IAF0530/IAF9530

Dependability and fault tolerance

Lecture 4
Fault Tolerance, Software Testing

© Gert Jervan

Fault Tolerance

5
2
2
i
G
o

Faults

» Faults are there!

- Either prevent, tolerate, remove or
forecast

* We need redundancy

— System that is more complex than
needed for performing the required task

© Gert Jervan

Gert Jervan, TTU/ATI

7.03.2012

‘ i ien ieivan \

Important

« No lecture on March 13!
- March 20

— Draft of the report (by e-mail, before the

lecture)
« Abstract, outline, main references, ca. 1 page

— Elevator pitch (max 5 min, 2-3 slides).

— Slides to be sent by e-mail at least 1
hour before the lecture!

— 26 presentations — sharp timing is
mandatory!

- Participation mandatory!

Een Jervan. \

Basics

+ Computing systems are characterized by
five fundamental properties:
— functionality
— usability
- performance
- cost
— dependability

Means to Achieve Dependability

« Fault prevention
— Good design processes, avoid design flaws
— Good procedures for runtime faults
» Fault tolerance
— Fault detection
- Redundancy
— Diversity
+ Fault removal
— Verification and validation during design
— Corrective/preventive action during maintenance
+ Fault forecasting
— Simulation, modelling, prediction
— Analysis based on history statistics

Fault Tolerance

« Automobile:

— Spare Tires

— Dual Braking Systems

Power Supplies:

— UPS/battery backup

— Power-fail interrupts

Multiple engines on aircraft

Emergency lighting in buildings

Tape backups of disk files
Checkpoint/restart of long-running programs
Parity and SECDED in computer memories

‘@Genlewan \
e o o o o .

Faults

Faults are either permanent, transient or
intermittent

Design faults are always permanent

Dealing with faults:

— During development: fault avoidance &
removal

— During operation: fault tolerance &
detection

‘ © Gert Jervan \
. . .

7.03.2012

Faults

+ Random faults (Degradation faults)
— Arise during operation
— Usually hardware component failure
» Systematic faults (Design Faults)
— mistakes in the spec
— mistakes in the hardware
— mistakes in the software

Other Faults

« Hardware design and specification faults

— Few fault models available

— Many faults cannot be modelled

— System must meet the spec, but spec
might be incorrect as well

— Spec errors may manifest as either
hardware or software failures

— Use of formal methods (formal spec.
languages, automata theory, formal
verification, model checking, etc.)

‘ © Gert Jervan \

Gert Jervan, TTU/ATI

Een Jervan. \

Hardware Faults

« Use of fault models
» Decomposition into modules
- Gates, transistors, etc
+ Connection faults
— Single stuck-at model, bridging model (shorts),
stuck-open
+ Used to model hardware faults
— Design testing schemes for digital circuits
— Fault removal coverage usually less than 100%
— Guard against physical defects, not design faults
+ In safety critical systems
— Combined with Failure Modes and Effects Analysis
(FMEA)
- Need fault avoidance by verification...

Een Jervan. \

Software Faults

* Bugs:
— Software spec faults
- Coding faults
— Logical errors within calculations
— Stack overflows or underflows
- Uninitialized variables
* No random failures and it does not
degrade with age
+ Always systematic
« Exhaustive testing almost impossible

e Must be tolerated

SW Testing - i.e. Verification

 Verification:
— SW testing
— formal verification
» Functional and structural testing

« Path testing, transaction flow testing,
data-flow testing, domain testing,
mutation testing etc.

© Gert Jervan

7.03.2012

Fault Detection Techniques

» Functionality checking

— march test
» Consistency checking
- range checking, overflow
« Signal comparison
« Information redundancy
— checksums, cyclic redundancy codes, error
correcting codes
* Monitoring techniques
— Loopback testing
— Power supply monitoring

Watchdog Timer

An inexpensive method of error detection
Process being watched must reset the timer
before the timer expires, otherwise the watched
process is assumed as faulty

Watchdog timers only detect errors which
manifest themselves as a control-flow error such
that the system does not continue to reset the
timer

Only processes with relatively deterministic
runtimes can be checked, since the error
detection is based entirely on the time between
timer resets

© Gert Jervan

Heartbeats

« A common approach to detecting
process and node failures in a
distributed (networked) computing
environment.

+ Periodically, a monitoring entity sends a
message (a heartbeat) to a monitored
node or process and waits for a reply.

» If the monitored node does not respond
within a predefined timeout interval, the
node is declared as failed and
appropriate recovery action is initiated.

» Adaptive or smart

System Testing

HW Testing SW Testing

Y 4

HW/SW Testing
(system testing)

5
2
2
i
G
o

Gert Jervan, TTU/ATI

Software Testing

Programmers are in a race with the Universe to
create bigger and better idiot-proof programs.

While the Universe is trying to create bigger and
better idiots.

So far the Universe is winning

‘ © Gert Jervan \

Software Life Cycle

Requirements

‘ © Gert Jervan \

-

Design

.

Implementation

.

Testing

.

Maintenance

21

7.03.2012

‘ © Gert Jervan \

Gert Jervan,

Software Development Costs

« For life-critical software
(e.g. flight control,
reactor monitoring),
Cost testing can cost 3 to 5
times as much as all
other activities
combined.

Testing

« Stop testing is a
business decision

— There is always
something more to test

— Risk based decision

Design and
Implementation

Requirements

23

TTU/ATI

‘ i ieﬂ iervin \

Software Testing Topics

» Test Economics
» Types of Testing

» Testing coverage

20

The Product Development Cycle

ustomer & market Release

Driven inputs to
‘esv.:lt:?n“:n % manufacture
New
Product
dea ,
s ‘v
so’b Hardware M
e'velomen

Product
Manadg“e‘";;::le& Engineering Development Veri‘fJication
Engineering functions functions
inputs

22

‘ i ien ieivan \

Software Life Cycle Costs

Cost

Maintenance

Development

24

‘ © Gert Jervan \

Software Qualities

« Correctness

» Reliability (dependability)
+ Robustness

+ Safety

» Security (survivability)

« Performance

+ Productivity

» Maintainability, portability,
interoperability, ...

25

‘ © Gert Jervan \

Techniques for V&V

+ Static
— Collects information about a software
without executing it
« Reviews, walkthroughs, and inspections
« Static analysis

« Formal verification
rormai veritication

+ Dynamic
— Collects information about a software
with executing it
» Testing: finding errors
+ Debugging: removing errors

27

‘ © Gert Jervan \

Gert Jervan,

Formal Verification

« Given a model of a program and a
property, determine whether the model
satisfies the property based on
mathematics

» Examples

— Safety
« If the light for east-west is green, then the
light for south-north should be red
— Liveness

« If a request occurs, there should be a response
eventually in the future

29

7.03.2012

Software Verification and
Validation

« Verification
— Are we building the product right?
— Process-oriented
« Does the product of a given phase fulfill the

requirements established during the previous
phase?

+ Validation
— Are we building the right product?

— Product-oriented
« Does the product of a given phase fulfill the
user’s requirements?

26

Static Analysis

« Control flow analysis and data flow
analysis
- Extensively used for compiler optimization
and software engineering
» Examples
— Unreachable statements
— Variables used before initialization
— Variables declared but never used
— Variables assigned twice but never used
between assignments
— Variables used twice with no intervening
assignment
— Possible array bound violations

28

TTU/ATI

Een Jervan. \

Introduction to Testing

« Debugging and testing are not the same
thing!

» Testing is a systematic attempt to break
a program.

— Correct, bug-free programs by
construction are the goal but until that is
possible (if ever!) we have testing.

— Since testing is basically destructive in
nature, it requires that the tester discard
preconceived notions of the correctness
of the software to be tested

30

© Gert Jervan

© Gert Jervan

© Gert Jervan

Testing

Apply input Observe output

\ J
v

Validate the observed output

Is the observed output the same as the expected output?

31

Limitations of Testing (I)

» To test all possible inputs is impractical
or impossible

int foo(int x) {

y = very-complex-computation(x);
write(y);
}

» To test all possible paths is impractical
or impossible

int foo(int x) {

for (index = 1; index < 10000; index++)
write(x);

33

Economics of Testing (I)
» The characteristic S-curve for error

removal

We need
other techniques|

Testing is
effective

Number of
defects

Cutoff point
found

Time spent testing

35

Gert Jervan, TTU/ATI

7.03.2012

Software Testing Fundamentals

» Testing objectives include

— Testing is a process of executing a
program with the intent of finding an
error.

— A good test case is one that has a high
probability of finding an as yet
undiscovered error.

— A successful test is one that uncovers
an as yet undiscovered error.

32

Limitations of Testing (II)

» Dijkstra, 1972

— Testing can be used to show the

presence of bugs, but never their
absence

» Goodenough and Gerhart, 1975
— Testing is successful if the program fails
* The (modest) goal of testing

— Testing cannot guarantee the correctness
of software but can be effectively used to
find errors (of certain types)

34

Economics of Testing (II)

» Testing tends to intercept errors in order
of their probability of occurrence

Progress of
\ testing
Number of \
defects A\
— B
Found Not yet found Less likely =
More critical 36

Economics of Testing (III)

 Verification is insensitive to the
probability of occurrence of errors

Number of \
defects \

Progress of
. verification

‘ © Gert Jervan \
— -~
.
/
/
/
/
/
/
/
/
/
/
/
/
/
|
|
/
i
|
|
i
!
|
i
i
!

7.03.2012

Not yet found N
Found| ¥ TTTEe—
Less likely =
More critical
37
Types of Testing
Level
regression
acceptance
system
integration I
' Accessibility
unit
functional ’
reliability white grey black
box box box
robustness
performance
usability
§ Aspect
E 39
©

Accessibility of Testing

+ White box testing (structural testing,
program-based testing)

» White box testing is a test case design
method that uses the control structure
of the procedural design to derive test
cases. Test cases can be derived that

— guarantee that all independent paths within a
module have been exercised at least once,
exercise all logical decisions on their true and
false sides,

execute all loops at their boundaries and
within their operational bounds, and

exercise internal data structures to ensure
their validity.

‘ © Gert Jervan \
| | |

A

Gert Jervan, TTU/ATI

‘ i ien ieivan \

Fundamental Questions in Testing

« When can we stop testing?
— Test coverage

* What should we test?
— Test generation

» Is the observed output correct?
— Test oracle

* How well did we do?
- Test efficiency

* Who should test your program?
- Independent V&V

38

Levels of Testing

What users

really need Acceptance testing

Requirements System testing

Design Integration testing

Code Unit testing

40

Accessibility of Testing (II)

» Black box testing (functional testing,
specification-based testing)

— Assumes that the program is unavailable
or testers do not want to look at the
details of the program

« Derives test cases from the requirements of
the program

« Controls and observes the program only
through external interfaces

« Ideally done by independent test group (not
original programmer)

» Grey box testing

42

‘ © Gert Jervan \

* Main steps

Program-Based Testing (I)

— Examine the internal structure of a program
— Design a set of inputs satisfying a coverage
criterion
— Apply the inputs to the program and collect
the actual outputs
— Compare the actual outputs with the
expected outputs
» Limitations
— Cannot catch omission errors
+ What requirements are missing in the
program?
— Cannot provide test oracles
« What is the expected output for an input?

43

‘ © Gert Jervan \

Covergae metrics

+ Statement coverage
* Branch coverage

» Path coverage

» Mutation coverage

45

7.03.2012

Program-Based Testing (II)

Observe output

\ J
Y

Validate the observed output against the expected output

Apply input

Who will take care of test oracles?

44

Specification-Based Testing (I)

« Main steps

— Examine the structure of the program’s
specification

— Design a set of inputs from the specification
satisfying a coverage criterion

— Apply the inputs to the specification and
collect the expected outputs

— Apply the inputs to the program and collect
the actual outputs

— Compare the actual outputs with the
expected outputs

» Limitations

‘ © Gert Jervan \

Specification-Based Testing (II)

Expected output

Apply input

Actual output

Validate the observed output against the expected output

47

Gert Jervan, TTU/ATI

— Specifications are not usually available
« Many companies still have only code, there is
no other document.

‘ i ien ieivan \

46

The Budget Coverage Criterion

+ A common answer to “when is testing
done”
— When the money is used up
— When the deadline is reached

» This is sometimes a rational approach!
— Implication 1: Test selection is more
important than stopping criteria per se.
— Implication 2: Practical comparison of
approaches must consider the cost of test
case selection

‘ i ien ieivan \

48

7.03.2012

Remarks by Bill Gates

17th Annual ACM Conference on Object-Oriented
Programming, Seattle, Washington, November 8, Remarks by Bill Gates (cont.)
2002

...The test cases are unbelievably expensive; in fact,
there's more lines of code in the test harness than
there is in the program itself. Often that's a ratio of
about three to one.”

“... When you look at a big commercial software company
like Microsoft, there's actually as much testing that goes
in as development. We have as many testers as we have
developers. Testers basically test all the time, and
developers basically are involved in the testing process
about half the time...

... Well, one of the interesting questions is, when you

. We've probably changed the industry we're in. We're not change a program, ... what portion of these test cases

in the software industry; we're in the testing industry,
and writing the software is the thing that keeps us busy
doing all that testing.”

do you need to run?"

© Gert Jervan

Gert Jervan, TTU/ATI 9

