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Important Dates

 Presentations: May 2, 9, 16 (Register!)

 Final report: May 27 23:59 (Sharp!)
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 Final report: May 27, 23:59 (Sharp!)

 Exam: May 30, May 31
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Downtime

 Planned downtime
 Maintenance, repair, upgrade

 Unplanned downtime
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 Dependability:
 Turn unplanned downtime into planned downtime

 Reduce downtime  (magic nines)
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Sources of Problems

Category Early 80s Late 80s 90s 2000s

Hardware + 32% 29% 20%
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Hardware + 
environment 32% 29% 20% Up

Software 26% 58% 40% The same

Human 
Operators 42% 13% 40% Down

Department of computer Engineering
ati.ttu.ee

Hardware
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Hardware and Environment Failures

 Moving parts, high speed, low tolerance, high 
complexity: disks, tape drives/libraries 

 Lowest MTBF found in fans and power 
supplies 

6

 Often fans fail gradually  subtle, sporadic 
failures in CPU, memory, backplane 

 Environment: power, cooling, dehumidifying, 
cables, fire, collapsing racks, ventilation, 
earthquakes, ... 

Gert Jervan
Rectangle
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Hardware Reliability Challenges

Scaling Processing
Costs
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RELIABILITYDesign

TestNew Materials Specifications

Reliability Dependencies and Impact to Cost

Lifetime
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Hardware - Background
 Chip designers, device engineers and the high-reliability 

community recognize that reliability concerns ultimately limit 
the scalability of any generation of microelectronics technology

 Statistical methods and reliability physics provide the 
foundation for better understanding the next generation of 
scaled microelectronics
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 Microelectronics device physics 
 Reliability analysis and modeling
 Experimentation
 Accelerated testing
 Failure analysis

 The design, fabrication and implementation of highly aggressive 
advanced microelectronics requires expert controls, modern 
reliability approaches and novel qualification strategies
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A Few Layers of Computer Systems

Architecture

Algorithm

Programming

A+B
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Organization

Logic

Integrated Circuit

Device

A B

A+B
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Moore’s Law
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© Intel

"…(T)he first microprocessor only had 22 hundred transistors. We are looking at 
something a million times that complex in the next generations—a billion transistors. 

What that gives us in the way of flexibility to design products is phenomenal." 
Gordon E. Moore, April 19, 1965
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Number of chip components
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What is Technology Scaling

Today: 45-32 nm, 
goes down to 22 nm by 2016

90nm MOS Transistor
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1.0 μm
Mid 1980s

Speed: 10 MHz

0.1 μm
Early 2000’s

Speed: 3 GHz

50nm
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Scaling

The simulation
di t d
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Courtesy A. Asenov

2008: physical 
gate length 22 nm

(45 nm 
technology)

paradigm today

2016: Physical gate 
length 9 nm =

30x30x30 atoms 
(22 nm technology)

50 Si atoms in a 
channel kanalis

2025 (?): 
4 nm tehnoloogia

10 Si aatomit 
kanalis
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Benefits of Technology Scaling

 Benefits of scaling the dimensions by 30%:
 Reduce gate delay by 30% (increase operating 

frequency by 43%)

 Double transistor density

R d i i b 65% (50%

15

 Reduce energy per transition by 65% (50% power 
savings @43% increase in frequency)
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Evolution in DRAM Chip Capacity
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Die Size Growth

100

Die size grows by 14% to satisfy Moore’s Law
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Clock Frequency
Lead microprocessors frequency doubles every 2 years
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Power Dissipation
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Power delivery and dissipation will be prohibitive
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Power Density
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Hot Chips
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Cache

Temp
(oC)

Thermal map: 1.5 GHz Itanium-2
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Execution 
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[Source: Intel Corporation and Prof. V. Oklobdzija]
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Temperature Affects Disk Drive Reliability

 Heat-Related Problems
 Data corruption

 Higher off-track errors

 Head-crashes

 Disk drive design constrained by the thermal-envelope
P t li it

23

 Puts a limit on 
drive performance

Source: D. Anderson et al, “More than an 
Interface – SCSI vs. ATA”, FAST 2003.
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Heat Density
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Design Productivity Trends
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Complexity outpaces design productivity
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ITRS Roadmap
 ITRS predicts the main trends in the semiconductor 

industry spanning across 15 years into the future.

 The International Technology Roadmap for 
Semiconductors is sponsored by the five leading chip 
manufacturing regions in the world: Europe, Japan, 
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Korea, Taiwan, and the United States. 

 The objective of the ITRS is to ensure cost-effective 
advancements in the performance of the integrated 
circuit and the products that employ such devices, 
thereby continuing the health and success of this 
industry. 
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ITRS Roadmap
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ITRS Roadmap

 www.itrs.net

 Editions:
 1994, 1997, 1999, 2001, 2003, 2005, 2007, 2009

29

1994, 1997, 1999, 2001, 2003, 2005, 2007, 2009

 Previously: SIA Roadmap
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HiPEAC roadmap
 http://www.hipeac.net/roadmap

 The HiPEAC roadmap describes the 
HiPEAC vision on high-performance 
embedded architecture and compilation 
for the coming decade. It starts from 
societal challenges, application and 
industry trends, and technological constraints which 
lead to 7 technical challenges. This forms the basis 
for the HiPEAC vision "keep it simple for humans, 
and let the computer do the hard work" and its 
consequences. The roadmap ends with a SWOT 
analysis of the computing systems industry in 
Europe, and 6 research recommendations. 

30
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Technology Directions: ITRS Roadmap

Year 1999 2002 2005 2008 2011 2014

Feature size (nm) 180 130 100 70 50 35

Mtrans/cm2 7 14-26 47 115 284 701

Chip size (mm2) 170 170-214 235 269 308 354

Signal pins/chip 768 1024 1024 1280 1408 1472

31

Signal pins/chip 768 1024 1024 1280 1408 1472

Clock rate (MHz) 600 800 1100 1400 1800 2200

Wiring levels 6-7 7-8 8-9 9 9-10 10

Power supply (V) 1.8 1.5 1.2 0.9 0.6 0.6

High-perf power (W) 90 130 160 170 174 183

Battery power (W) 1.4 2.0 2.4 2.0 2.2 2.4

For Cost-Performance MPU 
(L1 on-chip SRAM cache; 32KB/1999 doubling every two years)

http://www.itrs.net/
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Industry Scaling Trends & 
Reliability Considerations

 Reduced gate oxide thicknesses

 Increased thermal/power densities

 Reduced interconnect dimensions

 Higher device operating temperatures

32

 Higher device operating temperatures

 Increased sensitivity to defects and statistical 
process variations

 Introduction of new materials with each new 
generation, replacing proven materials
 e.g. Cu and low K inter-level dielectrics for Al and 

SiO2
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Industry Scaling Trends & 
Reliability Considerations

 Dramatic increase in processing steps with each new 
generation
 approx. 50 more steps per generation and a new metal level 

every 2 generations

 Rush to market - Less time to characterize new 
materials than in the past
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materials than in the past
 e.g. reliability issues with new materials not fully understood 

and potential new failure modes

 Manufacturers’ trends to provide ‘just enough’ 
lifetime, reliability, and environmental specs for 
commercial & industrial applications
 e.g. 3-5 yr product lifetimes, trading off ‘excess’ reliability 

margins for performance
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Industry Scaling Trends & 
Reliability Considerations

 Significant rise in the amount of proprietary 
technology and data developed by manufacturers, 
reluctance to share information with hi-rel customers
 e.g. process recipes, process controls, process flows, design 

margins, MTTF

 Next generation microelectronics focus on the

34

 Next generation microelectronics focus on the 
performance needs of the commercial customer, with 
little or no emphasis on the needs of the space 
customer
 e.g. extended life, extreme environments, high reliability

 Increasingly difficult testability challenges due to 
device complexity
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Product Technical Trends
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*MRQW-2002, Bernstein
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Commercial Chip Reliability Estimation

36

*Extrapolated from ITRS roadmap, MRQW-2002, Bernstein
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Impact of scaling on 
wear-out failure mechanisms

 Dominant Failure Mechanisms
 Electromigration (EM)

• Migration of atoms in a conductor

 Hot Carrier Injection (HCI)
• High energy carriers degrade oxide

37

 Negative Bias Temperature Instability (NBTI)

 Time-Dependent-Dielectric-Breakdown (TDDB)
• Oxide breakdown: Formation of a conduction path through gate 

oxide
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Device Reliability Trends

As technology progresses, wearout failures become 
statistically indistinguishable from infant mortality failures 

with the same wearout drivers.

I f t

Wearout 
(intrinsic)

38
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Correct of defective?

Theory:

39

Reality:

Department of computer Engineering
ati.ttu.ee

Why it is all needed???
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Video
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JPEG
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MPEG2  ExtractionMP/ML MP/HL
Compression
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MPEG4

Req’d Performance for Multi-Media Processing
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Audio
Voice

Communication
Recognition

Graphics

FAX

Modem

2D Graphics

3D Graphics

MPEG

Dolby-AC3

VoIP Modem

Word Recognition

Sentence Translation

GOPS: Giga Operations Per Second

Voice Auto Translation

10Mpps 100Mpps

Face Recognition

Voice Print Recognition

SW Defined Radio

Moving Picture Recognition
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Implications to Design
 Design fabric will be Regular

 Will look like Sea-of-transistors interconnected with 
regular interconnect fabric

 Shift in the design efficiency metric
 From Transistor Density to Balanced Design

42

 From Transistor Density to Balanced Design

 Manufacturing of these sub-nanometer chips defect-
free is almost impossible (yield is below acceptable 
levels)

 Increasing importance of transient and intermittent 
faults (due to the environment)

BUT
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New Architectures

 Massively parallel architectures (Von Neuman 
is dead...) based on hundreds (millions) of 
(non-) reliable components
 Multiple Input stream, Multiple Data stream 

machines

43

machines

 Wide use of network infrastructures 
(Networks-on-Chip)

 Built-In Self-Repair will become a widespread 
technology
• Dynamic reconfiguration
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Intel Polaris 8x10 Network on Chip
 8x10 processors 

on one chip, 65 nm

 Teraflops 
performance under 
100 W

44

 Peak performance 
up to 2 Tflops

 Each processor: 
 5 GHz

 20 Gflops

 @1.2V

Department of computer Engineering
ati.ttu.ee

The problem to be solved:

How to design reliable system out of 
li bl h d ?non-reliable hardware?

Department of computer Engineering
ati.ttu.ee

Software Failures
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Software

 Is software getting worse?
 Tandem OS (1985): 4 MLOC 

 Linux (2001): 30 MLOC (kernel 2.6.29: 11 MLOC)

 Windows XP (2001): 35 MLOC 

Some information on the following slides: © George Candea

47

 MS Vista (2006): 50 MLOC

 Jim Gray’s estimate: 1 bug/KLOC 

 Reducing bugs/KLOC vs. increasing 
KLOCs/product
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Failures

 Hard to pinpoint a single root cause:
 Coca-cola  disk crash  database failure

 Software bugs are faults!

48

So a e bugs a e au s
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Types of Bugs

 Heisenbug: disappears (or manifests 
differently) when you try to research it 
 Named after "Heisenberg uncertainty principle"  

 Debug mode versus release mode

49

• Uninitialized variables

• Fandango on core 

 Race conditions
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Types of Bugs

 Bohrbug: constant, reproducible, easy to 
deal with 
 Named after the Bohr atom model

 Bohrbug does not disappear or alter its 
h te i ti hen it i e e hed

50

characteristics when it is researched

 Ghost in the code
• Overflow
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Types of Bugs
 Schrödingbug: only starts manifesting when 

 is used in an unusual way 
 someone realizes it should be there 
 Named after Schrödinger's cat thought experiment
 Determinism!

It i i t t t i t t d t i th

51

 It is important to repair, not to determine the cause
 For example: DB system works with small amount of data 

but not with many records
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Types of Bugs
 Mandelbug: underlying cause is so complex and 

obscure, it makes the bug seems 
nondeterministic 
 Named after fractal innovator Benoît Mandelbrot

 A bug whose behavior does not appear chaotic, but 

52

whose causes are so complex that there is no practical 
solution. 

 For example: a flaw in the 
fundamental design of the 
entire system. 
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Duration of Failures
 Permanent failure: once it manifests, won’t go away 

unless you repair the system 
E.g., cut a network cable 

 Intermittent failure: only occurs on occasion, for 
unknown reasons (until debugged… often workload) 

53

( gg )
E.g., Patriot missile defense 

 Transient failure: if you wait or retry, goes away 
E.g., various media corruption 
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Software Failures

 crash 

 hang 

 respond correctly but too late 

 provide wrong data

54

 provide wrong data 

 how to classify ? (fail-stop, fail-fast, 
Byzantine) 

 how does recovery affect classification ? 
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Bug Triggers
 Timing 

 interleaving of events  many execution traces 
 hard to test all 

 Recovery code 
 deals with exceptions  hard to simulate prior to shipping (ex. 

check NULL on return from malloc()) 
 fault injection often used

55

 fault injection often used 
 Third-party code 

 customer software, drivers, extensions, library users 
 Microsoft’s “driver certification”  a way to combat this 

 Boundary conditions 
 simple ones found through static analysis, complex ones are hard 

 Bug-fix patches 
 customer system diverges over time 
 OS patches particularly evil 

Department of computer Engineering
ati.ttu.ee

Human Factors
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Human Factors

 The role of humans in safety-critical systems

 Human Reliability Analysis
 task analysis

 human error identification

57

• human error model: Reason

 human reliability quantification

 mitigating human error

 Safe user interface design
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Human Factors

58
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Have we learnt since Therac-25
Software for Certain Medtronic Implanted Infusion Pumps

Recalled

FDA Patient Safety News: Show #32, October 2004

 Medtronic is recalling certain software application

59

 Medtronic is recalling certain software application 
cards.They're used in the company's Model 8840 
N'Vision Clinician Programmers. These hand-held 
devices are used to program a number of 
implantable devices, including the SynchroMed and 
SychroMed EL implantable infusion pumps.
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Have we learnt since Therac-25

 The recall is prompted by reports of data 
entry errors that have led to serious drug 
overdoses, including two patient deaths. The 
overdoses occurred when clinicians who were
programming the pump entered the wrong

60

programming the pump entered the wrong 
time duration or the wrong interval --- for 
example, mistakenly putting the time interval 
between periodic drug boluses in the 
"minutes“ field, instead of the "hours" field.
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Have we learnt since Therac-25

 The recalled software may have contributed 
to these errors because one part of the 
screen did not have labels on the fields for 
hours, minutes, and seconds. Medtronic is 
now distributing replacement software that

61

now distributing replacement software that 
adds time labels to the screen to help reduce 
the risk of these kinds of programming 
errors.
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Automation
 A driving force of automation is to compensate for

human disadvantages
 humans are unreliable components of systems requiring 

replacement by reliable computers

 humans have limited capabilities in response time and 
it

62

capacity

 However, humans play an essential role in safety-
critical decision making
 computers are not flexible or adaptable, e.g., response in 

emergency situations

 computers cannot make creative judgements or strategic 
decisions
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Human Error and Risk
 Automation yields

 Increased capacity and productivity
 Reduction in manual workload and fatigue
 Increased safety

 But

63

 Need specialised training
 Cost of maintenance

 Impact on human operators
 Unclear if overall workload reduced
 Increased complacency due to overconfidence?
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Role of Humans
 Monitor: detecting errors

 it may not be possible to determine if an error has occurred

 the system may provide inadequate feedback

 operators may become complacent

 Backup: in an emergency

64

Backup: in an emergency
 operators may become de-skilled

 information provided may be inadequate for intervention

 automated systems are usually too complicated
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Role of Humans

 Partner: responsible for part of a task
 humans may be assigned “hard to automate” part

 humans may be responsible for monitoring and
maintaining

di i i f ibili k b ildi

65

 division of responsibility may make building a 
mental model harder
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Do Humans Cause Most Accidents?

 85% of work accidents are due to unsafe acts by
humans rather than unsafe conditions

 Should we believe the statistics?
 Data may be biased and incomplete: in 60-80% of accidents

caused by operator’s loss of control, 75% of those had
system/safety malfunction that preceded the operator action

66

system/safety malfunction that preceded the operator action
• e.g. DC-10 crash deemed pilot error, involved autopilot

headings alteration without telling the crew

 Positive actions are not usually recorded
• only 10% of recovery from emergency are pilot errors

 Operators are expected to always recover from emergency
• Error can be due to poor design
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Do Humans Cause Most Accidents?
 Should we believe the statistics?

 Operators have to intervene at limits, diagnose/respond
quickly

• E.g. consequences can be serious

 Hindsight allows to identify a better decision

67

• Operator’s knowledge may be partial, or understanding
erroneous

 Separating operator error from design error is difficult
• Examples from nuclear power plants:

• Dials measuring the same quantities calibrated in different scales

• Location of critical decimal points unclear

• Critical displays located at back panels

• Labels/colours inconsistent and misleading
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What are humans good at?
 Detecting correlations and exceptions

 Patterns/clusters in graphical data
 Breaks in lines
 Visual/sound disturbances

 Detecting isolated movement
 Waving

68

 Waving
 Flashing lights

 Detecting differences
 Sounds, alarms, etc
 Lights on/off
 etc.
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Example of Dial Controls

69

 Bad interface, cannot tell normal from abnormal.
 Advice is to fix normal at 12 o’clock position.

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Example of Dial Controls

70

 Good interface: can spot abnormal position 
even for 5 deg change
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Humans vs Machines
 Where machines have advantage…

 Sensing/Actuating: broader range of sensors, able to perform in 
harsh environments

 Cognition: no boredom, precision of calculations, repeatability, 
predictability

 Where humans have advantage…
S i /A t ti i i d & l d t ti

71

 Sensing/Actuating: image processing, edge & anomaly detection, 
flexibility

 Cognition: ability to respond in unknown situations

 Should you trust humans or machines?
 Boeing trusts people (pilot has ultimate authority).
 Airbus trusts machines (flight control software has authority over 

pilot).
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Human Machine Interaction (HMI)
 Hybrid discipline: psychology, engineering, 

ergonomics, medicine, sociology, mathematics

 Concerned with the impact of human operators and
maintainers on system performance, safety and
productivity

72

 Concerned with enhancing the efficiency, flexibility,
comprehensibility and robustness of user interaction

 In the safety-critical context, the primary concern is 
to enhance robustness, possibly at the expense of
efficiency and flexibility
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Human Reliability Analysis (HRA)

 Identify potential operator errors that may lead to
hazards and reduce error where risk is sufficiently 
high

 Four steps:
 task analysis: characterise the actions performed to

achieve particular goals
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achieve particular goals
 human error identification: identify possible erroneous 

actions in performing a task
 human reliability quantification: estimate likelihood of 

error
 mitigation of human error: identify control options
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Task Analysis
 Tasks are activities to transform some given initial state into a 

goal state, i.e., goal-directed

 Structured from sub-tasks and elementary actions

 Each elementary action is concerned with a manipulation to be 
performed upon an object in the task domain

 Procedures for

74

 Procedures for
 normal operation of the system

 maintenance of the system

 emergency situations

 Logical sequence of actions that the operator engages in and 
the detailed physical executions that the operator
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Human-Task Mismatch
 Human error is not a useful term

 Implies possible to improve humans

 Human-Task Mismatch better term
 Erroneous behaviour inextricably connected to the behaviour 

needed to complete a task

 Tasks
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 Involve problem solving, decision making
 Need adaptation, experimentation, optimisation

 Levels of cognitive control [Rasmussen’s]
 Skills-based behaviour (smooth sensory based)
 Rule-based behaviour (conscious problem solving)
 Knowledge-based behaviour (goal known, planning by selection, 

trial and error, etc)
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Experimentaton versus Error
 Designer relies mostly on knowledge-based behaviour
 Operator employs all three

 In training, from knowledge- or rule-based to skills based
 In unfamiliar situation, use knowledge-based to develop rules-

based
 Needs to maintain knowledge-based throughout

 Experimentation

76

 Experimentation
 Test a set of hypothesis through mental reasoning
 May be unreliable

 Human error
 unsuccessful experiments, in unkind environment

 Design for error tolerance

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Human as Monitor
 Monitoring, rather than active control

 Responsible for detecting/repairing problems

 Humans perform badly…
 Task may be impossible

• Cannot check in real-time if computer performs correctly

 Operator dependent on information provided
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 Operator dependent on information provided
• Too much or too little is bad

 Information is indirect
• System handles most functionality

 Failures may be silent or masked
• E.g. autopilot disengages

 Tasks are such that lower alertness results
• Mechanical, lack of stimulation, can act without noticing
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Human as Back-up
 Emergency only, rather than active control

 Expected to take appropriate action

 Good design is essential
 Can lower proficiency and increase reluctance to intervene

• Infrequent usage

78

Infrequent usage

• Cognitive and physical skills decline in absence of practice

• High skills often needed!
• E.g. emergency shutdown of nuclear plant

 Fault-intolerant systems may lead to larger errors
• May fail in ways difficult to anticipate

 Harder to manage in crisis
• Not fully aware of the internal state

• Computer support for decision making
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Human as Partner
 Both humans and automated system assigned 

control tasks
 Number of human tasks reduced
 Must be planned appropriately

 Modes

79

 Partial automation
 Shared control (primary responsibility with humans, but

computer continuously performs checks)

 Potential problems
 Good mental models are important

• Must know the system state

 Good communication is essential
• Clarity, correctness
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Accident Models
 Reduce description of accident to a set of events and 

conditions
 Used in investigations, for prediction, etc

 Domino models
 Social environment
 Fault of a person
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Fault of a person
 Unsafe act or mechanical/physical hazard
 Accident
 Injury

 Chain-of-events
 Event trees, fault trees

 System theory
 Accidents result from complex interactions
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Human Tasks

 Simple tasks
 Uncomplicated sequences

 Vigilance tasks
 Detection of signals
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 Emergency response tasks
 May involve complex reactions

 Performed under stress

 Complex tasks
 Defined tasks, involve decision-making
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Human Error Models
 Cognitive, e.g. Reason’s model eight primary error

groups
 False sensation (lack of correspondence between subjective 

experience and reality)
 Attentional failures (distraction, dividing attention)
 Memory lapses (forgetting items)
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 Memory lapses (forgetting items)
 Unintended words/actions
 Recognition failures (wrongly observed signals)
 Inaccurate and blocked recall (misremembering sequences)
 Errors in judgement (misconceptions)
 Reasoning errors (false deduction)

 Also Norman model of slips, mistakes in planning
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Human-Task Mismatch again…
 Errors are an integral part of learning!

 Mechanisms of human malfunction
 Skills-based level

• Disorientation, motor skills failure

• Stereotype take-over

 Rule-based level
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 Rule based level
• Incorrect recall of rules

• Stereotype function

 Knowledge-based level
• Mental overload

• Premature hypothesis (way of least resistance, point of no return)

 Also performance affecting factors (separately)
 Work conditions, stress, social aspects
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Human Factors Summary
 Understanding cognitive aspects essential

 Probability of failure difficult to predict
 Human response affected by stress, fatigue, etc

 Must assume human error will happen sooner or
later

84

later
 Hardware support, failsafe operations

 Design for safety
 Fault-tolerance

 HCI (layout, communication, correctness etc)
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Verification vs. Validation

 Verification: 
"Are we building the system right"

 The system should conform to its specification

 Validation:

86

"Are we building the right system"
 The system should do what the user really 

requires

Department of computer Engineering
ati.ttu.ee

Formal Methods
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Introduction

 Formal methods – use of mathematical 
techniques in the specification, design and 
analysis of hardware and software

 Many of the problems associated with the 
d l t f f t iti l t
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development of safety-critical systems are 
related to deficiencies in specification
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Specification

 Typically written in natural language
 Suspectible to misunderstanding

 Impossible to avoid misinterpretations

 Question about completeness and consistency

89

 Assessment of correctness, completeness or 
consistency requires good understanding of 
specification and requirements
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Semi-formal Requirements/Specification

 Requirements should be unambiguous, complete, 
consistent and correct. 

 Natural language has the interpretation possibility. 
More accurate description needed.

 Using pure mathematic notation – not always 
it bl f i ti ith d i t
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suitable for communication with domain expert. 
 Formalised Methods are used to tackle the 

requirement engineering. (Structured text, 
formalised English).
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Specification

 Many techniques

 Formalized techniques:
 CASE tools

 Graphic/diagrammatic methods

91
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Formal Methods

 Based on formal languages
 Very precise rules

 System (formal) specification languages
 Can only assist!

92

 Main advantage: automated tests
• Requirements  spec  design

• Possibility to prove
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Method Selection Criteria 
 Good expressiveness
 Core of the language will seldom or never be modified after its 

initial development, it is important that the notation fulfils this 
criterion.

 Established/accepted to use with Safety Critical Systems
 Possibility of defining subset/coding rules to allow efficient 

93

automatic processing by tools.
 Support for modular specifications – basic support is expected 

to be needed.
 Temporal expressiveness 
 Tool availability 
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Formal Specification Languages

 These languages involve the explicit 
specification of a state model - system‘s 
desired behaviour with abstract mathematical 
objects as sets, relations and functions.

VDM (Vi D l t M th d
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 VDM (Vienna Development Method     
ISO standardised).

 Z-language 

 B-Method
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Modelling Requirements

 Models needed for communicating with 
domain experts (simulation)

A t ti ifi ti ( d l h k

95

 Automatic verification (model checker, 
theorem proving)
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Some Modeling Styles

Functional Object-based

Decomposition: versus

96

∀∃Black Box

Glass Box

View point: versus

Textual

Blabla
∀∃
GFHP


Graphical

Representation: versus
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Formal Methods 
 Formal methods have been used for safety and 

security-critical purposes during last decades for e.g:
 Certifying the Darlington Nuclear Generating Station plant 

shutdown system.
 Designing the software to reduce train separation in the 

Paris Metro.
 Developing a collision avoidance system for United States

97

 Developing a collision avoidance system for United States 
airspace.

 Assuring safety in the development of programmable logic 
controllers.

 Developing a water level monitoring system.
 Developing an air traffic control system.

Department of computer Engineering
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Verification
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Verification
 Design verification = ensuring correctness of the design 

 against its implementation (at different levels)

 against alternative design (at the same level)

Design 1model
≡ ?

RTL

Design 2≡ ?
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behavior

structure

function

layout

HDL / RTL

Gate level

Logic level

Mask level

≡ ?

≡ ?

≡ ?

≡ ?

RTL

Gate level

Mask level

Logic level

≡ ?
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Verification Methods
 Deductive verification 

 Model checking

 Equivalence checking

 Simulation - performed on the model

Formal Verification

100

 Emulation, prototyping – product + environment

 Testing - performed on the actual product 
(manufacturing test)
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Formal Verification
 Deductive reasoning (theorem proving)

 uses axioms, rules to prove system correctness
 no guarantee that it will terminate
 difficult, time consuming: for critical applications only

 Model checking
 automatic technique to prove correctness of concurrent systems: 

101

q p y
digital circuits, communication protocols, etc.

 Equivalence checking
 check if two circuits are equivalent
 OK for combinational circuits, unsolved for sequential
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Why Formal Verification
 Need for reliable hardware validation

 Simulation, test cannot handle all possible cases

 Formal verification conducts exhaustive exploration 
of all possible behaviors
 compare to simulation which explores some of possible

102

 compare to simulation, which explores some of possible 
behaviors

 if correct, all behaviors are verified

 if incorrect, a counter-example (proof) is presented
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Theorem Proving
 Formal methods

 Formally, mathematically describe the system (hardware or 
software)

 Formally, mathematically describe the properties you want 
to verify/validate (i.e. specifications)

U i il bl t l th ti ll PROVE th t ill

103

• Using available tools, mathematically PROVE the system will 
always exhibit the desired properties

 Do not have to use the same language to describe 
the system and the properties
 calculus-based languages, logic based languages, temporal 

languages, etc.
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Model Checking
 Algorithmic method of verifying correctness of (finite 

state) concurrent systems against temporal logic 
specifications
 A practical approach to formal verification

 Basic idea

104

 Basic idea
 System is described in a formal model

• derived from high level design (HDL, C), circuit structure, etc. 

 The desired behavior is expressed as a set of properties
• expressed as temporal logic specification

 The specification is checked against the model
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Model Checking

 How does it work
 System is modeled as a state transition structure 

(Kripke structure)

 Specification is  expressed in propositional 
temporal logic (CTL formula)

105

temporal logic (CTL formula)
• asserts how system behavior evolves over time

 Efficient search procedure checks the transition 
system to see if it satisfies the specification
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Model Checking
 Characteristics

 searches the entire solution space
 always terminates with YES or NO
 relatively easy, can be done by experienced designers
 widely used in industry

b t t d

106

 can be automated

 Challenges
 state space explosion – use symbolic methods, BDDs

 History
 Clark, Emerson [1981] USA
 Quielle, Sifakis [1980’s] France

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Model Checking - Tasks
 Modeling

 converts a design into a formalism: state transition system

 Specification
 state the properties that the design must satisfy
 use logical formalism: temporal logic

107

 use logical formalism: temporal logic
• asserts how system behavior evolves over time

 Verification
 automated procedure (algorithm)
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Model Checking - Issues
 Completeness

 model checking is effective for a given property
 impossible to guarantee that the specification covers all 

properties the system should satisfy
 writing the specification - responsibility of the user

108

 Negative results
 incorrect model
 incorrect specification (false negative)
 failure to complete the check (too large)
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Verified software process 

109

Department of computer Engineering
ati.ttu.ee

Domain Expert(s)

Validation

Validation
Validation

Text

Consistency

Model
Informal

Verification

Consistency

Implement.

Verification
(Testing)

Consistency(another) Model

∀∃

Formal
Verification
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Functional Decomposition
 Functional decomposition breaks down complex 

systems into a hierarchical structure of simpler parts.

 Breaking a system into smaller parts enables users 
to understand, describe, and design complex 
systems.

111

 Functional decomposition consists of the following 
steps:
 Define the system context.

• This will help define the system boundaries.

 Describe the system in terms of high-level functions and 
their interfaces.

 Refine the high-level functions and partition them into 
smaller, more specific functions.
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Functional Decomposition

Hierarchy Level  0
(„Context-Diagram“)

External Data 
Sink

External Data 
Source

Top-Down
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Hierarchical Structured Activity Chart

Bottom-Up

Hierarchy Level 1

Hierarchy Level  2
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Functional Validation of SoC Designs

o
n

 V
ec

to
rs

e
er

 Y
ea

rs

200

2000

2001

2007

10B

1000B

114

Logic Gates

S
im

u
la

ti
o

E
n

g
in

e

20 1995 100M

1M 10M 100M

Source: Synopsys

Source: G. Spirakis, keynote address at DATE 2004

71% of SOC re-spins are due to logic bugs
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Functional Validation of Microprcessors

 Functional validation is a major bottleneck
 Deeply pipelined complex microarchitectures

Pre-silicon logic bugs per generation
( Source: Tom Schubert, Intel, DAC 2003 )

25000

115

 Logic bugs increase at 3-4 times/generation
 Bugs increase (exponential) is linear with design complexity 

growth.

7855

2240800

Pentium Pentium Pro Pentium 4 Next ?
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The Validation Challenge
 Microprocessor validation continues to be driven by the 

economics of Moore’s Law
 Each new process generation doubles the number of transistors 

available to microprocessor architects and designers

 Some of this increase is consumed by larger structures (caches, 
TLB, etc.), which have no significant impact to validation

116

 The rest goes to increased complexity:
• Out-of-order, speculative execution machines

• Deeper pipelines

• New technologies (Hyper-Threading, 64-bit extensions, virtualization, 
security, …

• Multi-core designs

 Increased complexity => increased validation effort and risk

High volumes magnify the cost of a validation escape
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Microprocessor Design Scope
 Typical lead CPU design requires:

 500+ person design team:
• logic and circuit design

• physical design

• validation and verification

117

• design automation

 2-2½ years from start of RTL development to A0 tapeout

 9-12 months from A0 tapeout to production qual (may take 
longer for workstation/server products)

One design cycle = 2 process generations
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Pentium® 4 Processor
 RTL coding started: 2H’96

 First cluster models released: late ’96

 First full-chip model released: Q1’97

 RTL coding complete: Q2’98
 “All bugs coded for the first time!”
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 All bugs coded for the first time!

 RTL under full ECO control: Q2’99

 RTL frozen: Q3’99

 A-0 tapeout: December ’99

 First packaged parts available: January 2000

 First samples shipped to customers: Q1’00

 Production ship qualification granted: October 2000
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© Bob Bentley
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RTL validation environment
 RTL model is MUCH slower than real silicon

 A full-chip simulation with checkers runs at ~20 Hz on a Pentium® 4 class 
machine

 A computer farm containing ~6K CPUs running 24/7 to get tens of billions 
of simulation cycles per week

 The sum total of Pentium® 4 RTL simulation cycles run prior to A0 tapeout 
< 1 minute on a single 2 GHz system
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g y

 Pre-silicon validation has some advantages …
 Fine-grained (cycle-by-cycle) checking

 Complete visibility of internal state

 APIs to allow event injection

 … but no amount of dynamic validation is enough
 A single dyadic extended-precision (80-bit) FP instruction has O(10**50) 

possible combinations

 Exhaustive testing is impossible, even on real silicon
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How do you verify a design with...

 42 million transistors

 1 million lines of RTL code

 600 – 1000 people working on it

 A 3-year design time

121

 A 3 year design time

 Daily design changes
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How do you verify a design which 
has bugs like this??

 The FMUL instruction, when the rounding 
mode is set to “round up”, incorrectly sets 
the sticky bit when the source operands are:

src1[67:0] = X*2i+15 + 1*2i
src2[67:0] = Y*2j+15 + 1*2j
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src2[67:0] = Y*2j+15 + 1*2j
where i+j = 54 and {X,Y} are integers
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And the answer is...
 Hire 70+ validation engineers

 Buy several thousand compute servers

 Write 12,000 validation tests

 Run up to 1 billion simulation cycles per day for 200 
days
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days

 Check 2,750,000 manually-defined properties

 Find, diagnose, track, and resolve 7,855 bugs

 Apply formal verification with 10,000 proofs to the 
instruction decoder and FP units
 This found that obscure FMUL bug!

IAF0530 - Süsteemide usaldusväärsus ja veakindlus© Gert Jervan, TTÜ/ATI

Pentium 4 Validation - Staffing

 10 people in initial “nucleus” from previous 
project

 40 new hires in 1997

 20 new hires in 1998
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P4 Validation Environment
 Hardware

 IBM RS/6000 workstations (0.5-0.6Hz full processor model)

 Pentium III Linux systems (3-5Hz full processor model)

 Computing pool of “several thousand” systems

 Simulation statistics
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Simulation statistics
 About 1 million lines of code in SRTL model

 5-6 billion clock cycles simulated / week

 200 billion total clock cycles simulated overall

About 2 minutes of execution with a 1GHz clock!
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Cluster-Level Testing

 Divide overall design into 6 “clusters” + 
microcode
 Develop “cluster testing environments” (CTEs) to 

validate each cluster separately (e.g. floating 
point memory)
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point, memory)

 Then validate using full processor model

 Advantages of the approach
 Controllability - control behavior at 

microarchitecture level

 Early validation possible for each cluster

 Decoupled validation possible for each cluster
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Other Validation Features

 Extensive validation of power-reduction logic

 Code coverage and code inspections a major 
part of methodology

 Formal verification used for Floating Point & 
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g
Instruction Decode Logic
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Power Reduction Validation
 Power consumption was a big concern for Pentium 4

 Need to stay within the cost-effective thermal envelope for 
desktop systems at 1.5+ GHz

 Extensive clock gating in every part of the design

 Mounted a focused effort to validate that:
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Mounted a focused effort to validate that:
 Committed features were implemented as per plan

 Functional correctness was maintained in the face of clock 
gating

 Changes to the design did not impact power savings

 ~12 person years of effort, 5 heads at peak

 Fully functional on A-step silicon, measured savings 
of ~20W achieved for typical workloads
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Formal Verification in P4 Validation

 Based on model checking
 Given a finite-state concurrent system

 Express specifications as temporal logic formulas

 Use symbolic algorithms to check whether model 
h ld
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holds

 Constructed database 10,000 “proofs”

 Over 100 bugs found

 20 were “high quality” bugs not likely to be 
found by simulation

 Example errors: FADD, FMUL
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Validation Results

 5809 bugs identified by simulation
 3411 bugs found by cluster-level testing

 2398 found using full-chip model

 1554 bugs found by code inspection
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 492 bugs found by formal verification

 Largest sources of bugs: memory cluster 
(25%)
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Pentium® 4 Bugs Breakdown
Source: Bob Bentley, HLDVT 2002
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Micro-architectural complexity is a major contributor
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Methodology drivers
 Regression

 RTL is “live”, and changes frequently until the very last stages of the project

 Model checking automation at lower levels allows regression to be 
automated and provides robustness in the face of ECOs

 Debugging
 Need to be able to demonstrate FV counter-examples to designers and 

architects
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architects 

 Designers want a dynamic test that they can simulate 

 Waveform viewers, schematic browsers, etc. can help to bridge the gap

 Verification in the large
 Proof design: how do we approach the problem in a systematic fashion?

 Proof engineering: how do we write maintainable and modifiable proofs?
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Other Challenges
 Dealing with constantly-changing specifications

 Specification changes are a reality in design

 Properties and proofs should be readily adapted

 How to engineer agile and robust regressions?

 Protocol Verification
Thi bl h l b h d
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 This problem has always been hard

 Getting harder (more MP) and more important (intra-die protocols 
make it more expensive to fix bugs)

 Verification of embedded software
 S/W for large SoCs has impact beyond functional correctness 

(power, performance, …)

 Not all S/W verification techniques apply because H/W abstraction 
is less feasible

 One example is microcode verification
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Verifitseerimine

 Verifitseerimise teemat katab pikemalt aine 
IAF0620 - Digitaalsüsteemide verifitseerimine 
(magistriõpe)
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