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 Introduction

 Hardware Redundancy

Some materials from: 
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 Information Redundancy

 Time Redundancy

 Software Redundancy

 Environment Redundancy

A summary chart of all techniques
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Information redundancy

• Definition
− Information redundancy is the addition of 

redundant information to data to allow fault 
detection, fault masking or possibly fault 
tolerance.
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• Error detecting and correcting codes 
(EDC codes)
− Encoding of information for transmission in 

noisy environments
− Later for dependability: communications, 

memory, storage, etc.
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Error Model

T

Error Model E

U Z
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• Functional faults
• Technological faults
• Disruptions due to the environment
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TU Z

Error Classes

• An error is single when it only affects a 
single bit of the output Z

• An error is multiple of order p when it 
affects at most p bits of Z
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• Burst error – the errorneous bits of Z 
are within an l-distance neighbourhood
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Code

• Code of length n is a set of n-tuples 
satisfying some well-defined set of rules 

• Binary code uses only 0 and 1 symbols 
− binary coded decimal 

(BCD) code 
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• uses 4 bits for 
each decimal digit 
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0000 0 
0001 1 
0010 2 
...
1001 9 

Code Word

• A code word is a collection of symbols 
used to represent a particular piece of 
data based on specified code

• A word is an n-tuple not satisfying the 
rules of the code 
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• Codewords should be a subset of all 
possible 2n binary tuples to make error 
detection/correction possible 
− BCD: 0110 valid; 1110 invalid 
− any binary code: 2013 invalid 

• The number of codewords in a code C is 
called the size of C 
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Encoding vs. decoding

• The encoding process is the process of 
determining the corresponding code 
word for a particular data item.
− Example: given the decimal 9, encoding 

determines the BCD representation of 1001.
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• The decoding process is the process of 
recovering the original data from the 
code word.
− Example: decoding transforms the BCD code 

0011 into the decimal 3
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Encoding/decoding

• 2 scenario if errors affect codeword: 
− correct codeword → another codeword 
− correct codeword → word 
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Error Detection

• We can define a code so that errors 
introduced in a codeword force it to lie 
outside the range of codewords 
− Basic principle of error detection
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Error Detection

• Error detection: code word is invalid
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Error Correction

• We can define a code so that it is 
possible to determine the correct code 
word from the erroneous codeword 
− Basic principle of error correction
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Error Correction

• Error correction: correct word can be 
identified from the corrupted word
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EDC/ECC

• Error Detecting and Correcting Codes

Error Model E Error
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• Separable/non-separable codes
− Separable: original information is 

appended with new information
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TU ZCoding
Decoding

Detection/
Correction

EDC/ECC

• Characterized by the number of bits that can be 
corrected 
− double-bit detecting code can detect two 

single-bit errors 
− single-bit correcting code can correct one 

single-bit error
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• Hamming distance gives a measure of error 
detecting/correcting capabilities of a code 
− Number of bit positions in which the two 

words differ
• Hamming distance of 1: 0000 to 0001; 2: 0000 to 

0101

− Code distance: 
• Minimum Hamming distance between any two valid 

code words
16

3-dimensional space (3-bit words)

©
G

er
t 

Je
rv

a
n

17

Error Detection

• If codewords are on distance ≥ 2, we 
can detect single-bit errors
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Error Correction

• If codewords are on distance ≥ 3, we 
can correct single-bit errors
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Code Distance

• Code distance is the minimum Hamming 
distance between any two distinct 
codewords
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Cd = 2 code detects all single-bit errors 
code: 00, 11 
invalid code words: 01 or 10 

Cd = 3 code corrects all single-bit errors 
code: 000, 111 
invalid code words: 001, 010, 100, 

101, 011, 110 
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Code Capabilities

• To correct ε-bit errors a code should 
have the code distance Cd ≥ 2ε +1

• To be able to detect ε-bit errors a code 
should have the code distance Cd ≥ ε 
+1
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• A code can correct up to c bit errors and
detect up to d additional bit errors if and 
only if:

2c + d + 1 ≤ Cd
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Separable/non-separable code

• Separable code 
− codeword = data + check bits 
− e.g. parity: 11011 = 1101 + 1

• Non-separable code 
− codeword = data mixed with check bits 
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− e.g. cyclic: 1010001 -> 1101 

• Decoding process is much easier for 
separable codes (remove check bits)  
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Information Rate

• The ratio k/n, where
− k is the number of data bits
− n is the number of data + check bits

is called the information rate of the code
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• Example: a code obtained by repeating
data three times has the information 
rate 1/3
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Code Characterization

• Cost: number of bits n that it needs
• Power of expression (cardinality): 

number of codewords N that it is able to 
represent

• Error model: defining the errors 
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g
detected and/or corrected
− Redundancy rate: rr=r/k   (r: added bits)
− Density of a code: d=N/2n
− Coverage rate

24
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Parity codes

• Addition of an extra bit 
to a binary word such 
that the resulted code 
word has either an even 
number or an odd 
number of 1s.

• Separable code
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p
• Hamming distance of 2
• Can detect any single 

bit error
− Even parity

• One bit flip: odd 
number of bits

− Odd parity
• One bit flip: even 

number of bits

• Application: bus, 
memory, transmission

25

Generation and checking circuit
for parity codes: XOR

©
G

er
t 

Je
rv

a
n

©
G

er
t 

Je
rv

a
n

26

Memory with parity coding

• 32-bit word + 4 parity bits = 36 bits 
stored

• 64-bit word + 8 parity bits = 72 bits 
stored
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Application

• Memories are built of individual chips
− 4-bit chips
− 98% of all memory errors are single-bit errors

• 1GByte DRAM with parity code: 0,7 failures per year

• If one chip fails: multiple-bit errors
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− Parity codes cannot detect multiple bit errors

• Modifications of the basic parity scheme
− Bit-per-word parity
− Bit-per byte parity
− Bit-per chip parity
− Bit-per multiple chips parity
− Interlaced parity

28

Forms of parity code

Problems

← All bits are changed to 
1 or 0

← Better, but still not able to 
detect a 4-bit chip failure

Each bit from a chip forms a

©
G

er
t 

Je
rv

a
n

©
G

er
t 

Je
rv

a
n

29

← Each bit from a chip forms a 
parity word with other bits
 Cannot locate the problem

← Can detect and locate the 
error
 Problem with chip-failure

← Used when errors in 
adjacent bits are of concern

Forms of parity code
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Overlapping parity code
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• The impact of an erroneous bit is unique
− Example: flip of data bit 2 affects parity 

bits P1 and P2
− Bit can be detected and corrected

• The required redundancy decreases as 
the numbers of bits increase 31

Error correction using overlapping 
parity
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Syndrome and Costs

• Output of 3-8 decoder called syndrome 
bits
− Indicates which of several possible bit 

flips occurred

• High Cost – 75% redundancy (3 parity 
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bits for a 4-bit word). Cost goes down 
as information content increases.
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m-of-n codes

 m-of-n codes define code
words that are n bits in 
length and contain exactly 
m 1s

 Example: 3-of-6
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• Single Bit Errors – Erroneous word has m+1 or 
m-1 ones -- conceptually simple

• Disadvantage – Encoding, decoding, detection of 
fault difficult and complex

• Easiest Implementation:
− i-of-2i code:

• Take the original i-bits of information and append i
bits such that the resulted code word has exactly i 1s

34

Duplication codes

• Duplication codes are based on the concept of 
completely duplicating the original information to 
form the code word.
− Simply append the original i bits of information to 

itself: code of length 2i
− If an error occurs, the two halves disagree
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• Advantage: simple to encode/decode and detect 
errors

• Disadvantage: 100% redundancy
• Application

− Memory systems
− Communication systems

35

Complemented duplication in a
communication system
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Swap and compare duplication 
codes

 Maintain two copies of 
the original information, 
but swap the upper and 
lower halves of the 
second copy
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 A single bit slice that is 
faulty affects the upper 
half of one copy of the 
information and the 
lower half of the other 
copy
 By comparing the 

appropriate halves, the 
error can be detected

Checksum codes

 Checksum: sum of the 
original data, appended to the 
block of data

 Separable code applicable 
when blocks of data are 
transferred from one point to 
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another

 Checksums cannot correct 
errors

 Four types of checksums
1. Single-precision

2. Double-precision

3. Honeywell

4. Residue checksums

Single-precision checksum
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Double-precision checksums

©
G

er
t 

Je
rv

a
n

©
G

er
t 

Je
rv

a
n

40

Honeywell checksum

• Concatenate consecutive 
words to form a collection of 
double-length words.
− The checksum is formed over 

the new double-length words
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• If a complete column of the 
original data is erroneous, 
the modified data structure 
has two erroneous columns

41

Error detection using Honeywell 
checksums
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Residue checksums

• Residue checksums are 
similar with single-
precision checksums, 
except that the most
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except that the most 
significant bit position 
is not ignored but is 
added back to the 
checksum in an end-
around carry fashion.

43

Error detection using residue 
checksums
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Cyclic Codes

• Cyclic codes are special class of linear codes 
• Used in applications where burst errors can 

occur 
− a group of adjacent bits is affected 
− digital communication, storage devices 

(disks, CDs) 
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( , )
• Important classes of cyclic codes: 

− Cyclic redundancy check (CRC)
• Used in modems and network protocols

• North-America T-carrier standard uses Extended-
SuperFrame (ESF) cyclic code. Coding frame of 4632 
bits. Detects 98,4% single or multiple errors

− Reed-Solomon code 
• Used in CD and DVD players

• CDs: up to 4000 consecutive errors can be corrected 
(2,5 mm of track)
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Cyclic codes

• Cyclic code: the end-
around shift of a code 
word will produce 
another code word
− n bits in the original, k 

in the code
• Called (n, k) cyclic 
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• Simple encoding
− Shift registers with 

feedback connections
• Can detect n-k adjacent 

errors
− Burst errors

46

Cyclic code polynomial

• Data polynomial 
− D(X) = d0 + d1x + 

d2x2 + d3x3

• Generator polynomial
− G(X) = 1 + x + x3
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• Cyclic code 
generation:

− V(X) = D(X) * G(X)
− Modulo-2 addition!

• V(X) is the code 
polynomial

− V(X) = v0 + v1x + 
v2x2 + v3x3 + 
v4x3 + v5x5 + v6x6

47

Encoding
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Encoding, cont.
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Decoding and error detection
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• Decoding is done through division
− Data is obtained by dividing V(X) / G(X)
− The circuit in the figure implements the division

• Syndrome polynomial S(X) is zero in case of no error
− R(X) = D(X)G(X) + S(X)
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Decoding and error detection, 
cont.
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Decoding and error detection, 
cont.

©
G

er
t 

Je
rv

a
n

©
G

er
t 

Je
rv

a
n

52

Reed-Solomon Code

• Reed-Solomon (RS) codes are a class of 
separable cyclic codes used to correct 
errors in a wide range of applications 
including 
− storage devices (tapes, compact disks, DVDs, 

bar codes)
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bar-codes)
− wireless communication (cellular telephones, 

microwave links)
− satellite communication, digital television, 

high-speed modems (ADSL, xDSL)
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Reed-Solomon Code

• The encoding for Reed-Solomon code is 
done the using the usual procedure 
− codeword is computed by shifting the data 

right n-k positions, dividing it by the 
generator polynomial and then adding the 
obtained reminder to the shifted data 
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• A key difference is that groups of m bits 
rather than individual bits are used as 
symbols of the code. 
− usually m = 8, i.e. a byte
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Encoding

• An encoder for an RS code takes k data 
symbols of s bits each and computes a 
codeword containing n symbols of m bits 
each 

• A Reed-Solomon code can correct up to 
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n-k/2 symbols that contain errors 

55

Example: RS(255,223) code 

• A popular Reed-Solomon code is 
RS(255,223) 
− symbols are a byte (8-bit) long 
− each codeword contains 255 bytes, of 

which 223 bytes are data and 32 bytes 
are check symbols 
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y
− n = 255, k = 223, this code can correct 

up to 16 bytes containing errors 
− each of these 16 bytes can have multiple 

bit errors. 

56

Decoding

• Decoding of Reed-Solomon codes is 
performed using an algorithm designed 
by Berlekamp 
− popularity of RS codes is due to efficiency 

this algorithm to a large extent. 
Thi l ith d b V II f
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• This algorithm was used by Voyager II for 
transmitting pictures of the outer space back to 
Earth 

• Basis for decoding CD in players 
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Summary of Cyclic Codes

• Any end-around shift of a codeword 
produce another codeword 

• Code is characterized by its generator 
polynomial g(x), with a degree (n-k), n 
= bits in codeword, 
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k = bits in data word 
• Detect all single errors and all multiple 

adjacent error affecting 
(n-k) bits or less 
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Arithmetic codes

• Arithmetic codes are invariants to (a set of) 
arithmetic operations
− A(b <op> c) = A(b) <op> A(c)

• Application
− Checking arithmetic operations
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• Examples of arithmetic codes
− AN codes
− Residue codes
− Inverse-residue codes
− Residue number system

59

AN codes

• AN code is formed by multiplying each 
data word N by some constant A
− The magnitude of A determines the 

number of extra bits required to 
represent the code words and the error 
detection capability

• AN codes are invariant to addition and 
subtraction but not multiplication and
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subtraction but not multiplication and 
division

• Example code: 3N
− The constant must not be a power of 2

• Power of 2 is a shift, difficult to detect 
the error

− 3N requires n+2 bit words

60
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AN codes encoding: 3N = 2N + N
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Error detection using AN codes

©
G

er
t 

Je
rv

a
n

62

Error detection circuit for AN 
codes
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Residue codes

• A residue code is a separable arithmetic code 
created by appending the residue (reminder) of 
a number to that number

− Code = D | R, where R is the reminder of the 
division with an integer m

− The number of bits in R depend on m

©
G

er
t 

Je
rv

a
n

• Residue codes are invariant to addition

• Low-cost residues: 
m = 2b – 1, b at least 2

− R requires b bits
− Easy to encode: division is Modulo-3 addition

• Decoding simply removes R

64

Adder using residue codes

©
G

er
t 

Je
rv

a
n

65

Residue calculation for low-cost 
residues
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Inverse residue codes

• An inverse residue code is 
similar to a residue code, but 
instead of appending the 
residue, the inverse residue Q
is calculated and appended
− Q = m – R
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• Better fault detection for 
repeated faults
− A repeated fault is 

encountered multiple times 
before the code is checked

− Difficult to detect because 
subsequent effects can cancel 
the previous effects of the 
fault

67

Berger codes

• Berger codes are formed by 
appending a special set of bits, 
called check bits, to each word of 
information

• Berger code of length n
− I information bits
− k check bits
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 )1(log2 += Ik
n = I + k

− A code word is formed by first 
creating a binary number that 
corresponds to the number of 1s in 
the original I bits of information. 

− The resulting binary number is 
complemented and appended to the 
I information bits to form the (I+k)-
bit code word.

68

Berger codes, cont.

• If the number of 
information bits is small, 
the redundancy is high,

• As the number of 
information bits increases, 
the efficiency improves 

b t ti ll
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substantially.
• Advantages

− Best separable code 
(fewest number of bits) 
considering its error 
detection capabilities

− Detects multiple, 
unidirectional errors

69

Horizontal and vertical parity
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 Can detect multiple errors in groups of data words

 Can correct single-bit errors 

 Cannot correct multiple errors

Hamming codes

• The hamming codes are 
similar to overlapping 
parity codes.

• The Hamming code is 
formed by partitioning 
the information bits into
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the information bits into 
parity groups and 
specifying a parity bit 
for each group. 

− uses c parity check bits 
to protect k bits of 
information

• The ability to locate 
which bit is faulty is 
obtained by overlapping 
the groups of bits. 71

Single-bit error correction unit
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Hamming correction in memories

• Memory: 60 to 70% of the faults in a 
system
− Transient faults are becoming much more 

prevalent as memory chips become denser

• Many memory designs use hamming
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Many memory designs use hamming 
error correction 
− Relatively inexpensive: 10-40% redundancy
− Encoding and the decoding are fast
− Error correction circuit is readily available on 

inexpensive chips

73

Hamming correction in memories, 
cont.
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Error correction in commercial 
circuits
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Code selection issues

• Fulfills the desired error 
detection/correction while maintaining 
costs at an acceptable level
− Cost of a code

• Redundancy required; time redundancy is also 
considered
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considered

− Effectiveness of a code
• Number of bit errors detected/corrected

• Key design decisions
− Separable or not
− What is required? Detection, correction, both?
− Number of bit errors to be detected/corrected

76

Information redundancy

• Self-Checking
− This is a form of hardware redundancy but 

often it is closely related to ECC techniques, 
therefore I have chosen to include it here

− Assumptions: inputs are coded and outputs 
are coded
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− Objective: in the presence of a fault the 
circuit should either continue to provide 
correct output(s) or indicate by providing an 
error indication that there is a fault. 
• Clearly error indication can not be 1-bit output 

(why?)
• With 2-bits output, 00 and 11 may indicate no 

failure 
• other output combinations (10, 01) may 

indicate a failure
77

Self-Checking (contd.)

• Example application
• two devices produce identical outputs and we 

compare these outputs to check their equality
• checker has two outputs encoded as follows

• 00  equal
• 11 unequal
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• 01 or 10 possible fault in the circuit
• (we will discuss input encoding when we discuss 

an example of a 2-rail 1-bit checker)

78
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Self-Checking (contd.)

− Definitions
• a circuit is fault secure if in the presence of a 

fault, the output is either always correct, or not a 
code word for valid input code words

• a circuit is self-testing if only valid inputs can be 
used to test it for the faults

• a circuit is totally self checking if it is fault secure
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• a circuit is totally self-checking if it is fault secure 
and self-testing

− Example: a totally self-checking 2-rail 1-bit 
comparator
• assumptions

• 2 inputs and each input x is available as x and its 
complement

• x and its complement are independently generated
• note with these assumption the input space is 

encoded (4 valid inputs out of 16 possible inputs) 
• single stuck-at fault model

79

Time redundancy
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Time redundancy

• Disadvantages of hardware and 
information redundancy
− Require large amounts of extra hardware 

for their implementation.
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• Time redundancy: reduce the extra 
hardware at the expense of using 
additional time. 
− Hardware is a physical entity that 

impacts weight, size, power consumption 
and cost. 

− Time may be readily available in some 
applications.

81

Time redundancy

• Key Concept - do a job more than once 
over time 
− examples

• re-execution
• re-transmission of information

different faults and capabilities of different
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− different faults and capabilities of different 
schemes
• transient faults

• re-execution and re-transmission can detect 
such faults provided we wait for transient to 
subside

• permanent faults
• simple re-execution or re-transmission will not 

work. Possible solutions
• send or process shifted version of data 
• send or process complemented data during 

second transmission 82

Time redundancy

• Different faults and capabilities of 
different schemes (contd.)
− faults in ALU

• re-execution with complement or shifted 
version can detects permanent and transient 
faults 
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• (RESO concept - re-computation with shifted 
operands)

− multiple re-computations
• can detect and possibly correct transient and 

permanent faults if properly 
employed/designed   

83

Time redundancy: transient fault 
detection
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Time redundancy: permanent 
fault detection
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Alternating logic
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Error correction using time-
redundancy
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Environment Diversity

• To diversify the software operating 
circumstance temporarily. 

• The typical examples of environment 
diversity technique are progressive 
retry, rollback, rollforward, recovery 
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with checkpointing, restart, hardware 
reboot, etc. 
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Adjudicators

• Voter
• AT
• Hybrid, other
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What’s new

• Modifications to Traditional Techniques
− Adaptive N-version Systems
− Fuzzy Voting
− Abstraction
− Parallel Graph Reduction
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• New Concepts (Not Classifiable in Data 
or Design Diversity) 
− Rejuvenation

90
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Why Adaptive

• Defective components should be 
removed from the voting process

• The voting procedure can be adaptively 
modified and tailored to the fault state 
of the overall system

©
G

er
t 

Je
rv

a
n

©
G

er
t 

Je
rv

a
n

91

An Adaptive Approach for n-
Version Systems
• Model and manage different quality 

levels of the versions by introducing an 
individual weight factor to each version 
of the n-version system.
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• This weight factor is then included in the 
voting procedure, i.e. the voting is 
based on a weighted counting.
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Voting schemes

• Static voting:

fixed number 
of versions

©
G

er
t 

Je
rv

a
n

©
G

er
t 

Je
rv

a
n

93

Voting schemes 

Dynamic voting:
defective components 
are removed from 
the voting
process
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process

Voting schemes 

Adaptive voting:
versions have 
dynamically 
changeable
weight factors
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weight factors

Example

• Cumulated reliability of 7 components of a 
software system for a satellite control 
application 
− a) classical 

3-version system 
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− b) 3-version 
system with 
adaptive weight 
factors
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Why Fuzzy Voting

• In traditional voting, equality relation 
regards two real numbers as equal if 
their difference is smaller than fixed 
tolerance ε.  For different version 
outputs that are “closer” to each other 
than the fixed threshold there is no
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than the fixed threshold there is no 
gradual comparison. As a result, certain 
interconnection of faults could incur 
incorrect selection. 

• Fuzzy equivalence relation results in 
more reliable systems 
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Fuzzy Equality Equation

• Traditional Equality Equation

• Fuzzy Equality Equation
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• Fuzzy Equality Equation
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Output of Fuzzy Sets (Triangular 
Shape)
• The fuzzy logic maps the input vector 

into an output nonlinearly 
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Why Abstraction Improve Fault 
Tolerance
• Reduce the cost of fault tolerance
• Improve its ability to mask software 

errors.
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An Example of Abstraction: BASE

• Byzantine fault tolerance (BFT) with 
Abstract Specification Encapsulation 
(BASE)
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How BASE Works

• BASE reduces cost because it enables 
reuse of off-the-shelf service 
implementations. 

• It improves availability because each 
replica can be repaired periodically using 
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an abstract view of the state stored by 
correct replicas, and because each 
replica can run distinct or 
nondeterministic service 
implementations, which reduces the 
probability of common mode failures. 

102
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BASE Function Calls and Upcalls.
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Modifications to Traditional 
Techniques
• Adaptive N-version systems
• Fuzzy Voting
• Abstraction
• Parallel Graph Reduction
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Parallel Graph Reduction

• Fault-tolerance of functional programs in 
parallel computing
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Why Parallel Graph Reduction

• Reduce time overhead of fault tolerance 
by taking advantage of referential 
transparency.
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An Example of Graph Reduction

• A program is a graph 
---Graph “f(x)*g(y)”

 Execution of 
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program --- Graph 
Reduction

An Example of Parallel Graph 
Reduction
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System Architecture

• Each subgraph is assigned to each node 
and reduced in parallel

• A task is executed in a node and its 
backup is stored in another node

©
G

er
t 

Je
rv

a
n

©
G

er
t 

Je
rv

a
n

109

Backup Procedure

• Transmission
• Backup
• Reduction
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Error Recovery

• Rollback
• Retransmission
• Checkpointing
• Reduction
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Software Aging

• When software application executes 
continuously for long periods of time, 
some of the faults cause software 
appear to age due to the error 
conditions that accrue with time and/or 
load This phenomenon is called
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load. This phenomenon is called 
software aging which is reported in
− Telecommunication billing application over 

time experiences a crash or a hang failure. 
− A telecommunication switching software
− Netscape and xrn
− Safety critical systems Patriot missile’s 

software, where the accumulated errors led 
to a failure that resulted in loss of human 
lives. 112

Discussion

• Each software fault tolerance technique 
need to be tailored to particular 
applications. 

• This should also be based on the cost of 
the fault tolerance effort required by the 
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customer. The differences between each 
technique provide some flexibility of 
application.
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Summary

• Hardware redundancy
− passive, active, and hybrid

• Information redundancy
− coding method and self-checking

• Time redundancy

©
G

er
t 

Je
rv

a
n

©
G

er
t 

Je
rv

a
n

Time redundancy
• Software redundancy

− N-version programming, recovery block, 
N-self checking, ...
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A summary chart of all techniques
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Questions?
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