
27.03.2012

Gert Jervan, TTÜ/ATI 1

IAF0530/IAF9530

Dependability and fault tolerance

Lecture 5
T ti R l Ti S t

©
G

er
t

Je
rv

a
n

Testing Real-Time Systems

Gert Jervan
gert.jervan@pld.ttu.ee

Important

• Student presentations.
− Presentation dates: 17/04, 24/04, 15/05,

22/05, 24/05, 01/06. Always at 12:00,
IT-209. Register at the course homepage.

− MSc students: 20 min

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

− PhD students: 30 min
− Mandatory to participate at least on three

occasions (on top of your own
presentation) and ask questions!

• Deadline of the final report:
− 01/06 for those who are making

presentation 17/04-22/05
− 05/06 for those who are making

presentation 24/05-01/06 2

Remarks by Bill Gates
17th Annual ACM Conference on Object-Oriented
Programming, Seattle, Washington, November 8,
2002

“… When you look at a big commercial software company

like Microsoft, there's actually as much testing that goes

in as development. We have as many testers as we have

©
G

er
t

Je
rv

a
n

in as development. We have as many testers as we have

developers. Testers basically test all the time, and

developers basically are involved in the testing process

about half the time…

… We've probably changed the industry we're in. We're not

in the software industry; we're in the testing industry,

and writing the software is the thing that keeps us busy

doing all that testing.”

Remarks by Bill Gates (cont.)

“…The test cases are unbelievably expensive; in fact,

there's more lines of code in the test harness than

there is in the program itself. Often that's a ratio of

©
G

er
t

Je
rv

a
n

about three to one.”

“… Well, one of the interesting questions is, when you

change a program, … what portion of these test cases

do you need to run?“

Testing Real-Time Systems

©
G

er
t

Je
rv

a
n

Distributed
Self-Checking

System Testing

HW Testing SW Testing

©
G

er
t

Je
rv

a
n

6

HW/SW Testing
(system testing)

27.03.2012

Gert Jervan, TTÜ/ATI 2

Real-Time Systems

• Real-Time System – system, which is
required to adhere not only functional
but also tempoal requirements (“timing
constraints” or “deadlines”)

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

• RT-systems:
− Hard RT-systems
− Soft RT-systems

7

Real-Time Systems Testing

• Inherits issues from concurrent systems
− Problems becomes harder due to time-

constraints
• More sensitive to probe-effects
• Timing/order of inputs become more significant

Add i l bl

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

• Adds new potential problems
− New failure types

• E.g. Missed deadlines, Too early responses…
− Test inputs  Execution times
− Faults in real-time scheduling

• Algorithm implementation errors
• Assumption about system wrong

8

Real-Time Systems Testing

• Pure time-triggered systems
− Deterministic
− Test-methods for sequential software usually apply

• Fixed priority scheduling
− Non-deterministic

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

• Limited set of possible execution orders

− Worst-case w.r.t timeliness can be found from
analysis

• Dynamic (online) scheduled systems
− Non-deterministic

• Large set of possible execution orders

− Timeliness needs to be tested

9

Testing Timeliness

• Aim : Verification of specified deadlines for
individual tasks
− Test if assumptions about system hold

• E.g. worst-case execution time estimates, overheads,
context switch times, hardware acceleration
efficency, I/O latency, blocking times, dependency-
assumptions

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

− Test system temporal behavior under stress
• E.g. Unexpected job requests, overload

management, component failure, admission control
scheme

• Identification of potential worst-case execution
orders

• Controllability needed to test worst-case
situations efficiently

10

Testing Embedded Systems

• System-level testing differs
− Performed on target platform

to keep timing
Environment

Simulator
Test
parameters

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

• Closed-loop testing
− Test-cases consist of

parameters sent to the
environment simulator

• Open-loop testing
− Test-cases contain sequences

of events that the system
should be able to handle

11

Real-time (control)
system

Real-time (control)
system

Test Cases

Distributed Real-Time Systems

...

 Distributed
applications
 On a single cluster
 On several clusters

 Motivation

©
G

er
t

Je
rv

a
n

12

...

 Distributed applications are difficult to...
 Analyze (e.g., guaranteeing timing constraints)

 Design (e.g., efficient implementation)

 Reduce costs:
use resources
efficiently

 Requirements:
close to sensors/
actuators

27.03.2012

Gert Jervan, TTÜ/ATI 3

Testing Distributed RT-Systems

• Problems with distributed systems:
− Increased complexity
− The difficulties of observing and

monitoring
− Non-reproducible behaviour of the

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

system
− The lack of synchronized global clock

and, consequently, the difficulties of
unambiguously defining a “global state”

13

Testing Distributed RT-Systems

• Observability
− What?
− How?
− When?

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

• Controllability

• Auxiliary outputs, interactive debuggers

14

Observability Issues

• Probe effect (Gait,1985)
− “Heisenbergs's principle” - for computer

systems
− Common “solutions”

• Compensate
L b i t

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

• Leave probes in system
• Ignore

• Must observe execution orders
− Gain coverage

15

Controllability Issues

• To be able to test correctness of a
particular execution order we need
control
− Input data to all tasks

• Initial state of shared data/buffers

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

− Scheduling decisions
• Order synchronization/communication between

tasks

16

Testing Distributed RT-Systems

• Reproducibility
− Regression testing – retesting after errors

have been corrected
• errors truely corrected
• no new errors

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

− A distributed system may be non-
reproducible due to nondeteminism in it’s
hardware, software or operating system

17

Testing Distributed RT-Systems

• Obtaining reproducibility
− Language-based approach

• Enforcing the identified scenarios during
execution

• All solutions rely on source code
transformations

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

− Implementation based approach
• Collecting all missing information during an

execution of the system
• Event histories or traces

18

27.03.2012

Gert Jervan, TTÜ/ATI 4

Testing Distributed RT-Systems

• Disadvantages of implementation based
approach:
− Special dedicated HW (to monitor)
− Large amount of information
− Can we guarantee the correctnes of reply?

M difi d Wh t h ith t

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

− Modified programs. What happens with event
histories. Are they still valid?

− Event histories can be used only on target
systems

19

Testing Distributed RT-Systems

• Interdependence of Obsevability and
Reproducibility

− Not independent!

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

− Probe effect

20

Testing Distributed RT-Systems

• The host/target approach
− Host - development
− Target - execution

• Testing on the host system is used for

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

g y
(functional) unit testing and preliminary
integration testing (as much as possible)

• Testing on the target system involves
completing the integration test and
performing the system test. Also
performance, timing, etc.

21

Testing Distributed RT-Systems

• Environment simulation (for target
system test)
− Simulated v. real environment:

• Safety and/or cost considerations.
• “rare event” situations
• More control over simulated environment

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

• More control over simulated environment
• Easier to obtain responses and test results

− On-line v. off-line test data generation:
• Need to generate large amounts of input data
• Runs cost-effectively

22

Testing Distributed RT-Systems

• Representativity
− Only small number of real-world scenarios

can be anticipated and taken into account.
− Only a fraction of those anticipated real-world

scenarios can be tested due to the
combinatorial explosion of possible event and

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

p p
input combinations.

• Test coverage - how many of the
anticipated real-time scenarios can be or
have been covered by corresponding
test scenarios.

23

Self-checking distributed systems

• Run-time checking of the effects of
faults on system behaviors needs to be
carried out continuously.

• Reliability – the key to distributed SW

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

y y
quality

24

27.03.2012

Gert Jervan, TTÜ/ATI 5

Self-checking distributed systems

• Aspects to design correct SW:
− Reliability with which the SW

specifications are adequately described
and correctly implemented in the actual
implementation.
Run time checking

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

− Run-time checking

25

Self-checking distributed systems

• Fault-secure systems are systems, where faults
may be enforced not to propagate.
− Faults are not visible or have no effect
− Faults are visible, but it’s easy to notice that an

error exists

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

• Self-testing – System is self testing when there
exists testing behavior, occurring during the run-
time behavior of the system, such that this fault
will be propagated to the output and it’s easy to
notice, that there is a fault (out of predefined set
of values)

• System is self-checking for a set of faults, if
whatever a fault belonging to this set, it is fault-
secure and self-testing. 26

Self-checking distributed systems

• Worker-observer
− the worker is a classical implementation

of the system behavior
− the observer is a given redundant

implementation whose outputs are
comparable with the outputs of the

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

comparable with the outputs of the
worker.

• To obtain observing behavior:
− Redundancy
− Reference
− Visibility

• Worker cooperates with the observer
• Worker behavior can be spied by the observer

27

Self-checking distributed systems

• A formal observer is a subsystem
designed to check distributed behaviors
where:
− Its software is independent of the specific

protocols to be checked in the considered
system;

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

system;
− Its data are defined by the protocols to

be checked and this data can be formally
specified and verified.

28

Self-checking distributed systems

• Design of the system
− write a description of the beavior of the

system to be implemented;
− Implement the system itself, i.e., the

worker;

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

− From the description of the worker, select
(based on experience) that part of the
behavior which should be observed and
write a formal model of it.

29

Self-checking distributed systems

• The system is quasi self-checking if
− It is an observer-worker system
− The observer is a formal observer.

• For “real-life” only part of the system
will be modelled.

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

• Formal model must be able to
− Express simplified specifications of

distributed systems
− Support verification procedures
− Be able to act as a basis for

implementing the observer.

30

27.03.2012

Gert Jervan, TTÜ/ATI 6

Few testing criteria exists for
concurrent systems
• Number of execution orders grow exponentially

with # synchronization primitives in tasks
− Testing criteria needed to bound and

selecting subset of execution orders for
testing

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

• E.g. Branch / Statement coverage not sufficient
for concurrent software
− Still useful on serializations
− Execution paths may require specific behavior

from other tasks

• Data-flow based testing criteria has been
adapted
− E.g. define-use pairs 31

Determinism vs.
Non-Determinism
• Deterministic systems

− Controllability is high
• input (sequence) suffice

− Coverage can be claimed after single test
execution with inputs

− E.g. Filters, Pure “table-driven” real-time

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

g ,
systems

• Non-Deterministic systems
− Controllability is generally low
− Statistical methods needed in combination

with input coverage
− E.g.

• Systems that use random heuristics
• Behavior depends on execution times / race

conditions 32

Test execution in concurrent
systems
• Non-deterministic testing

− “Run, Run, Run and Pray”

• Deterministic testing
− Select a particular execution order and

force it

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

− E.g. Instrument with extra
synchronizations primitives
• (No timing constraints make this possible)

• Prefix-based Testing (and Replay)
− Deterministically run system to a specific

(prefix) point
− Start non-deterministic testing at that

specific point
33

Questions?

©
G

er
t

Je
rv

a
n

