
10.04.2012

Gert Jervan, TTÜ/ATI 1

IAF0530/IAF9530

Dependability and fault tolerance

Lecture 6
R d d (H d d ft)

©
G

er
t

Je
rv

a
n

Redundancy (Hardware and software)

Gert Jervan
gert.jervan@pld.ttu.ee

Lecture Outline

 Introduction

 Hardware Redundancy

Some materials from:
Kewal Saluja
Hongyu Sun
Zaipeng Xie
Meng-Lai Yin
Rajesh Gupta
Elena Dubrova

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

2

 Information Redundancy

 Time Redundancy

 Software Redundancy

Fault Tolerance

• A fault-tolerant system is one that can continue
to correctly perform its specified tasks in the
presence of hardware failures and/or software
errors.

• Fault tolerance is the attribute that enables a
system to achieve fault-tolerant operation.

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

• Fault tolerance is not a new field:
− 1949, the EDVAC computer duplicated the ALU

and compare the results
− 1955, the UNIVAC computer incorporated parity

check for data transfers
− 1952, John von Neumann, lectures on the use of

replicated logic modules to improve system
reliability,

− etc.

3

System Design & Evaluation Top-
Level View

System Requirements

System Design System Evaluation

• System level analysis

©
G

er
t

Je
rv

a
n

Fault Avoidance Fault Tolerance

y y
• Subsystem level

analysis
• Module/Component

level analysis

Possible Techniques
• FMEA
• FTA
• RBD
• Markov
• Petri net

Possible techniques
• Redundancy (Hardware,

Software, Information,
Time)

• Fault detection
• Fault masking
• Fault containment
• Reconfiguration

Possible techniques
• Parts selection
• Design reviews
• Quality control
• Design

Methodology
• Documentation

Hardware Redundancy

©
G

er
t

Je
rv

a
n

Hardware Redundancy

• 3 basic forms: passive, active, and
hybrid
− Passive: Mask faults rather than detect

faults without requiring any system or
operator action
A ti F lt h t b d t t d b f it

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

− Active: Fault has to be detected before it
can be tolerated. Actions: location,
containment, recovery (for component
removal)

6

10.04.2012

Gert Jervan, TTÜ/ATI 2

Passive Hardware Redundancy

• Use fault masking to hide the
occurrence of faults and prevent the
faults from resulting in errors

• Mask faults rather than detect faults
• Achieve fault tolerance without requiring

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

q g
any system or operator action

• Voting mechanisms, majority voting
• Do not need fault detection or

reconfiguration
• Many drawbacks

7

Passive Hardware Redundancy

• N-Modular Redundancy (generalization
of TMR or Triple Modular Redundancy)

• TMR: Triplicate the hardware and
perform a majority vote to determine
the output of the system

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

− If one of the modules becomes faulty, the
2 remaining fault-free modules mask the
results of the faulty module when the
majority vote is performed

8

TMR Technique

Module 1

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

9

Module 2

Module 3

Voter

Tolerates N/2 faults

TMR/Voter Structures

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

10

Fault-Tolerance Capability

− Assuming perfect voter, how many module faults can the
TMR technique tolerate?

− What if 2 modules fail the same way?
− Does TMR technique provide fault detection capability?
− How about imperfect voter?
− Performance impacts from the voter in the TMR

technique

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

11

Module 1

Module 2

Module 3

Voter

Single Point of Failure

Reliability of a TMR System

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

12

10.04.2012

Gert Jervan, TTÜ/ATI 3

Reliability of a TMR System

©
G

er
t

Je
rv

a
n

13

MTTF=1/λ

TMR with Triplicated Voters

Module 1 Voter

©
G

er
t

Je
rv

a
n

14

Module 2

Module 3

Voter

Voter

Cascading TMR modules

©
G

er
t

Je
rv

a
n

15

Passive hardware redundancy

• Types of voting
− Majority

• in many practical situations it is meaningless

− Average
• can have poor performance if a sensor always

provide very low value

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

provide very low value

− Mid value
• a good choice - can be very costly to

implement in HW

16

Passive Hardware Redundancy

• Comparison between hw and sw voter
schemes

HW SW
cost high low
flexibilty inflex flex

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

y
synch. tightly loosely
perform. high low

(fast) (slow)

types of majority diff
voting (others costly) (no extra cost)

17

Example Systems Using TMR
Technique
• JPL STAR (Self-Testing And Repairing

computer)

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

18

10.04.2012

Gert Jervan, TTÜ/ATI 4

Example Systems Using TMR
Technique
• FAA WAAS (Wide Area Augmentation

System)

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

19

WAAS Block Diagram

Wide-area Reference
Station (WRS), 1 of 25

Ground Earth
Station (GES)

WAN

WRE

WRE

Corr-1 GUS

GUS

Wide-area Master
Station (WMS), (1 of 2)

Corr-2 Safety
M i

Safety
Monitor

WAN

C
o
m
p

©
G

er
t

Je
rv

a
n

20

WRE

O & M Separate GES

GUS

GUS

Corr-2 Monitor p

Active Hardware Redundancy

• Achieve fault tolerance by detecting the
existence of faults and performing some
action to remove the faulty parts

• Require the system be reconfigured to
tolerate faults

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

• 3 steps: fault detection, fault location,
and fault recovery

21

Active Hardware Redundancy

©
G

er
t

Je
rv

a
n

22

Dynamic Redundancy

• Uses Extra Components
• Only 1 Copy Operates At A Times

− Fault Detection
− Fault Recovery

• Spares Are On “Standby”

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

Spares Are On Standby
− Hot Spares
− Cold Spares

23

Duplication with Comparison

• Both modules perform the same computations in
parallel and compare the results

• An error message is generated if the two results
disagree

• Only fault detection, no fault tolerance
• Can be used as a fundamental fault detection

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

technique in active redundancy approach, for
example, the pair-and-a-spare technique

24

Module 1

Module 2

Comparator
Input

Output

Agree/Disagree

10.04.2012

Gert Jervan, TTÜ/ATI 5

Reliability of duplication with
comparison

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

25

Duplication with Comparison

• Problems:
− if there is a fault on input line, both

modules will receive the same erroneous
signal and produce the erroneous result

− comparator may not be able to perform
an exact comparison

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

an exact comparison
• synchronisation
• no exact matching

− comparator is a single point of failure

26

Implementation of comparator

• In hardware, a bit-by-bit comparison
can be done using two-input exclusive-
or gates

• In software, a comparison can be
implemented with a COMPARE

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

instruction
− commonly found in instruction sets of

almost all microprocessors

27

Standby Sparing

©
G

er
t

Je
rv

a
n

28

Spares

• Hot spares
− all modules are powered up
− spares can be switched into use immediately

after the primary module becomes failed

• Cold spares
h d l d

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

− the primary modules are powered up
− the spares are powered down, which are

powered up and switched into use when the
primary modules fail

• Warm spares

29

Standby Sparing (standby
replacement)
• Active hardware redundancy
• One module is operational and one or

more modules serve as standbys (or
spares)

• Various fault detection or error detection

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

schemes are used to determine whether
a module has become faulty

• Fault location is used to determine
exactly which module, if any, is faulty.

30

10.04.2012

Gert Jervan, TTÜ/ATI 6

Standby Sparing (standby
replacement)
• If a fault is detected and located, then

the faulty module is removed from
operation and replaced with a spare

• The reconfiguration can be viewed as a
switch.

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

• Can bring a system back to full
operation after the occurrence of a fault.

• Require momentary disruption in
performance when reconfiguration is
performed.

31

Hot Standby Sparing

• In hot standby sparing spares operate in
synchrony with on-line module and are
prepared to take over any time

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

32

Cold Standby Sparing

• In cold standby sparing spares are
unpowered until needed to replace a
faulty module

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

33

Hot & Cold Standby Sparing

• Hot standby sparing can minimize the
performance disruption. The spares
operate in synchrony with the on line
modules and are prepared to take over
at any time.

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

• In cold standby sparing, the spares are
unpowered until needed to replace a
faulty module. Hence extra time is
required to bring the module back to
operation. The advantage is that spares
do not consume power until needed.
Satellite application is a good example
for cold standby sparing.

34

Pair-and-a-spare Technique

• Combine the features in standby sparing
and duplication with comparison

• 2 modules are operated in parallel at all
times and their results are compared to
provide the error protection capability

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

• The error signal from the comparison is
used to initiate the reconfiguration
process (switch) that removes faulty
modules and replaces them with spares

35

Pair-and-a-spare scheme

Module 1a

Module 1b
Comparator

©
G

er
t

Je
rv

a
n

36

Module 2a

Module 2b
Comparator

switch

http://www.stratus.com/

10.04.2012

Gert Jervan, TTÜ/ATI 7

Example Systems

• Apollo telescope mount pointing
computer

• Saturn 5 LVDC memory section
• Compaq Himalaya architecture

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

37

Types of Redundancy

NASA Office of Logic Design - klabs.org

• Classified on how the redundant elements are
introduced into the circuit

• Choice of redundancy type is application specific
• Active or Static Redundancy

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

− External components are not required to perform
the function of detection, decision and switching
when an element or path in the structure fails.

• Standby or Dynamic Redundancy
− External elements are required to detect, make a

decision and switch to another element or path as
a replacement for a failed element or path.

38

Redundancy Techniques

(7) (8)

Redundancy Techniques

Active Standby

Parallel Voting Non-Operating Operating

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

39

(7) (8)

(6)

(1) (2) (3)

(4) (5)

Majority Vote Gate Connector

Simple Duplex Bimodal

Simple Adaptive

Hybrid Hardware Redundancy

• Hybrid:
− combine the attractive features of both

the passive and active approaches
• fault masking
• fault detection
• fault location

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

• fault location
• recovery

40

Self-Purging Redundancy

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

41
Can mask n-2 module faults

Self Purging Redundancy

• Initially start with NMR
• Purge one unit at at time till arrive at

TMR
− can tolerate more faults initially

compared to NMR with spare

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

− cost of the switch - higher?

42

10.04.2012

Gert Jervan, TTÜ/ATI 8

Basic Structure of a Switch

• If output of a module disagrees with the
output of the system, its contribution to
the voter is forced to be 0 (threshold
voter)

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

43

Reliability of Self-Purging System

©
G

er
t

Je
rv

a
n

44

N-Modular Redundancy with
Spares
• Most hybrid redundancy are based on

the concept of N-modular redundancy
(NMR) with spares

• The idea is to provide N modules
arranged in a voting configuration

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

• Spares are provided to replace failed
modules

• The advantage of NMR with spares is
that a voting configuration can be
restored after a fault has occurred

45

N-Modular Redundancy with
Spares

©
G

er
t

Je
rv

a
n

46

NMR with Spares

• System remains in the basic NMR
configuration until the disagreement
vector determines a fault

• The output of the voter is compare to
the individual outputs of the modules

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

• Module which disagrees is labeled as
faulty and removed from the NMR core

• Spare is switched to replace it

47

NMR with Spares

• The reliability is maintained as long as
the pool of spares is not exhausted

• 3-modular redundancy with 1 spare can
tolerate 2 faults

• To do it in a passive approach, we would

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

p pp
need to have 5 modules

48

10.04.2012

Gert Jervan, TTÜ/ATI 9

Triplex-duplex Redundancy

©
G

er
t

Je
rv

a
n

49

Triplex-duplex Redundancy

• TMR allows faults to be masked
− performance without interruption

• Duplication with comparison allows
faults to be detected and faulty module
removed form voting

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

− removal of faulty module allows to
tolerate future faults

• Two module faults can be tolerated

50

Software Fault Tolerance

©
G

er
t

Je
rv

a
n

Introduction

• Less understood and less mature than in
hardware

• Software does not degrade over time
• Design faults
• Environment

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

Environment

52

Introduction

• Many current techniques for software
fault tolerance attempt to leverage the
experience of hardware redundancy
schemes
− software N-version programming closely

bl h d N d l

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

resembles hardware N-modular
redundancy

− recovery blocks use the concept of
retrying the same operation in
expectation that the problem is resolved
after the second try.

53

Problems

• Traditional hardware fault tolerance
techniques were developed to fight
− permanent components faults primarily
− transient faults caused by environmental

factors secondarily.

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

• They do not offer sufficient protection
against design and specification faults,
which are dominant in software.

54

10.04.2012

Gert Jervan, TTÜ/ATI 10

Concepts for Traditional SFT

• Software design and implementation
errors cannot be detected by simple
replication of identical software units,
assuming the same inputs are provided
to each copy.

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

• Some form of diversity must accompany
the redundancy
− Software redundancy Design diversity
− Information or data redundancy Data

diversity
− Temporal redundancy Temporal diversity
− Environment diversity
− Hardware redundancy

55

Single- and multi-version

• Software fault-tolerance techniques can
be divided into two groups:
− single-version
− multi-version

• Single version techniques aim to
improve fault tolerant capabilities of a
i l ft d l

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

single software module
− fault detection, containment and recovery

mechanisms
• Multi-version techniques employ

redundant software modules, developed
following design diversity rules

56

Redundancy Allocation

• A number of possibilities have to be examined:
− at which level the redundancy need to be provided

• Redundancy can be applied to a procedure, or to
a process, or to the whole software system
− which modules are to be made redundant

• Usually, the components which have high

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

y, p g
probability of faults are chosen to be made
redundant.

• The increase in complexity caused by
redundancy can be quite severe and may
diminish the dependability improvement

57

Single-Version (Dynamic) Techniques

• Dynamic redundancy kicks in only when
an error is detected.

• Four phases
− 1. Error detection:

fault tolerance techniques effective only when
an error is detected
2 Damage assessment and containment:

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

− 2. Damage assessment and containment:
to what extent the “damage” has spread
because of the delay between a fault and its
manifestation/detection?

− 3. Error recovery:
techniques to reach from a corrupted to a
safe state

− 4. Fault treatment and continued service:
error correction.

58

1 - Error Detection

• The goal is to determine that a fault has
occurred within a system.

• Various types of acceptance tests are
used to detect faults
− the result of a program is subjected to a

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

test
− if the result passes the test, the program

continues its execution
− a failed test indicates a fault

59

Acceptance Test

• Acceptance test is most effective if it
can be calculated in a simple way and if
it is based on criteria that can be
derived independently of the program
application.

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

• The existing techniques include
− timing checks
− coding checks
− reversal checks
− reasonableness checks
− structural checks
− replication checks
− dynamic reasonableness checks

60

10.04.2012

Gert Jervan, TTÜ/ATI 11

Timing Checks

• Timing checks are applicable to system
whose specification include timing
constrains

• Based on these constrains, checks are
developed to indicate a deviation from

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

the required behavior.
− Watchdog timer is an example of a timing

check
− Watchdog timers are used to monitor the

performance of a system and detect lost
or locked out modules.

61

Coding Checks

• Coding checks are applicable to system
whose data can be encoded using
information redundancy techniques

• Usually used in cases when the
information is merely transported from

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

one module to another without changing
it content.
− Arithmetic codes can be used to detect

errors in arithmetic operations

62

Reversal Checks

• In some system, it is possible to reverse
the output values and to compute the
corresponding input values.

• A reversal checks compares the actual
inputs of the system with the computed

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

ones.
− a disagreement indicates a fault.

63

Reasonableness Checks

• Reasonableness checks use semantic
properties of data to detect fault.
− a range of data can be examined for

overflow or underflow to indicate a
deviation from system's requirements

M i ithd l i b k’

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

• Maximum withdrawal sum in bank’s
teller machine

• Address generated by a computer
should lie inside the range of available
memory

64

Structural Checks

• Structural checks are based on known
properties of data structures
− a number or elements in a list can be

counted, or links and pointer can be
verified

• Structural checks can be made more

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

Structural checks can be made more
efficient by adding redundant data to a
data structure,
− attaching counts on the number of items

in a list, or adding extra pointers

65

2 - Damage Assessment &
Containment
• Necessary due to the delay between

fault and error
• Goal of containment is to minimize

damage caused by a faulty component
− “firewalling”

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

• Assessment closely related to
containment techniques used

• Techniques for fault containment:
− modularization
− partitioning
− system closure
− atomic actions

66

10.04.2012

Gert Jervan, TTÜ/ATI 12

Modularization

• Software system is divided into modules
with few or no common dependencies
between them

• Modularization attempts to prevent the
propagation of faults

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

− by limiting the amount of communication
between modules to carefully monitored
messages

− by eliminating shared resources

67

Partitioning

• Modular hierarchy of a software
architecture is partitioned in horizontal
or vertical dimensions

• Horizontal partitioning separates the
major software functions into

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

independent branches
− The execution of the functions and the

communication between them is done using
control modules

• Vertical partitioning distributes the
control and processing function in a top-
down hierarchy.
− High-level modules normally focus on control

functions, while low-level modules perform
processing 68

System Closure

• System closure technique is based on a
principle that no action is permissible
unless explicitly authorized

• In an environment with many
restrictions and strict control all the

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

interactions between the elements of
the system are visible
− prison

• It is easier to locate and disable any
fault.

69

Atomic Action

• An atomic action among a group of
components in an activity in which the
components interact exclusively with
each other.
− no interaction with the rest of the system

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

• Two possible outcomes of an atomic
action:
− it terminates normally
− it is aborted upon a fault detection

• Fault containment area is defined and
fault recovery is limited to atomic action
components

70

3 Fault Recovery

• Once a fault is detected and contained,
a system attempts to recover from the
faulty state and regain operational
status
− If fault detection and containment

mechanisms are implemented properly the

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

mechanisms are implemented properly, the
effects of the faults are contained within a
particular set of modules at the moment of
fault detection.

• The knowledge of fault containment
region is essential for the design of
effective fault recovery mechanism

71

Exception Handling

• Exception handling is the interruption of
normal operation to handle abnormal
responses

• Possible events triggering the
exceptions:

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

− Interface exceptions
• signaled by a module when it detects an invalid

service request

− Local exceptions
• signaled by a module when its fault detection

mechanism detects a fault

− Failure exceptions
• signaled by a module when it has detected that

its fault recovery mechanism is enable to
recover successfully

72

10.04.2012

Gert Jervan, TTÜ/ATI 13

Recovery

• Forward or Backward
• Forward: continues from an erroneous

state by making selective corrections to
the system state
− includes making safe the controlled

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

environment which may be hazardous or
damaged because of failure

− system specific and depends upon
accurate predictions

− e.g., redundant pointers in data
structures, self-correcting codes

73

Recovery

• Backward: relies on restoring the
system to a previous safe state and
executing an alternative section of the
program
− safe functionality but different algorithm

th i t t hi h i t d i

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

− the point to which a process is restored is
called a recovery point and the act of
establishing it is called checkpointing.

− BER can be used to recover from
unanticipated faults including design errors.

− State restoration is not always possible in
(real-time) embedded systems.

74

Backward Recovery

 Attempts to return the system to a correct or
error-free state.

 For transient faults

 Example:
recovery blocks
(RcB)

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

75

Static Checkpoints

• A static checkpoint takes a single
snapshot of the system state at the
beginning of the program execution and
stores it in the memory.
− If a fault is detected, the system returns

t thi t t d t t th ti

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

to this state and starts the execution
from the beginning.

− Fault detection checks are placed at the
output of the module

76

Dynamic Checkpoints

• Dynamic checkpoints are created
dynamically at various points during the
execution
− If a fault is detected, the system returns

to the last checkpoint and continues the
execution

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

execution.
− Fault detection checks need to be

embedded in the code and executed
before the checkpoints are created

77

Static vs. Dynamic

• In static approach, the expected time to
complete the execution grows
exponentially with the execution
requirements.
− static checkpointing is effective only if the

processing requirement is relatively small

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

processing requirement is relatively small.

• In dynamic approach, it is possible to
achieve linear increase in execution time
as the processing requirements grow

78

10.04.2012

Gert Jervan, TTÜ/ATI 14

Strategies for dynamic
checkpointing
• Equidistant

− places checkpoints at deterministic fixed
time intervals

− the time between checkpoints is chosen
depending on the expected fault rate

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

• Modular
− places checkpoints at the end of the sub-

modules in a module, after the fault
detection checks for the submodule are
completed

− the execution time depends on the
distribution of the sub-modules and
expected fault rate

• Random 79

Advantages

• Conceptually simple
• Independent of the damage caused by a

fault
• Applicable to unanticipated faults
• General enough to be used at multiple

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

General enough to be used at multiple
levels in a system

80

Problems

• Non-recoverable actions exist in some systems
− these actions cannot be compensated by simply

reloading the state and restarting the system
• firing a missile
• soldering a pair of wires

• The recovery from such actions can be done
− by compensating for their consequences

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

y p g q
• undoing a solder

− by delaying their output until after additional
confirmation checks are completed
• do a friend-or-foe confirmation before firing

81

Forward Recovery

• Attempts to find a new state from which
the system can continue operation.

• Utilize error compensation based on
redundancy to select or derive the
correct answer or an acceptable answer.

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

• Example: N-version programming
(NVP), N-copy programming (NCP), and
the distributed recovery block (DRB)

82

Forward Recovery

• Efficient for predictable errors

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

83

4 - Fault Treatment and
Continued Service
• Even with recovery, the error may recure. Need

to eradicate the fault from the system
• Automatic treatment of faults is very application

specific
• Make some assumptions. For instance:

− all faults are transient

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

• Fault treatment in two stages
− Fault location
− System repair

• Fault location
− use error detection techniques to trace a fault

to a component (hardware or software)
− System repair

• sometimes it has to be done while the system is in
operation.

84

10.04.2012

Gert Jervan, TTÜ/ATI 15

Multi-Version Techniques

• Multi-version techniques use two or
more versions the same software
module, which satisfy design diversity
requirements.
− different teams, different coding

l diff t l ith b

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

languages or different algorithms can be
used to maximize the probability that all
the versions do not have common faults

85

Design Diversity

• Higher cost

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

86

SFT Techniques Using Design
Diversity

Techniques Abbr. Error Processing

Recovery Blocks RcB Error detection by AT
and backward recovery

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

y

N-Version
Programming NVP Vote

N Self-Checking
Programming NSCP Error detection by AT

and forward recovery

87
AT – Acceptance Test

Recovery Blocks

• Combines checkpoint and restart
approach with standby sparing
redundancy scheme

• n different implementations of the same
program

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

− Only one of the versions is active
− If an error if detected by the acceptance test,

a retry signal is sent to the switch
− The system in rolled back to the state stored

in the checkpoint memory and the execution
is switched to another module

88

Recovery Blocks

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

89

Recovery Blocks

Method Recovery block

Error Processing
Technique

Error detection by AT and backward
recovery

Criteria of Accepting Absolute, with respect to specification

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

Result

Execution Scheme Sequential

Consistency of Input
Data

Implicit, from backward recovery
principle

90

10.04.2012

Gert Jervan, TTÜ/ATI 16

Recovery Blocks

• A language level support for backward error recovery
− blocks in the normal programming language

sense, but
− at the entrance to the block is an automatic

recovery point and
− at the exit an acceptance test to test that the

system is an an acceptable state

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

system is an an acceptable state
− if the acceptance test fails, the program is

restored to the recovery point at the beginning of
the block and an alternative module is executed

− repeat this process with alternative modules
− if all fail, recovery must take place at a higher

level
• In terms of four phases of software fault tolerance

− Error detection <-> acceptance test
− Damage assessment <-> not needed due to BER
− Fault treatment <-> stand-by spare code 91

Recovery Blocks

• Similarly to cold and hot standby
sparing, different version can be
executed either serially, or concurrently
− Serial execution may require the use of

checkpoints to reload the state before the
next version is executed

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

next version is executed
− The cost in time of trying multiple versions

serially may be too expensive, especially for a
real-time system.

− A concurrent system requires n redundant
hardware modules, a communications
network to connect them and the use of input
and state consistency algorithms.

92

Syntax of Recovery Blocks

• Recovery blocks can be
nested

• If all alternatives in a
nested recovery block
fail the acceptance test,

©
G

er
t

Je
rv

a
n

p
the outer level recovery
point will be restored
− (and an alternative

module to that block will
be executed).

93

N-Version Programming

• Resembles N-modular hardware
redundancy

• N different software implementations of
a module are executed concurrently.

• The selection algorithm (voter) decides

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

g ()
which of the answers is correct
− a voter is application independent
− this is an advantage over recovery block fault

detection mechanism, requiring application
dependent acceptance tests

94

NVP

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

95

N-version Programming

Method N-version programming

Error Processing
Technique

Vote

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

Technique

Criteria of Accepting
Result

Relative, on variant results

Execution Scheme Parallel

Consistency of Input
Data

Explicit by dedicated mechanisms

96

10.04.2012

Gert Jervan, TTÜ/ATI 17

N-Version Programming

• Consists of independent generation of N (>2)
functionally equivalent programs from same
initial specifications
− Design Diversity, Different Programming

Language, Methods..

• Programs execute concurrently, results are
i d t b (j it ti)

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

arrived at by consensus (majority voting).
• Questions

− How are results compared? How is voting
conducted?

• NVP depends upon
− good initial specification, independence of effort,

abundance of effort.

• NVP can be taken further
− compiling, processing, ...

97

NVP

• Controlled by a driver process
− invokes each of the versions
− waiting for the versions to complete
− comparing and acting on the results

• Problem: assumes programs run to completion!
− So the versions must actually interact (with the

driver program)

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

driver program)
• Comparison Points: points in the versions when

programs must communicate their votes to the
driver process

• Defines granularity of the fault tolerance
− How the versions communicate and synchronize

depend upon the programming language used, its
model of concurrency

98

Vote Comparison in NVP

• Efficiency of vote comparison is critical
• Complicated by comparison procedure

− Not all results are single numeric values
− The “consistent comparison problem”

• When using “thresholds” for comparison the
errors can stack up resulting different

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

errors can stack up, resulting different
execution paths in all versions.

99

Two sequential thresholding lead
to different execution paths in all
three versions.

The problem will reappear even
when using inexact comparison
(just have to be near a threshold
value).

And what happens when there are
multiple solutions?

NVP versus RB

• NVP is static where as RB is dynamic redundancy
• Both have design overheads

− alternative algorithms
− NVP requires a driver
− RB requires an acceptance test

• Runtime overheads
− NV requires more resources

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

− RB requires establishing recovery points
• Both susceptible to errors in requirements
• Error detection

− vote comparison (NVP) versus acceptance test
(RB)

• Atomicity requirement
− NV vote before it outputs to the environment, RB

must output only following the passing of the
acceptance test.

100

N Self-Checking Programming

• N self-checking programming combines
recovery block concept with N version
programming

• The checking is performed either by
using acceptance tests, or by using

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

comparison.
• Examples of applications of N self-

checking programming:
− Lucent ESS-5 phone switch
− Airbus A-340 airplane

101

NSCP

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

102

10.04.2012

Gert Jervan, TTÜ/ATI 18

NSCP

Method N self-checking programming

Error Processing
Technique

Error detection and result switching

Then, Detection by comparison or by
AT(s)

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

Criteria of Accepting

Result

Relative, on variant results or Absolute
with respect to specification

Execution Scheme Parallel

Consistency of Input
Data

Explicit, by dedicated mechanisms

103

Comparison

• N self-checking programming using
acceptance tests
− The use of separate acceptance test for

each version is the main difference of this
technique from recovery blocks

N lf h ki i i

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

• N self-checking programming using
comparison
− resembles triplex-duplex hardware

redundancy
− An advantage over N self-checking

programming using acceptance tests is
that the application independent decision
algorithm is used for fault detection

104

Data Diversity

• To complement design diversity
• Using data re-expression algorithms

(DRA) to obtain logically equivalent
variants of the input data

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

105
Data re-expression via decomposition and recombination

SFT Techniques Using Data
Diversity

SFT Techniques Abbr. Error Processing

Retry Blocks RtB Acceptance test and

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

Backward recovery

N-Copy Programming NCP Run the same process
concurrently or
sequentially

106

Retry Blocks

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

107

Retry Blocks

Method Retry blocks

Error Processing
Technique

Error detection by AT and backward
recovery by DRA

Criteria of Accepting

R lt

Absolute, with respect to specification

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

Result

Execution Scheme Sequential

Consistency of Input
Data

Implicit, from backward retry principle

108

10.04.2012

Gert Jervan, TTÜ/ATI 19

NCP

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

109

N-copy Programming

Method N-copy programming

Error Processing
Technique

Decision mechanism (DM) and
forward recovery

Criteria of Accepting

R lt

Relative, on variant results

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

Result

Execution Scheme Parallel

Consistency of Input
Data

Explicit by dedicated mechanisms

110

Design Diversity

• The most critical issue in multi-version
software fault tolerance techniques is
assuring independence between the
different versions of software through
design diversity

• Software systems are vulnerable to

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

Software systems are vulnerable to
common design faults if they are
developed by the same design team, by
applying the same design rules and
using the same software tools

111

Design Diversity

• Decision to be made when developing a
multiversion software system include
− which modules are to be made redundant

• usually less reliable modules are chosen

− the level of redundancy

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

• procedure, process, whole system

− the required number of redundant
versions

− the required diversity
• diverse specification, algorithm, code,

programming language, testing technique

− rules of isolation between the
development teams

112

Questions?

©
G

er
t

Je
rv

a
n

Environment Diversity

• To diversify the software operating
circumstance temporarily.

• The typical examples of environment
diversity technique are progressive
retry, rollback rollforward recovery with

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

checkpointing, restart, hardware reboot,
etc.

114

10.04.2012

Gert Jervan, TTÜ/ATI 20

An Adaptive Approach for n-
Version Systems
• Model and manage different quality

levels of the versions by introducing an
individual weight factor to each version
of the n-version system.

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

• This weight factor is then included in the
voting procedure, i.e. the voting is
based on a weighted counting.

115

Why Fuzzy Voting

• In traditional voting, equality relation
regards two real numbers as equal if
their difference is smaller than fixed
tolerance ε. For different version
outputs that are “closer” to each other
than the fixed threshold there is no

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

than the fixed threshold there is no
gradual comparison. As a result, certain
interconnection of faults could incur
incorrect selection.

• Fuzzy equivalence relation results in
more reliable systems

116

Fuzzy Equality Equation

• Traditional Equality Equation

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

• Fuzzy Equality Equation

117

Output of Fuzzy Sets (Triangular
Shape)
• The fuzzy logic maps the input vector

into an output nonlinearly

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

118

New Techniques

• Rejuvenation

• (Not classifiable in design diversity or
data diversity, actually environmental
diversity)

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

y)

119

Reconfiguration and Rejuvenation

• Complementary ways
• Reconfiguration

− Reactive
− Analogy

• Event-driven

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

interrupts

• Rejuvenation
− Proactive
− Analogy

• Polling resources

120

10.04.2012

Gert Jervan, TTÜ/ATI 21

Software Aging

• When software application executes continuously
for long periods of time, some of the faults cause
software appear to age due to the error
conditions that accrue with time and/or load.
This phenomenon is called software aging which
is reported in
− Telecommunication billing application over time

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

experiences a crash or a hang failure.
− A telecommunication switching software
− Netscape and xrn
− Safety critical systems Patriot missile’s software,

where the accumulated errors led to a failure that
resulted in loss of human lives.

121

Discussion

• Each software fault tolerance technique
need to be tailored to particular
applications.

• This should also be based on the cost of
the fault tolerance effort required by the

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

customer. The differences between each
technique provide some flexibility of
application.

122

A summary chart of all techniques

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

123

Information redundancy

• Key concept - add redundancy to
information/data
− all schemes use Error detecting or Error

correcting coding

• Use of parity

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

− very effective single error detection
− encoding and decoding cost is low
− commonly used in memories,

transmission over short reliable channels
− limitations

• unable to detect common multiple errors
• can not be used in data transformation - for

example addition does not preserve parity

124

Information redundancy

• Error correcting codes
− triplication
− Hamming code
− byte error detection/correction
− cyclic code

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

y

• m-out-of-n codes
− encode each word (data/control) such

that the coded word is of length n and
each coded word has exactly m 1’s in it
• can detect all single errors
• can detect all unidirectional multiple errors

125

Information redundancy

• Berger codes
− n information bits are encoded into an

n+k bit code word. The k check bits are
binary encoding of the number of 1’s (or
0’s) in the n information bits
• can detect all single errors

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

• can detect all single errors
• can detect all unidirectional multiple errors if

carefully designed

• Arithmetic codes
− AN code

• used for arithmetic function unit designs
• each data word is multiplied by a constant A
• makes use of the identity A(N+M) = AN + AM
• choice of A is important

126

10.04.2012

Gert Jervan, TTÜ/ATI 22

Information redundancy

• Arithmetic codes (Contd.)
− Residue code

• makes use of the fact
(M+N) mod k = (M mod k + N mod k) mod k

− Checksums
• data is sent/stored with a checksum and when

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

• data is sent/stored with a checksum and when
used the checksum is regenerated and
compared to the a priory known checksum

• functions used for checksum
• add, exclusive-OR (bit wise), end with end

around carry, LFSR, …

• limitation
• can only perform (normally) error detection

127

Information redundancy

• Self-Checking
− This is a form of hardware redundancy but

often it is closely related to ECC techniques,
therefore I have chosen to include it here

− Assumptions: inputs are coded and outputs
are coded

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

− Objective: in the presence of a fault the
circuit should either continue to provide
correct output(s) or indicate by providing an
error indication that there is a fault.
• Clearly error indication can not be 1-bit output

(why?)
• With 2-bits output, 00 and 11 may indicate no failure
• other output combinations (10, 01) may indicate a

failure

128

Information redundancy

• Self-Checking (contd.)
− Example application

• two devices produce identical outputs and we
compare these outputs to check their equality

• checker has two outputs encoded as follows
• 00 equal

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

q
• 11 unequal
• 01 or 10 possible fault in the circuit
• (we will discuss input encoding when we discuss

an example of a 2-rail 1-bit checker)

129

Information redundancy

• Self-Checking (contd.)
− Definitions

• a circuit is fault secure if in the presence of a fault,
the output is either always correct, or not a code
word for valid input code words

• a circuit is self-testing if only valid inputs can be
used to test it for the faults

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

• a circuit is totally self-checking if it is fault secure
and self-testing

− Example: a totally self-checking 2-rail 1-bit
comparator
• assumptions

• 2 inputs and each input x is available as x and its
complement

• x and its complement are independently generated
• note with these assumption the input space is encoded

(4 valid inputs out of 16 possible inputs)
• single stuck-at fault model

130

Time redundancy

• Key Concept - do a job more than once
over time
− examples

• re-execution
• re-transmission of information

diff t f lt d biliti f

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

− different faults and capabilities of
different schemes
• transient faults

• re-execution and re-transmission can detect
such faults provided we wait for transient to
subside

• permanent faults
• simple re-execution or re-transmission will not

work. Possible solutions
• send or process shifted version of data
• send or process complemented data during

second transmission 131

Time redundancy

• Different faults and capabilities of
different schemes (contd.)
− faults in ALU

• re-execution with complement or shifted
version can detects permanent and transient
faults

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

• (RESO concept - re-computation with shifted
operands)

− multiple re-computations
• can detect and possibly correct transient and

permanent faults if properly
employed/designed

132

