

	The Role of Standards				
	 Helping staff to ensure that a product meets a certain level of quality 				
	 Helping to establish that a product has been developed using methods of known effectiveness 				
	 Promoting a uniformity of approach between different teams 				
	 Providing guidance on design and development techniques 				
	Providing some legal basis in the case of a dispute				
rt Jervan	 Some standards: ANSI/ISA S84 (Functional safety of safety instrumented systems for the process industry sector); IEC EN 61508 (Functional safety of electrical/electronic/ programmable electronic safety related systems); IEC 61511 (Safety instrumented systems for the process industry sector); IEC 62061 (Safety of machinery); EN 50128 (Railway applications - Software for railway control and protection); EN 50129 (Railway applications - Safety related electronic systems for signalling; EN 50402 (Fixed gas detection 				
© Ge	 Helping ocen to share a protect metric a protect metric a result level of quality Helping to establish that a product has been developed using methods of known effectiveness Promoting a uniformity of approach between different teams Providing guidance on design and development techniques Providing some legal basis in the case of a dispute Some standards: ANSI/ISA S84 (Functional safety of safety instrumented systems for the process industry sector); IEC EN 61508 (Functional safety of electrical/electronic/ programmable electronic safety related systems); IEC 61511 (Safety instrumented systems for the process industry sector); S0128 (Railway applications - Software for railway control and protection); EN 50129 (Railway applications - Safety related electronic systems for signalling; EN 50402 (Fixed gas detection systems); Defence Standard 00-56 Issue 2 - accident consequence 				

	Risk Assessment (cont.)	
	 Example of risk calculation Failure of a particular component results in chemical leak that could kill 500 people Estimate that component will fail once every 10,000 years	
Gert Jervan	 But rare and costly events are a problem E.g. infinite penalty multiplied by near-zero probability? Must guard against catastrophic penalties event for near-zero probability 	12

	Risk	
	 A combination of the likelihood af an accident and the severity of the potential consequences 	
	The harm that can result if a threat is actualised	
	Acceptable/tolerable risk: The Ford Pinto case (1968)	
	BENEFITS Savings: 180 burn deaths, 180 serious burn injuries, 2,100 burned vehicles. Unit Cost: \$200,000 per death, \$67,000 per injury, \$700 per vehicle. Total Benefit: 180 X (\$200,000) + 180 X (\$67,000) + \$2,100 X (\$700) = \$49.5 million.	
© Gert Jervan	COSTS Sales: 11 million cars, 1.5 million light trucks. Unit Cost: \$11 per car, \$11 per truck. Total Cost: 11,000,000 X (\$11) + 1,500,000 X (\$11) = \$137 million.	3

	Conflicting Requirements – Safety and Reliability
	 A system can be unreliable but safe If it does not behave according to specification but still does not cause an accident
	 A system can be unsafe but reliable If it can cause harm but faults occur with very low probability
	 Fail Safe System designed to fail in a safe state g. trains stop in case of signal failure affects availability – 100% safe but 0% available
	 Fail Operational System designed to keep working even if something fails usually using redundancy
sert Jervan	 Fail-over to reduced capability system Mechanical backup
0	15

	Hazard Ca	ategori	es for Civil Aircr	aft
	DESCRIPTION	CATEGORY	DEFINITION	PROBABILITY
	CATASTROPHIC	I	Loss of Lives, Loss of Aircraft	10 ⁻⁹ /hr
	HAZARDOUS	п	Severe Injuries, Major aircraft Damage	10 ⁻⁷ /hr
	MAJOR	ш	Minor injury, minor aircraft or system damage	10 ⁻⁵ /hr
	MINOR	IV	Less than minor injury, less than minor aircraft or system damage	10 ⁻³ /hr
	NO EFFECT	v	No change to operational capability	10 ⁻² /hr
t Jervan				© G.F. Marsters
© Ger				18

		Hazar	d C	ategories for	Civil Airci	raft
		Frequency of Occurrence	Level	Specific Item	Fleet or Inventory	Failure Probability per Flight Hour
		Frequent	A	Likely to occur frequently	Continuously experienced	≥1×10 ⁻³
		Reasonably Probable	В	Will occur several times in the life of each item	Will occur frequently	<1 x 10 ⁻³ to ≥1 x 10 ⁻⁵
		Remote	с	Unlikely but possible to occur in the life of an item	Unlikely but can reasonably be expected to occur	< 1 x 10 ⁻⁵ to ≥ 1 x 10 ⁻⁷
		Extremely Remote	D	So unlikely it can be assumed that the occurrence may not be experienced	Unlikely to occur, but possible	< 10 ⁻⁷ to ≥ 1 x 10 ⁻⁹
		Extremely Improbable	E	Should never happen in the life of all the items in the fleet	Not expected to occur during life of all aircraft of this type	<1 x 10 ⁻⁹
t Jervan		Risk from	lightn	ing is 5 x 10 ⁻⁷ deaths p	per person year	© G.F. Marsters
© Gen						19

	Hazard R	Risk Index	Severity Classif	ication	
	Probability	Catastrophic	Hazardous	Major	Minor
	Frequent	1	3	7	13
	Reasonably Probable	2	5	9	16
	Remote	4	6	11	18
	Extremely Remote	8	10	14	19
	Extremely Improbable	12	15	17	20
	Acceptabl Acceptabl investigat Not accep	e - only ALARP e - use ALARP ions itable - risk rec	entions consi principle and ducing measur	dered consider fu es required	rther

	Preliminary Hazard Identification
	First activity in safety process, performed during early requirements analysis (concept definition)
	Identifies potential hazard sources and accidents
	 Sources of information include system concept and operational environment incident data of previous in-service operation and similar systems technology and domain specific analyses and checklists
	 Method is group-based and dependent on experience
	Process is largely informal
	Output is Preliminary Hazard List
	25

	FM	IEA	Exam	FMEA for	a microswito	ch		
	Ref No.	Unit	Failure mode	Possible cause	Local effects	System effects	Remedial action	
	1	Tool guard switch	Open-circuit contacts	 (a) faulty component (b) excessive current (c) extreme temperature 	Failure to detect tool guard in place	Prevents use of machine – system fails safe	Select switch for high reliability and low probability of dangerous failure Rigid quality control on switch procurement	
	2		Short-circuit contacts	(a) faulty component (b) excessive current	System incorrectly senses guard to be closed	Allows machine to be used when guard is absent – dangerous failure	Modify software to detect switch failure and take appropriate action	
	3		Excessive switch- bounce	 (a) ageing effects (b) prolonged high currents 	Slight delay in sensing state of guard	Negligible	Ensure hardware design prevents excessive current through switch	

_	
	Background
	 FMECA was one of the first systematic techniques for failure analysis
	 FMECA was developed by the U.S. Military. The first guideline was Military Procedure MIL-P-1629 "Procedures for performing a failure mode, effects and criticality analysis" dated November 9, 1949
	 FMECA is the most widely used reliability analysis technique in the initial stages of product/system development
g Gert Jervan	 FMECA is usually performed during the conceptual and initial design phases of the system in order to assure that all potential failure modes have been considered and the proper provisions have been made to eliminate these failures

FME((C)a Ci	nart						
Failure Modes	and Effect Ar	nalysis						
Product Name	: DeWalt Tra	desman Drill		Part name: R	ear Ve	ent		
Function	Failure Mode	Effects of Failure	Causes of Failure	Current Controls	s	0	D	RPN
Allow Additional Air Flow	Filter Blocked	Overheated Motor	User Error	Visual Inspection	4	1	5	20
Prevent Dangerous Usage	Filter Not In Place	Larger Opening to Motor	User Error	Visual Inspection	8	4	1	32
Filter dust	Defective Filter	Additional dust flows into shell	Poor Materials	Visual Inspection	1	1	7	7
S = Severity O = Occurre D = Detectio RPN = Risk	v rating (1 t ince frequer on Rating (1 Priority Nun	o 10) ncy (1 to 10) . to 10) nber (1 to 10	00)					

	Seve	erity Rat	ing	
	Rank	Severity class	Description	
	10	Catastrophic	Failure results in major injury or death of personnel.	
	7-9	Critical	Failure results in minor injury to personnel, personnel exposure to harmful chemicals or radiation, or fire or a release of chemical to the environment.	
	4-6	Major	Failure results in a low level of exposure to personnel, or activates facility alarm system.	
	1-3	Minor	Failure results in minor system damage but does not cause injury to personnel, allow any kind of exposure to operational or service personnel or allow any release of chemicals into the environment	
an				
© Gert Jerv				37

	Risk Ranking	
	Risk Matrix	
	Risk Ranking:	
	 O = the rank of the occurrence of the failure mode S = the rank of the severity of the failure mode D = the rank of the likelihood the the failure will be detected before the system reaches the end-user/customer. All ranks are given on a scale from 1 to 10. The risk priority number (RPN) is defined as RPN = S × O × D 	
rt Jervan	 The smaller the RPN the better – and – the larger the worse. 	
© Ge		39

	Hazard & Operability Analysis
lervan	 Flowing items are "entities" Entities have characteristic properties known as "attributes" Analysis based on possible deviations of attribute values "Guide words" used to guide the analysis— designed to capture dimensions of variation Supplementary adjectives add temporal element Different word sets for different applications
© Gert	42

Guide word	Chemical plant	Computer-based system
No	No part of the intended result is achieved	No data or control signal exchanged
More	A quantitative increase in the physical quantity	A signal magnitude or a data rate is too high
Less	A quantitative decrease in the physical quantity	A signal magnitude or a data rate is too low
As well as	The intended activity occurs, but with additional results	Redundant data sent in addition to intended value
Part of	Only part of the intended activity occurs	Incomplete data transmitted
Reverse	The opposite of what was intended occurs, for example reverse flow within a pipe	Polarity of magnitude changes reversed
Other than	No part of the intended activity occurs, and something else happens instead	Data complete but incorrect
Early	Not used	Signal arrives too early with reference to clock time
Late	Not used	Signal arrives too late with reference to clock time
Before	Not used	Signal arrives earlier than intended within a sequence
After	Not used	Signal arrives later than intended

Attribute	Guide word	Possible meaning
Data flow	More	More data is passed than expected
Data rate	More Less	The data rate is too low
Data value	More Less	The data value is too high The data value is too low
Repetition time	More Less	The time between output updates is too high The time between output updates is too low
Response time	More Less	The response time is longer than required The response time is shorter than required

	H 1 2 3 4	AZOI Inter- connection Sensor supply line	Attribute Supply voltage Sensor current	Guide word No More Less More	Cause PSU, regulator or cable fault Regulator fault PSU or regulator fault Sensor fault	Consequence Lack of sensor signal detected and system shuts down Possible damage to sensor Incorrect temperature reading Incorrect temperature reading, possible loading of supply	Recommendation Consider overvoltage protection Include voltage monitoring Monitor supply current As a form	
	5			Less	Sensor fault	loading of supply incorrect temperature reading	As above	
	6	Sensor output	Voltage	No	PSU, sensor or cable fault	Lack of sensor signal detected and system shuts down		
	7			More	Sensor fault	Temperature reading too high – results in decrease in plant efficiency	Consider use of duplicate sensor	
) Gert Jervan	8			Less	Sensor mounted incorrectly or sensor failure	Temperature reading too low – could result in overheating and possible plant failure	As above	

	Boundary Conditions	
	 The physical boundaries of the system (Which parts of the system are included in the analysis, and which parts are not?) 	
	 The initial conditions (What is the operational stat of the system when the TOP event is occurring?) 	
	 Boundary conditions with respect to external stresses (What type of external stresses should be included in the analysis – war, sabotage, earthquake, lightning, etc?) 	
	 The level of resolution (How detailed should the analysis be?) 	
rt Jervan		
© Ge		51

	Fault Tree Construction	
	 Define the TOP event in a clear and unambiguous way. Should always answer: What e.g., "Fire" Where e.g., "in the process oxidation reactor" When e.g., "during normal operation" What are the immediate, necessary, and sufficient events and conditions causing the TOP 	
	 event? Connect via a logic gate Proceed in this way to an appropriate level (= basic events) 	
rt Jervan	 Appropriate level: Independent basic events Events for which we have failure data 	
© Ge		52

	Barriers	
	 Most well designed systems have one or more barriers that are implemented to stop or reduce the consequences of potential accidental events. The probability that an accidental event will lead to unwanted consequences will therefore depend on whether these barriers are functioning or not. 	
	 The consequences may also depend on additional events and factors. Examples include: Whether a gas release is ignited or not Whether or not there are people present when the accidental event occurs The wind direction when the accidental event occurs 	
© Gert Jervan	 Barriers may be technical and/or administrative (organizational). 	61

		Event Tree Analysis
	iiiiiii	Event free Analysis
		 An event tree analysis (ETA) is an inductive procedure that shows all possible outcomes resulting from an accidental (initiating) event, taking into account whether installed safety barriers are functioning or not, and additional events and factors.
		 By studying all relevant accidental events (that have been identified by a preliminary hazard analysis, a HAZOP, or some other technique), the ETA can be used to identify all potential accident scenarios and sequences in a complex system.
© Gert Jervan		 Design and procedural weaknesses can be identified, and probabilities of the various outcomes from an accidental event can be determined.

	ETA Ex	ETA Example						
	Initiating event	Start of fire	Sprinkler system does not function	Fire alarm is not activated	Outcomes	Frequency (per year)		
				True	Uncontrolled	8.0.10-8		
			True	0.001	alarm	8.0.10		
			0.01	False	Uncontrolled	7.9 ⋅10 ⁻⁶		
		True		0.999	nre with alarm			
		0.80		True	Controlled fire	8.0 ·10 ⁻⁵		
	Explosion		False	0.001	with no alarm			
	10 ⁻² per year		0.99	False	Controlled fire	7.9 ·10 ^{·3}		
				0.999	with alarm			
van		False			– No fire	2.0 ·10 ⁻³		
ert Jerv		0.20						
0							63	

