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Course Schedule

• Major change!
 No meetings March 21, March 28, April 4!
 March 28 presentations are cancelled, however 

you are required to send the draft and slides by 
deadline!

 Special reading assignment to cover the missing 
lecture. Will be published online latest March 18.

 We’ll meet again on April 11.
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Fault Tolerance
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Basics

• Computing systems are characterized by five 
fundamental properties:
 functionality
 usability
 performance
 cost
 dependability
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Faults

• Faults are there!

• Either prevent, tolerate, remove or forecast

• We need redundancy
 System that is more complex than needed for 

performing the required task

5 ©
G

er
t 

Je
rv

an

Means to Achieve Dependability

• Fault prevention
 Good design processes, avoid design flaws
 Good procedures for runtime faults

• Fault tolerance
 Fault detection
 Redundancy
 Diversity

• Fault removal
 Verification and validation during design
 Corrective/preventive action during maintenance

• Fault forecasting
 Simulation, modelling, prediction
 Analysis based on history statistics
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Fault Tolerance

• Automobile:
 Spare Tires
 Dual Braking Systems

• Power Supplies:
 UPS/battery backup
 Power-fail interrupts

• Multiple engines on aircraft

• Emergency lighting in buildings

• Tape backups of disk files

• Checkpoint/restart of long-running programs

• Parity and SECDED in computer memories
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Faults

• Random faults (Degradation faults)
 Arise during operation
 Usually hardware component failure

• Systematic faults (Design Faults)
 mistakes in the spec
 mistakes in the hardware
 mistakes in the software
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Faults

• Faults are either permanent, transient or 
intermittent

• Design faults are always permanent

• Dealing with faults:
 During development: fault avoidance &

removal
 During operation: fault tolerance & 

detection

9 ©
G

er
t 

Je
rv

an

Hardware Faults

• Use of fault models

• Decomposition into modules
 Gates, transistors, etc

• Connection faults
 Single stuck-at model, bridging model (shorts), 

stuck-open

• Used to model hardware faults
 Design testing schemes for digital circuits
 Fault removal coverage usually less than 100%
 Guard against physical defects, not design faults

• In safety critical systems
 Combined with Failure Modes and Effects Analysis 

(FMEA)
 Need fault avoidance by verification…
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Other Faults

• Hardware design and specification faults
 Few fault models available
 Many faults cannot be modelled
 System must meet the spec, but spec might be 

incorrect as well
 Spec errors may manifest as either hardware or 

software failures
 Use of formal methods (formal spec. languages, 

automata theory, formal verification, model 
checking, etc.)
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Software Faults

• Bugs:
 Software spec faults
 Coding faults
 Logical errors within calculations
 Stack overflows or underflows
 Uninitialized variables

• No random failures and it does not 
degrade with age

• Always systematic

• Exhaustive testing almost impossible

• Must be tolerated
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SW Testing - i.e. Verification

• Verification:
 SW testing
 formal verification

• Functional and structural testing

• Path testing, transaction flow testing, data-flow 
testing, domain testing, mutation testing etc.
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Fault Detection Techniques

• Functionality checking
 march test

• Consistency checking
 range checking, overflow

• Signal comparison

• Information redundancy
 checksums, cyclic redundancy codes, error 

correcting codes

• Monitoring techniques
 Loopback testing
 Power supply monitoring
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Watchdog Timer

• An inexpensive method of error detection 

• Process being watched must reset the timer 
before the timer expires, otherwise the watched 
process is assumed as faulty

• Watchdog timers only detect errors which 
manifest themselves as a control-flow error such 
that the system does not continue to reset the 
timer 

• Only processes with relatively deterministic 
runtimes can be checked, since the error 
detection is based entirely on the time between 
timer resets 
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Heartbeats

• A common approach to detecting 
process and node failures in a 
distributed (networked) computing 
environment. 

• Periodically, a monitoring entity sends a 
message (a heartbeat) to a monitored 
node or process and waits for a reply. 

• If the monitored node does not respond 
within a predefined timeout interval, the 
node is declared as failed and 
appropriate recovery action is initiated.

• Adaptive or smart
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System Testing
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HW Testing SW Testing 

 

 

HW/SW Testing
(system testing)

Software Testing
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Programmers are in a race with the Universe to 
create bigger and better idiot-proof programs. 

While the Universe is trying to create bigger and 
better idiots. 

So far the Universe is winning 

©
G

er
t 

Je
rv

an

Software Testing Topics

• Test Economics

• Types of Testing

• Testing coverage

20

©
G

er
t 

Je
rv

an

Software Life Cycle
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Requirements

Design

Implementation

Testing

Maintenance
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The Product Development Cycle
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Software Development Costs

• For life-critical software 
(e.g. flight control, 
reactor monitoring), 
testing can cost 3 to 5 
times as much as all 
other activities 
combined.

• Stop testing is a 
business decision
 There is always 

something more to test
 Risk based decision
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Cost

Testing

Requirements

Design and 
Implementation
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Software Life Cycle Costs

24

Cost

Maintenance

Development
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Software Qualities

• Correctness

• Reliability (dependability)

• Robustness

• Safety

• Security (survivability)

• Performance

• Productivity

• Maintainability, portability, interoperability, …
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Software Verification and Validation

• Verification 
 Are we building the product right?
 Process-oriented

• Does the product of a given phase fulfill the requirements 
established during the previous phase? 

• Validation
 Are we building the right product?
 Product-oriented

• Does the product of a given phase fulfill the user’s 
requirements?
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Techniques for V&V

• Static
 Collects information about a software without 

executing it
• Reviews, walkthroughs, and inspections
• Static analysis
• Formal verification

• Dynamic
 Collects information about a software with 

executing it
• Testing: finding errors
• Debugging: removing errors
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Static Analysis

• Control flow analysis and data flow 
analysis
 Extensively used for compiler optimization 

and software engineering

• Examples
 Unreachable statements
 Variables used before initialization
 Variables declared but never used
 Variables assigned twice but never used 

between assignments
 Variables used twice with no intervening 

assignment
 Possible array bound violations
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Formal Verification

• Given a model of a program and a property, 
determine whether the model satisfies the 
property based on mathematics

• Examples
 Safety

• If the light for east-west is green, then the light for south-
north should be red

 Liveness
• If a request occurs, there should be a response eventually in 

the future
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Introduction to Testing

• Debugging and testing are not the same thing!

• Testing is a systematic attempt to break a 
program.
 Correct, bug-free programs by construction are 

the goal but until that is possible (if ever!) we 
have testing.

 Since testing is basically destructive in nature, it 
requires that the tester discard preconceived
notions of the correctness of the software to be 
tested

30
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Testing

31

Software
Apply input Observe output

Validate the observed output

Is the observed output the same as the expected output? 
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Software Testing Fundamentals

• Testing objectives include
 Testing is a process of executing a program with 

the intent of finding an error.
 A good test case is one that has a high probability 

of finding an as yet undiscovered error.
 A successful test is one that uncovers an as yet 

undiscovered error.
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Limitations of Testing (I)

• To test all possible inputs is impractical or 
impossible

• To test all possible paths is impractical or 
impossible
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int foo(int x) {
y = very-complex-computation(x);
write(y);

}

int foo(int x) {
for (index = 1; index < 10000; index++)

write(x);
}
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Limitations of Testing (II)

• Dijkstra, 1972
 Testing can be used to show the presence of bugs, 

but never their absence

• Goodenough and Gerhart, 1975
 Testing is successful if the program fails

• The (modest) goal of testing
 Testing cannot guarantee the correctness of 

software but can be effectively used to find errors 
(of certain types)
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Economics of Testing (I)

• The characteristic S-curve for error removal 

35

Number of 
defects 
found

Time spent testing

Cutoff point
Testing is 
effective

We need 
other techniques
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Economics of Testing (II)

• Testing tends to intercept errors in order of their 
probability of occurrence

36

Number of 
defects

Less likely =
More critical

Progress of 
testing

Found Not yet found
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Economics of Testing (III)

• Verification is insensitive to the probability of 
occurrence of errors

37

Number of 
defects

Less likely =
More critical

Progress of 
verification

Found

Not yet found
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Fundamental Questions in Testing

• When can we stop testing?
 Test coverage

• What should we test? 
 Test generation

• Is the observed output correct?
 Test oracle

• How well did we do?
 Test efficiency

• Who should test your program?
 Independent V&V

38
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Types of Testing
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Aspect

Accessibility

Level

functional

robustness

performance

reliability

usability

unit

integration

system

acceptance

white
box

grey
box

black
box

regression
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Levels of Testing

40

What users
really need

Requirements

Design

Code

Acceptance testing

System testing

Integration testing

Unit testing
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Accessibility of Testing

• White box testing (structural testing, 
program-based testing)

• White box testing is a test case design 
method that uses the control structure 
of the procedural design to derive test 
cases. Test cases can be derived that
 guarantee that all independent paths within a 

module have been exercised at least once,
 exercise all logical decisions on their true and 

false sides,
 execute all loops at their boundaries and 

within their operational bounds, and
 exercise internal data structures to ensure 

their validity.
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Accessibility of Testing (II)

• Black box testing (functional testing, 
specification-based testing)
 Assumes that the program is unavailable or testers 

do not want to look at the details of the program
• Derives test cases from the requirements of the program
• Controls and observes the program only through external 

interfaces
• Ideally done by independent test group (not original 

programmer)

• Grey box testing

42
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Program-Based Testing (I)

• Main steps
 Examine the internal structure of a program
 Design a set of inputs satisfying a coverage 

criterion
 Apply the inputs to the program and collect 

the actual outputs
 Compare the actual outputs with the 

expected outputs

• Limitations
 Cannot catch omission errors

• What requirements are missing in the 
program?

 Cannot provide test oracles
• What is the expected output for an input?
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Program-Based Testing (II)

44

Program
Apply input Observe output

Validate the observed output against the expected output

Who will take care of test oracles?
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Covergae metrics

• Statement coverage

• Branch coverage

• Path coverage

• Mutation coverage
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Specification-Based Testing (I)

• Main steps
 Examine the structure of the program’s 

specification
 Design a set of inputs from the specification 

satisfying a coverage criterion
 Apply the inputs to the specification and 

collect the expected outputs
 Apply the inputs to the program and collect 

the actual outputs
 Compare the actual outputs with the 

expected outputs

• Limitations
 Specifications are not usually available

• Many companies still have only code, there is 
no other document. 46
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Specification-Based Testing (II)

47

Program
Actual output

Specification

Apply input

Expected output

Validate the observed output against the expected output
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The Budget Coverage Criterion

• A common answer to “when is testing 
done”
 When the money is used up
 When the deadline is reached

• This is sometimes a rational approach! 
 Implication 1:  Test selection is more 

important than stopping criteria per se. 
 Implication 2: Practical comparison of 

approaches must consider the cost of test 
case selection

48
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Remarks by Bill Gates
17th Annual ACM Conference on Object-Oriented 
Programming, Seattle, Washington, November 8, 
2002

“… When you look at a big commercial software company 
like Microsoft, there's actually as much testing that goes 
in as development. We have as many testers as we have 
developers. Testers basically test all the time, and 
developers basically are involved in the testing process 
about half the time…

… We've probably changed the industry we're in. We're not 
in the software industry; we're in the testing industry, 
and writing the software is the thing that keeps us busy 
doing all that testing.”

Remarks by Bill Gates (cont.)

“…The test cases are unbelievably expensive; in fact, 
there's more lines of code in the test harness than 
there is in the program itself. Often that's a ratio of 
about three to one.”

“… Well, one of the interesting questions is, when you 
change a program, … what portion of these test cases 
do you need to run?“

Testing Real-Time Systems

Distributed
Self-Checking

System Testing

52

HW Testing SW Testing 

 

 

HW/SW Testing
(system testing)
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Real-Time Systems

• Real-Time System – system, which is required to 
adhere not only functional but also tempoal 
requirements (“timing constraints” or 
“deadlines”) 

• RT-systems:
 Hard RT-systems
 Soft RT-systems
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Real-Time Systems Testing

• Inherits issues from concurrent systems
 Problems becomes harder due to time-

constraints
• More sensitive to probe-effects
• Timing/order of inputs become more significant

• Adds new potential problems
 New failure types

• E.g. Missed deadlines, Too early responses…
 Test inputs  Execution times
 Faults in real-time scheduling 

• Algorithm implementation errors
• Assumption about system wrong

54
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Real-Time Systems Testing

• Pure time-triggered systems
 Deterministic
 Test-methods for sequential software usually apply

• Fixed priority scheduling
 Non-deterministic

• Limited set of possible execution orders 
 Worst-case w.r.t timeliness can be found from 

analysis 

• Dynamic (online) scheduled systems
 Non-deterministic

• Large set of possible execution orders
 Timeliness needs to be tested
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Testing Timeliness

• Aim : Verification of specified deadlines for 
individual tasks
 Test if assumptions about system hold

• E.g. worst-case execution time estimates, overheads, 
context switch times, hardware acceleration efficency, I/O 
latency, blocking times, dependency-assumptions

 Test system temporal behavior under stress
• E.g. Unexpected job requests, overload management, 

component failure, admission control scheme

• Identification of potential worst-case execution 
orders

• Controllability needed to test worst-case 
situations efficiently

56
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Testing Embedded Systems

• System-level testing differs
 Performed on target platform 

to keep timing

• Closed-loop testing
 Test-cases consist of 

parameters sent to the 
environment simulator

• Open-loop testing
 Test-cases contain sequences 

of events that the system 
should be able to handle

57

Environment
Simulator

Real-time (control) 
system

Test
parameters

Real-time (control) 
system

Test Cases

Distributed Real-Time Systems
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...

...

 Distributed applications are difficult to... 
 Analyze (e.g., guaranteeing timing constraints)
 Design (e.g., efficient implementation)

 Distributed 
applications
 On a single cluster
 On several clusters

 Motivation
 Reduce costs:

use resources 
efficiently

 Requirements:
close to sensors/ 
actuators
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Testing Distributed RT-Systems

• Problems with distributed systems:
 Increased complexity
 The difficulties of observing and monitoring
 Non-reproducible behaviour of the system
 The lack of synchronized global clock and, 

consequently, the difficulties of unambiguously 
defining a “global state”
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Testing Distributed RT-Systems

• Observability
 What?
 How?
 When?

• Controllability

• Auxiliary outputs, interactive debuggers

60
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Observability Issues

• Probe effect (Gait,1985)
 “Heisenbergs's principle” - for computer systems
 Common “solutions”

• Compensate
• Leave probes in system
• Ignore

• Must observe execution orders
 Gain coverage 
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Controllability Issues

• To be able to test correctness of a particular 
execution order we need control 
 Input data to all tasks

• Initial state of shared data/buffers

 Scheduling decisions 
• Order synchronization/communication between tasks

62
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Testing Distributed RT-Systems

• Reproducibility
 Regression testing – retesting after errors have 

been corrected
• errors truely corrected
• no new errors

 A distributed system may be non-reproducible due 
to nondeteminism in it’s hardware, software or 
operating system
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Testing Distributed RT-Systems

• Obtaining reproducibility
 Language-based approach

• Enforcing the identified scenarios during execution
• All solutions rely on source code transformations

 Implementation based approach
• Collecting all missing information during an execution of the 

system
• Event histories or traces

64
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Testing Distributed RT-Systems

• Disadvantages of implementation based 
approach:
 Special dedicated HW (to monitor)
 Large amount of information
 Can we guarantee the correctnes of reply?
 Modified programs. What happens with event 

histories. Are they still valid?
 Event histories can be used only on target 

systems
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Testing Distributed RT-Systems

• Interdependence of Obsevability and 
Reproducibility

 Not independent!

 Probe effect

66
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Testing Distributed RT-Systems

• The host/target approach
 Host - development
 Target - execution

• Testing on the host system is used for 
(functional) unit testing and preliminary 
integration testing (as much as possible)

• Testing on the target system involves 
completing the integration test and performing 
the system test. Also performance, timing, etc.
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Testing Distributed RT-Systems

• Environment simulation (for target system test)
 Simulated v. real environment:

• Safety and/or cost considerations.
• “rare event” situations
• More control over simulated environment
• Easier to obtain responses and test results

 On-line v. off-line test data generation:
• Need to generate large amounts of input data
• Runs cost-effectively

68
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Testing Distributed RT-Systems

• Representativity
 Only small number of real-world scenarios can be 

anticipated and taken into account.
 Only a fraction of those anticipated real-world 

scenarios can be tested due to the combinatorial 
explosion of possible event and input 
combinations.

• Test coverage - how many of the anticipated 
real-time scenarios can be or have been covered 
by corresponding test scenarios.
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Self-checking distributed systems

• Run-time checking of the effects of faults on 
system behaviors needs to be carried out 
continuously.

• Reliability – the key to distributed SW quality

70
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Self-checking distributed systems

• Fault-secure systems are systems, where faults 
may be enforced not to propagate.
 Faults are not visible or have no effect
 Faults are visible, but it’s easy to notice that an 

error exists

• Self-testing – System is self testing when there 
exists testing behavior, occurring during the run-
time behavior of the system, such that this fault 
will be propagated to the output and it’s easy to 
notice, that there is a fault (out of predefined set 
of values)

• System is self-checking for a set of faults, if 
whatever a fault belonging to this set, it is fault-
secure and self-testing. 71 ©
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Self-checking distributed systems

• Worker-observer 
 the worker is a classical implementation of the 

system behavior 
 the observer is a given redundant implementation 

whose outputs are comparable with the outputs of 
the worker.

• To obtain observing behavior:
 Redundancy
 Reference
 Visibility

• Worker cooperates with the observer
• Worker behavior can be spied by the observer

72
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Self-checking distributed systems

• A formal observer is a subsystem designed to 
check distributed behaviors where:
 Its SW is independent of the specific protocols to 

be checked in the considered system;
 Its data are defined by the protocols to be checked 

and this data can be formally specified and 
verified.
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Self-checking distributed systems

• Design of the system 
 write a description of the beavior of the system to 

be implemented;
 Implement the system itself, i.e., the worker;
 From the description of the worker, select (based 

on experience) that part of the behavior which 
should be observed and write a formal model of it. 

74
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Self-checking distributed systems

• The system is quasi self-checking if
 It is an observer-worker system
 The observer is a formal observer.

• For “real-life”  only part of the system will be 
modelled.

• Formal model must be able to
 Express simplified specifications of distributed 

systems
 Support verification procedures
 Be able to act as a basis for implementing the 

observer.
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Few testing criteria exists for 
concurrent systems
• Number of execution orders grow exponentially 

with # synchronization primitives in tasks
 Testing criteria needed to bound and 

selecting subset of execution orders for 
testing

• E.g. Branch / Statement coverage not sufficient 
for concurrent software
 Still useful on serializations
 Execution paths may require specific behavior 

from other tasks

• Data-flow based testing criteria has been 
adapted
 E.g. define-use pairs 76

©
G

er
t 

Je
rv

an

Determinism vs. 
Non-Determinism
• Deterministic systems

 Controllability is high
• input (sequence) suffice

 Coverage can be claimed after single test 
execution with inputs

 E.g. Filters, Pure “table-driven” real-time 
systems

• Non-Deterministic systems
 Controllability is generally low
 Statistical methods needed in combination 

with input coverage
 E.g. 

• Systems that use random heuristics
• Behavior depends on execution times / race 
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Test execution in concurrent 
systems
• Non-deterministic testing

 “Run, Run, Run and Pray”

• Deterministic testing
 Select a particular execution order and force it 
 E.g. Instrument with extra synchronizations 

primitives
• (No timing constraints make this possible)

• Prefix-based Testing (and Replay)
 Deterministically run system to a specific (prefix) 

point
 Start non-deterministic testing at that specific 

point
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