

Lecture Outline

Hazard Analysis

Risk Analysis Risk Management

Safety & SILs

Safety Requirements

Risk Reduction & Design

Dependability

Hazards

Risks

.

.

.

.

•

	Causes of faults, cont.
	Specification mistakes
	 Incorrect algorithms, architectures, hardware or software design specifications
	 Example: the designer of a digital circuit incorrectly specified the timing characteristics of some of the circuit's components
	Implementation mistakes
	 Implementation: process of turning the hardware and software designs into physical hardware and actual code
	 Poor design, poor component selection, poor construction,
an	• Examples: software coding error, a printed circuit
© Gert Jerv	board is constructed such that adjacent lines of a circuit are shorted together 10

Reduituditt	Computation	15
Type of Redundancy	Implementation	Type of Detected Errors
Time redundancy	Same software executed on the same hardware during two different time-intervals	Errors caused by transient physical faults in hardware with a duration less than one execution time slot
Hardware redundancy	The same software executes on two independent hardware channels	Errors caused by transient and permanent physical hardware errors
Diverse software on the same hardware	Different software versions are executed on the same hardware during two different time intervals	Errors caused by independent software faults and transient physical faults in the hardware with a duration less than one execution time slot
Diverse software on diverse hardware	Two different versions of software are executed on two independent hardware channels	Errors caused by independent software faults and by transient and permanent physical hardware faults

 Definitions of Safety Informally "Nothing bad will happen" "Freedom from accidents or losses" But no system can be completely safe in absolute sense Scus is on making systems safe enough, given limited resources But no system can be completely safe in absolute sense Scus is on making systems safe enough, given limited resources But no system can be completely safe in absolute sense Stores is on making systems safe enough, given limited resources But no system can be completely safe in absolute sense Stores is on making systems safe enough, given limited resources But no system can be completely safe in absolute sense Stores is on making systems safe enough, given limited resources More emphasis on accidents, rather than risk More emphasis on removing hazards than actual accidents Safety-critical system System that has the potential to cause accidents 	 Safety requirements In order to determine safety requirements: Identification of the hazards associated with the system Classification of these hazards Determination of methods for dealing with the hazards Assignment of appropriate reliability and availability requirements Determination of an appropriate safety integrity level Specification of development methods appropriate to this integrity level
---	--

Conflicting requirements High performance v low cost 	
 Reliability ≠ safety BUT 	
System must be reliable AND safe	
identify <i>acceptable</i> levels of safety and reliability	34

	 Definitions (cont.) Accident Unplanned event that results in a certain level of damage or loss to human life or the environment e.g. elevator door opens and someone falls to the shaft Risk Combination of the severity of a specified hazardous event with its probability of occurrence over a specified duration 		 Risk Assessment Risk = penalty x likelihood Penalty can be measured in money, lives, injuries, amount of deadline Likelihood is the probability that a particular hazard will be activated and result in an undesirable outcome Pareto ranking: 80% of problems are from 20% of the risks
© Gert Jervan		arkan 37 ₩	38

	Hazards
rvan	 A Hazard is a system state that could lead to: Loss of life Loss of property Release of energy Release of dangerous materials Hazards are the <i>states</i> we have to avoid An accident is a loss event: System in hazard state, <i>and</i> Change in the operating environment Classification Severity Nature
© Gert Je	44

Hazard Categories for Civil Aircraft									
DESCRIPTION	CATEGORY	DEFINITION	PROBABILITY						
CATASTROPHIC	I	Loss of Lives, Loss of Aircraft	10 ⁻⁹ /hr						
HAZARDOUS	п	Severe Injuries, Major aircraft Damage	10 ⁻⁷ /hr						
MAJOR	ш	Minor injury, minor aircraft or system damage	10 ⁻⁵ /hr						
MINOR	IV	Less than minor injury, less than minor aircraft or system damage	10 ⁻³ /hr						
NO EFFECT	v	No change to operational capability	10 ⁻² /hr						
			© G.F. Marsters						

	Hazard Categories for Civil Aircraft							
	Frequency of Occurrence	Level	Specific Item	Fleet or Inventory	Failure Probability per Flight Hour			
	Frequent	A	Likely to occur frequently	Continuously experienced	≥1 × 10 ⁻³			
	Reasonably Probable	в	Will occur several times in the life of each item	Will occur frequently	<1 x 10 ⁻³ to ≥1 x 10 ⁻⁵			
	Remote	с	Unlikely but possible to occur in the life of an item	Unlikely but can reasonably be expected to occur	<1 x 10 ⁻⁵ to ≥1 x 10 ⁻⁷			
	Extremely Remote	D	So unlikely it can be assumed that the occurrence may not be experienced	Unlikely to occur, but possible	<10 ⁻⁷ to ≥1 x 10 ⁻⁹			
	Extremely Improbable	E	Should never happen in the life of all the items in the fleet	Not expected to occur during life of all aircraft of this type	<1 x 10 ⁻⁹			
					© G.F. Marsters			
	Risk from	lightn	ing is 5 x 10 ⁻⁷ deaths p	er person year	46			

What can FMECA be used for?
 Assist in selecting design alternatives with high reliability and high safety potential during the early design phases Ensure that all conceivable failure modes
and their effects on operational success of the system have been considered
 List potential failures and identify the severity of their effects
 Develop early criteria for test planning and requirements for test equipment
 Provide historical documentation for future reference to aid in analysis of field failures and consideration of design changes
Provide a basis for maintenance planning

 Provide a basis for quantitative reliability and availability analyses.

	FME(C)A C	Chart							
	Failure Modes	and Effect Ar	nalysis							
	Product Name	: DeWalt Tra	desman Drill		Part name: R	ear Ve	ent			
	Function	Failure Mode	Effects of Failure	Causes of Failure	Current Controls	s	о	D	RPN	
	Allow Additional Air Flow	Filter Blocked	Overheated Motor	User Error	Visual Inspection	4	1	5	20	
	Prevent Dangerous Usage	Filter Not In Place	Larger Opening to Motor	User Error	Visual Inspection	8	4	1	32	
	Filter dust	Defective Filter	Additional dust flows into shell	Poor Materials	Visual Inspection	1	1	7	7	
© Gert Jervan	S = Severity O = Occurre D = Detectio RPN = Risk I	rating (1 t nce frequer on Rating (1 Priority Nun	o 10) ncy (1 to 10) . to 10) nber (1 to 10)	00)					63	3

Seve	erity Ra	ting
Rank	Severity class	Description
10	Catastrophic	Failure results in major injury or death of personnel.
7-9	Critical	Failure results in minor injury to personnel, personnel exposure to harmful chemicals or radiation, or fire or a release of chemical to the environment.
4-6	Major	Failure results in a low level of exposure to personnel, or activates facility alarm system.
1-3	Minor	Failure results in minor system damage but does not cause injury to personnel, allow any kind of exposure to operational or service personnel or allow any release of chemicals into the environment

		HAZOP examples	
	iiiiiiii		
		Guide words:	
		– no, more, less, early, late, before,	
		Interpretation examples:	
		Signal arrives too late	
		 Incomplete data transmitted / only part of the intended activity occurs 	
		Attributes:	
		 Data flow, data rate, response time, 	
5			
D Gert Jerva			70

Guide word	Chemical plant	Computer-based system
No	No part of the intended result is achieved	No data or control signal exchanged
More	A quantitative increase in the physical quantity	A signal magnitude or a data rate is too high
Less	A quantitative decrease in the physical quantity	A signal magnitude or a duta rate is too low
As well as	The intended activity occurs, but with additional results	Redundant data sent in addition to intended value
Part of	Only part of the intended activity occurs	Incomplete data transmitted
Reverse	The opposite of what was intended occurs, for example reverse flow within a pipe	Polarity of magnitude changes reversed
Other than	No part of the intended activity occurs, and something else happens instead	Data complete but incorrect
Early	Not used	Signal arrives too early with reference to clock time
Late	Not used	Signal arrives too late with reference to clock time
Before	Not used	Signal arrives carlier than intended within a sequence
After	Not used	Signal arrives later than intended

11/1201 0	ice ibuce	5
Attribute	Guide word	Possible meaning
Data Bow	Less	More data is passed than expected Less data is passed than expected
Duta rate	More	The data rate is too high The data rate is too low
Data value	More	The data value is too high The data value is too low
Repetition time	More Less	The time between output updates is too high The time between output updates is too low
Response time	More Less	The response time is longer than required The response time is shorter than required

	Н	AZO	P Ex	kar	nple			
	flem	Inter- connection	Attribute	Guide word	Causa	Consequence	Recommendation	
	1	Sensor supply line	Supply voltage	No	PSU, regulator or cable fault	Lack of sensor signal detected and system shuts down		
	2			More	Regulator feult	Possible damage to sensor	Coneider overvoltage protection	
	3			Loss	PSU or regulator feult	Incorrect temperature reading	Include valtage monitoring	
	4		Sensor surrent	More	Sensor fault	Incorrect temperature reading, possible leading of supply	Monitor supply current	
	6			Less	Sensar fault	Incorrect temperature reading	Asabove	
	6	Sensor output	Voltage	No	PSU, sensor or osble fault	Look of sensor signal detected and system shets down		
	7			More	Sensor fault	Temperature reading too high - results in decrease in plant efficiency	Consider use of duplicate sensor	
uert Jeen	8			Less	Sensor mounted Incorrectly or sensor failure	Temperature reading too low – could result in overheating and possible plant failure	As above	7

	Hazard Analysis
	Fault Tree Analysis (FTA)
© Gert Jervan	

	History	
rvan	 FTA was first used by Bell Telephone Laboratories in connection with the safety analysis of the Minuteman missile launch control system in 1962 Technique improved by Boeing Company Extensively used and extended during the Reactor safety study (WASH 1400) 	
© Gert Je		76

urvar	 Event Trees Event sequences that follow from some initial event of interest, usually a component failure Downstream events follow from original event and subsequent events of other components E.g. Chemical plant pressure sensor sounds siren when pressure drops to unsafe level 	
© Gert		86

	Barriers
	 Most well designed systems have one or more barriers that are implemented to stop or reduce the consequences of potential accidental events. The probability that an accidental event will lead to unwanted consequences will therefore depend on whether these barriers are functioning or not.
	 The consequences may also depend on additional events and factors. Examples include: Whether a gas release is ignited or not
	 Whether or not there are people present when the accidental event occurs
	 The wind direction when the accidental event occurs
rt Jervan	Barriers may be technical and/or administrative (organizational).
0 6	88

 Positive Visualize event chains following an accidental event Visualize barriers and sequence of activation Good basis for evaluating the need for new / improved procedures and safety functions Pre No standard for the graphical representation of the event tree 	rd Analysis in the Life Cycle
Only one initiating event can be studied in each analysis Easy to overlook subtle system dependencies Not well suited for handling common cause failures in the quantitative analyses The event tree does not show acts of omission	(C)A sed to generate event trees and fault trees (C)A, FTA, ETA oppopriate when functional design complete iminary HAZOP arly in the life-cycle lentify hazards, take account of them in the esign HAZOP ater in the life-cycle lentify further hazards, feed back into esign design

	Risk Analysis
rvan	 The purpose Associate risk with given hazards Consequence of malfunction - severity Probability of malfunction - frequency Ensure nature of risks is well understood Ensure safety targets can be set and evaluated Techniques Qualitative Qualitative, risk classification Integrity classification Safety Integrity Levels (SILs) ALARP Standards IEC 1508, IEC 61508
C deu le	94

	Flashback	
	A Hazard is a system state that could lead to:	
	 Loss of life Loss of property 	
	 Release of energy 	
	 Release of dangerous materials 	
	 Hazards are the states we have to avoid 	
	 An accident is a loss event: 	
	 System in hazard state, and 	
	 Change in the operating environment 	
c .	Classification	
rt Jerva	– Severity	
© Gei	– Nature	96

	Introduction	
	 Risk is associated with every hazard Hazard is a potential danger i.e. possibility of being struck by lightning Associated risk 	
	• Accident is an unintended event or sequence of events that causes death, injury, environmental or material damage Storey 1996	
© Gert Jervan		98

Risk	Chance per million
Risk of being killed by a falling aircraft	0.02 cpm
Risk of death by lightening	0.1 cpm
Risk of being killed by an insect or snake bite	0.1 cpm
Risk of death in a fire caused by a cooking appliance in the home	1 cpm
Risk of death in an accident at work in the very safest parts of industry	10 cpm
General risk of death in a traffic accident	100 cpm
Risk of death in high risk groups within relatively risky industries such as mining	1,000 cpm
Risk of fatality from smoking 20 cigarettes per day	5,000 cpm
Risk of death from 5 hours of solo rock climbing every weekend	10,000 cpm

	Risk Management								
	Risk		Probability						
			Very High	High	Medium	Low	Very Low		
		Very High	Very High	Very High	High	High	Medium		
	н	High	Very High	High	Medium	Medium	Low		
	Conse- quence	Medium	High	Medium	Medium	Low	Low		
		Low	High	Medium	Low	Low	Very Low		
		Very Low	Medium	Low	Low	Very Low	Very Low		
			Risk Rai	nking tab	le		107		

Acceptability of risk	
 Ethical considerations Determining risk and its acceptability involves moral judgement Society's view not determined by logical rules Perception that accidents involving large numbers of deaths are perceived as more serious than smaller accidents, though they may occur less frequently 	
	112

	IEC 61508 Standard	
	 New main standard for software safety Can be tailored to different domains (automotive, chemical, etc) Comprehensive Includes SILs, including failure rates Covers recommended techniques IEC = International Electrotechnical Commission E/E/PES = electrical/electronic/programmable electronic safety related systems 	
© Gert Jervan		122

	Level	(Average probability of failure	e to perform its design function on demand)
	4	≥ 10 ⁻⁶ to < 10 ⁻⁴	(> 99.99 % reliable)
	3	≥ 10 ⁻⁴ to < 10 ⁻³	(> 99.9 % reliable)
	2	≥ 10 ⁻⁸ to < 10 ⁻²	(> 99% reliable)
	1	≥ 10 ⁻² to < 10 ⁻¹	(> 90% reliable)
	Satoty Integrity Level	High demand mod (Probabili	de or continuous mode of operation y of dangerous failure per hour)
	4	≥ 10 ⁻⁹ to < 10 ⁻⁸	
	3	≥ 10 ⁻⁸ to < 10 ⁻⁷	
	2	≥ 10 ^{.7} to < 10 ^{.6}	
	1	≥ 10 ⁻⁶ to < 10 ⁻⁵	

	SILs	
uu	 SILs 3 and 4 are critical SIL activities at lower levels may be needed SIL 1 Relatively easy to achieve, if ISO 9001 practices apply, SIL 2 Not dramatically harder than SIL 1, but involves more review and test, and hence cost SIL 3 Substantial increment of effort and cost SIL 4 Includes state of the art practices such as formal methods and verification, cost extremely high 	
© Gert Jen		124

		Techniques and Measures						
		Clause 7.7 : So	oftware Sal	fety Valida	tion			
		TECHNIQUE/MEASURE	Ref	SIL1	SIL2	SIL3	SIL4	
		1. Probabilistic Testing	B.47		R	R	HR	
		2. Simulation/Modelling	D.6	R	R	HR	HR	
		3. Functional and Black-Box Testing	D.3	HR	HR	HR	HR	
		One or more of these techniques shall b used.	e selected	to satisfy t	he safety i	integrity le	vel being	
	•	Implementing the recomme should result in software of	ended te the ass	echniqu ociated	es and integri	measur ty level	es	
ert Jervan		For example, if the software of Integrity level 3, Simulat Recommended Practices, as Testing.	e was re ion and s is Fun	equired Modell ctional a	to be v ing are and Bla	alidateo Highly ck-Box	l to be	

D.6 : Mode	lling Reference	d by Claus	es 7.6		CTL 4
1 Data Flour Discourse	R 10	SILI	SIL2	SIL3	SIL4
2 Finite State Machines	B 29	ĸ	HR	HR	HR
3. Formal Methods	B.30		R	R	HR
4. Performance Modelling	B.45	R	R	R	HR
5. Time Petri Nets	B.64		HR	HR	HR
6. Prototyping/Animation	B.49	R	R	R	R
7. Structure Diagrams	B.59	R	R	R	HR
NOTE: One or more of the above techniques	s should be used	1.			

	SILC
	5115
un de la companya de	 What does it all mean? SIL 4 system should have a duration of about 10⁻⁹ hours between critical failures If established SIL 4 needed, used all the techniques But there is no measurement that the results actually achieves the target Standard assumes that you are competent in all methods and apply everything possible Except that these may be insufficient or not affordable
© Gert Jen	128

	100000	
-	Professional responsibility	Exercise reasonable professional skill and c
2	Law	Know about and comply with the law
3	Conduct	Act in accordance with the codes of condu-
4	Approach	Take a systematic approach to risk issues
5	Judgement	Use professional judgement and experience
6	Communication	Communicate within your organization
7	Management	Contribute effectively to corporate risk management
8	Evaluation	Assess the risk implications of alternatives
9	Professional development	Keep up to date by seeking education and training
10	Public awareness	Encourage public understanding of risk iss

	Questions?
© Gert Jervan	