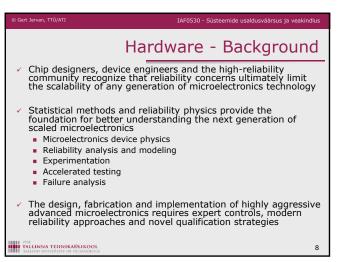
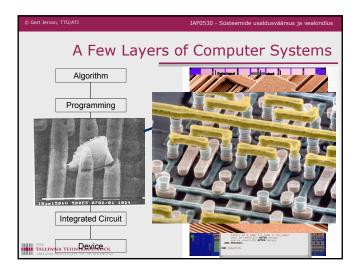
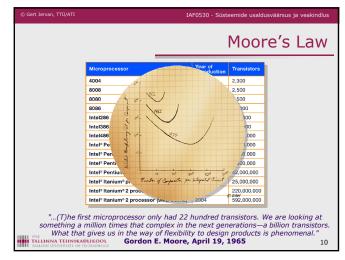
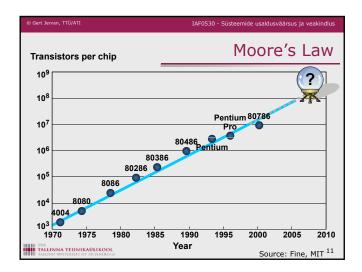
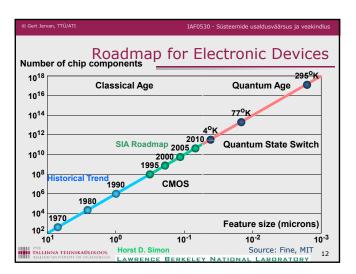

Department of Computer Engineering Tallinn University of Technology Estonia

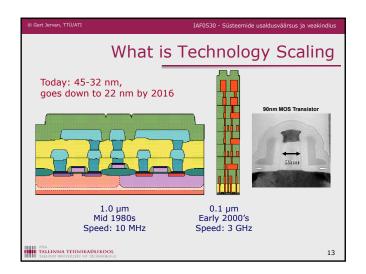

© Gert Jervan, TTÜ/ATI	IAF0530 - Süsteemide usaldusväärsus ja veakindlus	© Ge
_	Downtime	
✓ Planned downtime		
 Maintenance, repair, 	upgrade	Г
 Unplanned downtime 	e	
✓ Dependability:		
	and the state of t	
·	ntime into planned downtime	
Reduce downtime (r	nagic nines)	
TALLINNA TEHNIKAÜLIKOOL	3	

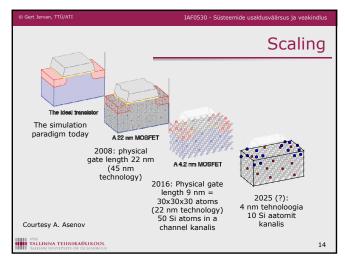

© Gert Jervan, TTÜ/ATI	TTÜ/ATI IAF0530 - Süsteemide usaldusväärsus ja veakindlus						
	Sources of Problems						
					1		
Category	Early 80s	Late 80s	90s	2000s			
Hardware + environment	32%	29%	20%	Up			
Software	26%	58%	40%	The same			
Human Operators	42%	13%	40%	Down			
PIS TALLINNA TEHNIKAÜLIKOOL TALLINN UNIVERSITI OF TECHNONOGY					4		

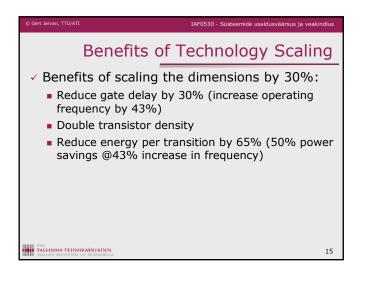


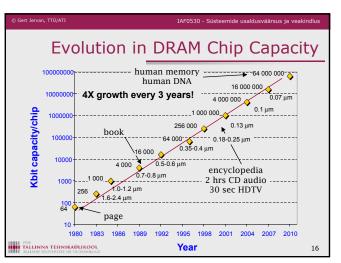


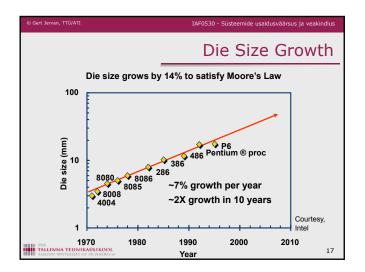


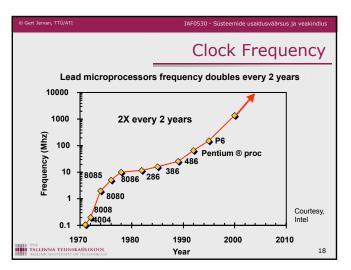


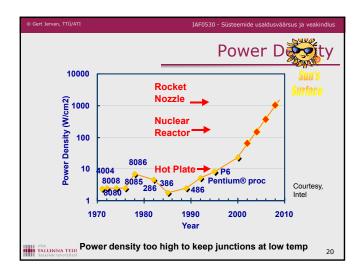


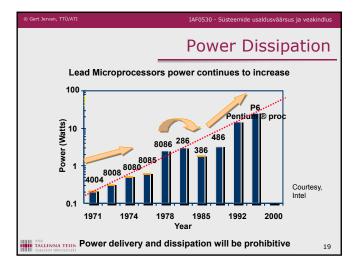


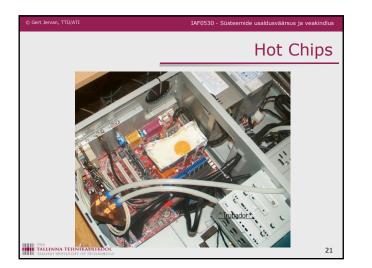


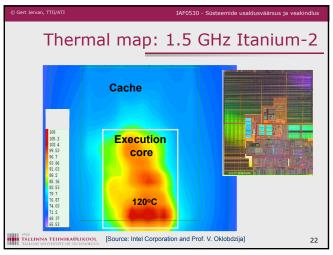


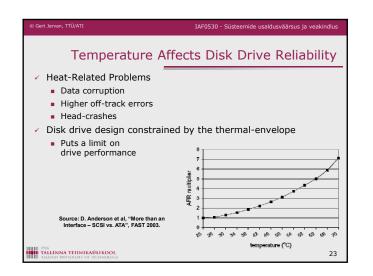


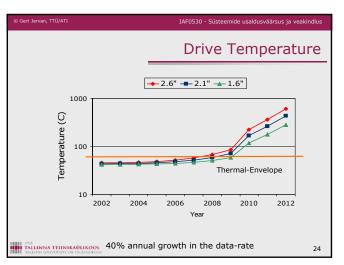


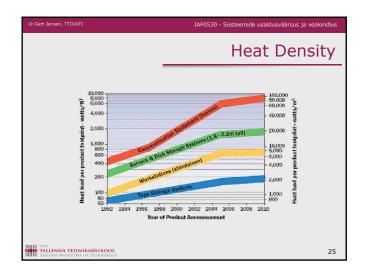


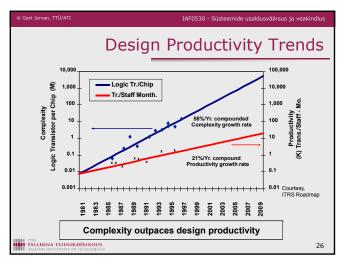


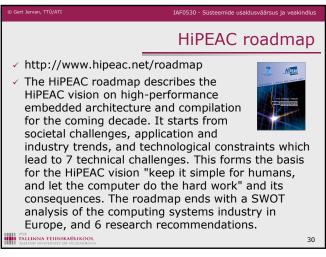








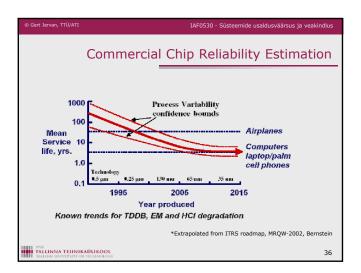




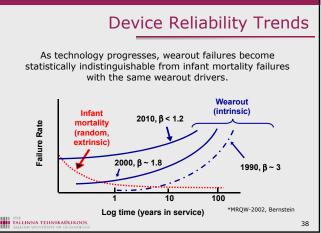
Year	1999	2002	2005	2008	2011	2014
Feature size (nm)	180	130	100	70	50	35
Mtrans/cm ²	7	14-26	47	115	284	701
Chip size (mm ²)	170	170-214	235	269	308	354
Signal pins/chip	768	1024	1024	1280	1408	1472
Clock rate (MHz)	600	800	1100	1400	1800	2200
Wiring levels	6-7	7-8	8-9	9	9-10	10
Power supply (V)	1.8	1.5	1.2	0.9	0.6	0.6
High-perf power (W)	90	130	160	170	174	183
Battery power (W)	1.4	2.0	2.4	2.0	2.2	2.4

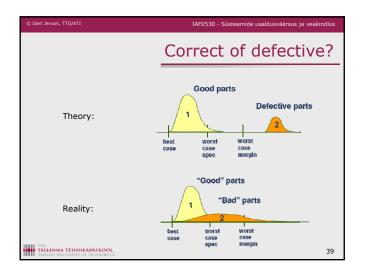
5	© Gert Jervan, TTÜ/ATI IAF0530 - Süsteemide usaldusväärsus ja veakindlus
	Industry Scaling Trends & Reliability Considerations
	✓ Reduced gate oxide thicknesses
	 Increased thermal/power densities
	 Reduced interconnect dimensions
	 Higher device operating temperatures
	 Increased sensitivity to defects and statistical process variations
	 Introduction of new materials with each new generation, replacing proven materials
	 e.g. Cu and low K inter-level dielectrics for Al and SiO2
	TALINNA TEIINIKAÜLIKOOL 32

IAF0530 - Süsteemide usaldusväärsus ja veaki Industry Scaling Trends & Reliability Considerations

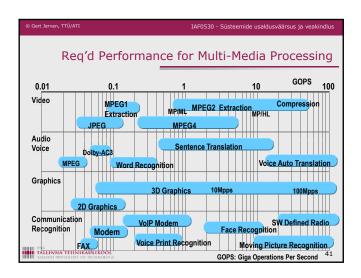

33

- Dramatic increase in processing steps with each new generation
 - approx. 50 more steps per generation and a new metal level every 2 generations
- Rush to market Less time to characterize new materials than in the past
 - e.g. reliability issues with new materials not fully understood and potential new failure modes
- Manufacturers' trends to provide 'just enough' lifetime, reliability, and environmental specs for commercial & industrial applications
 - e.g. 3-5 yr product lifetimes, trading off 'excess' reliability margins for performance

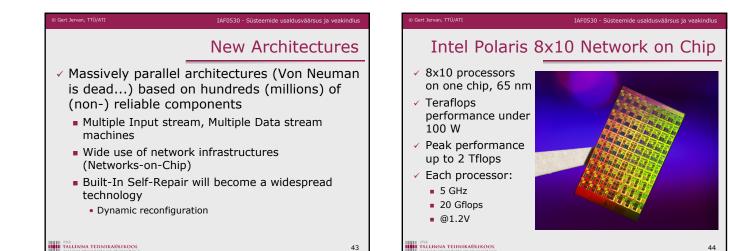

1918 TALLINNA TEHNIKAÜLIKOOL TALLINN UNIVERSITE OF TECHNOLOG

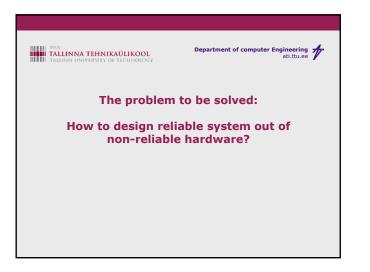

© Gert Jervan, TTÜ/ATI	IAF0530 - Süsteemide usaldusväärsus ja veakindlus
	Industry Scaling Trends & Reliability Considerations
reluctance to share info	eveloped by manufacturers, ormation with hi-rel customers
 e.g. process recipes, promotion margins, MTTF 	ocess controls, process flows, design
	electronics focus on the the commercial customer, with n the needs of the space
 e.g. extended life, extreme 	me environments, high reliability
 Increasingly difficult te device complexity 	stability challenges due to

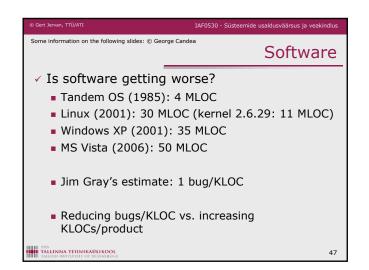
© Gert Jervan, TTÜ/ATI		IAF0530 - Süsteemide	e usaldusväärsus ja vea	kindlus
Pi	roduct	Techni	cal Tren	ds
Operating temperature, *C	<u>1990</u> -55 to 125	<u>2000</u> -40 to +85	<u>2010</u> 0 to 70	
Supply voltage Max, power (high perf.)	5v 5	1.5v 100	0.6v 170	
No. of package types	<10	<60	??	
Design support life Production life	>10 yrs. >10 yrs.	1-5 yrs. 3-5 yrs.	<1yr. <3yrs.	
Service life	<u>>20 yrs.</u>	<u>5-10 yrs.</u>	<u><5yrs.</u>	
			*MRQW-2002, Bern	stein
PIS TALLINNA TEHNIKAÜLIKOOL TALLINN UNIVERSITY OF TECHNOLOGY				35

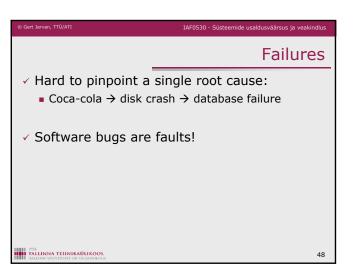


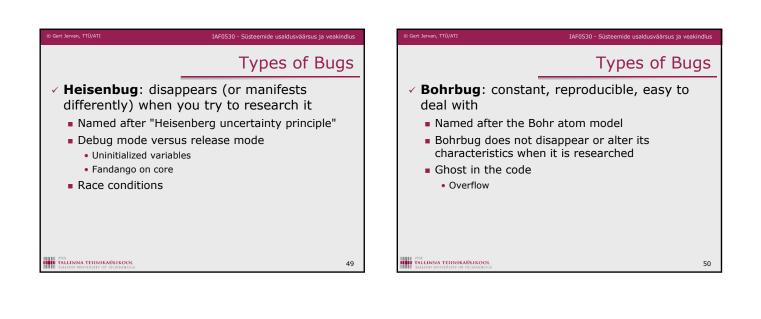
	© Gert Jervan, TTÜ/ATI	IAF0530 - Süsteemide usaldusväärsus ja veakindlus	
		Impact of scaling on wear-out failure mechanisms	
technolog cally indi wi		EM) is in a conductor on (HCI)	 Time-Dependent-D
IKAŪLIKOOL	PIS TALINNA TEIINI	37	1915 TALLINNA TEHNIKAÜLIKOOL TALINN IBRITERITY OF TEHNIKOOL

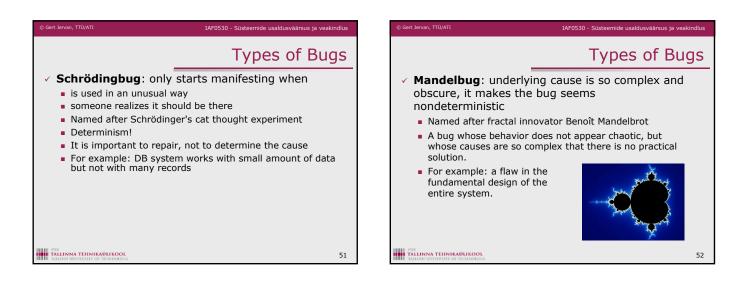




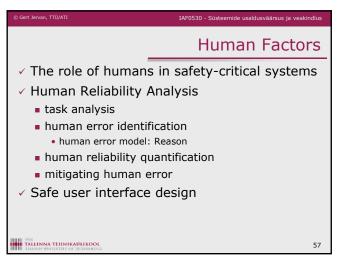


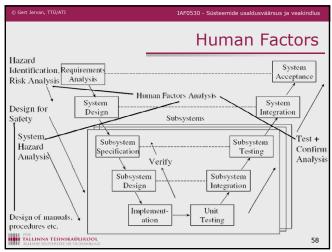

© Gert Jervan, TTŪ/ATI	IAF0530 - Süsteemide usaldusväärsus ja veakindlus			
	Implications to Design			
✓ Design fabric will I	be Regular			
 Will look like Sea-of-transistors interconnected with regular interconnect fabric 				
✓ Shift in the design efficiency metric				
From Transistor Density to Balanced Design				
	BUT			
J	hese sub-nanometer chips defect- ossible (yield is below acceptable			
✓ Increasing importa faults (due to the	ance of transient and intermittent environment) 42			





© Ge	ert Jervan, TTÜ/ATI IAF0530 - Süsteemide us	aldusväärsus ja veakindlus	© Gert	Jervan, TTÜ/ATI
~	Duration of Permanent failure: once it manifests, we unless you repair the system E.g., cut a network cable Intermittent failure: only occurs on occa unknown reasons (until debugged ofte E.g., Patriot missile defense Transient failure: if you wait or retry, go E.g., various media corruption	on't go away asion, for en workload)	* * * * *	crash hang respond o provide w how to cla Byzantine how does
	1918 TALUNNA TEHNIKAŬLIKOOL TALURO URIVESTIV OF TECHROROST	53	11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11	8 LLINNA TEHNIKAÜLIKOO LINN UNIVERSITY OF TECHNOLO


IAF0530 - Süsteemide usaldusväärsus ja veakindlus


Software Failures

- correctly but too late
- wrong data
- lassify ? (fail-stop, fail-fast, e)
- s recovery affect classification ?

Bug Triggers Timing • interleaving of events \rightarrow many execution traces hard to test all Recovery code deals with exceptions \rightarrow hard to simulate prior to shipping (ex. check NULL on return from malloc()) fault injection often used Third-party code customer software, drivers, extensions, library users ■ Microsoft's "driver certification" → a way to combat this Boundary conditions simple ones found through static analysis, complex ones are hard Bug-fix patches customer system diverges over time OS patches particularly evil TALLINNA TEHNIKAÜLIKOOL 55

ervan, TTÜ/ATI IAF0530 - Süsteemide usaldusväärsus ja veakindlus Have we learnt since Therac-25

Software for Certain Medtronic Implanted Infusion Pumps Recalled

FDA Patient Safety News: Show #32, October 2004

 Medtronic is recalling certain software application cards.They're used in the company's Model 8840 N'Vision Clinician Programmers. These hand-held devices are used to program a number of implantable devices, including the SynchroMed and SychroMed EL implantable infusion pumps.

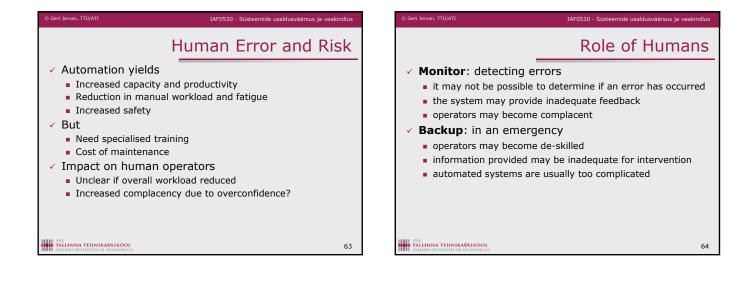
59

1918 Tallinna tehnikaülikool

1918 TALLINNA TEHNIKAÜLIKOOL TALINN UNIVERSITY OF TECHNOLOG

Have we learnt since Therac-25

IAF0530 - Süsteemide usaldusväärsus ja veakindlus


The recall is prompted by reports of data entry errors that have led to serious drug overdoses, including two patient deaths. The overdoses occurred when clinicians who were programming the pump entered the wrong time duration or the wrong interval --- for example, mistakenly putting the time interval between periodic drug boluses in the "minutes" field, instead of the "hours" field.

Have we learnt since Therac-25

The recalled software may have contributed to these errors because one part of the screen did not have labels on the fields for hours, minutes, and seconds. Medtronic is now distributing replacement software that adds time labels to the screen to help reduce the risk of these kinds of programming errors.

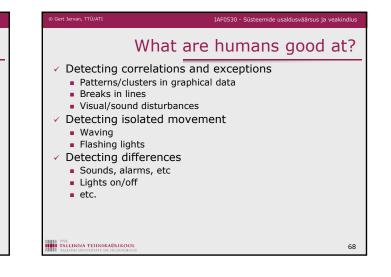
TALLINNA TEHNIKAÜLIKOOL

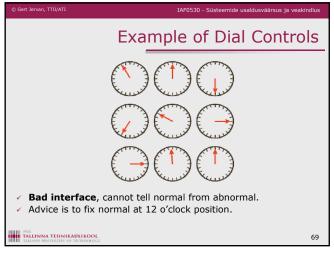
Automation A driving force of automation is to compensate for human disadvantages humans are unreliable components of systems requiring replacement by reliable computers humans have limited capabilities in response time and capacity However, humans play an essential role in safetycritical decision making computers are not flexible or adaptable, e.g., response in emergency situations computers cannot make creative judgements or strategic decisions TALLINNA TEHNIKAÜLIKOOL 62

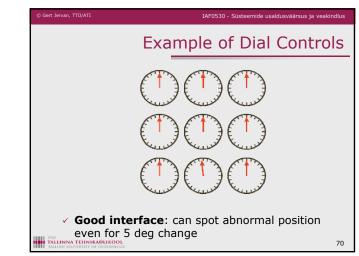
61

© Gert Jervan, TTÜ/ATI	IAF0530 - Süsteemide usaldusväärsus ja veakindlus	•	© Gert Jervan, TTÜ/ATI	IAF0530 - Süsteemide usaldus	väärsus ja veakindlus
 humans may be humans may be maintaining 	Role of Humans sible for part of a task assigned "hard to automate" part responsible for monitoring and nsibility may make building a irder	-	 85% of work a humans rathe Should we bel Data may be l caused by ope system/safety e.g. DC-10 headings alt Positive actior only 10% of Operators are 	accidents are due to unsafe er than unsafe conditions ieve the statistics? biased and incomplete: in 60-80% erator's loss of control, 75% of the rator's loss of control, 75% of the ratoris deemed pilot error, involved au crash deemed pilot error, involved au	acts by of accidents use had perator action topilot
PIR TALLINNA TEHNIKAÜLIKOOL TALLINN UNIVERSITY OF TECHNOLOGY	65		1918 TALLINNA TEHNIKAÜLIKOOL TALLINN UNIVERSITY OF TECHNOLOGY		66

Gert Jervan, TTÜ/ATI


Do Humans Cause Most Accidents?


- Should we believe the statistics?
 - Operators have to intervene at limits, diagnose/respond quickly
 - E.g. consequences can be serious
 - Hindsight allows to identify a better decision
 - Operator's knowledge may be partial, or understanding erroneous
 - Separating operator error from design error is difficult
 - Examples from nuclear power plants:
 - Dials measuring the same quantities calibrated in different scales


67

- Location of critical decimal points unclear
- Critical displays located at back panelsLabels/colours inconsistent and misleading

TALLINNA TEHNIKAÜLIKOOL

IAF0530 - Süsteemide usaldusväärsus ja veakindlus Humans vs Machines Where machines have advantage... Sensing/Actuating: broader range of sensors, able to perform in harsh environments Cognition: no boredom, precision of calculations, repeatability, predictability Where humans have advantage... Sensing/Actuating: image processing, edge & anomaly detection, flexibility Cognition: ability to respond in unknown situations Should you trust humans or machines? Boeing trusts people (pilot has ultimate authority). Airbus trusts machines (flight control software has authority over pilot). TALLINNA TEHNIKAÜLIKOOL 71

Am, TTU/ATI IAF0530 - Süsteemide usaidusväärsus ja veakindlus Human Machine Interaction (HMI)

- Hybrid discipline: psychology, engineering, ergonomics, medicine, sociology, mathematics
- Concerned with the impact of human operators and maintainers on system performance, safety and productivity
- Concerned with enhancing the efficiency, flexibility, comprehensibility and robustness of user interaction
- In the safety-critical context, the primary concern is to enhance robustness, possibly at the expense of efficiency and flexibility

```
TALLINNA TEHNIKAÜLIKOOL
TALLINNA UNIVERSITY OF TECHNOLOGY
```

Human Reliability Analysis (HRA)

IAF0530 - Süsteemide usaldusväärsus ja veakindlus

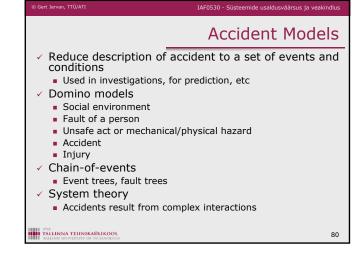
- Identify potential operator errors that may lead to hazards and reduce error where risk is sufficiently high
- Four steps:
 - task analysis: characterise the actions performed to achieve particular goals
 - human error identification: identify possible erroneous actions in performing a task human reliability quantification: estimate likelihood of
 - error mitigation of human error: identify control options

TALLINNA TEHNIKAÜLIKOOL

Task Analysis Tasks are activities to transform some given initial state into a goal state, i.e., goal-directed Structured from sub-tasks and elementary actions Each elementary action is concerned with a manipulation to be performed upon an object in the task domain Procedures for normal operation of the system maintenance of the system emergency situations Logical sequence of actions that the operator engages in and the detailed physical executions that the operator TALLINNA TEHNIKAÜLIKOOL 74

© Gert Jervan, TTÜ/ATI	IAF0530 - Süsteemide usaldusväärsus ja veakindlus		© Gert Jervan, TTÜ/ATI	IAF0530 - Süsteemide usaldusväärsus ja veakindlus
 Human error is not a uset Implies possible to improving Human-Task Mismatch be Erroneous behaviour inerneeded to complete a tast Tasks Involve problem solving, Need adaptation, experirity Levels of cognitive controp Skills-based behaviour (complexity) 	ove humans etter term xtricably connected to the behaviour sk decision making mentation, optimisation of [Rasmussen's] smooth sensory based)		 Designer reli Operator emiliar In training In unfamiliar based Needs to r Experimenta Test a set May be un Human error unsuccess 	of hypothesis through mental reasoning ireliable
TALLINNA TEHNIKAÜLIKOOL TALLINN UNVESITY OF TECHNOROGY	75		PIE TALLINNA TEHNIKAÜLIR JALINN UNIVERSITY OF TECHN	KOOL 76
© Gert Jervan, TTÜ/ATI	IAF0530 - Süsteemide usaldusväärsus ja veakindlus		© Gert Jervan, TTÜ/ATI	IAF0530 - Süsteemide usaldusväärsus ja veakindlus

73

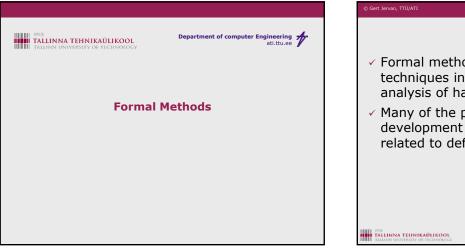

Gert Jervan, TTÜ/ATI

191 **TA** TA

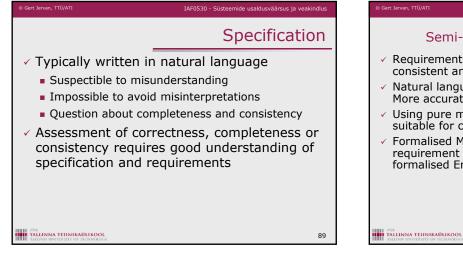
13

78

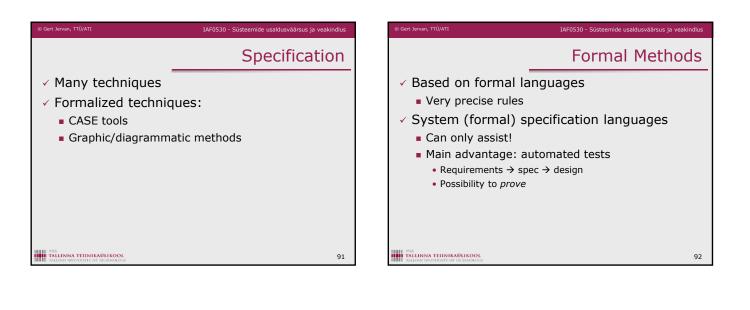
© Gert Jervan, TTÜ/ATI	IAF0530 - Süsteemide usaldusväärsus ja veakir	ndlus
	Human as Partne	er
 Both humans and autom control tasks 	nated system assigned	
Number of human tasks re	educed	
 Must be planned appropria 	ately	
✓ Modes		
 Partial automation 		
 Shared control (primary re computer continuously pe 	esponsibility with humans, but rforms checks)	
 Potential problems 		
 Good mental models are in 	mportant	
 Must know the system state 	ate	
 Good communication is es 	sential	
 Clarity, correctness 		
TALLINNA TEHNIKAÜLIKOOL		79

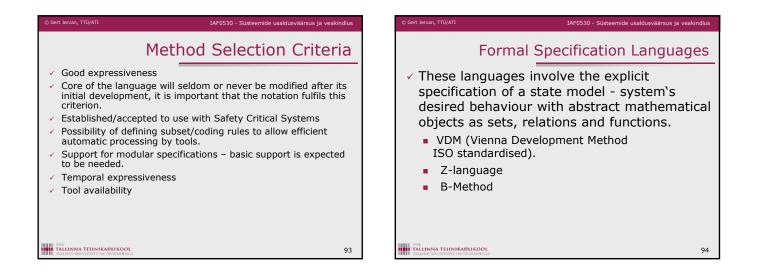


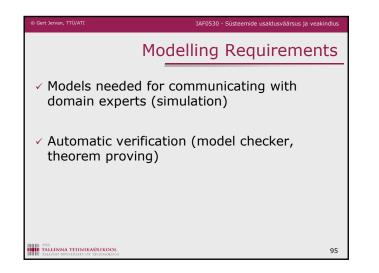
© Gert Jervan, TTÜ/ATI	IAF0530 - Süsteemide usaldusväärsus ja veakindlus	© Gert Jervan, TTÜ/ATI	IAF0530 - Süsteemide usaldusväärsus ja veakindlus
	Human Tasks		Human Error Models
 Simple tasks Uncomplicated s Vigilance tasks Detection of sig Emergency resp May involve cor Performed under Complex tasks Defined tasks, i 	nals ponse tasks nplex reactions	groups False sensation (experience and r Attentional failur Memory lapses (Unintended word Recognition failu Inaccurate and b Errors in judgem Reasoning errors	es (distraction, dividing attention) forgetting items) Is/actions res (wrongly observed signals) olocked recall (misremembering sequences) ent (misconceptions)
1918 TALLINNA TEHNIKAÜLIKOOL TALLINN UNIVERSITY OF ITEHNOLOGY	81	PIR TALLINNA TEHNIKAÖLIKOOL TALLINN ÜRIVERSITI OF TECHNOLOGY	82

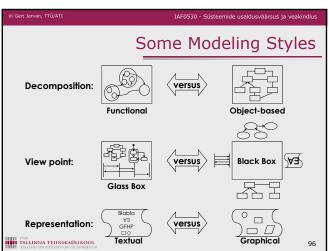

© Gert Jervan, TTÜ/ATI	IAF0530 - Süsteemide usaldusväärsus ja veakir	ndlus	© Gert
Human-Ta	sk Mismatch again.		
 Errors are an integral part of 	of learning!		1
 Mechanisms of human malf 	unction		-
 Skills-based level 			•
 Disorientation, motor skills 	a failure		
 Stereotype take-over 			× .
 Rule-based level 			
 Incorrect recall of rules 			
 Stereotype function 			1
 Knowledge-based level 			×
 Mental overload 			
 Premature hypothesis (wa 	y of least resistance, point of no return)		
 Also performance affecting 	factors (separately)		
 Work conditions, stress, so 	cial aspects		
1918 Tallinna tehnikaülikool		83	

⊖ Gert Jervan, TTÚ/ATI IAE0530 - Siisteemide us;	aldusväärsus ja veakindlus		
Human Factors S	Summary		
 Understanding cognitive aspects essention 	ial		
Probability of failure difficult to predict			
 Human response affected by stress, fatigue, 	etc		
 Must assume human error will happen sooner or 			
later Hardware support, failsafe operations 			
 Design for safety 			
Fault-tolerance			
 HCI (layout, communication, correctness etc))		
17μμ TALUNNA TEHNIKAÜLIKOOL TALUNR UNVERTS OF RELIMOUGY	84		

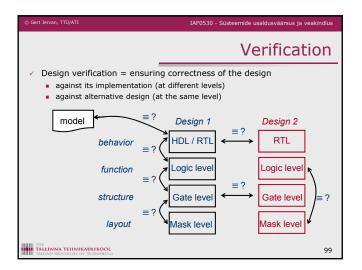

© Gert Jervan, TTÜ/ATI	IAF0530 - Süsteemide usaldusväärsus ja veakindlus
_	Introduction
 Formal methods – u techniques in the sp analysis of hardwar 	pecification, design and
• •	ns associated with the ety-critical systems are es in specification
1918 TALLINNA TEHNIKAÜLIKOOL JALINN UNIVERSITI OF TECHNOLOGY	88




IAF0530 - Süsteemide usaldusväärsus ja veakindlu


Semi-formal Requirements/Specification

- Requirements should be unambiguous, complete, consistent and correct.
- Natural language has the interpretation possibility. More accurate description needed.
- Using pure mathematic notation not always suitable for communication with domain expert.
- Formalised Methods are used to tackle the requirement engineering. (Structured text, formalised English).


Formal Methods

97

- Formal methods have been used for safety and security-critical purposes during last decades for e.g:
 - Certifying the Darlington Nuclear Generating Station plant shutdown system.
 - Designing the software to reduce train separation in the Paris Metro.
 - Developing a collision avoidance system for United States airspace.
 - Assuring safety in the development of programmable logic controllers.
 - Developing a water level monitoring system.
 - Developing an air traffic control system.

TALLINNA TEHNIKAÜLIKOOL

2 Constrained on the actual product (manufacturing test)

<text><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header>

© Gert Jervan, TTŪ/ATI	IAF0530 - Süsteemide usaldusväärsus ja veakindlus		
Why	Formal Verification		
 Need for reliable hardwar 	re validation		
 Simulation, test cannot h 	andle all possible cases		
 Formal verification conducts exhaustive exploration of all possible behaviors 			
 compare to simulation, whi behaviors 	ich explores some of possible		
 if correct, all behaviors are verified 			
 if incorrect, a counter-example (proof) is presented 			
PIR TALLINNA TEHNIKAÜLIKOOL	102		

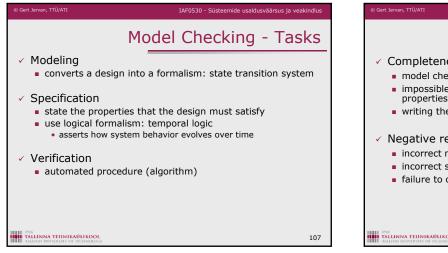
104

Theorem Proving

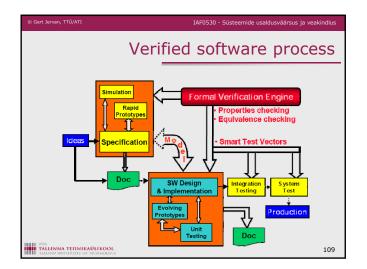
- Formal methods
 - Formally, mathematically describe the system (hardware or software)
 - Formally, mathematically describe the properties you want to verify/validate (i.e. specifications)
 - Using available tools, mathematically PROVE the system will always exhibit the desired properties
- Do not have to use the same language to describe the system and the properties
 - calculus-based languages, logic based languages, temporal languages, etc.

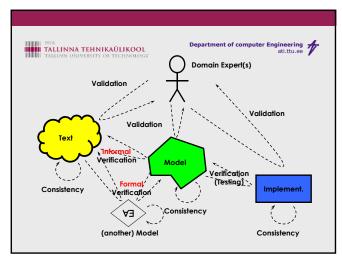
TALLINNA TEHNIKAÜLIKOOL

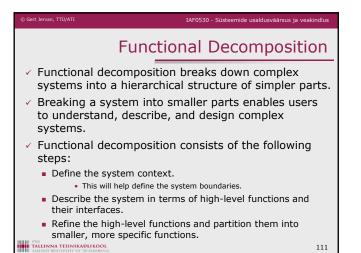
- Model Checking
 Algorithmic method of verifying correctness of (finite state) concurrent systems against temporal logic specifications

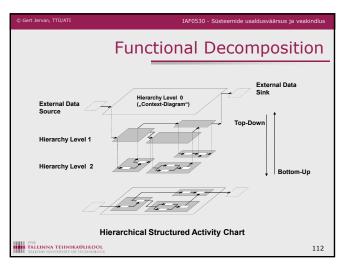

 A practical approach to formal verification

 Basic idea

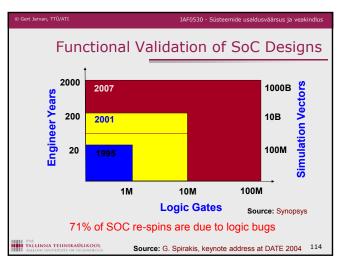

 System is described in a formal model
 derived from high level design (HDL, C), circuit structure, etc.
 The desired behavior is expressed as a set of properties
 expressed as temporal logic specification
 - The specification is checked against the model

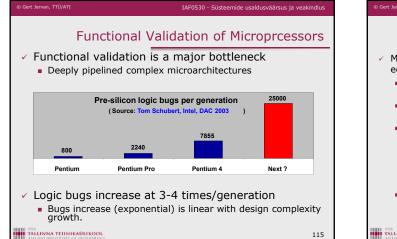

TALLINNA TEHNIKAÜLIKOOL

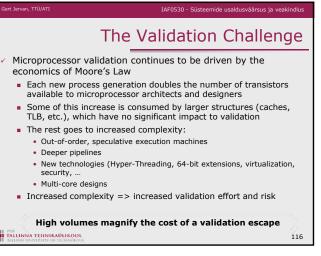

© Gert Jervan, TTÜ/ATI	IAF0530 - Süsteemide usaldusväärsus ja vea	kindlus	© Gert Jervan, TTÜ/ATI	IAF0530 - Süsteemide usaldusväärsus ja veakindlus
(Kripke structure)	Model Checkin as a state transition structur pressed in propositional			with YES or NO to be done by experienced designers
temporal logic (CTI • asserts how system • Efficient search pro			✓ History	ion – use symbolic methods, BDDs
III 1746 TALLINNA TEIINIKAÜLIKOOL IIIII TALUNN MRYLESIY OF TICINROOSY		105	Clark, Emerson [19 Quielle, Sifakis [19	-

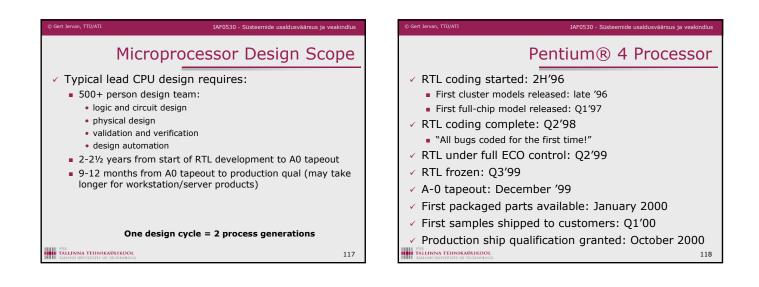


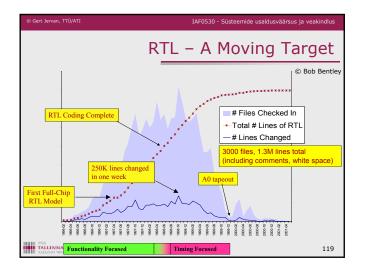
© Gert Jervan, TTÜ/ATI	IAF0530 - Süsteemide usaldusväärsus ja veakindlus
	Model Checking - Issues
 impossible to groperties the s 	is effective for a given property uarantee that the specification covers all system should satisfy ification - responsibility of the user











© Gert Jervan, TTÜ/ATI	IAF0530 - Süsteemide usaldusväärsus ja veakindlus
RTL valid	ation environment
 RTL model is MUCH slower than reader 	eal silicon
 A full-chip simulation with checker machine 	rs runs at ~20 Hz on a Pentium [®] 4 class
 A computer farm containing ~6K (of simulation cycles per week 	CPUs running 24/7 to get tens of billions
 The sum total of Pentium[®] 4 RTL s < 1 minute on a single 2 GHz syst 	simulation cycles run prior to A0 tapeout em
 Pre-silicon validation has some ac 	vantages
 Fine-grained (cycle-by-cycle) check 	king
 Complete visibility of internal state 	2
 APIs to allow event injection 	
 but no amount of dynamic valid 	ation is enough
 A single dyadic extended-precision (80-bit) FP instruction has O(10**50) possible combinations 	
 Exhaustive testing is impossible, e 	ven on real silicon
TALINNA TEHNIKAÜLIKOOL TALINN UNIVERSITY OF TECHNOLOGY	120

How do you verify a design with...

- 42 million transistors
- 1 million lines of RTL code
- ✓ 600 1000 people working on it
- ✓ A 3-year design time
- Daily design changes

TALLINNA TEHNIKAÜLIKOOL

© Gert Jervan, TTÜ/ATI	IAF0530 - Süsteemide usaldusväärsus ja veakindlus
	How do you verify a design which has bugs like this??
mode is set to the sticky bit src1[67:0] src2[67:0]	rruction, when the rounding o "round up", incorrectly sets when the source operands are: = X*2i+15 + 1*2i = Y*2j+15 + 1*2j 4 and {X,Y} are integers
PIR TALLINNA TEHNIKAÜLIKOOL TALLINN UNIVERSITY OF TECHNOLOGY	122

IAF0530 - Süsteemide usaldusväärsus ja veakindlus Pentium 4 Validation - Staffing And the answer is... 10 people in initial "nucleus" from previous ✓ Hire 70+ validation engineers Buy several thousand compute servers project Write 12,000 validation tests 40 new hires in 1997 Run up to 1 billion simulation cycles per day for 200 20 new hires in 1998 days Check 2,750,000 manually-defined properties Find, diagnose, track, and resolve 7,855 bugs Apply formal verification with 10,000 proofs to the instruction decoder and FP units This found that obscure FMUL bug! TALLINNA TEHNIKAÜLIKOOL 123 IIIII TALLINNA TEHNIKAŪLIKOOL

125

121

IAF0530 - Süsteemide usaldusväärsus ja veakindlus P4 Validation Environment

Hardware

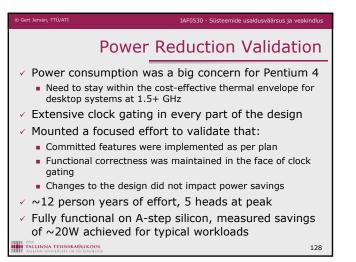
- IBM RS/6000 workstations (0.5-0.6Hz full processor model)
- Pentium III Linux systems (3-5Hz full processor model)
- Computing pool of "several thousand" systems
- Simulation statistics
 - About 1 million lines of code in SRTL model
 - 5-6 billion clock cycles simulated / week
 - 200 billion total clock cycles simulated overall

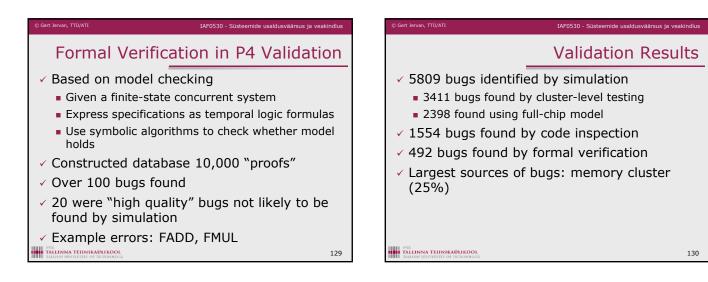
About 2 minutes of execution with a 1GHz clock!

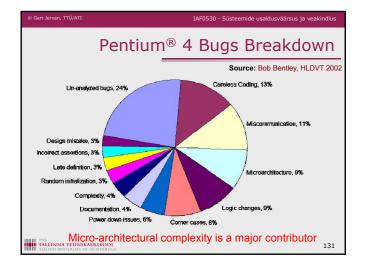
IAF0530 - Süsteemide usaldusväärsus ja veakindlus **Cluster-Level Testing**

- Divide overall design into 6 "clusters" + microcode
 - Develop "cluster testing environments" (CTEs) to validate each cluster separately (e.g. floating point, memory)
 - Then validate using full processor model
- Advantages of the approach
 - Controllability control behavior at microarchitecture level
 - Early validation possible for each cluster
- Decoupled validation possible for each cluster 1918 Tallinna tehnikaülikooi

126


124


TALLINNA TEHNIKAÜLIKOOL


Other Validation Features

- Extensive validation of power-reduction logic
- Code coverage and code inspections a major part of methodology
- Formal verification used for Floating Point & Instruction Decode Logic

1918 Tallinna tehnikaülikool 127

© Gert Jervan, TTÜ/ATI	IAF0530 - Süsteemide usaldusväärsus ja veakindlus
	Methodology drivers
 Regression 	
 RTL is "live", and changes f 	frequently until the very last stages of the project
	at lower levels allows regression to be bustness in the face of ECOs
 Debugging 	
 Need to be able to demonst architects 	trate FV counter-examples to designers and
 Designers want a dynamic 	test that they can simulate
 Waveform viewers, schema 	atic browsers, etc. can help to bridge the gap
 Verification in the large 	
 Proof design: how do we ap 	pproach the problem in a systematic fashion?
Proof engineering: how do	we write maintainable and modifiable proofs?
1918 TALLINNA TEHNIKAÜLIKOOL TALLINN UNIVERSITY OF TECHNOLOGY	132

Gert Jervan, TTÜ/ATI

Other Challenges Verifitseerimine Dealing with constantly-changing specifications Verifitseerimise teemat katab pikemalt aine Specification changes are a reality in design IAF0620 - Digitaalsüsteemide verifitseerimine Properties and proofs should be readily adapted (magistriõpe) How to engineer agile and robust regressions? Protocol Verification This problem has always been hard Getting harder (more MP) and more important (intra-die protocols make it more expensive to fix bugs) Verification of embedded software S/W for large SoCs has impact beyond functional correctness (power, performance, ...) Not all S/W verification techniques apply because H/W abstraction is less feasible

133

One example is microcode verification

TALLINNA TEHNIKAÜLIKOOL

