
Application Report
SLAA357–March 2007

Efficient MSP430 Code Synthesis for an FIR Filter
Kripasagar Venkat... MSP430

ABSTRACT
Digital filtering can be easily accomplished on the MSP430 using efficient
multiplication.[1] The tool accompanying this document automatically converts FIR filter
coefficients to MSP430 assembly code that can be used in any application. Horner’s
method and CSD format is used to accomplish the efficient multiply operations. The
performance of the filter on the MSP430 is shown by evaluating the gain across all
frequencies. Performance in terms of CPU cycles, code size, and frequency response
of low-pass, high-pass, band-pass, band-stop, and notch filters on the MSP430 is
shown in Appendix A.

Contents
1 Introduction .. 2
2 FIR Filter Code Synthesizer... 2
3 References .. 4
Appendix A FIR Filter Examples .. 5
Appendix B File List ... 10

List of Figures

A-1 Low-Pass FIR Filter Response ... 5
A-2 High-Pass FIR Filter Response... 6
A-3 Band-Pass FIR Filter Response .. 7
A-4 Band-Stop FIR Filter Response .. 8
A-5 Notch FIR Filter Response .. 9

All trademarks are the property of their respective owners.

SLAA357–March 2007 Efficient MSP430 Code Synthesis for an FIR Filter 1
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA357

www.ti.com

1 Introduction

2 FIR Filter Code Synthesizer

2.1 Input Parameters

2.1.1 Filter Coefficients

2.1.2 Filter Length

2.1.3 Bit Resolution for the Filter Coefficients

2.1.4 Sampling Frequency

Introduction

An FIR filter, known for its inherent stability and linear phase property, sometimes is an ideal choice for
digital filtering.[2] The filter coefficients are always floating point numbers that need to be scaled to the
nearest integer for their operation in fixed-point machines, such as the MSP430 microcontrollers.[3] In
addition, such a filtering in the absence of a hardware multiplier becomes expensive in terms of CPU
cycles. The solution to both these concerns is Horner’s method. Horner’s method has the ability to perform
an integer-float multiply, thus eliminating the need for scaling of the filter coefficients. The efficiency in
terms of CPU cycles is achieved by using only shift and add instructions to perform the multiplication.[1]
The tool downloadable with this document generates efficient MSP430 code for any FIR filter, given its
coefficients. Additionally, a C wrapper file and data file are generated that perform a frequency sweep of
the data to verify the filter's performance.

The FIR filter code synthesizer FIR_filter_codegen.exe is a tool that accompanies this document. Input to
this tool are the FIR filter coefficients, filter length, bit resolutions (integer and fractional part) for the
coefficients, and the sampling frequency.

When the tool is executed, an interactive command window appears asking for the input parameters
previously discussed. The performance of the filter code generated entirely depends on these parameters,
and entry in the incorrect format leads to wrong code generation and filter performance.

The filter coefficients of the FIR filter in floating point format must be copied and pasted in the file
FIR_filter_coeff.dat, and this file must reside in the same directory as the tool.

The filter length corresponds to number of filter coefficients. This number should match the number of
coefficients stored in the file FIR_filter_coeff.dat. Any mismatches are not reported by the tool and lead to
incorrect filter performance.

The filter’s performance greatly depends on the resolution chosen to represent the coefficients. Separate
bit resolutions are necessary for the integer part and the fractional part. The fractional bit resolution is
always chosen to have better resolution as it has a direct impact on performance. This increase in bit
resolution results in a proportional increase in code size and CPU cycles. These resolutions (fraction or
integer part) are held constant for each coefficient.

The sampling frequency entered should match the sampling frequency that was used to generate the FIR
filter coefficients. This parameter is used by the tool to generate sample data across valid frequencies and
evaluate the frequency response using the output time samples. Mismatches in this parameter would lead
to misinterpretation of the filter’s performance.

Efficient MSP430 Code Synthesis for an FIR Filter2 SLAA357–March 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA357

www.ti.com

2.2 Output

2.2.1 Frequency Sweep Data

2.2.2 FIR Filter MSP430 Assembly Code

2.2.3 Wrapper C File

2.3 Summary

FIR Filter Code Synthesizer

Once the input parameters are entered, the tool generates a set of files that must be included as an
MSP430 project using the IAR Embedded Workbench™.

The file FIR_sine_data.dat is a data file that has sine data for frequencies that range from 10 Hz to
[(sampling frequency/2) – 10] Hz equally spaced over 44 frequencies. For each frequency, 400 data
samples in integer format ranging from –2047 to +2047 are generated. This format is chosen to remain
consistent with a 12-bit ADC that is present on some of the MSP430 devices. This data facilitates the
verification of the generated FIR filter’s frequency response.

The file FIR_filter.s43 contains the MSP430 assembly code that performs the FIR filtering. Function calls
are made to this function on a sample-by-sample basis for each of the 400 samples at every frequency.
This function returns one output sample which is then used to evaluate the gain at each frequency.

The file FIR_filter_wrapper.c initializes all the variables necessary to simulate the filter’s performance on
the MSP430. It makes function calls to the assembly function FIR_filter.s43. The output samples are
accumulated to perform an approximate frequency response by evaluating the gain at the end of
400 samples for each frequency. This normalized gain versus frequency plot is shown in Appendix A for
the examples considered. These 44 accumulated gain values are also printed in the Terminal I/O window
selected from the View menu of IAR Embedded Workbench. These values can be graphed by entering
them in the Excel file FIR_gain_plot.xls.

In this section is a summary of instructions that need to be followed to use the FIR filter synthesizer tool.
Appendix B lists and describes each file included in the accompanying zip file.

To use the FIR filter synthesizer tool:

1. Decompress the zip file that accompanies this document.
2. A sample coefficient file, FIR_filter_coeff.dat, is provided in the parent directory. To verify the

performance of each filter example, overwrite the coefficients in this sample file with the coefficients of
the filter example included in the corresponding directories. To generate the code for any FIR filter,
paste the new set of coefficients in the sample file, maintaining the same format.

3. Execute FIR_filter_codegen.exe and enter the required parameters. Exact instructions have been
provided in an accompanying file, Instructions.pdf.

4. The output of the tool is a C-wrapper file, MSP430 assembly code, and a sine data file generated in
the same directory.

5. Create a new C project using IAR, add the C and the assembly files, and build. Open the Terminal I/O
window from the View menu of IAR and run the code to see the gain at each frequency.

Note: The C wrapper file uses file operations and printf() statements that require a very large
code size. Hence, it is recommended to run the project in simulator mode on one of the
MSP430 devices that have a larger memory model to test the functionality. The C
wrapper file only demonstrates the verification of the FIR filter on the MSP430 using
simulated data. In a real application, the MSP430 assembly code file is the only file
necessary for FIR filter operation.

Note: The tool generates assembly code that is compatible in all of the MSP430 family of
devices. However, if CPUx architecture is chosen, the last instruction, ret, in the assembly
file FIR_filter.s43 should be replaced by the instruction reta.

SLAA357–March 2007 Efficient MSP430 Code Synthesis for an FIR Filter 3
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA357

www.ti.com

3 References

References

1. Venkat, Kripasagar, Efficient Multiplication and Division Using MSP430, Texas Instruments, SLAA329

2. Mitra, S. K., Digital Signal Processing: A Computer-Based Approach, Second Edition, McGraw-Hill,
2001.

3. Texas Instruments MSP430 family user's guides

4 Efficient MSP430 Code Synthesis for an FIR Filter SLAA357–March 2007
Submit Documentation Feedback

http://www-s.ti.com/sc/techlit/SLAA329
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA357

www.ti.com

Appendix A FIR Filter Examples

A.1 Low-Pass Filter

0 200 400 600 800 1000 1200 1400 1600 1800 2000
10

-4

10
-3

10
-2

10
-1

10
0

Frequency (Hz)

N
o

rm
a

liz
e

d
G

a
in

 (
lo

g
a

ri
th

m
ic

 s
c
a

le
)

This appendix shows the performance of basic FIR filters that have been generated using the tool
and executing the source files generated. The code size, CPU cycles and approximate plot of the
frequency response for each example is shown. In each example, the filter coefficients were all less
than one, hence the bits for Integer part are set to zero. However, the tool generates valid MSP430
code if some or all of the coefficients are greater than one.

Filter specifications:
Filter length = 21
Bits for integer part = 0
Bits for fraction part = 15
Sampling frequency = 4000 Hz
Cut-off frequency = 600 Hz

Figure A-1 shows the approximate frequency response of the filter after the execution of the code
generated from the tool on the MSP430. The plot of the normalized gain on the logarithmic scale versus
the frequency conforms to its design specifications.

Figure A-1. Low-Pass FIR Filter Response

Filter performance:
CPU cycles = 662
Code size in bytes = 1076

SLAA357–March 2007 Efficient MSP430 Code Synthesis for an FIR Filter 5
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA357

www.ti.com

A.2 High-Pass Filter

0 500 1000 1500 2000 2500 3000 3500 4000
10

-4

10
-3

10
-2

10
-1

10
0

Frequency (Hz)

N
o

rm
a

liz
e

d
 G

a
in

 (
lo

g
a

ri
th

m
ic

 s
c
a

le
)

High-Pass Filter

Filter specifications:

Filter length = 31

Bits for integer part = 0

Bits for fraction part = 15

Sampling frequency = 8000 Hz

Cut-off frequency = 2000 Hz

Figure A-2 shows the approximate frequency response of the filter after the execution of the code
generated from the tool on the MSP430. The plot of the normalized gain on the logarithmic scale versus
the frequency conforms to its design specifications.

Figure A-2. High-Pass FIR Filter Response

Filter performance:
CPU cycles = 636
Code size in bytes = 976

Efficient MSP430 Code Synthesis for an FIR Filter6 SLAA357–March 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA357

www.ti.com

A.3 Band-Pass Filter

0 500 1000 1500 2000 2500 3000
10

-4

10
-3

10
-2

10
-1

10
0

Frequency (Hz)

N
o
rm

a
liz

e
d

G
a
in

(l
o
g
a
ri
th

m
ic

s
c
a
le

)

Band-Pass Filter

Filter specifications:
Filter length = 41
Bits for integer part = 0
Bits for fraction part = 15
Sampling frequency = 6000 Hz
Lower Cut-off frequency = 500 Hz
Upper Cut-off frequency = 1500 Hz

Figure A-3 shows the approximate frequency response of the filter after the execution of the code
generated from the tool on the MSP430. The plot of the normalized gain on the logarithmic scale versus
the frequency conforms to its design specifications.

Figure A-3. Band-Pass FIR Filter Response

Filter performance:
CPU cycles = 1187
Code size in bytes = 1910

SLAA357–March 2007 Efficient MSP430 Code Synthesis for an FIR Filter 7
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA357

www.ti.com

A.4 Band-Stop Filter

0 100 200 300 400 500 600 700 800 900 1000
10

-4

10
-3

10
-2

10
-1

10
0

Frequency (Hz)

N
o

rm
a

liz
e

d
 G

a
in

 (
lo

g
a

ri
th

m
ic

 s
c
a

le
)

Band-Stop Filter

Filter specifications:
Filter length = 31
Bits for integer part = 0
Bits for fraction part = 15
Sampling frequency = 2000 Hz
Lower Cut-off frequency = 200 Hz
Upper Cut-off frequency = 800 Hz

Figure A-4 shows the approximate frequency response of the filter after the execution of the code
generated from the tool on the MSP430. The plot of the normalized gain on the logarithmic scale versus
the frequency conforms to its design specifications.

Figure A-4. Band-Stop FIR Filter Response

Filter performance:
CPU cycles = 531
Code size in bytes = 1187

Efficient MSP430 Code Synthesis for an FIR Filter8 SLAA357–March 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA357

www.ti.com

A.5 Notch Filter

0 20 40 60 80 100 120 140 160 180 200
10

-2

10
-1

10
0

Frequency (Hz)

N
o

rm
a

liz
e

d
 G

a
in

 (
lo

g
a

ri
th

m
ic

 s
c
a

le
)

Notch Filter

Filter specifications:
Filter length = 60
Bits for integer part = 0
Bits for fraction part = 15
Sampling frequency = 400 Hz
Notch frequency = 60 Hz

Figure A-5 shows the approximate frequency response of the filter after the execution of the code
generated from the tool on the MSP430. The plot of the normalized gain on the logarithmic scale versus
the frequency conforms to its design specifications.

Figure A-5. Notch FIR Filter Response

Filter performance:
CPU cycles = 1891
Code size in bytes = 3060

SLAA357–March 2007 Efficient MSP430 Code Synthesis for an FIR Filter 9
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA357

www.ti.com

Appendix B File List

B.1 File List

This appendix includes the list of files contained within the zip file that accompanies this document,
along with a description of their functionality. Separate directories have been created to include files
that belong to each example.

FIR_filter_codegen.exe
This is the FIR filter code synthesizer utility that generates code to run on the MSP430.

FIR_filter_coeff.dat
This file must be present in the same directory as the code synthesizer. It has the FIR filter coefficients
in floating point format. A sample file has been included with the zip file, and the user can overwrite
this file with new coefficients.

FIR_filter_wrapper.c
This is the C wrapper file generated when the tool FIR_filter_codegen.exe is executed.

FIR_filter.s43
This is the MSP430 assembly code file generated by the tool FIR_filter_codegen.exe.

FIR_sine_data.dat
This file contains the frequency sweep sine data generated by the tool FIR_filter_codegen.exe. The file
has a total of 17600 samples in integer format ranging from –2047 to +2047. 400 samples are stored
continuously for each of the equally spaced 44 distinct frequencies ranging from 10 Hz to [(sampling
frequency/2) – 10] Hz. It must reside in the same directory of the C wrapper and MSP430 assembly file
to evaluate the frequency response.

FIR_gain_plot.xls
This file is used to graphically depict the approximate frequency response of the FIR filter when
executed on the MSP430. The user can overwrite the parameters and the gain values for each
frequency obtained at the Terminal I/O to see the filter’s response.

LPF_21_coeff.dat
This file contains the filter coefficients used to generate the example in Section A.1.

LPF_wrapper.c
This file is the C wrapper file filter for the example in Section A.1.

LPF_filter.s43
This file is the MSP430 assembly code that performs the filtering as specified in the example in
Section A.1.

LPF_sine_data.dat
This file is the simulated frequency sweep data for the verification of the filter’s frequency response for
the example in Section A.1.

10 Efficient MSP430 Code Synthesis for an FIR Filter SLAA357–March 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA357

www.ti.com

File List

HPF_31_coeff.dat
This file contains the filter coefficients used to generate the example in Section A.2.

HPF_wrapper.c
This file is the C wrapper file filter for the example in Section A.2.

HPF_filter.s43
This file is the MSP430 assembly code that performs the filtering as specified in the example in
Section A.2.

HPF_sine_data.dat
This file is the simulated frequency sweep data for the verification of the filter’s frequency response for
the example in Section A.2.

BPF_41_coeff.dat
This file contains the filter coefficients used to generate the example in Section A.3.

BPF_wrapper.c
This file is the C wrapper file filter for the example in Section A.3.

BPF_filter.s43
This file is the MSP430 assembly code that performs the filtering as specified in the example in
Section A.3.

BPF_sine_data.dat
This file is the simulated frequency sweep data for the verification of the filter’s frequency response
forthe example in Section A.3.

BSF_31_coeff.dat
This file contains the filter coefficients used to generate the example in Section A.4.

BSF_wrapper.c
This file is the C wrapper file filter for the example in Section A.4.

BSF_filter.s43
This file is the MSP430 assembly code that performs the filtering as specified in the example in
Section A.4.

BSF_sine_data.dat
This file is the simulated frequency sweep data for the verification of the filter’s frequency response for
the example in Section A.4.

Notch_60_coeff.dat
This file contains the filter coefficients used to generate the example in Section A.5.

Notch_wrapper.c
This file is the C wrapper file filter for the example in Section A.5.

Notch_filter.s43
This file is the MSP430 assembly code that performs the filtering as specified in the example in
Section A.5.

Notch_sine_data.dat
This file is the simulated frequency sweep data for the verification of the filter’s frequency response for
the example in Section A.5.

SLAA357–March 2007 Efficient MSP430 Code Synthesis for an FIR Filter 11
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA357

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements,
improvements, and other changes to its products and services at any time and to discontinue any product or service without notice.
Customers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s
standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this
warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily
performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and
applications using TI components. To minimize the risks associated with customer products and applications, customers should
provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask
work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services
are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such
products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under
the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is
accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an
unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service
voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business
practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would
reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement
specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications
of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related
requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any
applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its
representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is
solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in
connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products
are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any
non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products Applications

Amplifiers amplifier.ti.com Audio www.ti.com/audio

Data Converters dataconverter.ti.com Automotive www.ti.com/automotive

DSP dsp.ti.com Broadband www.ti.com/broadband

Interface interface.ti.com Digital Control www.ti.com/digitalcontrol

Logic logic.ti.com Military www.ti.com/military

Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork

Microcontrollers microcontroller.ti.com Security www.ti.com/security

Low Power www.ti.com/lpw Telephony www.ti.com/telephony
Wireless

Video & Imaging www.ti.com/video

Wireless www.ti.com/wireless

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2007, Texas Instruments Incorporated

http://amplifier.ti.com
http://www.ti.com/audio
http://dataconverter.ti.com
http://www.ti.com/automotive
http://dsp.ti.com
http://www.ti.com/broadband
http://interface.ti.com
http://www.ti.com/digitalcontrol
http://logic.ti.com
http://www.ti.com/military
http://power.ti.com
http://www.ti.com/opticalnetwork
http://microcontroller.ti.com
http://www.ti.com/security
http://www.ti.com/lpw
http://www.ti.com/telephony
http://www.ti.com/video
http://www.ti.com/wireless

	1 Introduction
	2 FIR Filter Code Synthesizer
	2.1 Input Parameters
	2.1.1 Filter Coefficients
	2.1.2 Filter Length
	2.1.3 Bit Resolution for the Filter Coefficients
	2.1.4 Sampling Frequency

	2.2 Output
	2.2.1 Frequency Sweep Data
	2.2.2 FIR Filter MSP430 Assembly Code
	2.2.3 Wrapper C File

	2.3 Summary

	3 References
	Appendix A FIR Filter Examples
	A.1 Low-Pass Filter
	A.2 High-Pass Filter
	A.3 Band-Pass Filter
	A.4 Band-Stop Filter
	A.5 Notch Filter

	Appendix B File List
	B.1 File List

