
17.04.2012

Gert Jervan, TTÜ/ATI 1

IAF0530/IAF9530

Dependability and fault tolerance

Lecture 7
R d d (I f ti Ti E i t)

©
G

er
t

Je
rv

a
n

Redundancy (Information, Time, Environment)

Gert Jervan
gert.jervan@pld.ttu.ee

Lecture Outline

 Introduction

 Hardware Redundancy

Some materials from:
Elena Dubrova

Paul Pop

f d d

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

2

 Information Redundancy

 Time Redundancy

 Software Redundancy

 Environment Redundancy

A summary chart of all techniques

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

3

Information redundancy

• Definition
− Information redundancy is the addition of

redundant information to data to allow fault
detection, fault masking or possibly fault
tolerance.

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

• Error detecting and correcting codes
(EDC codes)
− Encoding of information for transmission in

noisy environments
− Later for dependability: communications,

memory, storage, etc.

4

Error Model

T

Error Model E

U Z

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

• Functional faults
• Technological faults
• Disruptions due to the environment

5

TU Z

Error Classes

• An error is single when it only affects a
single bit of the output Z

• An error is multiple of order p when it
affects at most p bits of Z

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

• Burst error – the errorneous bits of Z
are within an l-distance neighbourhood

6

17.04.2012

Gert Jervan, TTÜ/ATI 2

Code

• Code of length n is a set of n-tuples
satisfying some well-defined set of rules

• Binary code uses only 0 and 1 symbols
− binary coded decimal

(BCD) code

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

• uses 4 bits for
each decimal digit

7

0000 0
0001 1
0010 2
...
1001 9

Code Word

• A code word is a collection of symbols
used to represent a particular piece of
data based on specified code

• A word is an n-tuple not satisfying the
rules of the code

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

• Codewords should be a subset of all
possible 2n binary tuples to make error
detection/correction possible
− BCD: 0110 valid; 1110 invalid
− any binary code: 2013 invalid

• The number of codewords in a code C is
called the size of C

8

Encoding vs. decoding

• The encoding process is the process of
determining the corresponding code
word for a particular data item.
− Example: given the decimal 9, encoding

determines the BCD representation of 1001.

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

• The decoding process is the process of
recovering the original data from the
code word.
− Example: decoding transforms the BCD code

0011 into the decimal 3

9

Encoding/decoding

• 2 scenario if errors affect codeword:
− correct codeword → another codeword
− correct codeword → word

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

10

Error Detection

• We can define a code so that errors
introduced in a codeword force it to lie
outside the range of codewords
− Basic principle of error detection

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

11

Error Detection

• Error detection: code word is invalid

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

12

17.04.2012

Gert Jervan, TTÜ/ATI 3

Error Correction

• We can define a code so that it is
possible to determine the correct code
word from the erroneous codeword
− Basic principle of error correction

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

13

Error Correction

• Error correction: correct word can be
identified from the corrupted word

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

14

EDC/ECC

• Error Detecting and Correcting Codes

Error Model E Error

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

• Separable/non-separable codes
− Separable: original information is

appended with new information

15

TU ZCoding
Decoding

Detection/
Correction

EDC/ECC

• Characterized by the number of bits that can be
corrected
− double-bit detecting code can detect two

single-bit errors
− single-bit correcting code can correct one

single-bit error

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

• Hamming distance gives a measure of error
detecting/correcting capabilities of a code
− Number of bit positions in which the two

words differ
• Hamming distance of 1: 0000 to 0001; 2: 0000 to

0101

− Code distance:
• Minimum Hamming distance between any two valid

code words
16

3-dimensional space (3-bit words)

©
G

er
t

Je
rv

a
n

17

Error Detection

• If codewords are on distance ≥ 2, we
can detect single-bit errors

©
G

er
t

Je
rv

a
n

18

17.04.2012

Gert Jervan, TTÜ/ATI 4

Error Correction

• If codewords are on distance ≥ 3, we
can correct single-bit errors

©
G

er
t

Je
rv

a
n

19

Code Distance

• Code distance is the minimum Hamming
distance between any two distinct
codewords

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

Cd = 2 code detects all single-bit errors
code: 00, 11
invalid code words: 01 or 10

Cd = 3 code corrects all single-bit errors
code: 000, 111
invalid code words: 001, 010, 100,

101, 011, 110

20

Code Capabilities

• To correct ε-bit errors a code should
have the code distance Cd ≥ 2ε +1

• To be able to detect ε-bit errors a code
should have the code distance Cd ≥ ε
+1

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

• A code can correct up to c bit errors and
detect up to d additional bit errors if and
only if:

2c + d + 1 ≤ Cd

21

Separable/non-separable code

• Separable code
− codeword = data + check bits
− e.g. parity: 11011 = 1101 + 1

• Non-separable code
− codeword = data mixed with check bits

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

− e.g. cyclic: 1010001 -> 1101

• Decoding process is much easier for
separable codes (remove check bits)

22

Information Rate

• The ratio k/n, where
− k is the number of data bits
− n is the number of data + check bits

is called the information rate of the code

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

• Example: a code obtained by repeating
data three times has the information
rate 1/3

23

Code Characterization

• Cost: number of bits n that it needs
• Power of expression (cardinality):

number of codewords N that it is able to
represent

• Error model: defining the errors

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

g
detected and/or corrected
− Redundancy rate: rr=r/k (r: added bits)
− Density of a code: d=N/2n
− Coverage rate

24

17.04.2012

Gert Jervan, TTÜ/ATI 5

Parity codes

• Addition of an extra bit
to a binary word such
that the resulted code
word has either an even
number or an odd
number of 1s.

• Separable code

©
G

er
t

Je
rv

a
n

p
• Hamming distance of 2
• Can detect any single

bit error
− Even parity

• One bit flip: odd
number of bits

− Odd parity
• One bit flip: even

number of bits

• Application: bus,
memory, transmission

25

Generation and checking circuit
for parity codes: XOR

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

26

Memory with parity coding

• 32-bit word + 4 parity bits = 36 bits
stored

• 64-bit word + 8 parity bits = 72 bits
stored

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

27

Application

• Memories are built of individual chips
− 4-bit chips
− 98% of all memory errors are single-bit errors

• 1GByte DRAM with parity code: 0,7 failures per year

• If one chip fails: multiple-bit errors

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

− Parity codes cannot detect multiple bit errors

• Modifications of the basic parity scheme
− Bit-per-word parity
− Bit-per byte parity
− Bit-per chip parity
− Bit-per multiple chips parity
− Interlaced parity

28

Forms of parity code

Problems

← All bits are changed to
1 or 0

← Better, but still not able to
detect a 4-bit chip failure

Each bit from a chip forms a

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

29

← Each bit from a chip forms a
parity word with other bits
 Cannot locate the problem

← Can detect and locate the
error
 Problem with chip-failure

← Used when errors in
adjacent bits are of concern

Forms of parity code

©
G

er
t

Je
rv

a
n

30

17.04.2012

Gert Jervan, TTÜ/ATI 6

Overlapping parity code

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

• The impact of an erroneous bit is unique
− Example: flip of data bit 2 affects parity

bits P1 and P2
− Bit can be detected and corrected

• The required redundancy decreases as
the numbers of bits increase 31

Error correction using overlapping
parity

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

32

Syndrome and Costs

• Output of 3-8 decoder called syndrome
bits
− Indicates which of several possible bit

flips occurred

• High Cost – 75% redundancy (3 parity

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

bits for a 4-bit word). Cost goes down
as information content increases.

33

m-of-n codes

 m-of-n codes define code
words that are n bits in
length and contain exactly
m 1s

 Example: 3-of-6

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

• Single Bit Errors – Erroneous word has m+1 or
m-1 ones -- conceptually simple

• Disadvantage – Encoding, decoding, detection of
fault difficult and complex

• Easiest Implementation:
− i-of-2i code:

• Take the original i-bits of information and append i
bits such that the resulted code word has exactly i 1s

34

Duplication codes

• Duplication codes are based on the concept of
completely duplicating the original information to
form the code word.
− Simply append the original i bits of information to

itself: code of length 2i
− If an error occurs, the two halves disagree

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

• Advantage: simple to encode/decode and detect
errors

• Disadvantage: 100% redundancy
• Application

− Memory systems
− Communication systems

35

Complemented duplication in a
communication system

©
G

er
t

Je
rv

a
n

36

17.04.2012

Gert Jervan, TTÜ/ATI 7

Swap and compare duplication
codes

 Maintain two copies of
the original information,
but swap the upper and
lower halves of the
second copy

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

37

 A single bit slice that is
faulty affects the upper
half of one copy of the
information and the
lower half of the other
copy
 By comparing the

appropriate halves, the
error can be detected

Checksum codes

 Checksum: sum of the
original data, appended to the
block of data

 Separable code applicable
when blocks of data are
transferred from one point to

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

38

another

 Checksums cannot correct
errors

 Four types of checksums
1. Single-precision

2. Double-precision

3. Honeywell

4. Residue checksums

Single-precision checksum

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

39

Double-precision checksums

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

40

Honeywell checksum

• Concatenate consecutive
words to form a collection of
double-length words.
− The checksum is formed over

the new double-length words

©
G

er
t

Je
rv

a
n

• If a complete column of the
original data is erroneous,
the modified data structure
has two erroneous columns

41

Error detection using Honeywell
checksums

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

42

17.04.2012

Gert Jervan, TTÜ/ATI 8

Residue checksums

• Residue checksums are
similar with single-
precision checksums,
except that the most

©
G

er
t

Je
rv

a
n

except that the most
significant bit position
is not ignored but is
added back to the
checksum in an end-
around carry fashion.

43

Error detection using residue
checksums

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

44

Cyclic Codes

• Cyclic codes are special class of linear codes
• Used in applications where burst errors can

occur
− a group of adjacent bits is affected
− digital communication, storage devices

(disks, CDs)

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

(,)
• Important classes of cyclic codes:

− Cyclic redundancy check (CRC)
• Used in modems and network protocols

• North-America T-carrier standard uses Extended-
SuperFrame (ESF) cyclic code. Coding frame of 4632
bits. Detects 98,4% single or multiple errors

− Reed-Solomon code
• Used in CD and DVD players

• CDs: up to 4000 consecutive errors can be corrected
(2,5 mm of track)

45

Cyclic codes

• Cyclic code: the end-
around shift of a code
word will produce
another code word
− n bits in the original, k

in the code
• Called (n, k) cyclic

©
G

er
t

Je
rv

a
n

(,) y
code

• Simple encoding
− Shift registers with

feedback connections
• Can detect n-k adjacent

errors
− Burst errors

46

Cyclic code polynomial

• Data polynomial
− D(X) = d0 + d1x +

d2x2 + d3x3

• Generator polynomial
− G(X) = 1 + x + x3

©
G

er
t

Je
rv

a
n

• Cyclic code
generation:

− V(X) = D(X) * G(X)
− Modulo-2 addition!

• V(X) is the code
polynomial

− V(X) = v0 + v1x +
v2x2 + v3x3 +
v4x3 + v5x5 + v6x6

47

Encoding

©
G

er
t

Je
rv

a
n

48

17.04.2012

Gert Jervan, TTÜ/ATI 9

Encoding, cont.

©
G

er
t

Je
rv

a
n

49

Decoding and error detection

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

• Decoding is done through division
− Data is obtained by dividing V(X) / G(X)
− The circuit in the figure implements the division

• Syndrome polynomial S(X) is zero in case of no error
− R(X) = D(X)G(X) + S(X)

50

Decoding and error detection,
cont.

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

51

Decoding and error detection,
cont.

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

52

Reed-Solomon Code

• Reed-Solomon (RS) codes are a class of
separable cyclic codes used to correct
errors in a wide range of applications
including
− storage devices (tapes, compact disks, DVDs,

bar codes)

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

bar-codes)
− wireless communication (cellular telephones,

microwave links)
− satellite communication, digital television,

high-speed modems (ADSL, xDSL)

53

Reed-Solomon Code

• The encoding for Reed-Solomon code is
done the using the usual procedure
− codeword is computed by shifting the data

right n-k positions, dividing it by the
generator polynomial and then adding the
obtained reminder to the shifted data

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

• A key difference is that groups of m bits
rather than individual bits are used as
symbols of the code.
− usually m = 8, i.e. a byte

54

17.04.2012

Gert Jervan, TTÜ/ATI 10

Encoding

• An encoder for an RS code takes k data
symbols of s bits each and computes a
codeword containing n symbols of m bits
each

• A Reed-Solomon code can correct up to

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

n-k/2 symbols that contain errors

55

Example: RS(255,223) code

• A popular Reed-Solomon code is
RS(255,223)
− symbols are a byte (8-bit) long
− each codeword contains 255 bytes, of

which 223 bytes are data and 32 bytes
are check symbols

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

y
− n = 255, k = 223, this code can correct

up to 16 bytes containing errors
− each of these 16 bytes can have multiple

bit errors.

56

Decoding

• Decoding of Reed-Solomon codes is
performed using an algorithm designed
by Berlekamp
− popularity of RS codes is due to efficiency

this algorithm to a large extent.
Thi l ith d b V II f

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

• This algorithm was used by Voyager II for
transmitting pictures of the outer space back to
Earth

• Basis for decoding CD in players

57

Summary of Cyclic Codes

• Any end-around shift of a codeword
produce another codeword

• Code is characterized by its generator
polynomial g(x), with a degree (n-k), n
= bits in codeword,

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

k = bits in data word
• Detect all single errors and all multiple

adjacent error affecting
(n-k) bits or less

58

Arithmetic codes

• Arithmetic codes are invariants to (a set of)
arithmetic operations
− A(b <op> c) = A(b) <op> A(c)

• Application
− Checking arithmetic operations

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

• Examples of arithmetic codes
− AN codes
− Residue codes
− Inverse-residue codes
− Residue number system

59

AN codes

• AN code is formed by multiplying each
data word N by some constant A
− The magnitude of A determines the

number of extra bits required to
represent the code words and the error
detection capability

• AN codes are invariant to addition and
subtraction but not multiplication and

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

subtraction but not multiplication and
division

• Example code: 3N
− The constant must not be a power of 2

• Power of 2 is a shift, difficult to detect
the error

− 3N requires n+2 bit words

60

17.04.2012

Gert Jervan, TTÜ/ATI 11

AN codes encoding: 3N = 2N + N

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

61

Error detection using AN codes

©
G

er
t

Je
rv

a
n

62

Error detection circuit for AN
codes

©
G

er
t

Je
rv

a
n

63

Residue codes

• A residue code is a separable arithmetic code
created by appending the residue (reminder) of
a number to that number

− Code = D | R, where R is the reminder of the
division with an integer m

− The number of bits in R depend on m

©
G

er
t

Je
rv

a
n

• Residue codes are invariant to addition

• Low-cost residues:
m = 2b – 1, b at least 2

− R requires b bits
− Easy to encode: division is Modulo-3 addition

• Decoding simply removes R

64

Adder using residue codes

©
G

er
t

Je
rv

a
n

65

Residue calculation for low-cost
residues

©
G

er
t

Je
rv

a
n

66

17.04.2012

Gert Jervan, TTÜ/ATI 12

Inverse residue codes

• An inverse residue code is
similar to a residue code, but
instead of appending the
residue, the inverse residue Q
is calculated and appended
− Q = m – R

©
G

er
t

Je
rv

a
n

• Better fault detection for
repeated faults
− A repeated fault is

encountered multiple times
before the code is checked

− Difficult to detect because
subsequent effects can cancel
the previous effects of the
fault

67

Berger codes

• Berger codes are formed by
appending a special set of bits,
called check bits, to each word of
information

• Berger code of length n
− I information bits
− k check bits

©
G

er
t

Je
rv

a
n

)1(log2 += Ik
n = I + k

− A code word is formed by first
creating a binary number that
corresponds to the number of 1s in
the original I bits of information.

− The resulting binary number is
complemented and appended to the
I information bits to form the (I+k)-
bit code word.

68

Berger codes, cont.

• If the number of
information bits is small,
the redundancy is high,

• As the number of
information bits increases,
the efficiency improves

b t ti ll

©
G

er
t

Je
rv

a
n

substantially.
• Advantages

− Best separable code
(fewest number of bits)
considering its error
detection capabilities

− Detects multiple,
unidirectional errors

69

Horizontal and vertical parity

©
G

er
t

Je
rv

a
n

70

 Can detect multiple errors in groups of data words

 Can correct single-bit errors

 Cannot correct multiple errors

Hamming codes

• The hamming codes are
similar to overlapping
parity codes.

• The Hamming code is
formed by partitioning
the information bits into

©
G

er
t

Je
rv

a
n

the information bits into
parity groups and
specifying a parity bit
for each group.

− uses c parity check bits
to protect k bits of
information

• The ability to locate
which bit is faulty is
obtained by overlapping
the groups of bits. 71

Single-bit error correction unit

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

72

17.04.2012

Gert Jervan, TTÜ/ATI 13

Hamming correction in memories

• Memory: 60 to 70% of the faults in a
system
− Transient faults are becoming much more

prevalent as memory chips become denser

• Many memory designs use hamming

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

Many memory designs use hamming
error correction
− Relatively inexpensive: 10-40% redundancy
− Encoding and the decoding are fast
− Error correction circuit is readily available on

inexpensive chips

73

Hamming correction in memories,
cont.

©
G

er
t

Je
rv

a
n

74

Error correction in commercial
circuits

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

75

Code selection issues

• Fulfills the desired error
detection/correction while maintaining
costs at an acceptable level
− Cost of a code

• Redundancy required; time redundancy is also
considered

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

considered

− Effectiveness of a code
• Number of bit errors detected/corrected

• Key design decisions
− Separable or not
− What is required? Detection, correction, both?
− Number of bit errors to be detected/corrected

76

Information redundancy

• Self-Checking
− This is a form of hardware redundancy but

often it is closely related to ECC techniques,
therefore I have chosen to include it here

− Assumptions: inputs are coded and outputs
are coded

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

− Objective: in the presence of a fault the
circuit should either continue to provide
correct output(s) or indicate by providing an
error indication that there is a fault.
• Clearly error indication can not be 1-bit output

(why?)
• With 2-bits output, 00 and 11 may indicate no

failure
• other output combinations (10, 01) may

indicate a failure
77

Self-Checking (contd.)

• Example application
• two devices produce identical outputs and we

compare these outputs to check their equality
• checker has two outputs encoded as follows

• 00 equal
• 11 unequal

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

• 01 or 10 possible fault in the circuit
• (we will discuss input encoding when we discuss

an example of a 2-rail 1-bit checker)

78

17.04.2012

Gert Jervan, TTÜ/ATI 14

Self-Checking (contd.)

− Definitions
• a circuit is fault secure if in the presence of a

fault, the output is either always correct, or not a
code word for valid input code words

• a circuit is self-testing if only valid inputs can be
used to test it for the faults

• a circuit is totally self checking if it is fault secure

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

• a circuit is totally self-checking if it is fault secure
and self-testing

− Example: a totally self-checking 2-rail 1-bit
comparator
• assumptions

• 2 inputs and each input x is available as x and its
complement

• x and its complement are independently generated
• note with these assumption the input space is

encoded (4 valid inputs out of 16 possible inputs)
• single stuck-at fault model

79

Time redundancy

©
G

er
t

Je
rv

a
n

80

Time redundancy

• Disadvantages of hardware and
information redundancy
− Require large amounts of extra hardware

for their implementation.

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

• Time redundancy: reduce the extra
hardware at the expense of using
additional time.
− Hardware is a physical entity that

impacts weight, size, power consumption
and cost.

− Time may be readily available in some
applications.

81

Time redundancy

• Key Concept - do a job more than once
over time
− examples

• re-execution
• re-transmission of information

different faults and capabilities of different

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

− different faults and capabilities of different
schemes
• transient faults

• re-execution and re-transmission can detect
such faults provided we wait for transient to
subside

• permanent faults
• simple re-execution or re-transmission will not

work. Possible solutions
• send or process shifted version of data
• send or process complemented data during

second transmission 82

Time redundancy

• Different faults and capabilities of
different schemes (contd.)
− faults in ALU

• re-execution with complement or shifted
version can detects permanent and transient
faults

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

• (RESO concept - re-computation with shifted
operands)

− multiple re-computations
• can detect and possibly correct transient and

permanent faults if properly
employed/designed

83

Time redundancy: transient fault
detection

©
G

er
t

Je
rv

a
n

84

17.04.2012

Gert Jervan, TTÜ/ATI 15

Time redundancy: permanent
fault detection

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

85

Alternating logic

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

86

Error correction using time-
redundancy

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

87

Environment Diversity

• To diversify the software operating
circumstance temporarily.

• The typical examples of environment
diversity technique are progressive
retry, rollback, rollforward, recovery

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

with checkpointing, restart, hardware
reboot, etc.

88

Adjudicators

• Voter
• AT
• Hybrid, other

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

89

What’s new

• Modifications to Traditional Techniques
− Adaptive N-version Systems
− Fuzzy Voting
− Abstraction
− Parallel Graph Reduction

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

p

• New Concepts (Not Classifiable in Data
or Design Diversity)
− Rejuvenation

90

17.04.2012

Gert Jervan, TTÜ/ATI 16

Why Adaptive

• Defective components should be
removed from the voting process

• The voting procedure can be adaptively
modified and tailored to the fault state
of the overall system

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

91

An Adaptive Approach for n-
Version Systems
• Model and manage different quality

levels of the versions by introducing an
individual weight factor to each version
of the n-version system.

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

• This weight factor is then included in the
voting procedure, i.e. the voting is
based on a weighted counting.

92

Voting schemes

• Static voting:

fixed number
of versions

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

93

Voting schemes

Dynamic voting:
defective components
are removed from
the voting
process

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

94

process

Voting schemes

Adaptive voting:
versions have
dynamically
changeable
weight factors

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

95

weight factors

Example

• Cumulated reliability of 7 components of a
software system for a satellite control
application
− a) classical

3-version system

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

96

− b) 3-version
system with
adaptive weight
factors

17.04.2012

Gert Jervan, TTÜ/ATI 17

Why Fuzzy Voting

• In traditional voting, equality relation
regards two real numbers as equal if
their difference is smaller than fixed
tolerance ε. For different version
outputs that are “closer” to each other
than the fixed threshold there is no

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

than the fixed threshold there is no
gradual comparison. As a result, certain
interconnection of faults could incur
incorrect selection.

• Fuzzy equivalence relation results in
more reliable systems

97

Fuzzy Equality Equation

• Traditional Equality Equation

• Fuzzy Equality Equation

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

• Fuzzy Equality Equation

98

Output of Fuzzy Sets (Triangular
Shape)
• The fuzzy logic maps the input vector

into an output nonlinearly

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

99

Why Abstraction Improve Fault
Tolerance
• Reduce the cost of fault tolerance
• Improve its ability to mask software

errors.

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

100

An Example of Abstraction: BASE

• Byzantine fault tolerance (BFT) with
Abstract Specification Encapsulation
(BASE)

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

101

How BASE Works

• BASE reduces cost because it enables
reuse of off-the-shelf service
implementations.

• It improves availability because each
replica can be repaired periodically using

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

an abstract view of the state stored by
correct replicas, and because each
replica can run distinct or
nondeterministic service
implementations, which reduces the
probability of common mode failures.

102

17.04.2012

Gert Jervan, TTÜ/ATI 18

BASE Function Calls and Upcalls.

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

103

Modifications to Traditional
Techniques
• Adaptive N-version systems
• Fuzzy Voting
• Abstraction
• Parallel Graph Reduction

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

104

Parallel Graph Reduction

• Fault-tolerance of functional programs in
parallel computing

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

105

Why Parallel Graph Reduction

• Reduce time overhead of fault tolerance
by taking advantage of referential
transparency.

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

106

An Example of Graph Reduction

• A program is a graph
---Graph “f(x)*g(y)”

 Execution of

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

107

program --- Graph
Reduction

An Example of Parallel Graph
Reduction

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

108

17.04.2012

Gert Jervan, TTÜ/ATI 19

System Architecture

• Each subgraph is assigned to each node
and reduced in parallel

• A task is executed in a node and its
backup is stored in another node

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

109

Backup Procedure

• Transmission
• Backup
• Reduction

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

110

Error Recovery

• Rollback
• Retransmission
• Checkpointing
• Reduction

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

111

Software Aging

• When software application executes
continuously for long periods of time,
some of the faults cause software
appear to age due to the error
conditions that accrue with time and/or
load This phenomenon is called

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

load. This phenomenon is called
software aging which is reported in
− Telecommunication billing application over

time experiences a crash or a hang failure.
− A telecommunication switching software
− Netscape and xrn
− Safety critical systems Patriot missile’s

software, where the accumulated errors led
to a failure that resulted in loss of human
lives. 112

Discussion

• Each software fault tolerance technique
need to be tailored to particular
applications.

• This should also be based on the cost of
the fault tolerance effort required by the

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

customer. The differences between each
technique provide some flexibility of
application.

113

Summary

• Hardware redundancy
− passive, active, and hybrid

• Information redundancy
− coding method and self-checking

• Time redundancy

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

Time redundancy
• Software redundancy

− N-version programming, recovery block,
N-self checking, ...

114

17.04.2012

Gert Jervan, TTÜ/ATI 20

A summary chart of all techniques

©
G

er
t

Je
rv

a
n

©
G

er
t

Je
rv

a
n

115

Questions?

©
G

er
t

Je
rv

a
n

