17.04.2012

Lecture Outline

Some materials from:

Elena Dubrova

IAF0530/IAF9530 -
Introduction Paul Pop

Dependability and fault tolerance
Hardware Redundancy

Lecture 7
Redundancy (Information, Time, Environment) v Software Redundancy
v Information Redundancy

v Time Redundancy

v Environment Redundancy

‘iimim&n \
AN <
N
C—— —
.

‘ © Gert Jervan \

A summary chart of all techniques Information redundancy

+ Definition
— Information redundancy is the addition of
redundant information to data to allow fault
detection, fault masking or possibly fault
tolerance.

« Error detecting and correcting codes
(EDC codes)
— Encoding of information for transmission in
noisy environments
— Later for dependability: communications,
memory, storage, etc.

l} My
_wh
S

Error Model Error Classes

An error is single when it only affects a
single bit of the output Z

An error is multiple of order p when it
affects at most p bits of Z

Burst error - the errorneous bits of Z
are within an I-distance neighbourhood

+ Functional faults
» Technological faults
+ Disruptions due to the environment

‘ i ien ieivan \
. . .
o

‘ © Gert Jervan \
c
N
o

Gert Jervan, TTU/ATI

© Gert Jervan

© Gert Jervan

=
5
2
S
A
5
S
o

17.04.2012

Code

« Code of length n is a set of n-tuples
satisfying some well-defined set of rules
+ Binary code uses only 0 and 1 symbols
— binary coded decimal
(BCD) code

+ uses 4 bits for
each decimal digit

0000 0
0001 1
0010 2
1001 9

Code Word

* A code word is a collection of symbols
used to represent a particular piece of
data based on specified code

+ A word is an n-tuple not satisfying the
rules of the code

» Codewords should be a subset of all
possible 2n binary tuples to make error
detection/correction possible
— BCD: 0110 valid; 1110 invalid
— any binary code: 2013 invalid

* The number of codewords in a code C is
called the size of C

Encoding vs. decoding

+ The encoding process is the process of
determining the corresponding code
word for a particular data item.

— Example: given the decimal 9, encoding
determines the BCD representation of 1001.

|data |—""| encoding |—""| code word |

+ The decoding process is the process of
recovering the original data from the
code word.

— Example: decoding transforms the BCD code
0011 into the decimal 3

| code word |—"'"| decoding |—""| data|

Encoding/decoding

« 2 scenario if errors affect codeword:
— correct codeword — another codeword
- correct codeword — word

Error Detection

+ We can define a code so that errors
introduced in a codeword force it to lie
outside the range of codewords
— Basic principle of error detection

Error Detection

» Error detection: code word is invalid

all possible
words

Gert Jervan, TTU/ATI

© Gert Jervan

© Gert Jervan

© Gert Jervan

Error Correction

+ We can define a code so that it is
possible to determine the correct code
word from the erroneous codeword
— Basic principle of error correction

EDC/ECC

« Error Detecting and Correcting Codes

» Separable/non-separable codes

— Separable: original information is
appended with new information

3-dimensional space (3-bit words)

17.04.2012

Error Correction

« Error correction: correct word can be
identified from the corrupted word

all possible
codewords

EDC/ECC

Characterized by the number of bits that can be
corrected
— double-bit detecting code can detect two
single-bit errors
- single-bit correcting code can correct one
single-bit error

Hamming distance gives a measure of error
detecting/correcting capabilities of a code
— Number of bit positions in which the two
words differ
+ Hamming distance of 1: 0000 to 0001; 2: 0000 to
0101
— Code distance:
« Minimum Hamming distance between any two valid
code words

Gert Jervan, TTU/ATI

Error Detection

« If codewords are on distance = 2, we
can detect single-bit errors

011 111

010

110

000 10

Error Correction

» If codewords are on distance = 3, we
can correct single-bit errors

011 111

010
110

001 101

© Gert Jervan

000 100

Code Capabilities

» To correct €-bit errors a code should
have the code distance Cd = 2¢g +1

» To be able to detect €-bit errors a code
should have the code distance Cd > €
+1

» A code can correct up to c bit errors and
detect up to d additional bit errors if and
only if:

2c+d+1=<Cd

© Gert Jervan

21

Information Rate

» The ratio k/n, where
— k is the number of data bits
— n is the number of data + check bits
is called the information rate of the code

+ Example: a code obtained by repeating
data three times has the information
rate 1/3

H
H
&
&
]
“
o

17.04.2012

Code Distance

+ Code distance is the minimum Hamming
distance between any two distinct
codewords

C,=2 code detects all single-bit errors
code: 00, 11
invalid code words: 01 or 10

C,=3 code corrects all single-bit errors
code: 000, 111
invalid code words: 001, 010, 100,
101, 011, 110

20

Separable/non-separable code

» Separable code
— codeword = data + check bits
— e.g. parity: 11011 = 1101 + 1

* Non-separable code
— codeword = data mixed with check bits
- e.g. cyclic: 1010001 -> 1101

» Decoding process is much easier for
separable codes (remove check bits)

22

23

Gert Jervan, TTU/ATI

Code Characterization

» Cost: number of bits n that it needs

» Power of expression (cardinality):
number of codewords N that it is able to
represent

« Error model: defining the errors
detected and/or corrected
— Redundancy rate: rr=r/k (r: added bits)
— Density of a code: d=N/2n
— Coverage rate

24

17.04.2012

Generation and checking circuit

Parity codes for parity codes: XOR

» Addition of an extra bit

to a binary word such Data Bits
TABLE 3.3 Odd and even parity codes for BCD data that the resulted code s
Decimal BCD BCD . word has either an even g ’
dight DCD _ oddparity evenparity number or an odd
0 0000 number of 1s.
1 0001
2 o010 + Separable code &
3 3‘,’,‘,,‘, + Hamming distance of 2
s o + Can detect any single giemmad Parlty
7 011t bit error 4
8 1000 4 !/
b 1001 — Even parity

« One bit flip: odd
number of bits
— 0dd parity
+ One bit flip: even
number of bits

Error Signal
P)

‘ i im Jervan \

g * Application: bus,
< memory, transmission pe
o 26
Memory with parity coding Application
+ 32-bit word + 4 parity bits = 36 bits » Memories are built of individual chips
stored — 4-bit chips
. 64-bit d+8 ity bits = 72 bit — 98% of all memory errors are single-bit errors
b Id wor parity bits = Its « 1GByte DRAM with parity code: 0,7 failures per year
store
« If one chip fails: multiple-bit errors
— Parity codes cannot detect multiple bit errors
Parity » Modifications of the basic parity scheme
Parity Parity Bit . - Bit-per- i
ata | Generator paty | Eror Bit-per-word parity
Data ng Signal - Bit-per byte parity
— Bit-per chip parity
— Bit-per multiple chips parity
5 + Memory -+ » § — Interlaced parity
i ~ Deata In A Data Out | :
o 27 28
-IE Forms of parity code Forms of parity code
Odd
N Problems .
ISl e[[s[7[e[s[s[s[s[7]s] [Feeomnams ¢ All bits are changed to Gode Advantages Disadvantages
Bitpor-Byie lor0 Even parity Detects single-bit srrors Certain errors go
EEEEAEEE B[RRI ¢ Better, but still not able to Bft-or-woct e T
I word, including the
cnos owr o ena e o detect a 4-bit chip failure arity bit, becomes all is
[SO SON A S R L S L — Bif-per-byte parity |Defects fhe all is and the all | Inefective in detection
(T] [iTole [o]} ([T s +]] [[aL2[1 Lo]} [P ml e 05 conditions of multiple errars
It Ire I T "1 1-F 1" ¢« Each bit from a chip forms a Bii-per-multple- | Detects Inilure of entire chip |Eailure of o complete
L - i [-®%=. parity word with other bits Chips parity chip is detected, but it is
Chips not located
= Cannot locate the problem Bit-per-chip parity |Detects single error and Susceptible to the whole-
identifies the chip that chip failure
.- contains the s bit
_ oW Interlaced parity Detects errors in adjacent Parity groups net based
= —— bits; does not take inte on the physical memory
<« Can detect and locate the accounnt the physical organization
error memory organization
= Problem with chip-failure
[sf+]w]rz[s1[w[of e 7T6]s 432[1[0 R < Used when errors in ;.\:
erocad adjacent bits are of concern o
L i Y | 29 ° 30

Gert Jervan, TTU/ATI 5

17.04.2012

Error correction using overlapping

Overlapping parity code parity

Four Informafion Bt
TABLE 3.4 Minimum nember ty bits
izl 1]o] 34 Moo mber of parity bits for

lei’vlTl poity code ::)E)_— co Somamo

Number of Numberof Redundaucy o5
t T—1 information bits pority bits percemtage

gﬁ
I

2 3 1500%
BtinEmyr Partyin Exror i 3 750 sTz] v [0} [] Corct B1.2,
3 PP P 5 4 667 | — - Pa 2 comcteu
2 R P 8 4 500 SR S] E > £ NoEror
H AN 10 + 400 l, = {] A
M AR 12 5 417 [co
3 Pe 16 5 3125 AT T T D—mo
B P, 5 H 208 EE o s T e ma:)
° P 32 6 1875 Paiity Py Party ¢t
. 3.30 Overlapping parity assigns sach bit to multiple parity groups. “ z 109 Sererr | St L S | o .@—“ !
+ *
£

€2 Camecied
A nz$_ o2 (o=

= pa—

Fig. 331 Ecror correction using overlapped parity.

» The impact of an erroneous bit is unique

— Example: flip of data bit 2 affects parity
bits P1 and P2

— Bit can be detected and corrected

» The required redundancy decreases as
the numbers of bits increase 3

et Jervan
R

H
H
2
e
H]
&
o

32

m-of-n codes

TABLE 3.5 3-0f-6 code for representing three bits of
information

Syndrome and Costs

Output of 3-8 decoder called syndrome

A Octginal information 3086 code v' m-of-n codes define code
bits o0 wo words that are n bits in
. . . . 001 A
- Indicates which of several possible bit oo w{ ot iength and contain exa8
flips occurred i‘?": i?z aié v Example: 3-0f-6
High Cost - 75% redundancy (3 parity it i we
bits for a 4-bit word). Cost goes down original | Appended

as information content increases.
« Single Bit Errors - Erroneous word has m+1 or

m-1 ones -- conceptually simple
» Disadvantage - Encoding, decoding, detection of
fault difficult and complex
« Easiest Implementation:
— i-of-2i code:
« Take the original i-bits of information and append i
bits such that the resulted code word has exactly i 1s

‘ i ien Tervan \

‘ © Gert Jervan \
. .

33 34
. Complemented duplication in a
Duplication codes dle
communication system
» Duplication codes are based on the concept of
completely duplicating the original information to
form the code word. Transmitted Communication Received
- Simply append the original i bits of information to Information M"’"f., infpmation
itself: code of length 2i [@o] [@] (][]
— If an error occurs, the two halves disagree ﬂ ﬂ ﬂ ﬂ
7 |a| 3|2
+ Advantage: simple to encode/decode and detect L] Fainy Lino Ll
4 ersion
etrors _ Complement J)ﬁgmal 1 o Campiemont !
+ Disadvantage: 100% redundancy Word N Data ToBe Received Version
o : Transmitted of Original Data.
« Application : . ! - detoctiba &
— Memory systems ﬁf : :.‘5;‘;:30“ sysm‘of p for error detection in a com-
— Communication systems ot T
c Waord 1 | :
'
; itk ;
g Word f~ Jth word o oigial doa g 36

Gert Jervan, TTU/ATI 6

Swap and compare duplication
codes

v Maintain two copies of

17.04.2012

i e
%4 - v Separable code applicable
: Tarsior when blocks of data are
= :> - transferred from one point to
] - another
&
et I;] v Checksums cannot correct
,_Lﬂ,n . ﬁ,ﬁL errors
(S | —— ‘! &”‘;‘?"&"ﬂ
Cormpme
v L [B=¥=| v Four types of checksums

Checksum codes

v Checksum: sum of the
original data, appended to the
block of data

ibe block of da

the original information, m w
but swap the upper and N [s
lower halves of the | T
second copy .
{5 £3
uz L2
v A single bit slice that is 0 "
faulty affects the upper ut T}
half of one copy of the = toperHa o Wont |
information and the = Lower Helf of Word | !
lower half of the other Er ol
copy
= By comparing the
. appropriate halves, the
H error can be detected
i
o 37
Single-precision checksum
ot 1
B3l foumne
{Additonj+ 1000
(1 (o) crienm
P '
Ignored
Fig. 335 Anngle—pru:lslmcbedcsumuﬁxmedhylddmgthcdammrdswd
ignoring any overfl
o frzos
oy ch dg LT
o111 &y 1111
Qo001 rvon) . 1001
oita & Y 1110
a8ao kNl 1000
Chedisun m‘-’ﬁ Chacksum of Received Data
l i110 i
Flecsived Checksum
£ Coove |
i H;.J.!’l Theslnxlpmnm checksum is unable 1o detect certain types of
5 ived checksum and the checksum of the received data are equal,
> progladipiin} 39
Honeywell checksum
» Concatenate consecutive
Wordn words to form a collection of
: double-length words.
ww:: — The checksum is formed over
WT‘ the new double-length words
wwon—|. [woran
: + If a complete column of the
Weria | et o original data is erroneous,
| the modified data structure
o has two erroneous columns

4

Gert Jervan, TTU/ATI

Tt
ervan =
E

. 335 T checksum coding, the sum of the original data wordsis appended to |

Single-precision

‘ i ien Tervan \

2. Double-precision
3. Honeywell
4. Residue checksums -
Double-precision checksums
Original Received
Data Data
dscedh b Bodid
9111 d 1111
0001 . % feceve 1001
0110 ransmit & 11190
3 &
[osoe Faully Ling 1o
Checksum Always “17 Checksum of Received Data
Received Checksum
1000 | tito |
Fig. 3.38 A double-precision checksum is formed by adding the data using
double-precision arithmetic. The received checksum and the checksum of the
received data are not equal, so the error is detected.
40
Error detection using Honeywell
checksums
Original Received
Data Data
hhdidh O ch 0
011t % t111
Z
0001 — = Forbive 1001
0114 = 1110
oooa Faulty Line 1000
l Anways 1" l
oot [o1t | [roor | 1711]
[rave | i] ooo o]
Checlssum of Original Data Checisum of Received Data
[eoor T 770t]
Received Checksum
Fig. 3.40 Tllustration of the errar ility of the Honeywell check-
sum. The received checksum and the checksum of the received data are nat
equal, so the error is detected.
42

c
5
4
3
£
5

Residue checksums

+ Residue checksums are
e similar with single-

Ward3 precision checksums,
ord 1 except that the most
significant bit position
is not ignored but is
added back to the
checksum in an end-

around carry fashion.

idue checksum is formed using ens-around carry addition so
in the carry bit is not lost.

Gy From
Addiion

| —

43

17.04.2012

© Gert Jervan

Cyclic Codes

Cyclic codes are special class of linear codes
Used in applications where burst errors can
occur
— a group of adjacent bits is affected
— digital communication, storage devices
(disks, CDs)

Important classes of cyclic codes:
— Cyclic redundancy check (CRC)

« Used in modems and network protocols

« North-America T-carrier standard uses Extended-

SuperFrame (ESF) cyclic code. Coding frame of 4632
bits. Detects 98,4% single or multiple errors

— Reed-Solomon code
+ Used in CD and DVD players

« CDs: up to 4000 consecutive errors can be corrected
(2,5 mm of track)

45

‘ © Gert Jervan \
. o« e

Cyclic code polynomial

Data polynomial
~ D(X) = dg+ dyx +
d,x2 + d3x3

TABLE 3.7 Cyclic eode words for 4-bit infocmation
words.

(dudy,dodd) Code (v ¥y ¥aVa¥e Vs Vel

o000 0000000
0001 0001101

Generator polynomial

[0011010
0011 0010111 - GX)=1+x+x3
0100 0110100
0111001
0110 0101110 N
oui1 0100011 Cyclic cpde.
1101000 generation:
Moo = V09 = D(X) * G(X)
unn — Modulo-2 addition!
1011100
1010001 |
1110 1000110 V(X) is the code
111 = ‘!‘Jmmnu polynomial
“polynomial = dg + dy + &5 +
gn:su ‘=1I:xfx‘ . - V(X) = Vvo+ vix +
MM-W'Fv.xfu'&v,z’%v’:’*w*' V2X2+ V3XZ+
e’ VX3 + VsX® + Vgx®

47

‘ © Gert Jervan \
cmsmmsoos
ccEs 2
582882338

Gert Jervan, TTU/ATI

‘ i ien Jervan \

Error detection using residue
checksums
Original
Dala .
LT i dh ch dy
0111 & 1111
& 00
601 L A Fotaive 1001
o110 & 1110
0000 Fauiy Line 1004
Checksum of Abways “17 .
Original Data .)
e TTT0)
Generated During 1]
End-Around 1 1]
Canry Addition ,lJ
Chackaum of
Received Data
Received Checksum
ERET]
Pl; 3.42 Tlustration of the error detection capability of the residue checksum.
The checksum of the received data and the received checksum are not equal, so
the error is detected.
44

‘ © Gert Jervin \

‘ © Gert Jervin \

Cyclic codes

« Cyclic code: the end-
around shift of a code
word will produce

TABLE 3.7 Cyclic code words for 4-bit infocmation
words.

Information (do.dudyds) Code (o ¥V Ve ViV ¥e)

0000 9000000 another code word
000110 . . -
ol 0011010 — n bits in the original, k
0011 :'::g:&l, in the code
3}3‘1) 0111001 + Called (n, k) cyclic
0110 0101110 code
o1 0100011
1000 1101000
1001 1100101 L)
1610 1110010 « Simple encoding
:?:'x]) }.‘,ii}.ﬁé ~ Shift registers with
1101 1010001 feedback connections
1110 1000110 .
1t 1001011 « Can detect n-k adjacent
ial = h: 2+ d,
B i - 133 1 errors

(‘adepnlynm-l-«.+qx+w,x‘+u,s’+v~w'+wx + _ Burst errors

46

Encoding

-
l X | = Multipication by X
. Modudo=2 Addition

Fig. 343 le circuit ing a cyclic code word by multiplying an
incoming data polynomial D(X} by the generator polynomial.

48

17.04.2012

TABLE 3.8 The encoding process far the circuit of
Fig. 344

Encoding, cont. Clck pecod

Do Decoding and error detection

3
0

1
1

1
1

o
1

1
[

0
o

0
1

0
0

-W’m

Fig. 345 A division circuit for use in decoding cydlic code words.

Decoding is done through division

— Data is obtained by dividing V(X) / G(X)

— The circuit in the figure implements the division
Syndrome polynomial S(X) is zero in case of no error
- R(X) = D(X)G(X) + S(X)

Flg. 3.4 Circuit for generating cyclic code wards for the generator polynomial
G =1+X+X"

49
50

‘@Gen]ewan \
| C e e s W oo
aea-o__,,.g
6 o 6 m - o oflek
=5 =5=

Decoding and error detection, Decoding and error detection,
cont. cont.

8

I TABLE 3.9 The decoding process for the civeii of Fig. 346 TABLE 3.10 The

Clock Register values
2 3

Vix) Bix) Dix)

Fegister Register Registar X
Lo o b
1

oI 1

Fig. 3.46 Decoding circuit for the cyclic code with generator polynomial, G{X) =
1+X+X°.

'
o
o
0
[
1
o
i
o

—— e
Syndrome word

52

51

‘@Gen]er\lan \
L
ert Jervan
T U
e o - e oo
bosro~nuos
R
~ o e =m0
2
%ea:—e—
§
uvw-hww-ag
B
s %
 E
if
LU
4
. s
R
£
e 1
B

Reed-Solomon Code Reed-Solomon Code
« The encoding for Reed-Solomon code is
done the using the usual procedure

- codeword is computed by shifting the data
right n-k positions, dividing it by the

Reed-Solomon (RS) codes are a class of
separable cyclic codes used to correct
errors in a wide range of applications

including | g - oy o 4
I ; : generator polynomial and then adding the
Eﬁtigz:swces (tapes, compact disks, DVDs, obtained reminder to the shifted data

» A key difference is that groups of m bits
rather than individual bits are used as
symbols of the code.

— usually m = 8, i.e. a byte

— wireless communication (cellular telephones,
microwave links)

— satellite communication, digital television,
high-speed modems (ADSL, xDSL)

53

‘ © Gert Jervan \
.

Gert Jervan, TTU/ATI

Encoding

An encoder for an RS code takes k data
symbols of s bits each and computes a
codeword containing n symbols of m bits
each

A Reed-Solomon code can correct up to
n-k/2 symbols that contain errors

55

17.04.2012

‘ © Gert Jervan \
. .

Decoding

« Decoding of Reed-Solomon codes is
performed using an algorithm designed
by Berlekamp
— popularity of RS codes is due to efficiency

this algorithm to a large extent.

+ This algorithm was used by Voyager II for
transmitting pictures of the outer space back to
Earth

« Basis for decoding CD in players

57

‘ © Gert Jervan \

Arithmetic codes

« Arithmetic codes are invariants to (a set of)
arithmetic operations
— A(b <op> c) = A(b) <op> A(c)

+ Application
— Checking arithmetic operations

« Examples of arithmetic codes
— AN codes
— Residue codes
— Inverse-residue codes
— Residue number system

‘ © Gert Jervan \

59

Gert Jervan, TTU/ATI

Example: RS(255,223) code

» A popular Reed-Solomon code is

RS(255,223)

— symbols are a byte (8-bit) long

— each codeword contains 255 bytes, of
which 223 bytes are data and 32 bytes
are check symbols

- n = 255, k = 223, this code can correct
up to 16 bytes containing errors

— each of these 16 bytes can have multiple
bit errors.

56

Summary of Cyclic Codes

« Any end-around shift of a codeword
produce another codeword

+ Code is characterized by its generator
polynomial g(x), with a degree (n-k), n
= bits in codeword,
k = bits in data word

+ Detect all single errors and all multiple
adjacent error affecting
(n-k) bits or less

58

Original
information

TABLE 3.11 Resulting 3N
code wards for 4-bit
information words

AN codes

+ AN code is formed by multiplying each
data word N by some constant A
— The magnitude of A determines the
number of extra bits required to
represent the code words and the error

3N code detection capability

word + AN codes are invariant to addition and
000000 subtraction but not multiplication and
000011 ivisi

oootio division

001001

%H‘ﬁ) « Example code: 3N

610010 — The constant must not be a power of 2
010101 « Power of 2 is a shift, difficult to detect
011000 the error

o11011 — 3N requires n+2 bit words

011110

100001

100100
100111
101010
101101
60

10

AN codes encoding: 3N = 2N + N

{1+ 1)-bit Adder
I Yoty
T &8 S S
3N

Cany

Fig. 3.48 Tllustration of the use of an (n + 1)-bit adder to create 3N code words.

61

‘@Gm]man \

1
.t

»
. 2
—s
- Q
-
—F
H
—
—s

Error detection circuit for AN
codes

A
s
5
8
9
o

17.04.2012

Error detection using AN codes

anGode aNGode
Ty by by By by By G E B
Wiy L
ADDER
i
555555
mmﬂwxgm If 5 is always “1%
a=010010 (Nk a=v10010(Me*)
+B=000011 (WO g=00o011 (M)

3=01I111|(I§A'ﬂvnvalid

S=n1Dl01(3Nq(f)gde) s

Fig. 3.47 Ilustration of the error detection bilities of the 3N ari h
code. The presence of the fault results in the sum being an invalid 3¥ code.

62

Residue codes

TABLE 3.12 Residue code words for

A residue code is a separable arithmetic code
created by appending the residue (reminder) of

3l gy

d [

‘@Gen]ewan \
332883
l:-la-\s
-lolololz g
1 I |

el=]z &
T : i
ole|=|o|z
L) 7
o g
+228|8
REBHImM

€ —
41 Muliplexer o
'
Error (1 = OK;0 = Emor)
Sgral
Fig. 349 Asimpl:murdﬁecﬁmldmuitfurlhcmmd:cmbecmmmd
using combinational logic. |
63
Adder using residue codes
b, o n 1
Modulo-
Adder frreat
s !
Residue
Generator
I- .
" Gompars
s s Eror &
?3 Fig. 3.5¢ The structure of an adder designed using the separable residue code. RS
6
o

Gert Jervan, TTU/ATI

4—bh'1n!nr:uu‘5:ivnwwd:usm¢n a number to that number
mofulus o thres - Code = D | R, where R is the reminder of the
Information Besdue Code word division with an integer m

0000 [} 0000/00 _ its i

0001 H o001 |01 The number of bits in R depend on m

0010 2 0010]10

o011 [001100 . . . Lo

0100 1 010601 Residue codes are invariant to addition

0191 2 0101[10

0110 [011000

o111 1 o111{01 _ : .

1000 2 1000le Low-cost residues:

1001 0 100100 m = 2b -1, b at least 2

1 1010(p1 : .

{8{‘,’ 2 lg,‘} ',’0 - Rrequires b bits

1100 o 1100100 — Easy to encode: division is Modulo-3 addition

1101 1 1101|p1 ' X

1110 2 1110410 Decoding simply removes R

1111 0 1111[00

64

‘ © Gert Jervin

Residue calculation for low-cost

residues
Information fo be Encoded = {10100111)
Modulus =3
b=2
10100111 (1674)
10 10 o1 1
Modulo-3 Addilion Modulo-3 Additicn
[1] 01
____I Modulo-3 Addition

10 (Rasidus = 2)

Fig. 3.51 The residue calculation for a low-cost residue code can be performed
using successive additions.

66

‘ © Gert Jervin \

11

Inverse residue codes

+ Aninverse residue code is

TABLE 3.13 Inverse-rosidue cods. words for 4-bit similar to a residue code, but
information words using a modulus of three instead of appending the
Information Residue Inverse residne Code residue, the inverse residue Q
0000] 3 0000. 11 is calculated and appended
0001 1 2 0001 10
0010 2 1 0010 01 - Q=m-R
0011 0 3 0011 11
0100 1 2 0100 10
0101 2 1 oot o1, :
oo H H o110 11 Better fault detection for
ItH 1 2 o111 10 repeated faults
:83‘1' ‘2, ; :% 2: - Arepeated fault is)
1010 1 2 1010 10 encountered multiple times
1011 2 i 1011 01 ;
%% H 3 1100 11 bc?fc_)re the code is checked
1101 1 2 1101 10 — Difficult to detect because
m? 2 ; it subsequent effects can cancel
the previous effects of the
fault

67

17.04.2012

Berger codes

- Berger codes are formed by
appending a special set of bits,
called check bits, to each word of

TABLE 3.16 Berger code wards for 4-bit

‘ © Gert Jervan

Berger codes, cont.

If the number of
information bits is small,
e e the redundancy is high,
ﬁmmu roired kel As the number of
information bits increases,
the efficiency improves
substantially.

Number of Number of Percentage
information bits check bits redundancy.

500%

4 3

s K 000 Advantages

I 5 25 — Best separable code

R [1875 (fewest number of bits)
64 7 1054 considering its error

detection capabilities

— Detects multiple,
unidirectional errors

‘ © Gert Jervan \
- .

69
Hamming codes
+ The hamming codes are
similar to overlapping
TABLE 3.17 Check bits affected by parity codes.
single data bit errors
== The Hamming code is
Erroneous bit Check bits affected formed by partitioning
dy ¢, ¢ the information bits into
d; e, €3 parity groups and
d; €, 65 specifying a parity bit
dy €1, €2, €3 for each group.
<t € — uses c parity check bits
=3 - €2 to protect k bits of
€3 &3 information
* The ability to locate
e+ k+ 1
L F=c which bit is faulty is
H obtained by overlapping
5 the groups of bits. 71
@

Gert Jervan, TTU/ATI

information words information
Original iiformation Bergercode . Barger code of length n
. m m i:‘l) - Iinformation bits
0010 0010{110 -k check bits
0011 0011101 ke =log. (I +1
0100 0100110 ,,:[ﬂgzk(J
0101101 .)
g{% 01‘1)(1) :m - A code word is formed by first
o111 . 0111100 creating a binary number that
1000 10001110 corresponds to the number of 1s in
1001 1001101 the original I bits of information.
1010 igi? :‘“ — The resulting binary number is
:(l,(l!é 1500 lg‘; complemented and appended to the
1101 1101100 I information bits to form the (I+k)-
1110 1110{ 100 bit code word.
1111 1tttfort
o
il
l©

68
Horizontal and vertical parity
e | g | s | iy
Momory) | o | G | dy | e
Data A | e | [
drs | O | dyy | O
[P [P Pa]]
e e———
Verticel Parity
Bits
(Odt Party)
Fig. 3.56 Vertical and harizental parity uses a parity bit for each row and cach
cohumm. If bit dy,, for example, becomes in error, both Py, and Py; will be erro-
neous. All other parity bits will be correct. -
v Can detect multiple errors in groups of data words
v Can correct single-bit errors
5 v Cannot correct multiple errors
:
o 70
Single-bit error correction unit
.
TABLE 3.18 Resulling o
syndrames for each possible 1
single bit error 4 @& & P 4 o
Erroneons bit Syndromes Ll_l_l
s 1o o8 [”"'w l B
d; 101
d, o4 Lr c'r . [
dy 111 L
o 100
Y 610
= > [\H E{:'J
S 5 %
d 4[& o © & C]: €2
S— Controied i Syndrome Determines
Syndrome 48— ‘Complementation ‘Which Bit {(if any)
s — Ut e Complementsd
§
5 & & & o d o c5— Sormeced
72

12

Hamming correction in memories

» Memory: 60 to 70% of the faults in a
system

— Transient faults are becoming much more
prevalent as memory chips become denser

+ Many memory designs use hamming
error correction
— Relatively inexpensive: 10-40% redundancy
— Encoding and the decoding are fast
— Error correction circuit is readily available on
inexpensive chips

‘ © Gert Jervan \

17.04.2012

73

Error correction in commercial
circuits

P

Chock Biy

Origined data Dota and check
‘and choci bilts bits are read
2 wiien o feom mamory.

g fE
£
P -
! ol
|
anl

5}

Information redundancy

+ Self-Checking

— This is a form of hardware redundancy but
often it is closely related to ECC techniques,
therefore I have chosen to include it here

— Assumptions: inputs are coded and outputs
are coded

— Objective: in the presence of a fault the
circuit should either continue to provide
correct output(s) or indicate by providing an
error indication that there is a fault.

« Clearly error indication can not be 1-bit output
(why?)

« With 2-bits output, 00 and 11 may indicate no
failure

« other output combinations (10, 01) may
indicate a failure

‘ © Gert Jervan \

7

Gert Jervan, TTU/ATI

‘ © Gert Jervai \

Hamming correction in memories,
cont.

Incoming Check Check Syndrome
Data Bits Bits. Bits
| l | 1
Check c
Bit Syndrome H—-b Decoder 0
Generator M r
4 r |Gowrect
m e Data
° c
r t
Data ¥ Check i
Bit o
Generator n
S S I
Data

Fig. 3.59 Basic structure of a memory using Hamming single error correct-
ing code.

74

‘ i ien ieivan \

Code selection issues

- Fulfills the desired error
detection/correction while maintaining
costs at an acceptable level
— Cost of a code

« Redundancy required; time redundancy is also
considered

— Effectiveness of a code
« Number of bit errors detected/corrected

» Key design decisions
— Separable or not
— What is required? Detection, correction, both?
— Number of bit errors to be detected/corrected

76

‘ i ien ieivan \

Self-Checking (contd.)

+ Example application
» two devices produce identical outputs and we
compare these outputs to check their equality
» checker has two outputs encoded as follows
+ 00 equal
« 11 unequal
+ 01 or 10 possible fault in the circuit

« (we will discuss input encoding when we discuss
an example of a 2-rail 1-bit checker)

78

13

Self-Checking (contd.)

— Definitions
« a circuit is fault secure if in the presence of a
fault, the output is either always correct, or not a
code word for valid input code words
+ a circuit is self-testing if only valid inputs can be
used to test it for the faults

and self-testing
— Example: a totally self-checking 2-rail 1-bit
comparator
« assumptions
« 2 inputs and each input x is available as x and its
complement
« x and its complement are independently generated

note with these assumption the input space is
encoded (4 valid inputs out of 16 possible inputs)

single stuck-at fault model

‘ © Gert Jervan \

 acircuit is totally self-checking if it is fault secure

79

Time redundancy

- Disadvantages of hardware and
information redundancy
— Require large amounts of extra hardware
for their implementation.

« Time redundancy: reduce the extra
hardware at the expense of using
additional time.

— Hardware is a physical entity that
impacts weight, size, power consumption
and cost.

— Time may be readily available in some
applications.

‘ © Gert Jervan \

81

17.04.2012

Time redundancy

Time redundancy

- Different faults and capabilities of
different schemes (contd.)

— faults in ALU
« re-execution with complement or shifted
version can detects permanent and transient
faults
» (RESO concept - re-computation with shifted
operands)
— multiple re-computations
« can detect and possibly correct transient and

permanent faults if properly
employed/designed

‘ © Gert Jervan \

83

Gert Jervan, TTU/ATI

Eﬂ ervan \

80
Time redundancy
+ Key Concept - do a job more than once
over time
- examples
« re-execution
+ re-transmission of information
- different faults and capabilities of different
schemes
« transient faults
« re-execution and re-transmission can detect
such faults provided we wait for transient to
subside
« permanent faults
« simple re-execution or re-transmission will not
work. Possible solutions
§ « send or process shifted version of data
N « send or process complemented data during
S second transmission 82
Time redundancy: transient fault
detection
Timg
mm .y
I
Py e Computation ::’5' | S r-\’
§ —“'{cemme_p—'
: H H s
. #
— o/
SanA Compytation ——v-' g‘;&x v
v U i |
- Fig. 3,62 In time redundancy, compuiativns are vepeated at different points in
s time and then compared.
8
> 84

Time redundancy: permanent
fault detection

Data

time fy Comy

Store
Result

! Dat; .
time r,Aab{ Epeode }—v Computation —#-

Decode Store
Result Result

‘ © Gert Jervan \

17.04.2012

85
Error correction using time-
redundancy
(Gelal=
B | [oto s SO
(e TareTee e l=o)
o O (oo o (a e o]0 a0
A | C3 S TS Y A A BN K
B |
1 OSSN
o [T E
§ Gonoctoamesot [0 [@ [& [4 | %] 4[5 |% [n
5
g Fig. 3.75 Example of error correction using time redundancy 87
Adjudicators
+ Voter
« AT
» Hybrid, other
s
o 89

Gert Jervan, TTU/ATI

‘ i im Jervan \

Alternating logic

Transmit Transmit
X X

Received Received

AtTime AtTime Versionof Versionof

o N Parallel x x
VLo o] doed
1 0 . R 1 0

e
n
0 ! s : 0 1
m
$oogudibod oo : S HE N
: T 2 ' : H HEH :
t | @
0 1 ¢ ¢ 1 1

o e g ety 1 s
Complemerts L1 Line - Nolonger

Always Complements

1 Because of
Faulty
Ling

Fig. 3.65 Illustration of alternating logic time redundancy —the second trans-

mission is the complement of the first.

86

Environment Diversity

» To diversify the software operating
circumstance temporarily.

« The typical examples of environment
diversity technique are progressive
retry, rollback, rollforward, recovery
with checkpointing, restart, hardware
reboot, etc.

88

What's new

» Modifications to Traditional Techniques
— Adaptive N-version Systems
— Fuzzy Voting
— Abstraction
— Parallel Graph Reduction

» New Concepts (Not Classifiable in Data
or Design Diversity)
— Rejuvenation

90

15

© Gert Jervan

© Gert Jervan

H
H
o
H
]
&
o

Why Adaptive

» Defective components should be
removed from the voting process

» The voting procedure can be adaptively
modified and tailored to the fault state
of the overall system

91

Voting schemes

+ Static voting:

fixed number
of versions

93

Voting schemes

Adaptive voting:
versions have
dynamically w
changeable
weight factors

Adaptive]
Yoler

17.04.2012

An Adaptive Approach for n-

Version Systems

* Model and manage different quality
levels of the versions by introducing an
individual weight factor to each version
of the n-version system.

+ This weight factor is then included in the
voting procedure, i.e. the voting is
based on a weighted counting.

92

Voting schemes

Dynamic voting:
defective components
are removed from
the voting
process

94

95

Gert Jervan, TTU/ATI

Example

» Cumulated reliability of 7 components of a
software system for a satellite control
application
— a) classical

3-version system g
- b) 3-version 1.0
system with
adaptive weight o4
factors b

0.8

96

16

© Gert Jervan

H
H
o
H
]
&
o

© Gert Jervan

Why Fuzzy Voting

- In traditional voting, equality relation
regards two real numbers as equal if
their difference is smaller than fixed
tolerance €. For different version
outputs that are “closer” to each other
than the fixed threshold there is no
gradual comparison. As a result, certain
interconnection of faults could incur
incorrect selection.

» Fuzzy equivalence relation results in
more reliable systems

97

17.04.2012

Fuzzy Equality Equation
« Traditional Equality Equation
{1, if|x—x[<e

A

0, otherwise
» Fuzzy Equality Equation

la, = x| 21, _
-5l i X —a |Ss/2
My, (3) ={ &/2

)

otherwise

98

Output of Fuzzy Sets (Triangular
Shape)

« The fuzzy logic maps the input vector
into an output nonlinearly

s}

99

Why Abstraction Improve Fault
Tolerance

« Reduce the cost of fault tolerance

« Improve its ability to mask software
errors.

100

An Example of Abstraction: BASE

» Byzantine fault tolerance (BFT) with
Abstract Specification Encapsulation
(BASE)

101

How BASE Works

» BASE reduces cost because it enables
reuse of off-the-shelf service
implementations.

» It improves availability because each
replica can be repaired periodically using
an abstract view of the state stored by
correct replicas, and because each
replica can run distinct or
nondeterministic service
implementations, which reduces the
probability of common mode failures.

102

Gert Jervan, TTU/ATI

17

© Gert Jervan

© Gert Jervan

H
H
o
H
]
&
o

BASE Function Calls and Upcalls.

N
{ client } Execute
\\ / Propose Value/Check
e — value
invoke Get obj/put obj
- ~~, Shutdown/Restart-~ N
/Base client\' /" Base \‘I—a“xy Conformation
N / Blasel _ replica /- —x Wrapper
~——" protocol - e modify 1
e '#\\
/" Original
\ Implementation /

103

Parallel Graph Reduction

« Fault-tolerance of functional programs in
parallel computing

105

17.04.2012

Modifications to Traditional
Techniques

« Adaptive N-version systems

» Fuzzy Voting

» Abstraction

» Parallel Graph Reduction

104

Why Parallel Graph Reduction

» Reduce time overhead of fault tolerance
by taking advantage of referential
transparency.

106

An Example of Graph Reduction

« A program is a graph =
~Graph "f()*a(y)" /D\
@ @
v Execution of //\ / \
program --- Graph £k M E

Reductionm

oot
/3\ O
21
@ o = =

/ A '
\ / \ Assuming that f{x)=3, gly)=7
g > @ application node
107

An Example of Parallel Graph
Reduction

Task A Task B
Toot
f x g ¥

108

Gert Jervan, TTU/ATI

18

17.04.2012

System Architecture Backup Procedure
Each subgraph is assigned to each node
and reduced in parallel

A task is executed in a node and its
backup is stored in another node

+ Transmission
+ Backup

+ Reduction /{
Graph

Parallel Functional Program |

TaskiRedundancy) Tusk(Redundancy) TaskiRedundancy)

Message Passing
Library

Ncasnge Pmsing
Library

Stable 5“0!9

Message Passing.
Liheary

109 110

‘G}Gm]man \
)
Z :
H !
!
!
!
!
!
!
)
!
!
!
: !
!
!
!
!
!
!
!
!
1]
1]
1)
1]
1)
1
1
1]
L)
!
[
[
: !
!
!
!
[
!
‘iim!man \

Error Recovery Software Aging

When software application executes

continuously for long periods of time,

some of the faults cause software

appear to age due to the error

conditions that accrue with time and/or

load. This phenomenon is called

software aging which is reported in

— Telecommunication billing application over
time experiences a crash or a hang failure.

— A telecommunication switching software

— Netscape and xrn

— Safety critical systems Patriot missile’s
software, where the accumulated errors led
to a failure that resulted in loss of human
lives. 12

Rollback
Retransmission
Checkpointing
Reduction

Tl

‘@Gen]er\lan \

(- v |

{ x

) el 117 =il 1) 82

B) ™K

/ jﬁ

C | H I E |
Em e \

.

Discussion Summary

» Each software fault tolerance technique
need to be tailored to particular
applications.

» This should also be based on the cost of
the fault tolerance effort required by the
customer. The differences between each
technique provide some flexibility of
application.

‘ © Gert Jervan \

113

‘ i ien ieivan \

» Hardware redundancy
— passive, active, and hybrid
« Information redundancy
— coding method and self-checking
» Time redundancy
« Software redundancy

— N-version programming, recovery block,
N-self checking, ...

Gert Jervan, TTU/ATI

17.04.2012

A summary chart of all techniques

Bexic Fault-Tolerant Techniques

Questions?

Hanlware Redondancy Infarmstion Time Sofiware.

15

Gert Jervan, TTU/ATI 20

