IAF0530/IAF9530 Süsteemide usaldusväärsus ja veakindlus Dependability and fault tolerance Gert Jervan Department of Computer Engineering Tallinn University of Technology	 General Information Contents: Dependability and fault tolerance www.pld.ttu.ee/IAF0530 Lecturer & Examiner: Gert Jervan IT-229 620 2261 gert.jervan@pld.ttu.ee www.pld.ttu.ee/~gerje
	2

Course Overview	Hardware - Background
 Reliability: increasing concern Historical High reliability in computers was needed in critical applications: space missions, telephone switching, process control etc. Contemporary Extraordinary dependence on computers: online banking, commerce, cars, planes, communications etc. Hardware is increasingly more fault-prone (complexity, technology, environment) Software is increasingly more complex Things simply do not work without special reliability measures 	 Chip designers, device engineers and the high-reliability community recognize that reliability concerns ultimately limit the scalability of any generation of microelectronics technology Statistical methods and reliability physics provide the foundation for better understanding the next generation of scaled microelectronics Microelectronics device physics Reliability analysis and modeling Experimentation Accelerated testing Failure analysis The design, fabrication and implementation of highly aggressive advanced microelectronics requires expert controls, modern reliability approaches and novel qualification strategies

1990 2000 2010 Operating temperature, °C -55 to 125 -40 to +85 0 to 70 Supply voltage 5v 1.5v 6.8v Max. power (high perf.) 5 100 170 No. of package types <10 <60 ?? Design support life >10 yrs. 1-5 yrs. <1yrs. Production life >10 yrs. 3-5 yrs. <3yrs. Service life >20 yrs. 5-10 yrs. <5yrs.		Product Techni	cal Tr	rends		
*MPOW 2002 Remetain	rt Jervan	Operating temperature, *C Supply voltage Max, power (righ perf.) No. of package types Design support life Production life <u>Service life</u>	<u>1990</u> -55 to 125 5v <10 >10 yrs. >10 yrs. <u>>20 yrs.</u>	2000 -40 to +85 1.5v 100 <60 1.5 yrs, 3.5 yrs, 5-10 yrs,	2010 0 to 70 0.6v 170 ?? <1yr. <3yrs. < <u>5yrs.</u>	

	Murphy's Law	
	 "If something can go wrong, it will go wrong" <i>Major Edward A. Murphy, Jr. US Air Force, 1949</i> "Every component than can be installed backward, eventually will be" 	
		24

Genesis Space Capsule

- \$260 million Genesis capsule was collecting samples of the solar wind over 3 years period
- Crashed in Sept 2004 due to the failure of the parachutes
- Reason: the deceleration sensors — the accelerometers — were all installed backwards. The craft's autopilot never got a clue that it had hit an atmosphere and that hard ground was just ahead.

Lockheed Martin Titan 4

- In 1998, a LockMart Titan 4 booster carrying a \$1 billion LockMart Vortexclass spy satellite pitched sideways and exploded 40 seconds after liftoff from Cape Canaveral, Fla.
- Reason: frayed wiring that apparently had not been inspected. The guidance systems were without power for a fraction of a second.

27

	Therac-25	
	 Therac-25: the most serious computer-related accidents to date (at least nonmilitary and admitted) machine for radiation therapy (treating cancer) between June 1985 and January 1987 (at least) six patients received severe overdoses (two died shortly afterward, two might have died but died because of cancer, the other two had permanent disabilities) scanning magnets are used to spread the beam and vary the beam energy dual-mode: electron beams for surface tumors, X-ray for deep tumors 	
B		28

	Current Situation
	 Soft errors induced the highest failure rate of all other reliability mechanisms combined
11 Jet Vali	Rober Baumann, TI

	Measuring
	 The rate at which SEUs (single-event- upsets) occure is given as SER, measured in FITs (failures in time)
	 1 FIT = 1 failure in 1 billion device- operation hours
	• 1000 FIT \approx MTTF 114 years
	58

	The	Myth o	f the Ni	nes	
	Nines	Availability	Downtime per year	Downtime per week	Example
	2 nines	99%	3.65 days	1.7 hours	General web site
	3 nines	99.9%	8.75 hours	10.1 min	E-commerce site
	4 nines	99.99%	52.5 min	1.0 min	Enterprise mail server
	5 nines	99.999%	5.25 min	6.0 s	Telephone system
	6 nines	99.9999%	31.5 s	0.6 s	Carrier-grade network switch
c					
© Gert Jerva					7

Hardware and Environment Failures	
 Moving parts, high speed, low tolerance, high complexity: disks, tape drives/libraries 	
 Lowest MTBF found in fans and power supplies 	
 Often fans fail gradually → subtle, sporadic failures in CPU, memory, backplane 	
 Environment: power, cooling, dehumidifying, cables, fire, collapsing racks, ventilation, earthquakes, 	
7	6

	 Safety Attribute of a system which either operates correctly or fails in a safe manner Freedom from expose to danger, or exemption from hurt, injury or loss. "Fail-safe": traffic lights start to blink yellow Degrees of safety Closely related to risk 	
© Gert Jervan		80

	Administrative issues
	www.pld.ttu.ee/IAF0530
© Gert Jørvan	Gert Jervan IT-229 620 2261 gert.jervan@pld.ttu.ee www.pld.ttu.ee/~gerje • Case Studies – Presentation + report • Exam