
www.pld.ttu.ee/IAF0530 2013-03-14

Gert Jervan 1

IAF0530 (MSc)
IAF9530 (PhD)

Süsteemide usaldusväärsus ja veakindlus
Dependability and fault tolerance

Lecture 4

Gert Jervan
Department of Computer Engineering (ATI)
Tallinn University of Technology (TTÜ)

©
G

er
t

Je
rv

an

Course Schedule

• Major change!
 No meetings March 21, March 28, April 4!
 March 28 presentations are cancelled, however

you are required to send the draft and slides by
deadline!

 Special reading assignment to cover the missing
lecture. Will be published online latest March 18.

 We’ll meet again on April 11.

2

Fault Tolerance

©
G

er
t

Je
rv

an

Basics

• Computing systems are characterized by five
fundamental properties:
 functionality
 usability
 performance
 cost
 dependability

4

©
G

er
t

Je
rv

an

Faults

• Faults are there!

• Either prevent, tolerate, remove or forecast

• We need redundancy
 System that is more complex than needed for

performing the required task

5 ©
G

er
t

Je
rv

an

Means to Achieve Dependability

• Fault prevention
 Good design processes, avoid design flaws
 Good procedures for runtime faults

• Fault tolerance
 Fault detection
 Redundancy
 Diversity

• Fault removal
 Verification and validation during design
 Corrective/preventive action during maintenance

• Fault forecasting
 Simulation, modelling, prediction
 Analysis based on history statistics

6

www.pld.ttu.ee/IAF0530 2013-03-14

Gert Jervan 2

©
G

er
t

Je
rv

an

Fault Tolerance

• Automobile:
 Spare Tires
 Dual Braking Systems

• Power Supplies:
 UPS/battery backup
 Power-fail interrupts

• Multiple engines on aircraft

• Emergency lighting in buildings

• Tape backups of disk files

• Checkpoint/restart of long-running programs

• Parity and SECDED in computer memories

7 ©
G

er
t

Je
rv

an

Faults

• Random faults (Degradation faults)
 Arise during operation
 Usually hardware component failure

• Systematic faults (Design Faults)
 mistakes in the spec
 mistakes in the hardware
 mistakes in the software

8

©
G

er
t

Je
rv

an

Faults

• Faults are either permanent, transient or
intermittent

• Design faults are always permanent

• Dealing with faults:
 During development: fault avoidance &

removal
 During operation: fault tolerance &

detection

9 ©
G

er
t

Je
rv

an

Hardware Faults

• Use of fault models

• Decomposition into modules
 Gates, transistors, etc

• Connection faults
 Single stuck-at model, bridging model (shorts),

stuck-open

• Used to model hardware faults
 Design testing schemes for digital circuits
 Fault removal coverage usually less than 100%
 Guard against physical defects, not design faults

• In safety critical systems
 Combined with Failure Modes and Effects Analysis

(FMEA)
 Need fault avoidance by verification…

10

©
G

er
t

Je
rv

an

Other Faults

• Hardware design and specification faults
 Few fault models available
 Many faults cannot be modelled
 System must meet the spec, but spec might be

incorrect as well
 Spec errors may manifest as either hardware or

software failures
 Use of formal methods (formal spec. languages,

automata theory, formal verification, model
checking, etc.)

11 ©
G

er
t

Je
rv

an

Software Faults

• Bugs:
 Software spec faults
 Coding faults
 Logical errors within calculations
 Stack overflows or underflows
 Uninitialized variables

• No random failures and it does not
degrade with age

• Always systematic

• Exhaustive testing almost impossible

• Must be tolerated

12

www.pld.ttu.ee/IAF0530 2013-03-14

Gert Jervan 3

©
G

er
t

Je
rv

an

SW Testing - i.e. Verification

• Verification:
 SW testing
 formal verification

• Functional and structural testing

• Path testing, transaction flow testing, data-flow
testing, domain testing, mutation testing etc.

13 ©
G

er
t

Je
rv

an

Fault Detection Techniques

• Functionality checking
 march test

• Consistency checking
 range checking, overflow

• Signal comparison

• Information redundancy
 checksums, cyclic redundancy codes, error

correcting codes

• Monitoring techniques
 Loopback testing
 Power supply monitoring

14

©
G

er
t

Je
rv

an

Watchdog Timer

• An inexpensive method of error detection

• Process being watched must reset the timer
before the timer expires, otherwise the watched
process is assumed as faulty

• Watchdog timers only detect errors which
manifest themselves as a control-flow error such
that the system does not continue to reset the
timer

• Only processes with relatively deterministic
runtimes can be checked, since the error
detection is based entirely on the time between
timer resets

15 ©
G

er
t

Je
rv

an

Heartbeats

• A common approach to detecting
process and node failures in a
distributed (networked) computing
environment.

• Periodically, a monitoring entity sends a
message (a heartbeat) to a monitored
node or process and waits for a reply.

• If the monitored node does not respond
within a predefined timeout interval, the
node is declared as failed and
appropriate recovery action is initiated.

• Adaptive or smart

16

System Testing

17

HW Testing SW Testing

HW/SW Testing
(system testing)

Software Testing

www.pld.ttu.ee/IAF0530 2013-03-14

Gert Jervan 4

Programmers are in a race with the Universe to
create bigger and better idiot-proof programs.

While the Universe is trying to create bigger and
better idiots.

So far the Universe is winning

©
G

er
t

Je
rv

an

Software Testing Topics

• Test Economics

• Types of Testing

• Testing coverage

20

©
G

er
t

Je
rv

an

Software Life Cycle

21

Requirements

Design

Implementation

Testing

Maintenance

©
G

er
t

Je
rv

an

The Product Development Cycle

22

Software Development Costs

• For life-critical software
(e.g. flight control,
reactor monitoring),
testing can cost 3 to 5
times as much as all
other activities
combined.

• Stop testing is a
business decision
 There is always

something more to test
 Risk based decision

23

Cost

Testing

Requirements

Design and
Implementation

©
G

er
t

Je
rv

an

Software Life Cycle Costs

24

Cost

Maintenance

Development

www.pld.ttu.ee/IAF0530 2013-03-14

Gert Jervan 5

©
G

er
t

Je
rv

an

Software Qualities

• Correctness

• Reliability (dependability)

• Robustness

• Safety

• Security (survivability)

• Performance

• Productivity

• Maintainability, portability, interoperability, …

25 ©
G

er
t

Je
rv

an

Software Verification and Validation

• Verification
 Are we building the product right?
 Process-oriented

• Does the product of a given phase fulfill the requirements
established during the previous phase?

• Validation
 Are we building the right product?
 Product-oriented

• Does the product of a given phase fulfill the user’s
requirements?

26

©
G

er
t

Je
rv

an

Techniques for V&V

• Static
 Collects information about a software without

executing it
• Reviews, walkthroughs, and inspections
• Static analysis
• Formal verification

• Dynamic
 Collects information about a software with

executing it
• Testing: finding errors
• Debugging: removing errors

27 ©
G

er
t

Je
rv

an

Static Analysis

• Control flow analysis and data flow
analysis
 Extensively used for compiler optimization

and software engineering

• Examples
 Unreachable statements
 Variables used before initialization
 Variables declared but never used
 Variables assigned twice but never used

between assignments
 Variables used twice with no intervening

assignment
 Possible array bound violations

28

©
G

er
t

Je
rv

an

Formal Verification

• Given a model of a program and a property,
determine whether the model satisfies the
property based on mathematics

• Examples
 Safety

• If the light for east-west is green, then the light for south-
north should be red

 Liveness
• If a request occurs, there should be a response eventually in

the future

29 ©
G

er
t

Je
rv

an

Introduction to Testing

• Debugging and testing are not the same thing!

• Testing is a systematic attempt to break a
program.
 Correct, bug-free programs by construction are

the goal but until that is possible (if ever!) we
have testing.

 Since testing is basically destructive in nature, it
requires that the tester discard preconceived
notions of the correctness of the software to be
tested

30

www.pld.ttu.ee/IAF0530 2013-03-14

Gert Jervan 6

©
G

er
t

Je
rv

an

Testing

31

Software
Apply input Observe output

Validate the observed output

Is the observed output the same as the expected output?

©
G

er
t

Je
rv

an

Software Testing Fundamentals

• Testing objectives include
 Testing is a process of executing a program with

the intent of finding an error.
 A good test case is one that has a high probability

of finding an as yet undiscovered error.
 A successful test is one that uncovers an as yet

undiscovered error.

32

©
G

er
t

Je
rv

an

Limitations of Testing (I)

• To test all possible inputs is impractical or
impossible

• To test all possible paths is impractical or
impossible

33

int foo(int x) {
y = very-complex-computation(x);
write(y);

}

int foo(int x) {
for (index = 1; index < 10000; index++)

write(x);
}

©
G

er
t

Je
rv

an

Limitations of Testing (II)

• Dijkstra, 1972
 Testing can be used to show the presence of bugs,

but never their absence

• Goodenough and Gerhart, 1975
 Testing is successful if the program fails

• The (modest) goal of testing
 Testing cannot guarantee the correctness of

software but can be effectively used to find errors
(of certain types)

34

©
G

er
t

Je
rv

an

Economics of Testing (I)

• The characteristic S-curve for error removal

35

Number of
defects
found

Time spent testing

Cutoff point
Testing is
effective

We need
other techniques

©
G

er
t

Je
rv

an

Economics of Testing (II)

• Testing tends to intercept errors in order of their
probability of occurrence

36

Number of
defects

Less likely =
More critical

Progress of
testing

Found Not yet found

www.pld.ttu.ee/IAF0530 2013-03-14

Gert Jervan 7

©
G

er
t

Je
rv

an

Economics of Testing (III)

• Verification is insensitive to the probability of
occurrence of errors

37

Number of
defects

Less likely =
More critical

Progress of
verification

Found

Not yet found

©
G

er
t

Je
rv

an

Fundamental Questions in Testing

• When can we stop testing?
 Test coverage

• What should we test?
 Test generation

• Is the observed output correct?
 Test oracle

• How well did we do?
 Test efficiency

• Who should test your program?
 Independent V&V

38

©
G

er
t

Je
rv

an

Types of Testing

39

Aspect

Accessibility

Level

functional

robustness

performance

reliability

usability

unit

integration

system

acceptance

white
box

grey
box

black
box

regression

©
G

er
t

Je
rv

an

Levels of Testing

40

What users
really need

Requirements

Design

Code

Acceptance testing

System testing

Integration testing

Unit testing

©
G

er
t

Je
rv

an

Accessibility of Testing

• White box testing (structural testing,
program-based testing)

• White box testing is a test case design
method that uses the control structure
of the procedural design to derive test
cases. Test cases can be derived that
 guarantee that all independent paths within a

module have been exercised at least once,
 exercise all logical decisions on their true and

false sides,
 execute all loops at their boundaries and

within their operational bounds, and
 exercise internal data structures to ensure

their validity.
41 ©

G
er

t
Je

rv
an

Accessibility of Testing (II)

• Black box testing (functional testing,
specification-based testing)
 Assumes that the program is unavailable or testers

do not want to look at the details of the program
• Derives test cases from the requirements of the program
• Controls and observes the program only through external

interfaces
• Ideally done by independent test group (not original

programmer)

• Grey box testing

42

www.pld.ttu.ee/IAF0530 2013-03-14

Gert Jervan 8

©
G

er
t

Je
rv

an

Program-Based Testing (I)

• Main steps
 Examine the internal structure of a program
 Design a set of inputs satisfying a coverage

criterion
 Apply the inputs to the program and collect

the actual outputs
 Compare the actual outputs with the

expected outputs

• Limitations
 Cannot catch omission errors

• What requirements are missing in the
program?

 Cannot provide test oracles
• What is the expected output for an input?

43 ©
G

er
t

Je
rv

an

Program-Based Testing (II)

44

Program
Apply input Observe output

Validate the observed output against the expected output

Who will take care of test oracles?

©
G

er
t

Je
rv

an

Covergae metrics

• Statement coverage

• Branch coverage

• Path coverage

• Mutation coverage

45 ©
G

er
t

Je
rv

an

Specification-Based Testing (I)

• Main steps
 Examine the structure of the program’s

specification
 Design a set of inputs from the specification

satisfying a coverage criterion
 Apply the inputs to the specification and

collect the expected outputs
 Apply the inputs to the program and collect

the actual outputs
 Compare the actual outputs with the

expected outputs

• Limitations
 Specifications are not usually available

• Many companies still have only code, there is
no other document. 46

©
G

er
t

Je
rv

an

Specification-Based Testing (II)

47

Program
Actual output

Specification

Apply input

Expected output

Validate the observed output against the expected output

©
G

er
t

Je
rv

an

The Budget Coverage Criterion

• A common answer to “when is testing
done”
 When the money is used up
 When the deadline is reached

• This is sometimes a rational approach!
 Implication 1: Test selection is more

important than stopping criteria per se.
 Implication 2: Practical comparison of

approaches must consider the cost of test
case selection

48

www.pld.ttu.ee/IAF0530 2013-03-14

Gert Jervan 9

Remarks by Bill Gates
17th Annual ACM Conference on Object-Oriented
Programming, Seattle, Washington, November 8,
2002

“… When you look at a big commercial software company
like Microsoft, there's actually as much testing that goes
in as development. We have as many testers as we have
developers. Testers basically test all the time, and
developers basically are involved in the testing process
about half the time…

… We've probably changed the industry we're in. We're not
in the software industry; we're in the testing industry,
and writing the software is the thing that keeps us busy
doing all that testing.”

Remarks by Bill Gates (cont.)

“…The test cases are unbelievably expensive; in fact,
there's more lines of code in the test harness than
there is in the program itself. Often that's a ratio of
about three to one.”

“… Well, one of the interesting questions is, when you
change a program, … what portion of these test cases
do you need to run?“

Testing Real-Time Systems

Distributed
Self-Checking

System Testing

52

HW Testing SW Testing

HW/SW Testing
(system testing)

©
G

er
t

Je
rv

an

Real-Time Systems

• Real-Time System – system, which is required to
adhere not only functional but also tempoal
requirements (“timing constraints” or
“deadlines”)

• RT-systems:
 Hard RT-systems
 Soft RT-systems

53 ©
G

er
t

Je
rv

an

Real-Time Systems Testing

• Inherits issues from concurrent systems
 Problems becomes harder due to time-

constraints
• More sensitive to probe-effects
• Timing/order of inputs become more significant

• Adds new potential problems
 New failure types

• E.g. Missed deadlines, Too early responses…
 Test inputs Execution times
 Faults in real-time scheduling

• Algorithm implementation errors
• Assumption about system wrong

54

www.pld.ttu.ee/IAF0530 2013-03-14

Gert Jervan 10

©
G

er
t

Je
rv

an

Real-Time Systems Testing

• Pure time-triggered systems
 Deterministic
 Test-methods for sequential software usually apply

• Fixed priority scheduling
 Non-deterministic

• Limited set of possible execution orders
 Worst-case w.r.t timeliness can be found from

analysis

• Dynamic (online) scheduled systems
 Non-deterministic

• Large set of possible execution orders
 Timeliness needs to be tested

55 ©
G

er
t

Je
rv

an

Testing Timeliness

• Aim : Verification of specified deadlines for
individual tasks
 Test if assumptions about system hold

• E.g. worst-case execution time estimates, overheads,
context switch times, hardware acceleration efficency, I/O
latency, blocking times, dependency-assumptions

 Test system temporal behavior under stress
• E.g. Unexpected job requests, overload management,

component failure, admission control scheme

• Identification of potential worst-case execution
orders

• Controllability needed to test worst-case
situations efficiently

56

©
G

er
t

Je
rv

an

Testing Embedded Systems

• System-level testing differs
 Performed on target platform

to keep timing

• Closed-loop testing
 Test-cases consist of

parameters sent to the
environment simulator

• Open-loop testing
 Test-cases contain sequences

of events that the system
should be able to handle

57

Environment
Simulator

Real-time (control)
system

Test
parameters

Real-time (control)
system

Test Cases

Distributed Real-Time Systems

58

...

...

 Distributed applications are difficult to...
 Analyze (e.g., guaranteeing timing constraints)
 Design (e.g., efficient implementation)

 Distributed
applications
 On a single cluster
 On several clusters

 Motivation
 Reduce costs:

use resources
efficiently

 Requirements:
close to sensors/
actuators

©
G

er
t

Je
rv

an

Testing Distributed RT-Systems

• Problems with distributed systems:
 Increased complexity
 The difficulties of observing and monitoring
 Non-reproducible behaviour of the system
 The lack of synchronized global clock and,

consequently, the difficulties of unambiguously
defining a “global state”

59 ©
G

er
t

Je
rv

an

Testing Distributed RT-Systems

• Observability
 What?
 How?
 When?

• Controllability

• Auxiliary outputs, interactive debuggers

60

www.pld.ttu.ee/IAF0530 2013-03-14

Gert Jervan 11

©
G

er
t

Je
rv

an

Observability Issues

• Probe effect (Gait,1985)
 “Heisenbergs's principle” - for computer systems
 Common “solutions”

• Compensate
• Leave probes in system
• Ignore

• Must observe execution orders
 Gain coverage

61 ©
G

er
t

Je
rv

an

Controllability Issues

• To be able to test correctness of a particular
execution order we need control
 Input data to all tasks

• Initial state of shared data/buffers

 Scheduling decisions
• Order synchronization/communication between tasks

62

©
G

er
t

Je
rv

an

Testing Distributed RT-Systems

• Reproducibility
 Regression testing – retesting after errors have

been corrected
• errors truely corrected
• no new errors

 A distributed system may be non-reproducible due
to nondeteminism in it’s hardware, software or
operating system

63 ©
G

er
t

Je
rv

an

Testing Distributed RT-Systems

• Obtaining reproducibility
 Language-based approach

• Enforcing the identified scenarios during execution
• All solutions rely on source code transformations

 Implementation based approach
• Collecting all missing information during an execution of the

system
• Event histories or traces

64

©
G

er
t

Je
rv

an

Testing Distributed RT-Systems

• Disadvantages of implementation based
approach:
 Special dedicated HW (to monitor)
 Large amount of information
 Can we guarantee the correctnes of reply?
 Modified programs. What happens with event

histories. Are they still valid?
 Event histories can be used only on target

systems

65 ©
G

er
t

Je
rv

an

Testing Distributed RT-Systems

• Interdependence of Obsevability and
Reproducibility

 Not independent!

 Probe effect

66

www.pld.ttu.ee/IAF0530 2013-03-14

Gert Jervan 12

©
G

er
t

Je
rv

an

Testing Distributed RT-Systems

• The host/target approach
 Host - development
 Target - execution

• Testing on the host system is used for
(functional) unit testing and preliminary
integration testing (as much as possible)

• Testing on the target system involves
completing the integration test and performing
the system test. Also performance, timing, etc.

67 ©
G

er
t

Je
rv

an

Testing Distributed RT-Systems

• Environment simulation (for target system test)
 Simulated v. real environment:

• Safety and/or cost considerations.
• “rare event” situations
• More control over simulated environment
• Easier to obtain responses and test results

 On-line v. off-line test data generation:
• Need to generate large amounts of input data
• Runs cost-effectively

68

©
G

er
t

Je
rv

an

Testing Distributed RT-Systems

• Representativity
 Only small number of real-world scenarios can be

anticipated and taken into account.
 Only a fraction of those anticipated real-world

scenarios can be tested due to the combinatorial
explosion of possible event and input
combinations.

• Test coverage - how many of the anticipated
real-time scenarios can be or have been covered
by corresponding test scenarios.

69 ©
G

er
t

Je
rv

an

Self-checking distributed systems

• Run-time checking of the effects of faults on
system behaviors needs to be carried out
continuously.

• Reliability – the key to distributed SW quality

70

©
G

er
t

Je
rv

an

Self-checking distributed systems

• Fault-secure systems are systems, where faults
may be enforced not to propagate.
 Faults are not visible or have no effect
 Faults are visible, but it’s easy to notice that an

error exists

• Self-testing – System is self testing when there
exists testing behavior, occurring during the run-
time behavior of the system, such that this fault
will be propagated to the output and it’s easy to
notice, that there is a fault (out of predefined set
of values)

• System is self-checking for a set of faults, if
whatever a fault belonging to this set, it is fault-
secure and self-testing. 71 ©

G
er

t
Je

rv
an

Self-checking distributed systems

• Worker-observer
 the worker is a classical implementation of the

system behavior
 the observer is a given redundant implementation

whose outputs are comparable with the outputs of
the worker.

• To obtain observing behavior:
 Redundancy
 Reference
 Visibility

• Worker cooperates with the observer
• Worker behavior can be spied by the observer

72

www.pld.ttu.ee/IAF0530 2013-03-14

Gert Jervan 13

©
G

er
t

Je
rv

an

Self-checking distributed systems

• A formal observer is a subsystem designed to
check distributed behaviors where:
 Its SW is independent of the specific protocols to

be checked in the considered system;
 Its data are defined by the protocols to be checked

and this data can be formally specified and
verified.

73 ©
G

er
t

Je
rv

an

Self-checking distributed systems

• Design of the system
 write a description of the beavior of the system to

be implemented;
 Implement the system itself, i.e., the worker;
 From the description of the worker, select (based

on experience) that part of the behavior which
should be observed and write a formal model of it.

74

©
G

er
t

Je
rv

an

Self-checking distributed systems

• The system is quasi self-checking if
 It is an observer-worker system
 The observer is a formal observer.

• For “real-life” only part of the system will be
modelled.

• Formal model must be able to
 Express simplified specifications of distributed

systems
 Support verification procedures
 Be able to act as a basis for implementing the

observer.

75 ©
G

er
t

Je
rv

an

Few testing criteria exists for
concurrent systems
• Number of execution orders grow exponentially

with # synchronization primitives in tasks
 Testing criteria needed to bound and

selecting subset of execution orders for
testing

• E.g. Branch / Statement coverage not sufficient
for concurrent software
 Still useful on serializations
 Execution paths may require specific behavior

from other tasks

• Data-flow based testing criteria has been
adapted
 E.g. define-use pairs 76

©
G

er
t

Je
rv

an

Determinism vs.
Non-Determinism
• Deterministic systems

 Controllability is high
• input (sequence) suffice

 Coverage can be claimed after single test
execution with inputs

 E.g. Filters, Pure “table-driven” real-time
systems

• Non-Deterministic systems
 Controllability is generally low
 Statistical methods needed in combination

with input coverage
 E.g.

• Systems that use random heuristics
• Behavior depends on execution times / race

conditions 77 ©
G

er
t

Je
rv

an

Test execution in concurrent
systems
• Non-deterministic testing

 “Run, Run, Run and Pray”

• Deterministic testing
 Select a particular execution order and force it
 E.g. Instrument with extra synchronizations

primitives
• (No timing constraints make this possible)

• Prefix-based Testing (and Replay)
 Deterministically run system to a specific (prefix)

point
 Start non-deterministic testing at that specific

point

78

