
7.03.2012

Gert Jervan, TTÜ/ATI 1

IAF0530/IAF9530

Dependability and fault tolerance

Lecture 4
F lt T l S ft T ti

©
G

er
t

Je
rv

a
n

Fault Tolerance, Software Testing

Gert Jervan
gert.jervan@pld.ttu.ee

Important

• No lecture on March 13!
• March 20

− Draft of the report (by e-mail, before the
lecture)

• Abstract, outline, main references, ca. 1 page

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

− Elevator pitch (max 5 min, 2-3 slides).
− Slides to be sent by e-mail at least 1

hour before the lecture!
− 26 presentations – sharp timing is

mandatory!
− Participation mandatory!

2

Fault Tolerance

©
G

er
t

Je
rv

a
n

Basics

• Computing systems are characterized by
five fundamental properties:
− functionality
− usability
− performance

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

− cost
− dependability

4

Faults

• Faults are there!

• Either prevent, tolerate, remove or
forecast

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

• We need redundancy
− System that is more complex than

needed for performing the required task

5

Means to Achieve Dependability

• Fault prevention
− Good design processes, avoid design flaws
− Good procedures for runtime faults

• Fault tolerance
− Fault detection
− Redundancy

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

y
− Diversity

• Fault removal
− Verification and validation during design
− Corrective/preventive action during maintenance

• Fault forecasting
− Simulation, modelling, prediction
− Analysis based on history statistics

6

7.03.2012

Gert Jervan, TTÜ/ATI 2

Fault Tolerance

• Automobile:
− Spare Tires
− Dual Braking Systems

• Power Supplies:
− UPS/battery backup
− Power-fail interrupts

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

p

• Multiple engines on aircraft
• Emergency lighting in buildings
• Tape backups of disk files
• Checkpoint/restart of long-running programs
• Parity and SECDED in computer memories

7

Faults

• Random faults (Degradation faults)
− Arise during operation
− Usually hardware component failure

• Systematic faults (Design Faults)
− mistakes in the spec

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

p
− mistakes in the hardware
− mistakes in the software

8

Faults

• Faults are either permanent, transient or
intermittent

• Design faults are always permanent

• Dealing with faults:

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

Dealing with faults:
− During development: fault avoidance &

removal
− During operation: fault tolerance &

detection

9

Hardware Faults

• Use of fault models
• Decomposition into modules

− Gates, transistors, etc

• Connection faults
− Single stuck-at model, bridging model (shorts),

stuck-open

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

• Used to model hardware faults
− Design testing schemes for digital circuits
− Fault removal coverage usually less than 100%
− Guard against physical defects, not design faults

• In safety critical systems
− Combined with Failure Modes and Effects Analysis

(FMEA)
− Need fault avoidance by verification…

10

Other Faults

• Hardware design and specification faults
− Few fault models available
− Many faults cannot be modelled
− System must meet the spec, but spec

might be incorrect as well

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

− Spec errors may manifest as either
hardware or software failures

− Use of formal methods (formal spec.
languages, automata theory, formal
verification, model checking, etc.)

11

Software Faults

• Bugs:
− Software spec faults
− Coding faults
− Logical errors within calculations
− Stack overflows or underflows

U i iti li d i bl

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

− Uninitialized variables

• No random failures and it does not
degrade with age

• Always systematic
• Exhaustive testing almost impossible
• Must be tolerated

12

7.03.2012

Gert Jervan, TTÜ/ATI 3

SW Testing - i.e. Verification

• Verification:
− SW testing
− formal verification

• Functional and structural testing

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

• Path testing, transaction flow testing,
data-flow testing, domain testing,
mutation testing etc.

13

Fault Detection Techniques

• Functionality checking
− march test

• Consistency checking
− range checking, overflow

• Signal comparison

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

g p
• Information redundancy

− checksums, cyclic redundancy codes, error
correcting codes

• Monitoring techniques
− Loopback testing
− Power supply monitoring

14

Watchdog Timer

• An inexpensive method of error detection
• Process being watched must reset the timer

before the timer expires, otherwise the watched
process is assumed as faulty

• Watchdog timers only detect errors which
manifest themselves as a control-flow error such

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

that the system does not continue to reset the
timer

• Only processes with relatively deterministic
runtimes can be checked, since the error
detection is based entirely on the time between
timer resets

15

Heartbeats

• A common approach to detecting
process and node failures in a
distributed (networked) computing
environment.

• Periodically, a monitoring entity sends a
message (a heartbeat) to a monitored

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

message (a heartbeat) to a monitored
node or process and waits for a reply.

• If the monitored node does not respond
within a predefined timeout interval, the
node is declared as failed and
appropriate recovery action is initiated.

• Adaptive or smart

16

System Testing

HW Testing SW Testing

©
G

er
t

Je
rv

a
n

17

HW/SW Testing
(system testing)

Software Testing

©
G

er
t

Je
rv

a
n

7.03.2012

Gert Jervan, TTÜ/ATI 4

Programmers are in a race with the Universe to
create bigger and better idiot-proof programs.

Whil th U i i t i t t bi d

©
G

er
t

Je
rv

a
n

While the Universe is trying to create bigger and
better idiots.

So far the Universe is winning

Software Testing Topics

• Test Economics

• Types of Testing

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

• Testing coverage

20

Software Life Cycle

Requirements

Design

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

21

Implementation

Testing

Maintenance

The Product Development Cycle

System
Spec

New
Product

Software
Development

HW-SW
Integration

Product
Verification

Customer & market
Driven inputs

Release
to

manufacture

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

22

Spec
Idea

Integration

Hardware
Development

Verification

Engineering Development
functions

Product
Verification
functions

Product Line
Management &

Engineering
inputs

Software Development Costs

• For life-critical software
(e.g. flight control,
reactor monitoring),
testing can cost 3 to 5
times as much as all
other activities

bi d

Cost

Testing

©
G

er
t

Je
rv

a
n

combined.

• Stop testing is a
business decision

− There is always
something more to test

− Risk based decision

23

Requirements

Design and
Implementation

Software Life Cycle Costs

Cost

Maintenance

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

24

Development

7.03.2012

Gert Jervan, TTÜ/ATI 5

Software Qualities

• Correctness
• Reliability (dependability)
• Robustness
• Safety
• Security (survivability)

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

• Security (survivability)
• Performance
• Productivity
• Maintainability, portability,

interoperability, …

25

Software Verification and
Validation
• Verification

− Are we building the product right?
− Process-oriented

• Does the product of a given phase fulfill the
requirements established during the previous
phase?

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

phase?

• Validation
− Are we building the right product?
− Product-oriented

• Does the product of a given phase fulfill the
user’s requirements?

26

Techniques for V&V

• Static
− Collects information about a software

without executing it
• Reviews, walkthroughs, and inspections
• Static analysis
• Formal verification

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

• Formal verification

• Dynamic
− Collects information about a software

with executing it
• Testing: finding errors
• Debugging: removing errors

27

Static Analysis

• Control flow analysis and data flow
analysis
− Extensively used for compiler optimization

and software engineering

• Examples
h bl

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

− Unreachable statements
− Variables used before initialization
− Variables declared but never used
− Variables assigned twice but never used

between assignments
− Variables used twice with no intervening

assignment
− Possible array bound violations

28

Formal Verification

• Given a model of a program and a
property, determine whether the model
satisfies the property based on
mathematics

• Examples

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

− Safety
• If the light for east-west is green, then the

light for south-north should be red

− Liveness
• If a request occurs, there should be a response

eventually in the future

29

Introduction to Testing

• Debugging and testing are not the same
thing!

• Testing is a systematic attempt to break
a program.

Correct bug free programs by

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

− Correct, bug-free programs by
construction are the goal but until that is
possible (if ever!) we have testing.

− Since testing is basically destructive in
nature, it requires that the tester discard
preconceived notions of the correctness
of the software to be tested

30

7.03.2012

Gert Jervan, TTÜ/ATI 6

Testing

Software
Apply input Observe output

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

31

Validate the observed output

Is the observed output the same as the expected output?

Software Testing Fundamentals

• Testing objectives include
− Testing is a process of executing a

program with the intent of finding an
error.

− A good test case is one that has a high
probability of finding an as yet

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

probability of finding an as yet
undiscovered error.

− A successful test is one that uncovers
an as yet undiscovered error.

32

Limitations of Testing (I)

• To test all possible inputs is impractical
or impossible

int foo(int x) {
y = very-complex-computation(x);
write(y);

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

• To test all possible paths is impractical
or impossible

33

(y)
}

int foo(int x) {
for (index = 1; index < 10000; index++)

write(x);
}

Limitations of Testing (II)

• Dijkstra, 1972
− Testing can be used to show the

presence of bugs, but never their
absence

• Goodenough and Gerhart, 1975

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

− Testing is successful if the program fails

• The (modest) goal of testing
− Testing cannot guarantee the correctness

of software but can be effectively used to
find errors (of certain types)

34

Economics of Testing (I)

• The characteristic S-curve for error
removal

We need
th t h i

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

35

Number of
defects
found

Time spent testing

Cutoff point
Testing is
effective

other techniques

Economics of Testing (II)

• Testing tends to intercept errors in order
of their probability of occurrence

Progress of
testing

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

36

Number of
defects

Less likely =
More critical

Found Not yet found

7.03.2012

Gert Jervan, TTÜ/ATI 7

Economics of Testing (III)

• Verification is insensitive to the
probability of occurrence of errors

Number of
d f t

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

37

defects

Less likely =
More critical

Progress of
verification

Found

Not yet found

Fundamental Questions in Testing

• When can we stop testing?
− Test coverage

• What should we test?
− Test generation

• Is the observed output correct?

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

Is the observed output correct?
− Test oracle

• How well did we do?
− Test efficiency

• Who should test your program?
− Independent V&V

38

Types of Testing

Level

acceptance

regression

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

39

Aspect

Accessibility
functional

robustness

performance

reliability

usability

unit

integration

system

white
box

grey
box

black
box

Levels of Testing

What users
really need Acceptance testing

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

40

Requirements

Design

Code

System testing

Integration testing

Unit testing

Accessibility of Testing

• White box testing (structural testing,
program-based testing)

• White box testing is a test case design
method that uses the control structure
of the procedural design to derive test

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

cases. Test cases can be derived that
− guarantee that all independent paths within a

module have been exercised at least once,
− exercise all logical decisions on their true and

false sides,
− execute all loops at their boundaries and

within their operational bounds, and
− exercise internal data structures to ensure

their validity.
41

Accessibility of Testing (II)

• Black box testing (functional testing,
specification-based testing)
− Assumes that the program is unavailable

or testers do not want to look at the
details of the program

Derives test cases from the requirements of

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

• Derives test cases from the requirements of
the program

• Controls and observes the program only
through external interfaces

• Ideally done by independent test group (not
original programmer)

• Grey box testing

42

7.03.2012

Gert Jervan, TTÜ/ATI 8

Program-Based Testing (I)

• Main steps
− Examine the internal structure of a program
− Design a set of inputs satisfying a coverage

criterion
− Apply the inputs to the program and collect

the actual outputs

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

− Compare the actual outputs with the
expected outputs

• Limitations
− Cannot catch omission errors

• What requirements are missing in the
program?

− Cannot provide test oracles
• What is the expected output for an input?

43

Program-Based Testing (II)

Program
Apply input Observe output

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

44

Validate the observed output against the expected output

Who will take care of test oracles?

Covergae metrics

• Statement coverage
• Branch coverage
• Path coverage
• Mutation coverage

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

45

Specification-Based Testing (I)

• Main steps
− Examine the structure of the program’s

specification
− Design a set of inputs from the specification

satisfying a coverage criterion
− Apply the inputs to the specification and

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

Apply the inputs to the specification and
collect the expected outputs

− Apply the inputs to the program and collect
the actual outputs

− Compare the actual outputs with the
expected outputs

• Limitations
− Specifications are not usually available

• Many companies still have only code, there is
no other document. 46

Specification-Based Testing (II)

Specification

Apply input

Expected output

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

47

Program
Actual output

Validate the observed output against the expected output

The Budget Coverage Criterion

• A common answer to “when is testing
done”
− When the money is used up
− When the deadline is reached

• This is sometimes a rational approach!

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

− Implication 1: Test selection is more
important than stopping criteria per se.

− Implication 2: Practical comparison of
approaches must consider the cost of test
case selection

48

7.03.2012

Gert Jervan, TTÜ/ATI 9

Remarks by Bill Gates
17th Annual ACM Conference on Object-Oriented
Programming, Seattle, Washington, November 8,
2002

“… When you look at a big commercial software company

like Microsoft, there's actually as much testing that goes

in as development. We have as many testers as we have

©
G

er
t

Je
rv

a
n

in as development. We have as many testers as we have

developers. Testers basically test all the time, and

developers basically are involved in the testing process

about half the time…

… We've probably changed the industry we're in. We're not

in the software industry; we're in the testing industry,

and writing the software is the thing that keeps us busy

doing all that testing.”

Remarks by Bill Gates (cont.)

“…The test cases are unbelievably expensive; in fact,

there's more lines of code in the test harness than

there is in the program itself. Often that's a ratio of

©
G

er
t

Je
rv

a
n

about three to one.”

“… Well, one of the interesting questions is, when you

change a program, … what portion of these test cases

do you need to run?“

