

	Important					
	No lecture on March 13!March 20					
	 Draft of the report (by e-mail, before the lecture) Abstract outline main references on 1 page 					
	 Elevator pitch (max 5 min, 2-3 slides). Slides to be sent by e-mail at least 1 					
	hour before the lecture! – 26 presentations – sharp timing is					
	mandatory! – Participation mandatory!					
0 Gert Jervan		2				

	Basics
	 Computing systems are characterized by five fundamental properties: functionality usability performance
	– cost
an	– dependability
© Gert Jer	4

	Heartbeats	
	 A common approach to detecting process and node failures in a distributed (networked) computing environment. Periodically, a monitoring entity sends a message (a heartbeat) to a monitored node or process and waits for a reply. If the monitored node does not respond within a predefined timeout interval, the node is declared as failed and appropriate recovery action is initiated. Adaptive or smart 	
		16

Limitations of Testing (II)
 Dijkstra, 1972 Testing can be used to show the presence of bugs, but never their absence Goodenough and Gerhart, 1975 Testing is successful if the program fails The (modest) goal of testing
 Testing cannot guarantee the correctness of software but can be effectively used to find errors (of certain types)

	Levels o	of Testing	
	What users really need	← Acceptance testing	
	Requirements	← System testing	
	Design	Integration testing	
iert Jervan	Code	↓ Unit testing	40

Remarks by Bill Gates 17th Annual ACM Conference on Object-Oriented Programming, Seattle, Washington, November 8, 2002 Remarks by Bill Gates (cont.) "...The test cases are unbelievably expensive; in fact, "... When you look at a big commercial software company there's more lines of code in the test harness than like Microsoft, there's actually as much testing that goes there is in the program itself. Often that's a ratio of in as development. We have as many testers as we have about three to one." developers. Testers basically test all the time, and developers basically are involved in the testing process "... Well, one of the interesting questions is, when you about half the time ... change a program, ... what portion of these test cases We've probably changed the industry we're in. We're not do you need to run?" in the software industry; we're in the testing industry, and writing the software is the thing that keeps us busy doing all that testing."