27.03.2012

Important

» Student presentations.

— Presentation dates: 17/04, 24/04, 15/05,
22/05, 24/05, 01/06. Always at 12:00,
IT-209. Register at the course homepage.

— MSc students: 20 min

— PhD students: 30 min

— Mandatory to participate at least on three
occasions (on top of your own
presentation) and ask questions!

» Deadline of the final report:

- 01/06 for those who are making
presentation 17/04-22/05

- 05/06 for those who are making
presentation 24/05-01/06 2

IAF0530/IAF9530

Dependability and fault tolerance

Lecture 5
Testing Real-Time Systems

© Gert Jervan

Remarks by Bill Gates

17th Annual ACM Conference on Object-Oriented
Programming, Seattle, Washington, November 8,
2002

Remarks by Bill Gates (cont.)

"...The test cases are unbelievably expensive; in fact,
there's more lines of code in the test harness than
there is in the program itself. Often that's a ratio of
about three to one.”

“... When you look at a big commercial software company
like Microsoft, there's actually as much testing that goes
in as development. We have as many testers as we have
developers. Testers basically test all the time, and
developers basically are involved in the testing process
about half the time...

.. We've probably changed the industry we're in. We're not
in the software industry; we're in the testing industry,
and writing the software is the thing that keeps us busy
doing all that testing.”

“... Well, one of the interesting questions is, when you
change a program, ... what portion of these test cases
do you need to run?"

© Gert Jervan

System Testing

HW Testing SW Testing

| T |

HW/SW Testing
(system testing)

Testing Real-Time Systems

Een Jervan. \
o

5
2
2
i
G
o

Gert Jervan, TTU/ATI

Real-Time Systems

Real-Time System - system, which is
required to adhere not only functional
but also tempoal requirements (“timing
constraints” or “deadlines”)

RT-systems:
— Hard RT-systems
— Soft RT-systems

‘ © Gert Jervan \
. .

27.03.2012

Real-Time Systems Testing

» Inherits issues from concurrent systems
— Problems becomes harder due to time-
constraints
« More sensitive to probe-effects
« Timing/order of inputs become more significant

» Adds new potential problems
- New failure types
« E.g. Missed deadlines, Too early responses...
— Test inputs - Execution times
— Faults in real-time scheduling
« Algorithm implementation errors
« Assumption about system wrong

Real-Time Systems Testing

« Pure time-triggered systems
— Deterministic

» Fixed priority scheduling
— Non-deterministic
« Limited set of possible execution orders
— Worst-case w.r.t timeliness can be found from
analysis

« Dynamic (online) scheduled systems
— Non-deterministic
« Large set of possible execution orders
— Timeliness needs to be tested

‘ © Gert Jervan \

— Test-methods for sequential software usually apply

Testing Embedded Systems

« System-level testing differs
— Performed on target platform
to keep timing
Test
parameters
» Closed-loop testing
— Test-cases consist of
parameters sent to the
environment simulator

- Open-loop testing Test Cases
— Test-cases contain sequences
of events that the system
should be able to handle

‘ © Gert Jervan \

Gert Jervan, TTU/ATI

Testing Timeliness

» Aim : Verification of specified deadlines for
individual tasks
— Test if assumptions about system hold
« E.g. worst-case execution time estimates, overheads,
context switch times, hardware acceleration
efficency, I/0 latency, blocking times, dependency-
assumptions

— Test system temporal behavior under stress

« E.g. Unexpected job requests, overload
management, component failure, admission control
scheme

» Identification of potential worst-case execution
orders

« Controllability needed to test worst-case
situations efficiently

‘ i ien ieivan \

Distributed Real-Time Systems

G = Distributed
—

applications
- - - - On a single cluster
= On several clusters

= Motivation
= Reduce costs:
use resources
efficiently
1 1 K
= Requirements:
'— close to sensors/
actuators
= Distributed applications are difficult to...
= Analyze (e.g., guaranteeing timing constraints)
= Design (e.g., efficient implementation)

5
I
5
A
5

© Gert Jervan

© Gert Jervan

© Gert Jervan

Testing Distributed RT-Systems

« Problems with distributed systems:

— Increased complexity

— The difficulties of observing and
monitoring

— Non-reproducible behaviour of the
system

— The lack of synchronized global clock
and, consequently, the difficulties of
unambiguously defining a “global state”

27.03.2012

Testing Distributed RT-Systems
« Observability

- What?

— How?

- When?
« Controllability

» Auxiliary outputs, interactive debuggers

Observability Issues

» Probe effect (Gait,1985)
— “Heisenbergs's principle” - for computer
systems
— Common “solutions”
« Compensate
« Leave probes in system
« Ignore

* Must observe execution orders
— Gain coverage

Controllability Issues

» To be able to test correctness of a
particular execution order we need
control

— Input data to all tasks
« Initial state of shared data/buffers

— Scheduling decisions
« Order synchronization/communication between
tasks

Testing Distributed RT-Systems

* Reproducibility
— Regression testing - retesting after errors
have been corrected
« errors truely corrected
* NO New errors

— A distributed system may be non-
reproducible due to nondeteminism in it's
hardware, software or operating system

Testing Distributed RT-Systems

+ Obtaining reproducibility
— Language-based approach
« Enforcing the identified scenarios during
execution

« All solutions rely on source code
transformations

— Implementation based approach

« Collecting all missing information during an
execution of the system

« Event histories or traces

Gert Jervan, TTU/ATI

© Gert Jervan

H
H
&
&
]
“
o

© Gert Jervan

27.03.2012

Testing Distributed RT-Systems

- Disadvantages of implementation based

approach:

— Special dedicated HW (to monitor)

— Large amount of information

— Can we guarantee the correctnes of reply?

— Modified programs. What happens with event
histories. Are they still valid?

— Event histories can be used only on target
systems

Testing Distributed RT-Systems

» Interdependence of Obsevability and
Reproducibility

- Not independent!

— Probe effect

20

Testing Distributed RT-Systems

+ The host/target approach
— Host - development
— Target - execution

» Testing on the host system is used for
(functional) unit testing and preliminary
integration testing (as much as possible)

» Testing on the target system involves
completing the integration test and
performing the system test. Also
performance, timing, etc.

21

Testing Distributed RT-Systems

« Environment simulation (for target
system test)

— Simulated v. real environment:
« Safety and/or cost considerations.
« “rare event” situations
« More control over simulated environment
« Easier to obtain responses and test results

— On-line v. off-line test data generation:
» Need to generate large amounts of input data
« Runs cost-effectively

22

Testing Distributed RT-Systems

» Representativity

— Only small humber of real-world scenarios
can be anticipated and taken into account.

— Only a fraction of those anticipated real-world
scenarios can be tested due to the
combinatorial explosion of possible event and
input combinations.

» Test coverage - how many of the
anticipated real-time scenarios can be or
have been covered by corresponding
test scenarios.

23

Self-checking distributed systems

* Run-time checking of the effects of
faults on system behaviors needs to be
carried out continuously.

« Reliability - the key to distributed SW
quality

24

Gert Jervan, TTU/ATI

Self-checking distributed systems

» Aspects to design correct SW:

— Reliability with which the SW
specifications are adequately described
and correctly implemented in the actual
implementation.

— Run-time checking

‘ © Gert Jervan \

25

Self-checking distributed systems

+ Worker-observer
— the worker is a classical implementation
of the system behavior
— the observer is a given redundant
implementation whose outputs are
comparabie with the outputs of the
worker.
» To obtain observing behavior:
— Redundancy
— Reference
— Visibility
» Worker cooperates with the observer
« Worker behavior can be spied by the observer

‘ © Gert Jervan \

27

Self-checking distributed systems

« Design of the system

— write a description of the beavior of the
system to be implemented;

— Implement the system itself, i.e., the
worker;

— From the description of the worker, select
(based on experience) that part of the
behavior which should be observed and
write a formal model of it.

‘ © Gert Jervan \

29

Gert Jervan, TTU/ATI

27.03.2012

‘ i ien ieivan \

Self-checking distributed systems

» Fault-secure systems are systems, where faults
may be enforced not to propagate.
- Faults are not visible or have no effect
— Faults are visible, but it’s easy to notice that an
error exists

« Self-testing - System is self testing when there
exists testing behavior, occurring during the run-
time behavior of the system, such that this fault
will be propagated to the output and it's easy to
notice, that there is a fault (out of predefined set
of values)

» System is self-checking for a set of faults, if
whatever a fault belonging to this set, it is fault-
secure and self-testing. 2

Een Jervan. \

Self-checking distributed systems

- A formal observer is a subsystem
designed to check distributed behaviors
where:

- Its software is independent of the specific
protocols to be checked in the considered
system;

— Its data are defined by the protocols to
be checked and this data can be formally
specified and verified.

28

Self-checking distributed systems

» The system is quasi self-checking if
— It is an observer-worker system
— The observer is a formal observer.

+ For “real-life” only part of the system
will be modelled.

« Formal model must be able to

— Express simplified specifications of
distributed systems

— Support verification procedures

— Be able to act as a basis for
implementing the observer.

30

Few testing criteria exists for
concurrent systems

« Number of execution orders grow exponentially

with # synchronization primitives in tasks

— Testing criteria needed to bound and
selecting subset of execution orders for
testing

E.g. Branch / Statement coverage not sufficient

for concurrent software

— Still useful on serializations

— Execution paths may require specific behavior
from other tasks

Data-flow based testing criteria has been
adapted
— E.g. define-use pairs

‘ © Gert Jervan \
. .

31

27.03.2012

Determinism vs.
Non-Determinism

+ Deterministic systems
— Controllability is high
« input (sequence) suffice
— Coverage can be claimed after single test
execution with inputs
— E.g. Filters, Pure “table-driven” real-time
systems

* Non-Deterministic systems
— Controllability is generally low
— Statistical methods needed in combination
with input coverage
- E.g.
« Systems that use random heuristics

« Behavior depends on execution times / race »
conditions

Test execution in concurrent
systems

* Non-deterministic testing
— “Run, Run, Run and Pray”
» Deterministic testing
— Select a particular execution order and
force it
— E.g. Instrument with extra
synchronizations primitives
» (No timing constraints make this possible)
» Prefix-based Testing (and Replay)
— Deterministically run system to a specific
(prefix) point
— Start non-deterministic testing at that
specific point

33

Questions?

‘ © Gert Jervan \

Gert Jervan, TTU/ATI

