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Course Plan

• 16 occasions, á 1,5 hours 
Tuesdays 12:00-13:30

• 8 Lectures (No meetings on Feb 28, 
March 13, May 8)
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• Case Studies
− Introductory presentation (5 min)
− 20 min/30 min presentation of the final 

report
− Written report (6 pages, using predefined 

template; 10 pages for PhD students)

• Exam (sort of)
3

Reading

• Various papers (on the course 
homepage)

www.pld.ttu.ee/IAF0530

T tb k
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• Textbooks
• Incident/accident reports
• Web pages
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Textbooks

• Safety-critical Computer Systems
− Neil Storey
− Addison Wesley, 1996.

− An introductory text which provides 
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overview of safety related aspects and 
methods in computer systems 
development. 
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Textbooks

• Reliability Engineering: 
Theory and Practice.
− Alessandro Birolini
− Springer
− 2010 (6th ed.), 2007 (5th ed.)
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− This book shows how to build in, 
evaluate, and demonstrate reliability 
& availability of components, 
equipment, systems. It presents 
the state-of-the-art of reliability 
engineering, both in theory and practice
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Textbooks

• Fault-Tolerant Systems
− Israel Koren and C. Mani 

Krishna
− Morgan-Kaufman Publishers,

2007
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This book covers comprehensively the design of fault-
tolerant hardware and software, use of fault-tolerance 
techniques to improve manufacturing yields and design and 
analysis of networks. Additionally it includes material on 
methods to protect against threats to encryption 
subsystems used for security purposes. 

Case Studies

• Topic categories:
− Accident analysis
− System safety analysis
− Literature survey
− Something else (implementation, tool 
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study, etc.) 

− Requires prior ack.

Literature and sample (!) topics on the 
webpage
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Case Studies

• Some examples:
− Clock synchronization 
− Atomic and reliable broadcast 
− Algorithmic based fault-tolerance
− System level diagnosis - distributed algorithms
− Fault-tolerant transaction processing systems 
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− Measures of software reliability
− Validation and verification techniques
− CAN (Controller Area Network) protocol
− Fault-Tolerance in E-Commerce Web Servers
− Fault tolerance in wired and wireless systems
− Nano tubes
− ...

9

Case Studies

• Topic selection:
− February 28 (via e-mail, no lecture at that 

day)

• Draft of the report (incl. introductory 
presentation of the topic, 1 page):

h 20
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− March 20

• Presentations:
− April 24 – May 15

• Final Report:
− May 31st
− The best reports will be published in A&A 

(selected topics only, preferably in Estonian)
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Course Outline (Preliminary)

• Feb 7: Introduction
• Feb 14, Feb 21: Lectures II and III
• Feb 28: No lecture – topic selection (via e-

mail)
• March 6: Lecture IV
• March 13: No lecture
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March 13: No lecture
• March 20: Introductory presentation of the 

topic (5 min each)
• March 27 – April 17: Lectures V - VIII
• April 24 – May 15: Case study 

presentations

11

Course overview
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Course Overview

• Reliability: increasing concern
− Historical

• High reliability in computers was needed in 
critical applications: space missions, telephone 
switching, process control etc.
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− Contemporary
• Extraordinary dependence on computers: on-

line banking, commerce, cars, planes, 
communications etc.

• Hardware is increasingly more fault-prone
(complexity, technology, environment)

• Software is increasingly more complex
• Things simply do not work without special 

reliability measures
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Hardware - Background

• Chip designers, device engineers and the high-
reliability community recognize that reliability 
concerns ultimately limit the scalability of any 
generation of microelectronics technology

• Statistical methods and reliability physics 
provide the foundation for better understanding 
the next generation of scaled microelectronics
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the next generation of scaled microelectronics
− Microelectronics device physics 
− Reliability analysis and modeling
− Experimentation
− Accelerated testing
− Failure analysis

• The design, fabrication and implementation of 
highly aggressive advanced microelectronics 
requires expert controls, modern reliability 
approaches and novel qualification strategies
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Scaling Trends & Reliability 
Considerations
• A lot of technology concerns:

− Reduced gate oxide thicknesses
− Increased thermal/power densities
− Reduced interconnect dimensions
− Higher device operating temperatures
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− Increased sensitivity to defects and 

statistical process variations
− Introduction of new materials with each 

new generation, replacing proven 
materials

• e.g. Cu and low K inter-level dielectrics for Al 
and SiO2
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Scaling Trends & Reliability 
Considerations
• Dramatic increase in processing steps with each 

new generation
− approx. 50 more steps per generation and a 

new metal level every 2 generations
• Rush to market - Less time to characterize new 

materials than in the past
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− e.g. reliability issues with new materials not 
fully understood and potential new failure 
modes

• Manufacturers’ trends to provide ‘just enough’ 
lifetime, reliability, and environmental specs for 
commercial & industrial applications
− e.g. 3-5 yr product lifetimes, trading off 

‘excess’ reliability margins for performance
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Scaling Trends & Reliability 
Considerations
• Significant rise in the amount of proprietary 

technology and data developed by 
manufacturers, reluctance to share information 
with hi-relevance customers
− e.g. process recipes, process controls, 

process flows, design margins, MTTF
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• Next generation microelectronics focus on the 
performance needs of the commercial customer, 
with little or no emphasis on the extreme needs
− e.g. extended life, extreme environments, 

high reliability
• Increasingly difficult testability challenges due to 

device complexity
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Correct or Defective?

Theory:
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Reality:
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Product Technical Trends
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19*MRQW-2002, Bernstein

Software complexity is a 
challenge

• Boeing 747  0.4 M LOC
• Boeing 777  4 M LOC
• Technology Review 2002

• Exponential increase in

Aviation: Automotive:
 2010 Premium  100 M LOC

 1995 – 2000  52%/Year

 2001 – 2010  35%/Year
Tony Scott, GM CIO

Exponential increase in 
software complexity

• In some areas code size is 
doubling every 9 months [ST 
Microelectronics, Medea 
Workshop, Fall 2003]

• ... > 70% of the development 
cost for complex systems such 
as automotive electronics and 
communication systems are 
due to software development
[A. Sangiovanni-Vincentelli, 
1999]

Rob van Ommering, COPA Tutorial, as cited by: Gerrit Müller: 
Opportunities and challenges in embedded systems, 
Eindhoven Embedded Systems Institute, 2004

 2011 – BMW is the first 
manufacturer to break the 1Gb
barrier 

Course Overview

• To get an insight into the broad area of system 
safety

• We cover techniques for high availability, fault 
tolerance, monitoring, detection, diagnosis, and 
confinement of failure, ways to improve 
availability through fast recovery and graceful 

i d d ti d t h i f i
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service degradation, and techniques for using 
redundancy and replication. 

• We also discuss the utopia of flawless software, 
the impact of scale on availability, ways to cope 
with human operator error, and metrics for 
evaluating dependability. 
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Contents

• Fault tolerance
• System reliability
• Hardware redundancy
• Error detection techniques
• Coding techniques
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• Processor-level detection and recovery
• Disk arrays
• Checkpointing and recovery
• Software fault tolerance
• Testing distributed real-time systems
• ...

22

Lecture Outline

 Historical perspective and 
f i id t / id t

• Basic terminology
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famous incidents/accidents

Murphy’s Law

• “If something can go wrong, it will go 
wrong” 

Major Edward A. Murphy, Jr.
US Air Force, 1949
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• “Every component than can be installed 
backward, eventually will be”

24
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Genesis Space Capsule

• $260 million Genesis capsule was collecting 
samples of the solar wind over 3 years period

• Crashed in Sept 2004 due to the failure of the 
parachutes

• Reason: the
deceleration sensors 

the accelerometers
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— the accelerometers 
— were all installed 
backwards. The craft’s 
autopilot never got a 
clue that it had hit an 
atmosphere and that 
hard ground was just 
ahead.

Mars Orbiter

• One of the Mars Orbiter probes crashed 
into the planet in 1999.

• It did turn out that engineers who built 
the Mars Climate Orbiter had provided a 
data table in "pound-force" rather than 
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newtons, the metric measure of force.
• NASA flight controllers at the Jet 

Propulsion Laboratory in Pasadena, 
Calif., had used the faulty table for their 
navigation calculations during the long 
coast from Earth to Mars.
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Lockheed Martin Titan 4

• In 1998, a LockMart Titan 4 booster 
carrying a $1 billion LockMart Vortex-
class spy satellite pitched sideways and 
exploded 40 seconds after liftoff from 
Cape Canaveral, Fla.
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• Reason: frayed wiring that apparently 
had not been inspected. The guidance 
systems were without power for a 
fraction of a second. 

27

Therac-25

• Therac-25:
− the most serious computer-related accidents 

to date (at least nonmilitary and admitted) 
− machine for radiation therapy (treating 

cancer)
− between June 1985 and January 1987 (at 
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least) six patients received severe overdoses 
(two died shortly afterward, two might have 
died but died because of cancer, the other 
two had permanent disabilities)

− scanning magnets are used to spread the 
beam and vary the beam energy

− dual-mode: electron beams for surface 
tumors, X-ray for deep tumors

28
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Denver Airport

• Denver International Airport, Colorado: 
intelligent luggage transportation 
system with 4000 “Telecars”, 35km 
rails, controlled by a network of 100
computers with 5000 sensors, 400 radio 
antennas and 56 barcode readers
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antennas, and 56 barcode readers.
Price: $186 million (BAE Automated 
Systems).

• Due to SW problems about one year 
delay which costs $1.1 million per day
(1993).

• Abondoned in 2005 to save $1 million 
per month on maintenance

30
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Lecture Outline

 Historical perspective and 
famous incidents/accidents

31

• Basic terminology

Embedded Systems

• Computing systems are everywhere
• Most of us think of “desktop” computers

− PC’s
− Laptops
− Mainframes
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− Servers

• But there’s another type of computing 
system
− Far more common...

32

General-Purpose vs. Embedded

General purpose
(ca 300 mln. processors)

Microprocessor 
market shares

98 %
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Embedded processors
(ca 9000 mln. processors)

2 %

Embedded Systems, cont.

• Embedded computing 
systems
− Computing systems 

embedded within 
electronic devices
H d t d fi N l
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− Hard to define. Nearly any 
computing system other 
than a desktop computer

− Billions of units produced 
yearly, versus millions of 
desktop units

− Perhaps 50 per household 
and per automobile

34

A “Short List” of Embedded 
Systems

Anti-lock brakes
Auto-focus cameras
Automatic teller machines
Automatic toll systems
Automatic transmission
Avionic systems
Battery chargers
Camcorders
Cell phones
Cell-phone base stations
Cordless phones

Modems
MPEG decoders
Network cards
Network switches/routers
On-board navigation
Pagers
Photocopiers
Point-of-sale systems
Portable video games
Printers
Satellite phones

35
Our daily lives depend on embedded systems

Cordless phones
Cruise control
Curbside check-in systems
Digital cameras
Disk drives
Electronic card readers
Electronic instruments
Electronic toys/games
Factory control
Fax machines
Fingerprint identifiers
Home security systems
Life-support systems
Medical testing systems

Satellite phones
Scanners
Smart ovens/dishwashers
Speech recognizers
Stereo systems
Teleconferencing systems
Televisions
Temperature controllers
Theft tracking systems
TV set-top boxes
VCR’s, DVD players
Video game consoles
Video phones
Washers and dryers

What is an Embedded System?

• Definition
− an embedded system special-purpose computer 

system, part of a larger system which it controls.

• Notes
− A computer is used in such devices primarily as a 

means to simplify the system design and to 
id fl ibilit
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provide flexibility. 
− Often the user of the device is not even aware that 

a computer is present. 

36
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Characteristics of Embedded 
Systems
• Single-functioned

− Dedicated to perform a single function

• Complex functionality
− Often have to run sophisticated algorithms or 

multiple algorithms.
• Cell phone, laser printer.
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• Tightly-constrained
− Low cost, low power, small, fast, etc.

• Reactive and real-time
− Continually reacts to changes in the system’s 

environment
− Must compute certain results in real-time without 

delay

• Safety-critical
− Must not endanger human life and the 

environment 37

Real-Time Systems

• Time
− The correctness of the system behavior 

depends not only on the logical results of the 
computations, but also on the time at which 
these results are produced.
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• Real
− The reaction to the outside events must occur 

during their evolution. The system time must 
be measured using the same time scale used 
for measuring the time in the controlled 
environment.

38

Hard vs. Soft Real-Time

• Definitions
− A real-time task is said to be hard if missing 

its deadline may cause catastrophic 
consequences on the environment under 
control.

− A real-time task is said to be soft if meeting 
its deadline is desirable for performance
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its deadline is desirable for performance 
reasons, but missing its deadline does not 
cause serious damage to the environment 
and does not jeopardize correct system 
behaviour.

• Definition
− A real-time system that is able to handle hard 

real-time tasks is called a hard real-time 
system.

39

Hard vs. soft, cont.

• Examples of hard activities
− Sensory data acquisition
− Detection of critical conditions
− Actuator serving
− Low-level control of critical system components
− Planning sensory-motor actions that tightly 

interact with the environment
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interact with the environment
• Examples of soft activities

− The command interpreter of the user interface
− Handling input data from the keyboard
− Displaying messages on the screen
− Representation of system state variables
− Graphical activities
− Saving report data

40

Functional vs. Non-Functional 
Requirements

• Functional requirements
− output as a function of input

• Non-functional requirements:
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Non functional requirements:
− Time required to compute output
− Reliability, availability, integrity, 

maintainability, dependability
− Size, weight, power consumption, etc.

41

Fault Tolerance

• A fault-tolerant system is one that can 
continue to correctly perform its 
specified tasks in the presence of 
failures:
− hardware
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− software
− user errors
− environmental, input, ...

• Fault tolerance is the attribute that 
enables a system to achieve fault
tolerant operation.

42
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Basic Concepts

• Fault Tolerance is closely related to the 
notion of “Dependability”. This is
characterized under a number of 
headings:
− Availability – the system is ready to be 

used immediately.
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− Reliability – the system can run 

continuously without failure.
− Safety – if a system fails, nothing 

catastrophic will happen.
− Maintainability – when a system fails, it 

can be repaired easily and quickly (and, 
sometimes, without its users noticing the 
failure).

43

Faults, Errors & Failures

• Fault: a defect within the system or a 
situation that can lead to the failure

• Error: manifestation of the fault – an 
unexpected behavior
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• Failure: system not performing its 
intended function

Fault  Error  Failure

44

Fault Examples

• Bit flips in hardware due to cosmic 
radiation
− A person on an airplane over the Atlantic 

at 35,000 ft working on a laptop with 256 
Mbytes (2 Gbits) of memory. At this 
altitude the SER of 600 FITs per megabit
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altitude, the SER of 600 FITs per megabit 
becomes 100,000 FITs per megabit, 
resulting in a potential error every five 
hours. 

− 1 FIT (failures in time), is the number of 
failures in 1 billion device-operation 
hours. A measurement of 1000 FITs 
corresponds to a MTTF (mean time to 
failure) of approximately 114 years. 

45

Fault Examples

• Year 2000 bug
• Loose wire
• Aircraft retracting 

its landing gear 
while on ground

• Effects in time:
− Permanent 
− Transient
− Intermittent

g

46

Permanent

• A permanent fault or failure is one which 
is stable and continuous. 

• Permanent hardware failures require 
some component to be replaced or 
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repaired. 

• An example of a permanent fault would 
be a VLSI chip with a manufacturing 
defect, causing one input pin to be stuck 
high (stuck-at-1). 

47

Transient

• A transient fault is one which results 
from a temporary environmental 
condition. 

• For example, a voltage spike might 

©
G

er
t 

Je
rv

a
n

p g p g
cause a sensor to report an incorrect 
value for a few milliseconds before 
reporting correctly. 

48
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Transient faults

 Happen for a short time

 Corruptions of data, 
miscalculation in logic

 Do not cause a permanent 

49

Radiation

Electromagnetic interference (EMI)

Lightning storms

damage of circuits

 Causes are outside system 
boundaries

Intermittent

• An intermittent fault is one which only 
manifests occasionally, due to unstable 
hardware or certain system states. 

• A loose contact on a connector will often 
cause an intermittent fault.
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• Intermittent electrical faults, as a rule, 
are notoriously difficult to 
detect. Typically, whenever the fault 
doctor shows up, the system works fine.

50

Intermittent faults

Crosstalk Manifest similar as 
transient faults

 Happen repeatedly

51

Internal EMI

Power supply fluctuations

Init (Data)

Software errors (Heisenbugs)

Happen repeatedly

 Causes are inside 
system boundaries

Soft Errors

01
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• Transient bit-flip (soft memory error)
− Random event
− Corrupts the value but not the cell
− Can be corrected (in contrast to hard errors 

caused by faults in the hardware itself)
− Happen continuously during system lifetime 

(i.e., can not be screened by burn-in tests) 52

Sources

• First traced to alpha particlce emissions 
from chip packaging materials
− Most sources removed (pure materials, 

different designs, shielding)

• Today’s main problem: cosmic radiation
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− Cosmic particles from deep space
(actually 5th- or 6th-hand collision 
particles)

• At ground level ca 95% neutrons, 5% protons

− Radioactive material in manufacturing 
process

53

Sources (cont.)

• Four main sources:
− Low-energy alpha particles
− High-energy cosmic particles
− Thermal neutrons
− Poor system design
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Soft Errors

Transient pulse
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The electric field in the depletion region directly 
generates electron-hole pairs in its wake, causing the 
charges to drift so that the transistor sees a current 

disturbance 
55

Evidence of Cosmic Ray Strikes

• Documented strikes in large servers found in error 
logs
− Normand, “Single Event Upset at Ground Level,” 

IEEE Transactions on Nuclear Science, Vol. 43, No. 
6, December 1996. 

• Sun Microsystems, 2000 (R. Baumann, Workshop 
talk)
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talk)
− Cosmic ray strikes on L2 cache with defective error 

protection
• caused Sun’s flagship servers to suddenly and mysteriously 

crash!

− Companies affected
• Baby Bell (Atlanta), America Online, Ebay, & dozens of other 

corporations 
• Verisign moved to IBM Unix servers (for the most part)

• 2005 – Los Alamos 2048-CPU HP server system 
crashed frequently due to defective cashe

• 2010 Toyota brake problem (still not solved) 56

Current Situation

• Soft errors induced the highest failure 
rate of all other reliability mechanisms 
combined
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Rober Baumann, TI

57

Measuring

• The rate at which SEUs (single-event-
upsets) occure is given as SER, 
measured in FITs (failures in time)

• 1 FIT = 1 failure in 1 billion device-
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operation hours

• 1000 FIT ≈ MTTF 114 years

58

Failure Classification

• Domain/Nature
− Value failure
− Timing failure

• Perception
− Consistent failure

• Effect
− Benign failure
− Malign/catastrophi

c failure

• Frequency
S l f l− Inconsistent 

failure
− Single failure
− Repeated failure

59

Failures

• Crash Failure: After an error has been 
detected, the component stops silently.

• Omission Failure: Sometimes a result is 
missing; when result is available, it is 
correct.
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• Consistent Failure: If there are multiple 
receivers, all see the same erroneous 
result.

• Byzantine (Malicious, Asymmetric) 
Failure: Different receivers see differing 
results.

60
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Failures (cont.)

• Timing Failure: A server's response lies 
outside the specified time interval.

• Response Failure: The server's 
response is incorrect (value of the 

©
G

er
t 

Je
rv

a
n

p (
response is wrong, server deviates from 
the correct flow of control).

• Arbitrary Failure: A server may 
produce arbitrary responses at arbitrary 
times.

61

Fault Handling

• Fault avoidance: eliminate problem sources
− Remove defects: Testing and debugging
− Robust design: reduce probability of defects
− Minimize environmental stress: Radiation shielding 

etc

I ibl t id f lt l t l
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Impossible to avoid faults completely

• Fault tolerance: add redundancy to mask effect
− Additional resources needed (more later)
− Examples:

• Error correction coding, voting and masking, 
checksums, ...

• Backup storage, replication, ...
• Spare tire, etc

62

Fault Tolerance

• Fault detection is the process of 
recognizing that a fault has occurred. 
Fault detection is often required before 
any recovery procedure can be initiated.
The techniques include error detection 
codes self checking/failsafe logic
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codes, self-checking/failsafe logic, 
watchdog timers, and others.

• Fault location is the process of 
determining where a fault has occurred 
so that an appropriate recovery can be 
initiated.

63

Fault Tolerance (cont.)

• Fault containment is the process of 
isolating a fault and preventing the 
effects of that fault from propagating 
throughout the system.
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• Fault recovery is the process of 
remaining operational or regaining
operational status via reconfiguration 
even in the presence of faults. A few 
basic approaches are fault masking, 
retry, and rollback. 

64

Definitions

• Failure rate (λ):
− Average frequency with which something 

fails.

hrfailureshrfailures
hrs

failures
/108.799/0007998.0

7502

6 6−×==
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• Mean time to failure (MTTF):
− Average time between failures

65

λ
1=MTTF

Dependability

• Property of a computing system which 
allows reliance to be justifiably placed 
on the service it delivers

• Dependability = 
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p y
reliability + availability + safety + 
security + ...

• Reliability  continuity of correct service
• Availability  readiness of usage
• Safety  no catastrophic consequences
• Security  prevention of unauthorized 

access 66
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Dependability Concepts

Reliability:
a measure of the continuous delivery of service;
R(t) is the probability that the system survives 
(does not fail) throughout [0, t];
expected value: MTTF(Mean Time To Failure)

Maintainability:
a measure of the service  interruption
M(t) is the probability that the system will be 
repaired within a time less than t;

Previous repair

Fault occurs

FAULT LatencyMTTF

Availability:
a measure of the service delivery with respect to 
the alternation of the delivery and interruptions
A(t) is the probability that the system delivers 
a proper (conforming  to specification)service at 
a given time t.
expected value: EA = MTTF / (MTTF + MTTR)

repaired within a time less than t;
expected value:  MTTR (Mean Time To Repair)

Safety:
a measure of the time to catastrophic failure 
S(t) is the probability that no catastrophic failures 
occur during [0, t];
expected value: 
MTTCF(Mean Time To Catastrophic Failure)

MTTR

MTBF

REPAIR TIME

Error -
fault becomes active 
(e.g. memory 
has write 0)

Error detection
(read memory,
parity error)

Repair memory

Next fault occurs

ERROR Latency

Reliability

• A measure of an it performing its 
intended function satisfactorily for a 
prescribed time and under given 
environment conditions.

• Probability that system will survive to 
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− In aerospace industry the requirement is that 

failure probability is 10-9 (one failure over 109

hours (114 000 years) of operation)

• Time To Failure (TTF)
• Mean Time To Failure (MTTF)

68

Commercial Chip Reliability 
Estimation

69

*Extrapolated from ITRS roadmap, MRQW-2002, Bernstein

Availability

Time

up downupdown up

time-to-failure time-to-repair
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• Availability: 
− Probability that system is operational at time t

• High availability:
− MTTF  infinity (high reliability)
− MTTR  zero(fast recovery)

70

MTTRMTTF

MTTF
tyAvailabili

+
=

Maintainability

• M(t) is the probability that a failed 
system will be restored within a 
specified period of time t.

• Restoration process:
− locating problem, e.g. via diagnostics
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− physically repairing system
− bringing system back to its operational 

condition

71

Graceful Degradation

• The ability of system to automatically 
decrease its level of performance to 
compensate for hardware failure and 
software errors.
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The Myth of the Nines

Nines Availability
Downtime 
per year

Downtime 
per week Example

2 nines 99% 3.65 days 1.7 hours General web site
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3 nines 99.9% 8.75 hours 10.1 min E-commerce site

4 nines 99.99% 52.5 min 1.0 min
Enterprise mail 
server

5 nines 99.999% 5.25 min 6.0 s Telephone system

6 nines 99.9999% 31.5 s 0.6 s Carrier-grade 
network switch

Historical Evaluation

• Mean Time Between Failures: 

MTBF = MTTR + MTTF

− ENIAC. MTBF: 7 minutes (18000 vacum tubes)
• ENIAC  TX-2 interactive computer (MIT)  web
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− F-8 Crusader – first fly-by-wire, 375 hours  750 
hours (IBM AP-101)

• MD-11
• A320 family

− Patriot missile defence system 
• 1/3 sec in 100 hours, targeting error: 600 m
• Needed reboot after 8 hours, was learned in hard 

way...

74

Ultra-Reliable Systems

• Airbus A320 family fly-by-wire system:
− computer controls all actuators
− no control rods, cables in the middle
− 7 central flight control computers

• 3 Motorola 68000
• 2 Intel 80C86
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• 2 Intel 80C286

− software for hardware written by different 
software houses (C, ASM, dedicated one, 
specifically developed)

− all error checking & debugging performed 
separately

− computer allows pilot to fly craft up to certain 
limits (flight envelope)

• beyond: computer takes over
75

Hardware and Environment 
Failures
• Moving parts, high speed, low tolerance, 

high complexity: disks, tape 
drives/libraries 

• Lowest MTBF found in fans and power 
supplies 
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• Often fans fail gradually  subtle, 
sporadic failures in CPU, memory, 
backplane 

• Environment: power, cooling, 
dehumidifying, cables, fire, collapsing 
racks, ventilation, earthquakes, ... 
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Bathtub Curve
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Device Reliability Trends

• As technology progresses, wearout
failures become statistically 
indistinguishable from infant mortality 
failures with the same wearout drivers.

I f t

Wearout 
(intrinsic)
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101

2010, β < 1.2

2000, β ~ 1.8
1990, β ~ 3

100

Log time (years in service)

Infant 
mortality 
(random, 
extrinsic)

F
a

ilu
re

 R
a

te

(intrinsic)

*MRQW-2002, Bernstein
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System Design & Evaluation Top-
Level View

System Requirements

System Design System Evaluation

• System level analysis

79

Fault Avoidance Fault Tolerance

System level analysis
• Subsystem level 

analysis
• Module/Component

level analysis

Possible Techniques
• FMEA
• FTA
• RBD
• Markov 
• Petri net

Possible techniques
• Redundancy (Hardware, 

Software, Information, 
Time)

• Fault detection
• Fault masking
• Fault containment
• Reconfiguration 

Possible techniques
• Parts selection
• Design reviews
• Quality control
• Design 

Methodology
• Documentation

Safety

• Attribute of a system which either 
operates correctly or fails in a safe 
manner

• Freedom from expose to danger, or 
exemption from hurt, injury or loss.
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• “Fail-safe”: traffic lights start to blink 
yellow

• Degrees of safety
• Closely related to risk

80

Risk

• A combination of the likelihood af an accident and the 
severity of the potential consequences

• The harm that can result if a threat is actualised

• Acceptable/tolerable risk: The Ford Pinto case (1968)
BENEFITS
Savings: 180 burn deaths 180 serious burn injuries
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Savings: 180 burn deaths, 180 serious burn injuries,
2,100 burned vehicles.
Unit Cost: $200,000 per death, $67,000 per injury, $700 per 
vehicle.
Total Benefit: 180 X ($200,000) + 180 X ($67,000) +
$2,100 X ($700) = $49.5 million.

COSTS
Sales: 11 million cars, 1.5 million light trucks.
Unit Cost: $11 per car, $11 per truck.
Total Cost: 11,000,000 X ($11) + 1,500,000 X ($11) = 
$137 million.
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System Safety & Hazards

• Safety:
− achieved by anticipating accidents and 

eliminating their causes

• Hazards are potential causes of 
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accidents
− Conditions in a system which together 

with other factors in the environment 
inevitably cause accidents
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Reliability is a System Issue 

Checkpointing and rollback, application 
replication,  software,  voting (fault masking), 
process pairs, robust data structures, 
recovery blocks, N-version programming, Sw Implemented

Fault Tolerance

Application program 
interface (API)

Middleware

Applications

83

Error correcting codes, M-out-of-N and standby 
redundancy , voting, watchdog timers, reliable 
storage (RAID, mirrored disks)

CRC on messages , acknowledgment,
watchdogs, heartbeats, consistency protocols

Memory management and exception handling, 
detection of process failures, checkpoint and 
rollback

Hardware

System network

Processing elements
Memory
Storage system

Operating system

Reliable communication

[ Iyer ]

Questions?

Gert Jervan
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Administrative issues

www.pld.ttu.ee/IAF0530

Gert Jervan
IT-229 620 2261

gert jervan@pld ttu ee
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gert.jervan@pld.ttu.ee
www.pld.ttu.ee/~gerje

• Case Studies
− Presentation + report

• Exam

85


