Multi-Level Test Generation and Fault Diagnosis
for Finite State Machines

R. Ubar, M. Brik

Tallinn Technical University
Ehitajate tee 5, EE0026, Tallinn, ESTONIA
 raiub@pld.ttu.ee

Abstract. In this paper, a new multi-level technique, based on alternative graphs, with uniform procedures at each level for test generation, fault simulation and fault diagnosis in finite state machines (FSM) is presented. For the description of function (behavior), structure and faults in FSM, three levels are used: functional (state transition diagrams), logical (or signal path) and gate level. In test generation, simultaneously all levels are used. Faults from different classes are inserted and activated at different levels by uniform procedures. State initialization and fault propagation are carried out only at the functional level. Backtracking will not cross level borders, hence, the high efficiency of test generation can be reached. Fault diagnosis is carried out using top-down technique, keeping the complexity of candidate fault sets in each level as low as possible.

l. Introduction

Due to increasing complexity of VLSI circuits, testing has become a bottleneck in their development, especially in case of sequential circuits [1-4]. The difficulty in generating tests for finite state machines (FSM) lies basically in 1) setting the states of memory flip-flops into a certain combination so that the fault under test was activated, and, 2) propa-gating the fault effect to the primary outputs. The longer the length of the shortest input sequence needed, the more difficult it is to find an input sequence to test the circuit. Checking experiments [1] as an approach to create tests is shown to be impractical because of the long test sequence it produces. Deterministic structural approaches [2] are ineffective because of no a priori knowledge of the test length is available: a large amount of effort may be wasted in trying to find short sequence tests for faults that require long ones. Random testing [3] can be very time consuming for "hard" faults that have only few long test sequences. Functional approaches based on branch testing [4] are more efficient than structural approaches, however the fault coverage remains open.

Previous work in the area of the diagnosis of digital systems has come from both artificial intelligence (AI) and non-AI based approaches. AI-approaches, rule-based [5] and reasoning from first principles [6] are time-consuming. In [7] VHDL descriptions for fault diagnosis and in [8] new functional fault models based on VHDL were introduced. The disadvantages of VHDL approaches are in the diversity of fault models and in the difficulty to use other fault analysis methods than direct fault simulation. The most traditional non-AI based diagnosis conception is using fault dictionaries [9]. However, because a complete fault simulation for producing dictionaries is practically impossible, this approach cannot be adequate. The post-test fault simulation to diagnose faults in structured designs [10] is more efficient, however, problems will arise in multiple fault cases. Dedicated diagnosis methods for multiple faults are usually developed for unilevel (gate-level) descriptions [11], because of the good mathematical tools for fault analysis available. For multi-level diagnosis, a comprehensive theoretical apparatus is lacking.

The problems of fault diagnosis and test generation as direct and reverse mathematical tasks have been regarded soundly only at the logical level using Boolean differential calculus. For multi-level problem solution, different languages and tools for different levels, or heuristical AI-approaches have been proposed, which all together are difficult to use for mixed level representations, especially when the level borders have to be crossed.

In this paper, we introduce alternative graphs (AG) [14] as a mathematical model for systematic multi-level solution of test generation and fault diagnosis tasks in finite state machines. For describing the function (behavior), structure and faults in FSMs, three levels are used: functional (state transition diagrams), logical or signal-path and gate levels. For all these levels, a uniform model of FSM in the form of AGs is proposed. The uniformity of the model allows to use the same technique for all levels. Different fault classes have been proposed, which traditionally are specified at different FSM representation levels, e.g. gate-level stuck-at faults, STD-level transition (branch) faults. In this paper, the faults are activated on the level where they are specified. State initialization and fault propagation are carried out only at the functional level. Inconsistencies in signal assignment are solved inside the level they were assigned and backtracking will not cross the level borders. This helps to reduce search area during test generation. Fault diagnosis will be carried out using top-�down technology, keeping the complexity of candidate fault sets in each level as low as possible. It is shown that the fault localization and test generation can be defined and solved on AGs as the direct and reverse mathematical problems, correspondingly. Hence, the same multi-level conception proposed in the paper can be utilized for solving both problems by using the same processing tools developed for AGs.

In the next section we first introduce the alternative graph model and show how STD and gate-level descriptions of FSMs can be substituted in a uniform way by AGs. The classification of faults in FSMs and representation of these fault classes on AGs is discussed in Section 3. Section 4 describes the multi-level test generation technique developed on the basis of AGs. Hierarchical fault diagnosis approach with an example is presented in Section 5. Finally, some experimental data are presented in Section 6.

2. Representation of finite-state machines by alternative graphs

2.1. Finite state machine. To simplify further considerations, let us assume some restrictions about the class of FSMs considered without loss of generality of the approach. We assume the FSM is synchronous and free of races under simple design rules Moore machine. We also assume there is a reset state, all other states are reachable from the reset state, and memory elements such as D flip-flops are identified and represented as logical primitives to facilitate loop cutting and representing the FSM as an iterative array of combinational circuits. A FSM is traditionally represented by its state transition diagram (STD) which is a graph G(V,B,X(B),Y(V)) where V is the set of vertices corresponding to the set of states of the FSM, B is a set of branches (edges) in G and a branch b = (vi, vj) (B joins vi (V to vj (V if there is a primary input that causes the FSM to evolve from state vi to state vj, X(B) is a set of labels attached to each branch, each label carrying the information of the value of the input that caused that transition, and Y(V) is a set of output labels attached to each vertice, each label carrying the information of the value of the output signal generated in that state. In general, the X(B) labels are Boolean expressions.

2.2. Alternative graphs and Boolean functions. Alternative graphs [12] will be used here as means for representing multi-valued digital functions. Consider at first a special case of Boolean functions. An AG that represents a Boolean function (binary decision diagram [13]) is a directed noncyclic graph with single root node, where all nonterminal nodes are labelled by (inverted or not inverted) Boolean variables (arguments of the function) and have always exactly two successor-nodes whereas all terminal nodes are labelled by constants 0 or 1. For all nonterminal nodes, an one-to-one correspondence exists between the values of the label variable of the node and the successors of the node. This correspondence is determined by the Boolean function inherent to the graph.

Let us denote by x(m) the node variable which labels the node m. We say that a value of the node variable activates the node output branch. According to the value of x(m) one of two output branches of m can be activated. A path in an AG is called activated if all the branches that form this path are activated. The AG is called activated to the value 0 (or 1) if there exists an activated path which includes both the root node and the terminal node labelled by the constant 0 (or 1). Alternative graph Gy with nodes labelled by variables x1,x2 ,...,xn, represents the Boolean function y = f(X) = f(x1,x2,...,xn), if for each pattern of X the AG will be activated to the value which is equal to y. Consider a digital system as a network of components each of which described by one or more Boolean functions. Consequently, a digital system, particularly, a combinatorial circuit can be represented by a system of AGs.

2.3. Alternative graphs and FSMs. There are two ways of representing FSMs: 1) structural way - by a circuit which can be decomposed into combinational and memory parts, and 2) functional way - by STDs. In the first case, there is no principal difference in using AGs for representing FSMs compared to the case of combinational circuits. The output and transition functions of the FSM are Boolean and therefore can be represented by AGs for Boolean functions (or similar BDDs [13]). For the second case, we use integer variables for representing inputs, outputs and internal states of the FSM. A FSM is represented by AGs for describing, correspondingly, the transition and output behaviors of the machine. By introducing complex variables and representing the FSM by a single complex function q.y = f(q',x), where state variable q and output variable y are concatenated, we can represent a FSM by a single AG. As an example, in Fig.1 two representations of a FSM by a STD and by an AG are depicted. AG represents the complex behavior function of the FSM q.y = F(q', Res, xl, x2) where q.y is the concatenation of the integer state variable q (with possible values 1,2,3,4,5,6 for representing states) and the binary output variable y. The input of the FSM is structured and represented by three Boolean variables Res, xl and x2. By q' we denote the previous state variable. Terminal nodes of the AG are labelled by complex (concatenated) constants which represent the new state of the FSM and the value of the output variable y at the new state. Differently from the usual form of STD, to be able formally to model the faulty behavior of the FSM, we have to specify in AGs if possible also the behavior of FSM at illegal states denoted by q = *. In the example in Fig.1, for illegal states, it has been assumed that y = 0.

Two extreme cases can be considered in representing FSMs by AGs: the case of abstract FSM, where we have only three abstract variables for representing the input, output and internal states of the automata and, correspondingly, two AGs for representing the transition and output functions, and the case where the input, output and internal states of the FSM are binary coded and we can represent it by a set of Boolean output and transition functions. Mixed cases can be placed between these two extremes. By introducing complex variables (e.g. microinstruction words consisting of fields), and representing the FSM by a single complex function q.y = f(q',x), where state variable q and output variable y are concatenated, we can represent a FSM by a single AG.
�
Fig.1 FSM representations by a STD and a functional level AG.

As an example, in Fig.1 two representations of a FSM by a state transition diagram and by an alternative graph are depicted. The AG represents the complex behavior function of the FSM q.y = F(q', Res, xl, x2) where q.y is the concatenation of the integer state variable q (with possible values 1,2,3,4,5,6 for representing states) and the binary output variable y. Input of the FSM is structured and represented by three Boolean variables Res, xl and x2. By q' we denote the previous state variable. Terminal nodes of the AG are labelled by complex (concatenated) constants which represent the new state of the FSM and the value of the output variable y at the new state. Differently from the usual form of STD, to be able formally model the faulty behavior of the FSM, we have to specify in AGs if possible, also the behavior of FSM at illegal states, denoted by q = *. In the example In Fig.1, for illegal states, it has been assumed that y = 0.

The are two properties of AGs that essentially differ them from STD-s which, however, may be not noticed at a glance on the example:
-similarity in representation form with Boolean AGs (binary decision diagrams) that easily allows to generalize methods developed for the logical level as well to the higher functional (state transition) level;
-in AGs, only one model in the form of graph is used whereas STDs consist in two models - graph for representing transitions between states and Boolean expressions to give the branching conditions.

3. Fault model

3.1. Fault model in alternative graphs. Each path in an AG describes the behavior of the system represented by the AG in a specific mode of operation. The faults having effect on the behavior can be associated with nodes along the given path. A fault causes an incorrect leaving the path activated by a test. From this point of view we introduce the following abstract fault model for nodes m with label variables z(m) in AG-representations of digital systems:
1) the output branch at z(m) = i of a node m is always activated (notation for the fault: z(m)/-> i),
2) the branch at z(m) = i of a node m is broken (z(m)/ i -> *), and
3) instead of the given branch at z(m) = i of a node m, another branch at z(m) = j is activated (z(m)/ i -> j).

Different fault models for different levels of digital systems can be replaced on alternative graphs by this uniform node fault model. The physical meaning of faults associated with a particular node depends on the “structural meaning” [12] of the node. Depending on the adequacy of representing the structure of the system, the fault model proposed for AGs can cover a wide class of structural and functional faults introduced for digital circuits and systems. For example, the fault model for nodes labelled by Boolean variables z ({0,1} correponds to the stuck-at fault model z/0 (z/1) in gate-level representations. As another example, the fault model for nodes labelled by integer variables can represent widely spread functional fault models for decoders, multiplexers, instruction decoding units of microprocessors, case constructions in procedural models of systems etc.

From above it follows that the fault model defined on AGs can be regarded as a generalization of the classical gate-level stuck-at fault model for more higher level representations of digital systems. The stuck-at fault model is defined for Boolean variables (literals), the generalized new fault model is defined for nodes of AGs. As the nodes with Boolean labels represent only a special class of nodes in AGs, the logical level stuck-at fault model represents also only a special class of faults in AGs. In the following we consider how the different fault classes in finite state machines can be represented uniformly using alternative graphs.

3.2. Fault classes for finite state machines. Any irredundant structural fault in the implementation of the FSM will cause some changes in its STD. One or multiple transitions will be corrupted. So, a test sequence that detects all multiple transition faults will detect all irredundant permanent physical defects. However, the analysis of multiple transition faults is too complex, therefore usually a single transition fault will be considered [4]. In the following, we try to find relationships between structural and functional level faults, to analyse how different single structural fault types affect the behavior of the FSM, are they manifesting himself as single or multiple transition faults, and how test sequences can be generated for them.

Consider a generalized structural two-level fragment of the next-state logic circuitry. The faults of the circuitry can be divided into the following fault classes:
- single transition faults (class a) - faults that effect on a single transition condition only;
- input faults (class b) - faults that effect on the input of the FSM;
- state faults (class c) - faults that effect on the state of the FSM.

We shall show in, the following that a single fault in a FSM, represented by an iterative array of identical combmational circuits, can manifest himself in a test sequence in different ways: as a single fault both in each time frame and, under special restrictions, also in the whole array (transition faults), or as a multiple fault both in each time frame and in the whole array (input and state faults). From the different complexity of faults, it follows that the faults are to be processed during test generation by different strategies, e.g. to be processed at different FSM representation levels. Using AGs, it will be possible to process the faults at different FSM levels by uniform algorithms.

3.3. Representing transition faults on gate-level AGs. The class of transition faults (not to mix up with functional faults related to branches in STDs, as used in [8]) is related exclusively to the circuitry which calculates the transition condition effect, provided that all condition signals are fault free. These faults are difficult to define at the functional level because of the implementation dependency. On the other side, these faults influence always only on a single transition condition and therefore they cannot mask oneself as long the same transition will not be repeated. It means that as long not yet tested loops are not containing in test sequences, the faults of type (a) manifest himself as single faults in the whole iterative array related to the test sequence. This property gives the possibility to divide the test generation procedure into different steps and to carry out them on different levels without crossing the level borders if backtracking is needed. Particularly, the fault activization procedure will be carried out on the gate level where these faults are specified, whereas the signal justification (state initialization) and the fault propagation procedures can be carried out on the functional level given by STDs. From above, it follows that for representing the class of transition faults, stuck-at faults in the gate-level next-state logic have to be specified.

A digital circuit represented at the gate level can be described by AGs so that to each gate an elementary AG corresponds. In this case, the equivalence between gate-level faults and AG-faults is obvious. In the following we shall show that using some transformations, it is possible to substitute the gate-level representation in the form of AGs by a higher path�level model represented as well by alternative graphs.

3.4. Representing transition faults on signal-path-level AGs. Analogically to superposition of functions, superposition of AGs can be defined [25]: if the label x(m) of a node m in an AG G is Boolean function which is represented by another AG Gx(m) then the node m in G can be substituted by Gx(m). Generation of a compressed AG-model for a given gate-level digital circuit is based on the superposition of AGs. AGs for logical gates are assumed to be given as a source library. Starting from the gate-level AG-description and using iteratively the superposition procedure, we produce a more concise higher level representation of the circuit (by each substitution of a node with an AG, we reduce the model by one node and by one AG).

�
Fig.4. Representing a gate-level structure by a structural AG

As a result of the superposition procedure, we create structural AGs (SAG) which have the following property [13]: each node in a SAG represents a related signal path in the corresponding gate-level circuit. To avoid repeating in the AG-model many times the same subgraph, it is recommendable to create separate AGs for tree-like subcircuits. In this case, the number of all nodes in the set of SAGs will be equal to the number of paths in all tree-like subnetworks of the circuit. Hence, using the concept of SAGs, it is possible to rise from the gate-level descriptions of digital devices to more higher level structural descriptions without of loosing accuracy of representing gate-level stuck-at faults. The task of simulating structural stuck-at-faults in a given path of a circuit can be substituted by the task of simulating faults at a node in the corresponding SAG.

An example of a SAG for a combinational circuit is depicted in Fig.4. The nodes of AG are labelled by input variables of the circuit. For simplicity, the values of variables on branches are omitted (by convention, the right-hand branch corresponds to 1 and the lower�-hand branch to 0). Also, terminal nodes with constants 0 and 1 are omitted (leaving the AG to the right corresponds to y=1, and down - to y=0). To each node in the AG, a path in the circuit corresponds (the correspondence is shown by numbers). For example, a node 8 (bold circle) in the AG represents the bold path from the input branch 8 up to the output of the circuit. The node variables are inverted if the number of invertors in the corresponding path is odd. The set of stuck-at-1 faults along this path in the circuit is represented in the AG by only one representative fault T2,/1 (T2 stuck-at-l, i.e. the branch from the node 8 constantly activated to the right direction). The activated paths in the AG (shown by bold arrows) represent the situation when the fault T2/1 is activated (the test pattern 0011x (Tl,T2,T3, xl,x2), where x denotes an arbitrary value).

3.5. Representing input and state faults of FSMs in functional level AGs. Input faults (b) in mite state machines are related to the input lines of the FSM and, in general case, they affect upon more than one transition conditions during the test sequence. Hence, a single structural fault manifests himself as a multiple fault in the iterative array representation of a FSM, which results in difficulties of test generation at the structural level. From the other point of view, input faults are easily to be specified, activated and propagated at the functional level. Hence, in test generation for input faults of the FSM, the functional FSM representation in the form of STD is more preferred than the complex gate level model.

State faults (c) in FSMs are related to the memory flip-flops and, at the functional level, they could be related also to the state decoder, if the latter is a part of the next-state logic or if it is used for implementing output functions. For flip-flops, the stuck-at-0 (1) fault model can be used. For the state decoder, at the functional level, a more general functional fault model is used: stuck-at-0 (1) on outputs and faults "instead of given output, another output or a set of outputs is active". The state faults (flip-flop faults) affect upon more than one transition conditions and represent also the multiple fault case for the iterative combinational array model. To simplify the test generation, it is recommendable to define and process these faults only at the functional level FSM representation in the form of STD.

For representing the input (b) and state (c) faults in FSMs, alternative graphs will be used, which represent directly the state transition diagram of the FSM (see example in Fig.2). If decoders are used in a FSM for decoding input and/or internal states, then in the AG model, nodes with integer variables will represent these decoders. The functional faults of a decoder (stuck-at-0 (1), "instead of the given output another output is active") are represented by analogical faults at the corresponding node m the AG (compare to the fault model for nodes of AGs in Section 3.1). The structural bit-level stuck-at faults of functional integer variables are not difficult to insert if the tests for them are generated.

From above, it follows that for efficient test generation, a multi-level approach is advisable, where different faults will be at different levels processed. Traditionally for different levels, also, different description languages, fault models and test generation algorithms are used. Introducing AGs as a model for finite state machines, allows to remove this drawback.

4. Test sequence generation

4.1. Test generation for FSMs by pipelining partial test sequences. The test sequence for a single fault consists of three subsequences: initialization sequence, activation sequence and fault propagation sequence. The initialization sequence brings the FSM from current state to the state needed for activation the fault, the activation sequence contains only one input pattern needed additionally for activation the fault and the fault propagation sequence is the state-pair differentiating sequence that differentiates the good destination state from faulty ones and, thus, propagates the fault effect to the output. From the Section 3, it follows that all these subsequences can be carried out at the functional level, except only the fault activation stage for transition faults in the current time frame, which has to be processed at the structural level level. However, for transition faults, after they are activated at the lower structural level, the results can be easily transformed as well into the functional level by specifying the internal and input states needed for fault activation.
�
Fig.5. Pipelining test sequences for different faults

Test sequences for different faults will be automatically pipelined (overlapped) if we organize the test procedure by moving along paths in the STD rather than by generating tests for different faults separately. The necessary but not sufficient condition to create a test is traversing a set of paths that contains all branches in the STD. If not all faults are yet tested by this sequence, we have to find a set of branches needed for activating the remaining faults, and to traverse a new set of paths that contain all these branches. This procedure has to be repeated until all the faults in FSM will have a test sequence.

	In this procedure described, at each current step we have the following information:
- the current state q' reached by traversing the STD, and
- the list Q'(q') = { qk' (F)} of faulty states qk' for faults f (F activated, but not yet detected, and propagated up to this step (for all qk' : y(qk') = y(q') is valid); the faults f are needed to be indicated at the related faulty state only if they manifest himself as multiple faults.

�

Fig.6. Test generation procedure for the current time frame (current state of the FSM)

The operations to be carried out at the current step of the test generation procedure are the following (see also Fig.6):
- at the structural level
1) the current state q is decoded into state signals of flip-flops Ti;
2) fault activation is carried out and input pattern is generated for not yet tested structural faults, or the test pattern is analysed for faults detected, if it is already available;
3) the results are transformed into the functional level
- input pattern is transformed into input state;
- for each detected fault, a faulty next state is calculated and included into Q;
- at the functional level,
1) fault activation is carried out and input pattern (input state) is generated for not yet tested functional faults, or the test pattern is analysed for faults detected, if it is already available);
2) for each detected fault, a faulty next state is calculated and included into Q;
3) the next state q for the current q' is calculated;
4) for all current faulty states qk' (Q', faulty next states are calculated and
included into the list Q;
5) for all faulty next states qk (Q', the following analysis is carried out:
- if y(qk) (y(q) then, the faults, related to qk, are detected; qk is excluded from the list Q;
- if y(qk) = y(q) then the faults related to qk, are not detected and they are propagated into the next time frame.

Fault activation (or test pattern analysis) at both, structural and functional levels are carried out by uniform procedures using corresponding structural or functional alternative graphs. Also next state calculation and fault detectability analysis are carried out on AGs which represent STDs.

4.2. Test generation for FSMs using AGs. Fault activation and test pattern generation on AGs are based on path activization procedures. Fault analysis is based on path traversing procedures. In path activation on AGs, we have a goal-node and we have to find the values of node-variables, so that a path from the root-node up to the goal-node is activated. In path traversing on AGs, the values of node-variables are given, and we have to move along a path determined by these values and find a goal-node.

Consider, at first, AGs labelled only by Boolean variables and introduce the following notations:
l(m) - activated path from the root node up to the node m;
l(m, =1) (or l(m, =0)) - activated path from the node m up to the terminal node labelled by the constant l (or 0);
ml (or m0) - successor of the node m for the value z(m)=1 (or z(m)=0).

To activate a fault (generate a test for a fault) z(m)/e (z(m) stuck-at-e), e ({0,1} at a node m, means to activate simultaneously two nonoverlapping paths: l(m).l(m(e, =(e) and l(me, =e) at the value z(m) = (e. For example, in Fig.4, for testing a fault T2/1 at the node 8, we can activate paths l(m).l(m0, =0) = (l, 7, 8). (11,12,13, =0), and l(m1, =1) = (9, =1), which gives the test pattern 0011- (Tl,T2,T3,xl,x2). Activated paths in Fig.4 are depicted by bold arrows.

To analyse a test pattern for faults detected, means:
1) to find an activated by the pattern path l with a terminal node mT where z(mT) = e,
2) for all nodes mk (l, find the value ek = z(mkT) where mkT is the terminal node of the path l(mk(e, mkT) activated by the same pattern;
3) for all nodes mk (l, the given pattern detects the fault z(mk /(e if ek (e is valid. As an example, in Fig.4, by the test pattern 0011- (T1, T2, T3, x1, x2), a path l = (1,7,8,11,12,13) is activated. The condition (3) is valid only for nodes 8 and 13. So, by this pattern, the faults T2/1 and (xl/1 (or xl/0) are detected.
In the general case of AGs labelled by integer variables, test generation is based on the same path activization principles. Denote by l(mi, mT,i) - activated path from the node mi up to a terminal node mT,i (mi is the successor of the node m for the value z(m)=i).

To activate a fault (generate a test for a fault) z(m)/i -> j (z(m) =j instead of z(m)=i), means to activate simultaneously nonoverlapping paths l(m) and l(mk,mT,k) where k = i, j, so that z(mT,i) (z(mT,j). For example, in Fig.2, to activate the fault q'/2 -> 5 to output y, two test patterns are possible: 2010 (q', Res, xl, x2) or 2001. Here, in terminal nodes, for comparison, only y is considered. By the first pattern 2010, the following three paths for testing the node m = 3 (i = 2, j = 5) are activated: l(3) = (1,3), l(7, =0) = (7, 9, =0) and l(11, =1) =l(11,10, =1). As an example of test pattern analysis, consider again a pattern 2010 that activates a path l= (1, 3, 7, 9) on the AG in Fig.2 (shown by bold arrows). The condition (3) of fault detection is valid only for the node 7 and for the values l, and 4 of the variable q' in the node 3 (shown by bold circles). Hence, the following faults are detected by this pattern: q'/2 -> l, q'/2 -> 4, x2/l.

4.4. Complexity of test generation. Using the described multi-level approach, it is possible to reduce the complexity of test generation and the complexity of discovering redundant faults to the complexity of solving the same tasks for combinational circuits. Test generation for transition faults in gate-level next-state logic will be carried out, actually, in only a single time frame - a pattern will be generated on structural AGs, which specifies a state needed for testing the given fault. If the state is reachable, then the fault can be tested. On the contrary, if the state is not reachable, the fault is redundant and not testable. The reachability of states can be determined on the functional level, using AGs that correspond to STDs.

As an example, when trying to generate a test sequence for a fault (T3/1 at the node 3 in the graph D3 in Fig.7, it is needed only to try to test this node in D3. Activating the path 1(3) = (0,1,2,3), the only possible path to reach the node 3, it cames out that a state q = 7 (Tl=l, T2=1,T3=1) is needed to test the given fault. On the other side, at the functional level, it is easy to see that this state is not reachable. Hence, without trying to create any sequence longer than l, it was possible to show that the fault (T3/1 is redundant and not testable.

5. Fault diagnosis

5.1. Hierarchical fault diagnosis in FSM-s. In the following, the diagnosis methodology which operates on the observed erroneous behavior and the structure of the FSM will be considered. By examining the error and the structure of the FSM, possible sources of the error can be determined. There is a definite flow of signals from inputs to the outputs in the system. In this flow, an effect-cause relationship can be created in the form of diagnostic trees, where each node except leaves represents a signal error (an effect) and the successors of this node represent the possible causes of this error. Based on this tree, guided signal probing in the faulty system can be carried out.

To increase the efficiency of the diagnostic procedure (to reduce the number of signals to be probed), a hierarchical multi-level analysis and signal probing can be carried out. At first, faulty subcircuit will be localized at the higher functional level. This result can be achieved by a fault localization procedure organized on the basis of a higher level diagnostic tree (DT). A subcircuit will be qualified as faulty if he has a faulty output signal y and all input signals - successors of y in the DT - are correct. Next, the lower level description of the subcircuit will be taken, the corresponding lower level DT will be created and fault diagnosis based on this DT will be carried out. In this procedure, if possible, the results from the higher level diagnosis (for example, the information of correctness of certain input signals) can be exploited. Using AGs for describing FSMs at different levels, uniform procedures for creating and minimizing DTs at different FSM representation levels can be developed.

5.2. Fault backtracking on alternative graphs. Each path in an AG describes the behavior of the circuit in a specific mode of operation. The faults having effect on the behavior are related to nodes along the given path. A fault causes an incorrect leaving the path activated by a test. Hence, if we have activated a path in an AG by a test pattern which has failed then all faults related to nodes of the path can be regarded as fault candidates for the diagnosis procedure.

�

Fig.8. Fault diagnosis in FSM at the functional (STG) level

If an erroneous signal is detected in an output y of the circuit then by fault backtracking procedure, a set of candidate faults which can explain the misbehavior of y will be created. This set will be represented in the form of diagnostic tree (DT) with the root labelled by the failed output y. In this procedure, at first, in the graph Gy the path activated by failed test pattern will be determined. All the nodes of this path will be put into DT as successors of the root node. For each successor with a label x that corresponds to an internal node of the circuit and is represented by another graph Gx, again an activated path will be determined whose nodes will form in DT the set of successors of x. This procedure will be repeated recursively until all the leaves in DT are labelled by input variables. The number of nodes in DT found in this way is generally less than the number of nodes contained in the whole traceback cone [23] in the corresponding circuit. Using special analysis procedures in AGs, the number of nodes in the DT can be sometimes further reduced.

Let l be a path activated in the given AG by a failed test pattern, M(l) the set of nodes which are passed by l and mT the terminal node reached by l. The following rules can be used for further reducing nodes in the diagnostic tree:
1) Rule 1 (for all level AGs): if by the test pattern analysis procedure described in Section 4.2, a detectable fault at a node m (M(l) is found, then the node m remains in the DT; all other nodes will be excluded from probing. However, the use of the Rule l, in general case, is thoroughly justified only under single fault consumption.
2) Rule 2 (for AGs only, synthesized by the superposition procedure from the gate-level circuit [30]): only these nodes m (M(l) are consistent to explain the fault and have to remain in the DT, for which z(m) = z(mT) holds. The Rule 2 is less restrictive and it is valid also for the multiple fault cases.

5.3. Example. Consider a FSM represented in Fig.8 as a higher level structure, consisting of three next-state calculation blocks KSi, i=1,2,3 and a feedback register of three flip-flops. The behavior of the FSM is described by the functional AG in Fig.8 which represents the STD of the FSM. By bold arrows in the AG, an activated path is depicted which corresponds to the test pattern 101- (q', Res, xl, x2) at which an error in the value of q was detected. The path passes nodes 1,3,4, all of which will be included into the DT (Fig.8). However, the subsequent analysis (Rule 1) shows that only changes at nodes 3 (q' = 5) and 4 (xl = 0) can explain the faulty behavior q = 3 of the FSM. Hence, additional signal probing is needed to observe the real values of q' and x 1. Suppose, both signals are correct. From this it follows that the combinational part of the FSM has to be faulty because it has a faulty output and correct input signals. The conclusion has been made on the basis of functional level diagnosis. Descending to the bit-level, we determine that the 3rd bit in the state code is faulty which means that the next-state logic block KS3 has to be faulty.

�
Fig.9. Fault diagnosis in FSM at the logic (path) level

Consider now the gate-level implementation of the block KS3 (Fig.9) and the AG-model, synthesized from the circuit by the superposition procedure [30]. By bold arrows in the AG, an activated path is depicted which corresponds to the test pattern 00101- (T1,T2,T3,Res,x1,x2) at which an error in the value of D3 was detected. The path passes nodes 0,1,7,8,11,12,13, all of which will be included into the DT (Fig.9). However, the subsequent analysis (Rule 1) shows that only changes at nodes 0 (Res = 1), 8 (T2 = 1) and 13 (x1 = 0) can explain the faulty behavior q = 3 of the FSM. Using the result from higher level analysis that faults at the input Res cannot explain the failure, only nodes 8 and 13 remain to probe. Using the less restrictive Rule 2 for the multiple fault case, we find that also the node 1 has to be probed as a potential fault source.

6. Experimental results

A multi-level test generation system CPTEST [31,32], was implemented in C++ at the Tallinn Technical University. The finite state machines considered as examples for experimental research are those of MCNC standard benchmarks for synthesis. For our experiments, the gate-level implementations were synthesized by Synopsys. No control was exercised on this tool, and binary state coding was applied. Test generation results �for 15 FSM’s in Table 2 are described in Table 3. For each example in Table 2, the numbers of inputs (Inp), outputs (Out) and transitions (Tran) are given. In Table 3, on the left side the length of test sequence (number of patterns) needed in order to have traversed throughout all branches in STG each at least once (Test length), the fault coverage achieved by traversing all branches (Coverage), and the time required for that (Time) on a PC 486 66MHz are shown for each example.
�On the right side of Table 3, the length of test sequences (Test length), the total number of gate-level faults (Total) in FSM, the number of inserted (activated) faults (Ins faults), the number of detected faults (Detected faults), the fault coverage achieved (Coverage), and the time required (Time) are given. In the present version of CPTEST, for searching the target state (when activating a target fault), and for searching the state where the activated fault can be detected, the random path traversing technique is used. Also, in this version nonefficient traversing cycles which do not increase the fault coverage are not excluded from the total test sequence. A new deterministic technique is currently under development which is expected to increase the efficiency of the tool in reducing dramatically the test length,
reducing the test generation time and increasing the fault coverage. The results of the modified CPTEST with additional benchmark circuits are expected to be included in the final version of the paper.

Table 2. Characteristics of benchmark Finite State Machines

FSM�States�Inp�Out�Tran��lion9�9�25�2�1��bbara�10�4�2�60��cse�16�7�7�91��sand�32�11�9�184��planet�48�7�19�115��vtiidec�5�11�32�77��mc�4�3�5�10��dk15�4�3�5�32��lion�4�2�1�11��tav�4�4�4�49��log�17�9�24�29��s27�6�4�1�34��beecount�7�3�4�28��bbsse�16�7�7�56��mul8x8*�8�4�13�21�� * The circuit is not MCNC Benchmark
�
	Table 3. Test generation results for MCNC benchmarks
FSM�Test length�Total�Ins.
Faults�Detected faults�Coverage,%�Time, min��lion9�37�112�112�112�100.00�0.00,45��bbara�144�202�194�193�95.54�0.03,18��cse�615�540�538�527�98.70�0.43,44��sand�767�1140�1119�1119�98.16�1.22,09��planet�900�1070�1058�1058�98.88�1.22,07��vtiidec�823�210�207�207�98.57�0.12,58��mc�14�74�74�74�100.00�0.00,14��dk15�67�92�92�85�92.39�0.01,10��lion�20�58�58�58�100.00�0.00,15��tav�14�34�34�34�100.00�0.00.09��log�399�378�367�367�97.09�0.40,70��s27�48�60�60�60�100.00�0.00,36��beecount�150�126�126�120�95.24�0.02,70��bbsse�867�456�451�438�96.05�0.47,12��mul8x8�313�94�94�93�98.94�0.01,76��
The results of the experiments listed in Table 3 can be compared with published results of using different approaches and the same benchmarks described in Table 4. In our approach, no modifications of gate-level circuits produced by Synopsys have been made to improve the testability as, for example, in [33].

Table 4. Comparison with other ATPGs

��HITEC�[16]��STED�[17]��CHE90�[4]��FSM�No. of vec-tors�Cover %�Time,s (Sparc2)�No. of vec-tors�Cover%�Time,s (on VAX 11/8800)�No. of vec-
tors�Cover
%�Time,s
Sun
4/260��lion9�38�97,3�8.63�-�-�-�-�-�-��bbara�96�82.0�89.33�-�-�-�241�100.0�2��cse�349�100.0�23.48�397�100.0�29.5�880�97.86�45��sand�52�45.2�1339.9�722�99.43�7.7min�809�97.74�202��planet�91�64.5�917.7�1046�100.0�5.8min�600�98.26�35��mc�38�100.0�0.37�-�-�-�-�-�-��dk15�53�100.0�0.73�-�-�-�146�100.0�0.2��lion�47�100.0�0.45�-�-�-�-�-�-��tav�26�100.0�0.27�-�-�-�-�-�-��bbsse�255�100.0�18.38�-�-�-�-�-�-��s27�40�100.0�0.27�-�-�-�-�-�-��beec.�85�100.0�1.40�-�-�-�-�-�-��

7. Conclusions

In this paper, we have introduced alternative graphs as a mathematical model for systematic multi-level solution of test generation and fault diagnosis in finite state machines. For the description of functions, structure and faults in FSM, three levels are used: functional level (state transition diagrams), logical or signal-path level and gate level. For all these levels, uniform description language, uniform fault model and uniform procedures for test synthesis and analysis were developed. This uniformity allows easily to move and carry partial results from level to level when solving the tasks mentioned. From the more general point of view, the uniformity of the model allows to generalize methods, developed earlier for the logical level, to the higher functional (state transition) level as well. For example, the fault level defind on AGs can be regarded as a generalization of the classical gate-level stuck-at fault model for more higher level representations of digital systems.

In test generation, simultaneously all levels are used. One part of faults (gate-level stuck-at faults) are specified at the gate level, however, for further processing, the gate� level fault model is replaced by a more concise signal-path fault model. Another part of faults (functional faults) are specified at the functional level. State initialization and fault propagation are carried out only at the functional level. The test generation approach proposed allows to solve the inconsistencies of signals by backtracking at the level where signals were assigned without crossing level borders. This helps dramatically to reduce the search area during test generation, e.g. for gate-level faults, the complexity of test generation for sequential circuits is reduced to the complexity the combinational parts have.

Fault diagnosis will be carried out using top-down technology, keeping the complexity of candidate fault sets in each level as low as possible. Uniform, for all levels, fault tracing techniques to minimize the number of test points to be probed during fault locaIization are given. The technique is consistent to the multiple fault case and the fault class considered is general, not restricted to only the traditional stuck-at fault class.

References
[1] Hennie F.C. Fault detecting experiments for sequential circuits. Proc. of 5th Symp. on Switching Circuit Theory and Logical Design, Princeton, N.J., Nov,1964, pp.95-110.
[2] Ghosh A., Devadas S., Newton A.R. Sequential logic testing and verification. Kluwer Acad. Publish., 1992, 214 p.
[3] Agrawal W.D. When to use random testing. IEEE Trans. on Computers, vol. C-27, Nov.1978, pp.1054-1055.
[4] Cheng K.-T., Jou J.-Y. Functional test generation for FSMs. IEEE Int. Test Conference. 1990, pp.162-168.
[5] Grillmeyer O., Wilkinson A.J. The design and construction of a rule base and an inference engine for test system diagnosis. IEEE Int. Test Conf., 1985, pp.857-867.
[6] Davis R. Diagnostic reasoning based on structure and behavior. Artificial Intelli-gence 24 (1984) 347-410.
[7] Pitchumani V., Mayor P., Radia N. Fault diagnosis using functional fault model for VHDL descriptions. IEEE Int. Test Conf. Nashville, Oct., 1991, . pp.327-337.
[8] Ward, P.C., Armstrong, J.R. (1990). Behavioral fault simulation in VHDL. 27th ACM/IEEE Design Automation Conference,1990, pp.587-593.
[9] Ramamoorthy C.V. A structural theory of machine diagnosis. Proceedings of Spring Joint Computer Conference,1967, pp.743-756.
[10] Waicukauski J.A., Gupta V.P., Patel S.T. Diagnosis of BIST failures by PPSFP simulation. 18th IEEE International Test Conference, Washington, Sep.1987,pp.480-484.
[11] Rajski J. GEMINI - a logic system for fault diagnosis based on set functions. 18th Int. Symposium on Fault Tolerant Computing, Tokyo,1988, June,pp.292-297.
[12] Ubar R. Test Synthesis with alternative graphs. IEEE Design & Test of Computers. Spring 1996, pp.48-57.
[13] Minato S. Binary Decision Diagrams and Applications for VLSI CAD. Kluwer Academic Publish.,1996, 141 p.
[14] Ubar R., Evartson T. Optimization of fault localization procedures in computer : hardware. In "CAD in electronical and computer engineering ", Part I., Vilnius, Lithuania, 1981, pp.I75-184 (in Russian).
[15] Brik M., Ubar R. Hierarchical test generation for finite state machines. Proc. of the 4th Baltic Electronics Conference. Tallinn, October 1994, pp.319-324.
[16] Niermann T.M., Patel J.H. HITEC: A test generation package for sequential circuits. Proc. European Design Automation Conference,1991, pp.214-218.
[17] Ghosh A., Devadas S., Newton A.R. Test generation and verification for highly sequential circuits. IEEE Trans. on CAD, Vo1.10, No.S, May 1991.

�PAGE �6�

