
Localization of Single Gate Design Errors in Combinational Circuits by
Diagnostic Information about Stuck-at Faults

R. Ubar1, D. Borrione
Universit� Joseph Fourier/TIMA, 120 Rue de la Piscine, Grenoble, France

raiub@pld.ttu.ee, Dominique.Borrione@imag.fr

Abstract

A new approach to detecting and localizing single gate design errors in combinational circuits is
proposed. The method is based on using fault tables for stuck-at fault diagnosis with subsequent
translation of the result into the design error area. This allows to exploit standard gate-level ATPGs
also for diagnosis of design errors. A powerful hierarchical approach is proposed based on using
structurally synthesized BDDs, where combining the error detection and diagnosis phases into a
single whole allows to drastically reduce the amount of work for error site localization.

1. Introduction

Digital systems are becoming increasingly complex and therefore, design verification and design error localization
are becoming more and more time consuming in case of designs containing hundreds of thousands gates as random
logic. Verification and error localization are traditionally handled separately: for verification the methods of
simulation and tautology checking can be used, whereas for error localization, after an error is detected, other
dedicated methods are introduced [1,2].
While a lot of work has been done in the field of test synthesis and fault diagnosis in relation to fabrication faults,
very little has been done in the field of design error diagnosis [1-5]. In [6] a new BDD technique has been proposed,
however the explosion of the complexity for some classes of circuits puts practical limitations to the use of BDDs in
locating design errors. A brief overview of currently available solutions to the diagnosis problem has been given in
[2].
The technique proposed in [1] assumes the existence of a single gate error in the combinational circuit. Simple gate
errors are considered, and three error hypotheses have been introduced. The diagnoser works successively under one
of these hypotheses. The reasoning will be carried out at the plain gate level. A set of rules has been developed for
all procedures with gates concerning the diagnostic reasoning as well as the creation of activated paths through gates.
In the present paper, the same problem is formulated as in [1], i.e. a single design error case in combinational
circuits is being attacked. Differently from [1] where the whole analysis is carried out at the plain gate level, in the
present paper, a hierarchical approach will be exploited which allows to increase the speed in error detection and
localization. Also differently from [1] where only the diagnosis problem is formulated and solved, in the present
paper, the error detection and error diagnosis tasks are solved jointly which allows to increase the efficiency of error
localization.
The originality of this paper lies in using structurally synthesized BDDs [7] which allowed to develop efficient
higher than gate level path activation and fault reasoning procedures for increasing the speed in test generation and
fault diagnosis. The method developed in the paper is based on the stuck-at fault model, where all the analysis and
reasoning is carried out in terms of stuck-at faults and only in the end, the result of diagnosis will be mapped into
the design error area. Such a treatment allows to exploit traditional ATPGs to serve the problem of design error
diagnosis.
The paper is organized in the following manner. Section 2 presents the necessary definitions and terminology. The
use of stuck-at faults and mapping the diagnosis results into the design error area is explained in Section 3. The
error detection technique is given in Section 4, and the error localization ideas are described in Section 5. Some
considerations on the efficiency of the approach are brought in Section 6, and Section 7 presents some conclusions.

1 On the leave from Tallinn Technical University, Raja 15, EE0026 Tallinn, Estonia.

2. Definitions and Terminology

Consider a circuit specification, and its implementation, both at the Boolean level. The specification output is given
by a set of variables W = {w1 , w2 , ... , wm}, and the implementation output is given by a set of variables Y = {y1 ,
y2 , ... , ym}, where m is the number of outputs. Let X = {x1 , x2 , ... , xn} be the set of input variables. The
implementation is a gate network and Z is the set of internal variables used for the connection of gates. The gates are
implementing simple Boolean functions AND, OR, NAND, NOR and NOT. An additional gate type FAN is added
(one input, two or more outputs) to model fanout points.
We use two different levels for representing the network: the gate and macro-level representations. Let S be the set of
variables in the implementation S = Y È Z È X. Let XF and ZF be the subsets of inputs and internal variables that
fanout (they are input to a FAN gate). Let ZFG be the subset of internal variables that are output of a FAN gate. Then
at the gate level, the network can be described by a set NG = {gk} of gate functions sk = gk (sk

1, sk
2, ... ,sk

h) where sk

Î Y È Z, and sk
j Î Z È (X - XF). Let us introduce macro functions for representing tree-like subcircuits of the

network. Then, at the macro-level, the network is given by a set NF = {fk} of macro functions sk = fk (sk
1, sk

2, ...,
sk

p) where sk Î Y È ZF, and sk
j Î ZFG È (X - XF).

 Definition 2.1. Test patterns. For a circuit with n inputs, a test pattern T is a n-bit vector which may be binary Bn

or ternary Tn, where B = {0,1} - the Boolean domain, T = {0,1,U} - the ternary domain, where U - is a donÕt care.
 Definition 2.2. Stuck-at fault set. Let F be the set of stuck-at-1 faults s/1 and stuck-at-0 faults s/0, where sÎ Z È X.
Detection of faults in F is sufficient for stating that the circuit is stuck-at fault free.
 Definition 2.3. Detecting stuck-at faults. A test pattern Ti detects a stuck-at-e fault s/e, e Î {0,1} at the output y j, if
when applying the test pattern Ti to the implementation and the specification, the result yj (Ti) ¹ wj (Ti) is observed.
Mathematically, a stuck-at-e is detected on s if: Ti ® (¶y/¶s = 1) & (s = Øe), where sÎ Z È X, and y ÎY.
 Definition 2.4. Stuck-at fault cover. The circuit is tested completely by a test T = {T1, T2, ... T t} for stuck-at
faults, iff T detects all the faults in F. The gate gk which implements the function sk = gk (sk

1, sk
2, ... ,sk

h) is tested
by T for stuck-at faults, iff T detects both stuck-at-1 and stuck-at-0 faults at all the gate inputs sk

j.
The stuck-at fault model does not have in this paper a physical meaning. In reality, a design error is detected at yj

when under the application of a test Tk, a result y j (Tk) ¹ wj (Tk) is observed. Using the stuck-at fault model, we
only imitate the traditional testing by comparing the behavior of the implementation and the specification as a
Ògolden deviceÓ. From tests that have shown an error, we produce, as in the case of traditional testing, a diagnosis
in terms of stuck-at faults, which are then mapped into design errors. The following design error types are considered
throughout the paper in relation to gates gk ÎNG.
 Definition 2.5. Gate replacement error. It denotes a design error which can be corrected by replacing the gate gi in
NG with another gate gj , by gi ® gj.
 Definition 2.6. Extra/missing invertor error. It denotes a design error which can be corrected by removing/inserting
an invertor at some input s Î X, or at some fanout branch s Î ZFG : s ® NOT(s).
 Definition 2.7. Single error hypothesis. Our design error diagnosis methodology is based on a single error
hypothesis where it is assumed that in the circuit a single error from the following error types can exist: 1) an
extra/missing inverter, 2) an arbitrary gate replacement between AND, OR, NAND, NOR gates.

3. Mapping detected stuck-at faults into design errors
 Theorem 3.1. To detect a design error in the implementation at an arbitrary gate gk where sk = gk (s1, s2,...,sh), it is
sufficient to apply a pair of test patterns which detect the stuck-at faults si /1 and si /0 at one of the gate inputs si, i =
1,2, ... h.
Proof. 1. Consider first the detection of AND « OR errors. A necessary condition is:
 (s1 Ù s2 Ù ... sh) Å (s1 Ú s2 Ú ... sh) = 1. (1)
The possible solutions of this equation are

 si Ù Ø sj = 1, where i,j = 1,2, ... h, and i ¹ j. (2)
 Thus, if we set at least two inputs of a gate to complementary values, then the errors of types AND ® OR and OR
® AND will be detected at the output of the gate.
2. Consider the case of design errors related to the AND gate. Let us choose a test pattern

TAND,1 = {si = 0, "j, j¹i: sj = 1},
which is one of solutions (2) of the equation (1), and which detect also the stuck-at fault si/1 at the AND input. It is
easy to see that the pattern TAND,1 detects not only the error AND ® OR, but also the error AND ® NAND, and the
errors of missing/extra invertors at the input si.
Consider now the error AND ® NOR. The necessary condition for detecting the error can be formulated as:
 (s1 Ù s2 Ù ... sh) Å Ø (s1 Ú s2 Ú ... sh) = 1, (3)
which has two solutions:

 (s1 Ù s2 Ù ... sh) = 1, (4)
 (Ø s1 Ù Ø s2 Ù ... Ø sh) = 1. (5)

The solution (4) gives a test pattern TAND,2 = {"i, i = 1,2, ... h: si = 1},
which detects not only the design error AND ® NOR, but also stuck-at faults si /0 at all of the AND inputs. It is
easy to see that the pattern TAND,2 detects also all the errors of missing/extra invertor at the other AND gate inputs sj,
j¹i which were not detected by the pattern TAND,1.
Hence, we have shown that the test patterns TAND,1 and TAND,2 which detect, correspondingly, a stuck-at fault si /1
and a stuck-at fault si /0 at least at one input si, of the gate are sufficient for detecting all the design errors related to
the replacement of AND by another gate and the invertor errors at all the inputs of the AND gate.
3. Consider now the case of design errors related to the OR gate. Let us choose a test pattern

TOR,1 = {si = 1, "j, j¹i: sj = 0},
which is one of solutions (2) of the equation (1), and which detects the stuck-at fault si/0 at the OR input. It is easy
to see that the pattern TOR,1 detects not only the error OR ® AND, but also the error OR ® NOR, and the errors of
missing/extra invertors at the input si.
Consider now the error OR ® NAND. The necessary condition for detecting this error can be formulated as:
 (s1 Ú s2 Ú ... sh) Å Ø (s1 Ù s2 Ù ... sh) = 1. (6)
There are two solutions for this equation, which can be formulated as (4) and (5). The solution (5) gives a test
pattern

TOR,2 = {"i, i = 1,2, ... h: si = 0},
which detects not only the design error OR ® NAND, but also stuck-at faults si /1 at all of the OR inputs. It is easy
to see that the pattern TOR,2 detects also all the errors of missing/extra invertor at the other OR gate inputs s j, j¹i
which were not detected by the pattern TOR,1.
Hence, we have shown that the test patterns TOR,1 and TOR,2 which detect, correspondingly, a stuck-at fault si/0 and a
stuck-at fault si/1 at least at one input of the gate are sufficient for detecting all the design errors related to the
replacement of OR by another gate and all the invertor errors at the inputs of the OR gate.
4. In similar way as in points 1 and 2, we can show that the test patterns TAND,1 and TAND,2 which detect a stuck-at
fault si/1 and a stuck-at fault si /0 at least at one input of the NAND gate, are sufficient for detecting all the
replacements of a NAND by another gate, and the invertor errors at all the inputs of the NAND gate.
5. In the same way as in points 1 and 3, we can show that the test patterns TOR,1 and TOR,2 which detect a stuck-at
fault si /0 and a stuck-at fault si /1 at least at one input of the NOR gate are sufficient for detecting all the
replacements of a NOR by another gate, and the invertor errors at all the inputs of the NOR gate. n
From the proof of the Theorem 1, the following set of corollaries follows which describe the mapping from a stuck-at
fault diagnosis to a design error diagnosis.
 Corollary 3.1. Localizing both the stuck-at-1 and stuck-at-0 faults on two or more gate inputs refers to the
missing/extra invertor at the output of the gate, i.e. to the replacement errors: AND « NAND and OR « NOR.
 Corollary 3.2. Localizing stuck-at-1 faults at one or more gate inputs refers to the replacement errors: AND ® OR,
OR ® NAND, NAND ® NOR, and NOR ® AND.
 Corollary 3.3. Localizing stuck-at-0 faults at one or more gate inputs refers to the replacement errors: AND ®
NOR, OR ® AND, NAND ® OR, and NOR ® NAND.
 Corollary 3.4. Localizing both the stuck-at-1 and stuck-at-0 faults at one of the gate inputs si refers to the error si ®
NOT(si) at this input.
From the single error hypothesis, the following statement in relation to extra/missing inverters errors results.
 Corollary 3.5. Localizing both the stuck-at-1 and stuck-at-0 faults at more than one branch of a primary input siÎXF

refers to the error si ® NOT(si) at this input.

 Example 3.1. As a direct illustration of Theorem 1 and Corollaries 3.1 - 3.4 , the mapping between localized stuck-
at faults and design errors for 2-input gates is shown in Table 1.

Gate Stuck-at faults Design error Gate Stuck-at faults Design error
s1 s2 s1 s2

0 1 0 1 NAND 0 1 0 1 AND
1 1 OR 0 0 OR

AND 0 0 NOR NAND 1 1 NOR
0 1 NOT(x1) 0 1 NOT(x1)

0 1 NOT(x2) 0 1 NOT(x2)
0 1 0 1 NOR 0 1 0 1 OR
0 0 AND 1 1 AND

OR 1 1 NAND NOR 0 0 NAND
0 1 NOT(x1) 0 1 NOT(x1)

0 1 NOT(x2) 0 1 NOT(x2)

 Table 1: Mapping between stuck-at faults and gate errors

4. Test Generation for Detecting Design Errors with Structurally Synthesized BDDs
The test patterns generated for detecting the stuck-at faults in combinational circuits can be used for detecting simple
gate design errors. We now consider a method which was developed for macro-level test generation based on using
structurally synthesized BDDs (SSBDD) as the model for macros[7]. Test patterns are generated and faults are
detected at the macro-level, however the fault (and error) diagnosis is made at the gate-level. Therefore, a
correspondence should be established to map the macro-level results again back to the gate-level.
Consider a given implementation as a network of macros NF = {fk}, where each macro is a tree-like subnetwork
whose inputs s Î Sk are either primary inputs which are not fanouts, s Î X - XF, or branches of the fanout nodes of
the network, s Î ZFG. Each macro fk Î NF implements a function sk = fk (sk

1, sk
2, ..., sk

p), given in an equivalent
parenthesis form (EPF) [8], where the arguments sk

j Î Sk in EPF are considered as literals.
 Definition 4.1. Signal paths. Let sk = fk(sk

1, sk
2, ..., sk

p) be a macro implemented at the gate level, and Sk = {sk
1,

sk
2, ..., sk

p} be its set of inputs. We denote L(sk
j) the set of variables on a path) from the input of the macro sk

j Î Sk

to its output sk. As macros are trees, there exists a one-to-one correspondence between inputs sk
j
 Î Sk and the gate-

level signal paths L(sk
j) in the macro. The literal sk

j in the EPF is an inverted (not inverted) variable if the number of
invertors on the path from sk

j to sk is odd (even).
 Definition 4.2. A SSBDD is a graph Gk = (Mk,Gk,Sk) with a set of nodes Mk, which represents a macro fk so that a
one-to-one correspondence exists between the nodes m Î Mk and signal paths L(s) where s Î Sk. The set of nodes
Mk is partitioned into nonterminal nodes Mk

N and terminal nodes Mk
T, Mk = Mk

N È Mk
T. There is one initial node

m0 Î Mk
N and only two terminal nodes: Mk

T = {mT,0, mT,1}. The terminal nodes are labelled by constants 0 and 1,
whereas the nodes m Î Mk

N are labelled by literals s Î Sk. There is a mapping from the set of nodes of the SSBDD
to the the set of literals of the EPF: let s(m) denote the literal at the node m. The mapping Gk (m, e) defines the
successor of m for the value of s(m) = e, e Î{0, 1}. Denote Gk (m, e) = me. A test pattern Ti which assigns values to
Sk, defines a set of activated edges in Gk. The edge between m and me is activated when s(m) = e for the pattern T i.
Activated edges which connect nodes mi and mj make up an activated path in the graph (an ordered subset of nodes)
l(mi, mj)Í Mk. A path l(m0, m

T,e) is called fully activated path. A SSBDD Gk = (Mk,Gk,Sk) represents a gate-level
network which implements the function sk = fk(sk

1, sk
2, ..., sk

p) iff for each pattern T i, a full path l(m0, m
T,e) in Gk

will be activated such that sk = e [7,8]. The procedure of formal synthesis of SSBDDs from gate-level networks
based on a graph superposition procedure is considered in [7,8].

 Fig.1. Combinational circuit

 Example 4.1. Consider the combinational circuit of Fig.1 given as a Boolean function in an EPF as follows:

y = ((x1 Ù x2,1) Ú (Øx2,2 Ù x3,1)) Ù ((x3,2 Ù Øx4,1) Ú (x4,2 Ù x5)).
The circuit in Fig.1 is represented by a structurally synthesized BDD in Fig.2. For simplicity, only indexes of the
variables sÎS at the nodes of the circuit and of the SSBDD are shown. The one-to-one correspondence between
paths L in the circuit, literals xi in the EPF, and nodes m in the SSBDD is given in Table 2. Table 2 illustrates
the mapping from nodes m of the SSBDD both to the literals of EPF by s(m), and to the gate-level paths of the
implementation by L(s(m)).

 Fig.2. SSBDD for the combinational circuit in Fig.1.

1 21

22 31

32

42

41

5

y # 1

0

m1 m2

m3 m4

m5 m6

m7 m8

AND

AND

AND

OR

OR

AND

NOT

NOT

1
2

3

4

5

21

22

31

32

41

42

6

7

8

9

10

11

12

13

14

AND

Node in the SSBDD m m1 m2 m3 m4

Literal in the EPF s(m) Î Sk x1 x2,1 Øx2,2 x3,1

Path in the circuit L(s(m)) 14, 12, 8, 1 14, 12, 8, 21 14, 12, 9, 6, 22 14, 12, 9, 31

Node in the SSBDD m m5 m6 m7 m8

Literal in the EPF s(m) Î Sk x3,2 Øx4,1 x4,2 x5

Path in the circuit L(s(m)) 14, 13, 10, 32 14, 13, 10, 7, 41 14, 13, 11, 42 14, 13, 11, 5

 Table 2: Correspondence between nodes, literals and paths

 Theorem 4.1 . A node m Î Mk
N in the SSBDD Gk, is tested for a fault s(m)/e by a test pattern T i iff the test

activates in the graph the following three paths: l1 = l(m0, m), l2 = l(m0, mT,0), l3 = l(m1, mT,1), and s(m) = Øe.

The proof is given in [7].
If sk Ï Y, then a path in the circuit should be activated from sk through other macros to some of the primary outputs
of the network.
 Theorem 4.2 . If a test pair (T1,T2) which detects both stuck-at faults s(m)/1 and s(m)/0 at the node mÎ Mk

N in Gk,
does not show an error, then all the gates along the path L(s(m)) in the gate-implementation are free from design
errors.
Proof. From the definition of SSBDDs, it follows that a node m in Gk labelled by a variable s(m) represents the
signal path L(s(m)) in the circuit. In [7] it was shown that to test the faults s(m)/1 and s(m)/0 in Gk is equivalent to
testing all the stuck-at faults along the path L(s(m)). In other words, if a test pair (T1, T2) which detects the stuck-at
faults s(m)/1 and s(m)/0 at the node m in SSBDD Gk shows no error on the implementation outputs, it means that
no stuck-at faults on the path L(s(m)) in the gate-level implementation can be present. In accordance with Theorem
3.1 and Corollaries 3.1 - 3.5, it also means that no design errors on the path L(s(m)) can be present. n
 Example 4.2. Let us create a test pair for testing both stuck-at faults s(m5)/0 and s(m5)/1 at the node m5 in Fig.2. To
test the fault s(m5)/0 (which means x3,2/0), we find the needed assignments according to Theorem 4.1: l1 = (m1, m2)
® { x1 = 1, x2 = 1}, l2 = (m7, #0) ® { x4 = 0}, l3 = (m6, #1) ®{ x4 = 0}, and s(m5) = 1 ® x3 = 1, which results
in the test pattern T1 = (1110U). To test the fault s(m5)/1 (which means x3,2/1), we activate the same paths l1, l2, l3,
and assign s(m5) = 0 ® x3 = 0, which results in the second test pattern T2 = (1100U). According to Theorem 4.2,
these patterns detect all the stuck-at faults on the signal path L(s(m5)) = L(x3,2) = {32,10,13,14} in the circuit in
Fig.1. The tested path is highlighted in Fig.1 by bold lines
 Corollary 4.1. If a test pattern Ti which shows an error detects a fault s(m)/e, eÎ{0,1} in fk, then a stuck-at fault at
each node along the signal path L(s(m)) is suspected as faulty, whereas the type of the suspected fault eÎ{0,1} at a
node is e=1 (e=0) if the number of invertors from s(m) to sk is odd (even).
 Example 4.3. Suppose a test pattern T i = (11110) which detects the faults {s(m6)/1 ® x4,1/0, s(m8)/1 ® x5/1}
shows an error. Then the following gate-level stuck-at faults are suspected: x4,1 /0 ® {x4,1 /0, x7 /1, x10 /1, x13 /1,
x14/1}, and x5 /1 ® {x11 /1, x13 /1,x14 /1}.

5. Design Error Diagnosis Using Fault Tables for Stuck-at Faults
The test patterns generated for detecting the stuck-at faults in combinational circuits can be used for diagnosing
single gate design errors. Assume we have generated a set of test patterns T = {T1, T2, ... T t} for detecting the
stuck-at faults at gate inputs and at the primary inputs of the circuit which are fanouts.
 Definition 5.1. Detectable faults. Let us denote F(Ti, y) the set of stuck-at faults detectable by the test pattern T i at
the primary output y Î Y. For each one of these faults, sj /e, the value of variable sj should be different from e under
Ti and this fault is propagated to the output y. Mathematically:

F(Ti, y) = {sj /e½ sjÎS , Ti ® (¶y/¶sj = 1) & (sj = Øe) } Í F
We denote E (Ti) the subset of primary outputs where an error has been detected by applying the test pattern Ti.

E (Ti) = {yk Î Y ½ yk (Ti) ¹ wk (Ti) }Í Y.
 Theorem 5.1. If a test pattern Ti shows an error, the following set of suspected faults results

F(Ti) = Ç yÎ E(Ti) F(Ti, y) - È y ÎY- E(Ti) F(Ti, y).
F(Ti) is the set difference between (1) the intersection of the sets of faults detectable at the primary outputs where an
error was shown and (2) all the sets of faults detectable at the primary outputs where no error was shown.
Proof. The proof results from the single error hypothesis. If an error has been detected at more than one output y Î
E(Ti) Í Y then only a single fault can be the cause of that. Therefore, only the intersection of the sets of suspected
faults F(T i, y) at erroneous outputs yÎE(Ti) can contain the existing fault. On the other hand, if some suspected
faults from this intersection have a direct impact on the outputs where no error has been detected, they can no longer
be suspected. Therefore, the union of all F(T i, y) for all yÎY-E(Ti) should be substracted from the intersection of
suspected faults observed at erroneous outputs yÎE(Ti). n

 Corollary 5.1. For a diagnostic experiment with a test T, let E Í T be the subset of test patterns that show an error;
the set of suspected faults F(T) can be calculated in the following way:

F(T) = Ç Ti Î E F(Ti) - È Ti Î T - E F(Ti).

Test Fault Table (detected faults at variabes s(mi))
Ti pattern s(m1) s(m2) s(m3) s(m4) s(m5) s(m6) s(m7) s(m8) E

x1 x2,1 Øx2,2 x3,1 x3,2 Øx4,1 x4,2 x5

T1 1110x 0 0 0 0 0
T2 0110x 1 1 1
T3 11011 0 0 0 0 0
T4 10011 1 1 1
T5 0010x 0 0 0 0 0
T6 11001 1 1 0
T7 11110 1 1 0

T8 00011 1 0

 Table 3 . Stuck-at fault table

 Example 5.1. Consider a test experiment T = { T1 , T2 ÉT7 } with 7 test patterns which are applied to the inputs
of the circuit in Fig.1 and Fig.2. The test patterns Ti Î T and the sets of detectable faults F(T i, yk) are described in
Table 3. The entry Ò1Ó or Ò0Ó in a columns s(mi) means detection of the fault s(mi)/1 or s(mi)/0. As we see, the test
is complete, all the stuck-at faults in the circuit are tested, and according to Theorem 4.2. this test is able to detect
all single gate design errors. Now suppose the test patterns T2 and T4 show an error. According to Theorem 5.1,
we have F(T2) = {x1 /1, x2,2 /0}, and F(T4) = {x2,1 /1, x3,1 /1}. In this case, Corollary 5.1 cannot reduce this set of
suspected faults, hence: F(T) = {x1 /1, x2,2 /0, x2,1 /1, x3,1 /1}. From Corollaries 4.1, and Theorem 3.1, the suspected
set of erroneous gates determined by test T is: Suspected(T) = {g6, g8, g9, g12}. By adding an additional test T8 =
(00011) which detects the fault x3,1 /1, we can remove the gates g9 and g12 from this list. As x2,2 /0 is suspected, but
x2,2 /1 is correct then, according to Corollary 3.4, the gate g6 is also correct. From the final list Suspected (T) = {g8}
and from Corollary 3.2, it follows that in the circuit a design error AND8 ® OR8 is present.

6. Considerations on the Efficiency of the Approach and Experimental Data
The proposed diagnostic procedure consists of two parts : error detection and error diagnosis. Both parts are based
on using the stuck-at fault model and the hierarchical representation of random logic by SSBDDs. The complexity
of test generation (the number of tests needed) for error detection is determined by the possibility of covering all the
gates of the circuit by as few paths as possible.
The number of generated and compacted test patterns needed for fault detection is given in Table for ISCASÕ85
circuits. The efficiency of test generation when using SSBDDs for representing macros instead of gates is illustrated
by the time (in seconds) needed for test generation. The last column illustrates the efficiency of using SSBDDs when
determining the faults detected by test patterns as the basic operation in fault diagnosis. A ratio of simulation speeds
between using the gate level and macro level is given in the last column.

ISCAS
circuit

Number
of gates

Fault
cover, %

Number of
test

patterns

Compacted
patterns

TPG
time, s

Fault simulation
gate/macro speed ratio

c432 160 97.33 89 55 0.10 3,86
c880 383 100.00 140 100 0.05 5,15
c1355 546 99.64 70 52 0.24 3,08
c1908 880 99.75 144 122 0.22 6,46
c2670 1193 96.67 160 119 0.55 6,47
c3540 1669 95.58 201 145 0.77 8,81
c5315 2307 99.78 178 108 0.57 8,37
c6288 2416 99.80 41 33 0.60 2,55
c7552 99.46 276 198 2.71 9,04

 Table 4 . Experimental data

For fault diagnosis the method proposed in the paper has the following advantages compared to the previous work
[1]:
1. The design error detection and localization are combined and based on the same technique; this facilitates the use
of the information about error free nodes, already obtained during the error detection procedure, for error localization.

2. The whole procedure takes place hierarchically at three different levels: macro level (for error detection and for
localization of the erroneous macro), gate level (for localization of the node related to the site of the design error), and
Òstuck-at fault to design error mappingÓ level for exact specification of the design error. Exploiting the hierarchy
allows to combine the efficiency of working at the higher level (for error detection) with the accuracy (needed for error
diagnosis) at the lower level.
3. Working with the stuck-at fault model, on a single error hypothesis, corresponds to working with all three
hypothesis from [1] in parallel.

7. Conclusions.
In this paper, a new approach has been presented, to automatically diagnose single design errors in combinational
circuits. The main original features of the method are: the hierarchical approach, based on using structurally
synthesized BDDs, the use of very powerful error detection and fault localization procedures based on SSBDDs and
the idea of mapping stuck-at fault diagnosis into the final localization of the design error. The latter allows to use the
test patterns and fault tables generated for stuck-at faults to produce design error diagnosis. Experimental data are
provided for showing the efficiency of the error detection phase of the method. The efficiency of the second phase -
error site localization, results from the drastically reduced area where the searh for the faulty gate should be continued
after error detection. The work on showing the efficiency of the error localization with support of corresponding
experiments has been started. The future research in this field is directed to the case of multiple design errors and to
the case of complex gates. The use of word level DDs seems to be very efficient in design error diagnosis at higher
functional levels like RTL or behavioral ones.

Acknowledgements. Authors appreciate the work of Jaan Raik, Gert Jervan and Antti Markus from the Tallinn
Technical University for carrying out the experiments.

References
1. A.M. Wahba, D. Borrione. A Method for Automatic Design Error Location and Correction in Combinational

Logic Circuits. J. of Electronic Testing: Theory and Applications 8, 113-127 (1996).
2. A.M. Wahba. Diagnostic des Erreurs de Conception dans les Circuits Digitaux: le Cas des Erreurs Simples.

PhD Dissertation. UJF/TIMA, Grenoble, 1997, 156 p. (In French)
3. K.A. Tamura. Locating Functional Errors in Logic Circuits. Proc. 26th Design Automation Conf., 1989, pp.

185-191.
4. J.C. Madre, O.Coudert, J.P.Billon. Automating the Diagnosis and the Rectification of Design Errors with

PRIAM. Proc. ICCADÕ89, 1989, pp.30-33.
5. M. Tomita, T.Yamamoto, F.Sumikawa, K.Hirano. Rectification of Multiple Logic Design Errors in Multiple

Output Circuits. Proc. 31st Design Automation Conf., 1994, pp. 212-217.
6. P.Y. Chung, Y.M. Wang, I.N. Hajj. Diagnosis and Correction of Logic Design Errors in Digital Circuits.

Proc. 30th Design Automation Conf., 1993, pp. 503-508.
7. R. Ubar. Test Synthesis with Alternative Graphs (R.Ubar). IEEE Design and Test of Computers. Spring,

1996, pp.48-59.
8. R. Ubar. Combining Functional and Structural Approaches in Test Generation for Digital Systems. Micro-

electronics and Reliability. Elsevier Science Ltd. No.1, pp.1-13, 1998.

