly

51

Internal EMI

Power supply fluctuations

Init (Data)

Software errors (Heisenbugs)

Happen repeatedly

 Causes are inside
system boundaries

Soft Errors

01

©
G

er
t

Je
rv

a
n

• Transient bit-flip (soft memory error)
− Random event
− Corrupts the value but not the cell
− Can be corrected (in contrast to hard errors

caused by faults in the hardware itself)
− Happen continuously during system lifetime

(i.e., can not be screened by burn-in tests) 52

Sources

• First traced to alpha particlce emissions
from chip packaging materials
− Most sources removed (pure materials,

different designs, shielding)

• Today’s main problem: cosmic radiation

©
G

er
t

Je
rv

a
n

− Cosmic particles from deep space
(actually 5th- or 6th-hand collision
particles)

• At ground level ca 95% neutrons, 5% protons

− Radioactive material in manufacturing
process

53

Sources (cont.)

• Four main sources:
− Low-energy alpha particles
− High-energy cosmic particles
− Thermal neutrons
− Poor system design

©
G

er
t

Je
rv

a
n

54

2012-02-07

10

Soft Errors

Transient pulse

©
G

er
t

Je
rv

a
n

The electric field in the depletion region directly
generates electron-hole pairs in its wake, causing the
charges to drift so that the transistor sees a current

disturbance
55

Evidence of Cosmic Ray Strikes

• Documented strikes in large servers found in error
logs
− Normand, “Single Event Upset at Ground Level,”

IEEE Transactions on Nuclear Science, Vol. 43, No.
6, December 1996.

• Sun Microsystems, 2000 (R. Baumann, Workshop
talk)

©
G

er
t

Je
rv

a
n

talk)
− Cosmic ray strikes on L2 cache with defective error

protection
• caused Sun’s flagship servers to suddenly and mysteriously

crash!

− Companies affected
• Baby Bell (Atlanta), America Online, Ebay, & dozens of other

corporations
• Verisign moved to IBM Unix servers (for the most part)

• 2005 – Los Alamos 2048-CPU HP server system
crashed frequently due to defective cashe

• 2010 Toyota brake problem (still not solved) 56

Current Situation

• Soft errors induced the highest failure
rate of all other reliability mechanisms
combined

©
G

er
t

Je
rv

a
n

Rober Baumann, TI

57

Measuring

• The rate at which SEUs (single-event-
upsets) occure is given as SER,
measured in FITs (failures in time)

• 1 FIT = 1 failure in 1 billion device-

©
G

er
t

Je
rv

a
n

operation hours

• 1000 FIT ≈ MTTF 114 years

58

Failure Classification

• Domain/Nature
− Value failure
− Timing failure

• Perception
− Consistent failure

• Effect
− Benign failure
− Malign/catastrophi

c failure

• Frequency
S l f l− Inconsistent

failure
− Single failure
− Repeated failure

59

Failures

• Crash Failure: After an error has been
detected, the component stops silently.

• Omission Failure: Sometimes a result is
missing; when result is available, it is
correct.

©
G

er
t

Je
rv

a
n

• Consistent Failure: If there are multiple
receivers, all see the same erroneous
result.

• Byzantine (Malicious, Asymmetric)
Failure: Different receivers see differing
results.

60

2012-02-07

11

Failures (cont.)

• Timing Failure: A server's response lies
outside the specified time interval.

• Response Failure: The server's
response is incorrect (value of the

©
G

er
t

Je
rv

a
n

p (
response is wrong, server deviates from
the correct flow of control).

• Arbitrary Failure: A server may
produce arbitrary responses at arbitrary
times.

61

Fault Handling

• Fault avoidance: eliminate problem sources
− Remove defects: Testing and debugging
− Robust design: reduce probability of defects
− Minimize environmental stress: Radiation shielding

etc

I ibl t id f lt l t l

©
G

er
t

Je
rv

a
n

Impossible to avoid faults completely

• Fault tolerance: add redundancy to mask effect
− Additional resources needed (more later)
− Examples:

• Error correction coding, voting and masking,
checksums, ...

• Backup storage, replication, ...
• Spare tire, etc

62

Fault Tolerance

• Fault detection is the process of
recognizing that a fault has occurred.
Fault detection is often required before
any recovery procedure can be initiated.
The techniques include error detection
codes self checking/failsafe logic

©
G

er
t

Je
rv

a
n

codes, self-checking/failsafe logic,
watchdog timers, and others.

• Fault location is the process of
determining where a fault has occurred
so that an appropriate recovery can be
initiated.

63

Fault Tolerance (cont.)

• Fault containment is the process of
isolating a fault and preventing the
effects of that fault from propagating
throughout the system.

©
G

er
t

Je
rv

a
n

• Fault recovery is the process of
remaining operational or regaining
operational status via reconfiguration
even in the presence of faults. A few
basic approaches are fault masking,
retry, and rollback.

64

Definitions

• Failure rate (λ):
− Average frequency with which something

fails.

hrfailureshrfailures
hrs

failures
/108.799/0007998.0

7502

6 6−×==

©
G

er
t

Je
rv

a
n

• Mean time to failure (MTTF):
− Average time between failures

65

λ
1=MTTF

Dependability

• Property of a computing system which
allows reliance to be justifiably placed
on the service it delivers

• Dependability =

©
G

er
t

Je
rv

a
n

p y
reliability + availability + safety +
security + ...

• Reliability  continuity of correct service
• Availability  readiness of usage
• Safety  no catastrophic consequences
• Security  prevention of unauthorized

access 66

2012-02-07

12

Dependability Concepts

Reliability:
a measure of the continuous delivery of service;
R(t) is the probability that the system survives
(does not fail) throughout [0, t];
expected value: MTTF(Mean Time To Failure)

Maintainability:
a measure of the service interruption
M(t) is the probability that the system will be
repaired within a time less than t;

Previous repair

Fault occurs

FAULT LatencyMTTF

Availability:
a measure of the service delivery with respect to
the alternation of the delivery and interruptions
A(t) is the probability that the system delivers
a proper (conforming to specification)service at
a given time t.
expected value: EA = MTTF / (MTTF + MTTR)

repaired within a time less than t;
expected value: MTTR (Mean Time To Repair)

Safety:
a measure of the time to catastrophic failure
S(t) is the probability that no catastrophic failures
occur during [0, t];
expected value:
MTTCF(Mean Time To Catastrophic Failure)

MTTR

MTBF

REPAIR TIME

Error -
fault becomes active
(e.g. memory
has write 0)

Error detection
(read memory,
parity error)

Repair memory

Next fault occurs

ERROR Latency

Reliability

• A measure of an it performing its
intended function satisfactorily for a
prescribed time and under given
environment conditions.

• Probability that system will survive to

©
G

er
t

Je
rv

a
n

y y
time t
− In aerospace industry the requirement is that

failure probability is 10-9 (one failure over 109

hours (114 000 years) of operation)

• Time To Failure (TTF)
• Mean Time To Failure (MTTF)

68

Commercial Chip Reliability
Estimation

69

*Extrapolated from ITRS roadmap, MRQW-2002, Bernstein

Availability

Time

up downupdown up

time-to-failure time-to-repair

©
G

er
t

Je
rv

a
n

• Availability:
− Probability that system is operational at time t

• High availability:
− MTTF  infinity (high reliability)
− MTTR  zero(fast recovery)

70

MTTRMTTF

MTTF
tyAvailabili

+
=

Maintainability

• M(t) is the probability that a failed
system will be restored within a
specified period of time t.

• Restoration process:
− locating problem, e.g. via diagnostics

©
G

er
t

Je
rv

a
n

− physically repairing system
− bringing system back to its operational

condition

71

Graceful Degradation

• The ability of system to automatically
decrease its level of performance to
compensate for hardware failure and
software errors.

©
G

er
t

Je
rv

a
n

72

2012-02-07

13

The Myth of the Nines

Nines Availability
Downtime
per year

Downtime
per week Example

2 nines 99% 3.65 days 1.7 hours General web site

©
G

er
t

Je
rv

a
n

73

3 nines 99.9% 8.75 hours 10.1 min E-commerce site

4 nines 99.99% 52.5 min 1.0 min
Enterprise mail
server

5 nines 99.999% 5.25 min 6.0 s Telephone system

6 nines 99.9999% 31.5 s 0.6 s Carrier-grade
network switch

Historical Evaluation

• Mean Time Between Failures:

MTBF = MTTR + MTTF

− ENIAC. MTBF: 7 minutes (18000 vacum tubes)
• ENIAC  TX-2 interactive computer (MIT)  web

©
G

er
t

Je
rv

a
n

− F-8 Crusader – first fly-by-wire, 375 hours  750
hours (IBM AP-101)

• MD-11
• A320 family

− Patriot missile defence system
• 1/3 sec in 100 hours, targeting error: 600 m
• Needed reboot after 8 hours, was learned in hard

way...

74

Ultra-Reliable Systems

• Airbus A320 family fly-by-wire system:
− computer controls all actuators
− no control rods, cables in the middle
− 7 central flight control computers

• 3 Motorola 68000
• 2 Intel 80C86

©
G

er
t

Je
rv

a
n

• 2 Intel 80C286

− software for hardware written by different
software houses (C, ASM, dedicated one,
specifically developed)

− all error checking & debugging performed
separately

− computer allows pilot to fly craft up to certain
limits (flight envelope)

• beyond: computer takes over
75

Hardware and Environment
Failures
• Moving parts, high speed, low tolerance,

high complexity: disks, tape
drives/libraries

• Lowest MTBF found in fans and power
supplies

©
G

er
t

Je
rv

a
n

• Often fans fail gradually  subtle,
sporadic failures in CPU, memory,
backplane

• Environment: power, cooling,
dehumidifying, cables, fire, collapsing
racks, ventilation, earthquakes, ...

76

Bathtub Curve

©
G

er
t

Je
rv

a
n

77

Device Reliability Trends

• As technology progresses, wearout
failures become statistically
indistinguishable from infant mortality
failures with the same wearout drivers.

I f t

Wearout
(intrinsic)

©
G

er
t

Je
rv

a
n

78

101

2010, β < 1.2

2000, β ~ 1.8
1990, β ~ 3

100

Log time (years in service)

Infant
mortality
(random,
extrinsic)

F
a

ilu
re

 R
a

te

(intrinsic)

*MRQW-2002, Bernstein

2012-02-07

14

System Design & Evaluation Top-
Level View

System Requirements

System Design System Evaluation

• System level analysis

79

Fault Avoidance Fault Tolerance

System level analysis
• Subsystem level

analysis
• Module/Component

level analysis

Possible Techniques
• FMEA
• FTA
• RBD
• Markov
• Petri net

Possible techniques
• Redundancy (Hardware,

Software, Information,
Time)

• Fault detection
• Fault masking
• Fault containment
• Reconfiguration

Possible techniques
• Parts selection
• Design reviews
• Quality control
• Design

Methodology
• Documentation

Safety

• Attribute of a system which either
operates correctly or fails in a safe
manner

• Freedom from expose to danger, or
exemption from hurt, injury or loss.

©
G

er
t

Je
rv

a
n

• “Fail-safe”: traffic lights start to blink
yellow

• Degrees of safety
• Closely related to risk

80

Risk

• A combination of the likelihood af an accident and the
severity of the potential consequences

• The harm that can result if a threat is actualised

• Acceptable/tolerable risk: The Ford Pinto case (1968)
BENEFITS
Savings: 180 burn deaths 180 serious burn injuries

©
G

er
t

Je
rv

a
n

Savings: 180 burn deaths, 180 serious burn injuries,
2,100 burned vehicles.
Unit Cost: $200,000 per death, $67,000 per injury, $700 per
vehicle.
Total Benefit: 180 X ($200,000) + 180 X ($67,000) +
$2,100 X ($700) = $49.5 million.

COSTS
Sales: 11 million cars, 1.5 million light trucks.
Unit Cost: $11 per car, $11 per truck.
Total Cost: 11,000,000 X ($11) + 1,500,000 X ($11) =
$137 million.

81

System Safety & Hazards

• Safety:
− achieved by anticipating accidents and

eliminating their causes

• Hazards are potential causes of

©
G

er
t

Je
rv

a
n

accidents
− Conditions in a system which together

with other factors in the environment
inevitably cause accidents

82

Reliability is a System Issue

Checkpointing and rollback, application
replication, software, voting (fault masking),
process pairs, robust data structures,
recovery blocks, N-version programming, Sw Implemented

Fault Tolerance

Application program
interface (API)

Middleware

Applications

83

Error correcting codes, M-out-of-N and standby
redundancy , voting, watchdog timers, reliable
storage (RAID, mirrored disks)

CRC on messages , acknowledgment,
watchdogs, heartbeats, consistency protocols

Memory management and exception handling,
detection of process failures, checkpoint and
rollback

Hardware

System network

Processing elements
Memory
Storage system

Operating system

Reliable communication

[Iyer]

Questions?

Gert Jervan

2012-02-07

15

Administrative issues

www.pld.ttu.ee/IAF0530

Gert Jervan
IT-229 620 2261

gert jervan@pld ttu ee

©
G

er
t

Je
rv

a
n

gert.jervan@pld.ttu.ee
www.pld.ttu.ee/~gerje

• Case Studies
− Presentation + report

• Exam

85

