% TEXAS Application Report
INSTRUMENTS SLAA202A — June 2007

Implementing IrDA With The MSP430

Melisa Nunez-Arzuaga and Andreas Dannenberg MSP430

ABSTRACT

The development of wireless communications has occurred rapidly throughout the past
decade. One of the standards used is the Infrared Data Association (IrDA) specification.
The protocol introduced by this entity consists of three basic layers: IrPHY, Ir(LAP, and
IrLMP, which supply a base for many other applications. This application report
implements the IrDA Lite protocol (IrPHY, IrLAP, and IrLMP) on the MSP430, as well as
Tiny Transfer Protocol (TTP) and IrCOMM 3-wire services as a passive, secondary-only
device. IrPHY implementations are provided using a Timer_A-based approach as well as
using the USCI_A hardware module.

Contents

B I 1114 T ¥ o 1o o 3
P 5 =T e | T =T T= =T oo o o 3
2.1 HAIAWAIE OVEIVIEW ......eeiiiiiiiiiiitttiieeaaaeeteatasasassssssssessssssssssssssssssss s ss s s s s s s 5555 s 555 e s s s ss s s ssssssssnnnnnennnn 3

2.2 CirCUIt DESCIIPLON. ... e ieeieeiiece et e e e e e ettt s e e e e e e e e eet b e e e eaeeeeenreaa e eaaas 4

B TN ST 13 T,VZ= 1 =0 T o ] o3 £ o o T 6
3.1 Implementing IrPHY Layer using TIMer_A ..o 6

1 T O B I = 1= 0 1= T o R 6

3.1.2  RECEPHON ... 8

3.2 Implementing IrPHY Layer using USCI_AD.........uiiiiiiie et 9

3.3 IMPIemMenting ITLAP ... 10
3.3.1  DISCOVEIY SEIVICES.....eeeiiiiiieiiiiiite ettt e e e e e et e e e e e e e e e e e e e e e e e e e e nnnneeeas 10

3.3.2  CONNECE SEIVICES ... e 11

RO TR T B B - = B =T Vo 12

3.3.4  DISCONNECE SEIVICES....ccciee e 13

3.4 Implementing IFTLMP ... 13
3.4.1  DISCOVEIY SEIVICES.....ueeiiiiiieiiiiiiie et e ettt e e e e e e e e e e e e e e e s nb e e e e e e e e e e e nnnneeeas 13

3.4.2 Link Connect and ConNECt SEIVICES........ccovviiiiiieee e 14

R T B B - = B =T Vo 14

3.4.4  DISCONNECE SEIVICES....ccciieie e 14

3.5 TAS IMPIEMENTALION .....eeiiiiiie e e e e e s e e e e e e e e 15

3.6 TTP IMPIemMeNtation ........ccooiiiiiiiiiiee e 15

3.7 IrCOMM IMPIEMENTALION ..ottt e e e e e e e e e e e e e e e e e aaanns 16

3.8 APPHICALION LAYET ... 16

4  PC Demonstration AppliCation .......cccccceeiiiiiiiiirimmmnsr s 17
LT £ (=] (=] =] T 18
Appendix A. IrDA ProtoCOl BaSICS.......cuuuuemmmmmmmmmmmmmmmmmmmnsnnsnssssssssssssssssssssssssssssssssssssssssssssssssssssssssssnn 19
F N I o Y= (or= | I L d T = =T 19

A.2 Link Access ProtoCOl (ITLAP) LAYEN.......uu. ittt e et e e e e e 20



{’? TEXAS

SLAA202A INSTRUMENTS
A.3 Link Management Protocol (IILMP) Layer.......cooooiiiiii e 22
A.4 Information ACCESS SEIVICES (IAS).....co i 23
A5 Tiny Transfer ProtOCOl (TTP) oot e e et e e e e e e e e ananas 23
ALB IFCOMM ...ttt e e et e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e aaan 24
Appendix B. IrDA Communication Diagram.........ccummmmmmmms 26
Appendix C. Frame EXChange LOg ........ccuuiiiiimmmmmriiiniiissmsnsss s s s ssssssssssssss s s s s sssssmsss s s s e 27
Figures
Figure 1. Schematic using MSPA430F149...........cccooommmiiiiiiieeenn s s 4
Figure 2. Schematic using MSP430FGA4619.........cccccoummmmnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnssnn s annnnanas 5
Figure 3. Schematic using MSPA430F2274............ccooommiiiiiiiiiinesn s e nas 5
LT 0= S | = 31 (=N 6
Figure 5. Transmission With Timer_A.......iiiiiiiiie s s s mmmssssnas 7
Figure 6. Detailed Byte ReCeplion.........ccccccumummmmmmnnennnnennnnnnnnnnnnnnnnnnnnnnnnnnnnnsnnnsnn s nnnnnas 9
Figure 7. Unnumbered and XID Command Frame Formats...........cccccccvvmmmmmmimnnnnssssmsnnsnnnnsnsnnes 10
Figure 8. Discovery Response XID FOrmat..........cccccccuummmmmmmmmmmnmmnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnsnsnnnnnnns 11
Figure 9. SNRM Frame FOrmat ... s snnnnnns 11
Figure 10. Information Frame Format ... 12
Figure 11. Disconnect Command Frame Format ..........cccccooieennnnnnnnnnnnnnneenennnnnnnnnnnnnnnnnnnnnnnes 13
Figure 12. Device Information Field Format .........cccccommiiiiiiiiiismrsr s 13
Figure 13. IrLMP Data Transfer Frame Format ... 14
Figure 14. AP Frame FOrmal.........nnnnnnnnnnnnnnnnnnsnssssnsnnsnssssssssssssss s ss s s s ssssssssssssnsnnnns 15
Figure 15. IrDA STACK ......uuuuuuuueeeiiennnnnnnn s s nnnnnn 19
Figure 16. [IrPHY Frame....... s nnnnn 20
Figure 17. [IrLAP Frame FOrmat ... s 21
Figure 18. IrLAP Service Primitives ........cccceiiiiiiiiiismmmniiinnncssssss s s s sssnnas 21
Figure 19. [IrLMP Frame FOrmat..........nnnnsnnnnnnnnnnnssnnnn s nnnnes 22
Figure 20. TTP Frame FOrmMats.........cccccccuuuumummnennnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnsnnnnnnnnnnnnns 24
Figure 21. IrDA Communication Diagram ............ccceemmmmiiininiiissmnsnr s sssssss s sssssses 26
Tables
Table 1. Service Hint BitS ......cccceeemiiiiiniiieseisrsn s s s s s e e 23

2 Implementing IrDA With The MSP430



{’? TeExAS
INSTRUMENTS SLAA202A

1

Introduction

It is helpful if the reader of this application report has some prior knowledge of the Infrared Data
Association (IrDA) specifications. Some general information on the stack is provided in Appendix
A but this is by no means interchangeable with the specifications provided by the IrDA. Full
documentation and specifications for IrDA can be found at: http://www.irda.org.

This implementation follows the standards defined by IrDA Lite. The application uses IrPHY,
IrLAP, IrLMP, TTP, and IrCOMM 3-wire services to implement an IrDA serial port connection as
a passive, secondary-only device. When a primary IrDA peer transmits the string “t” to the
MSP430, it detects the string, reads the ADC internal temperature sensor, and responds with
the temperature reading. Within this application report, three different projects are included:

e [rDA demonstration application running on an MSP430F 149 device, using Timer_A to
implement IrPHY encoding/decoding and the ADC12 to obtain the temperature reading

e [rDA demonstration application running on an MSP430FG4619 device, using USCI_AO to
implement IrPHY encoding/decoding and the ADC12 to obtain the temperature reading

e [rDA demonstration application running on an MSP430F2274 device, using USCI_AO to
implement IrPHY encoding/decoding and the ADC10 to obtain the temperature reading

To provide a more complete solution, a demonstration application for Windows®-based PCs is
included as well. This application is written in the C programming language and shows how to
establish an IrDA connection between a PC and the MSP430 IrDA stack by using standard
Windows API calls only.

2 Hardware Description

2.1

Hardware Overview

The hardware design for this application focuses on the interfacing of the MSP430F 149, the
MSP430FG4619, and the MSP430F2274 with the SHARP GP2W0110YPSF IrDA transceiver
device. Other MSP430 family members can be used as well, depending on the requirements of
the end application.

The SHARP GP2WO0110YPSF was selected because it follows all ISO specifications stipulated
for IrDA V1.0. The fact that this part can be used at a 3.0-V level is a benefit when interfacing
with the MSP430, because no external circuitry is necessary to adapt the voltage levels. It also
needs only three signals for interfacing with the microcontroller: transmit, receive, and shutdown.
This leaves most of the MCU pins free for other purposes.

An evaluation board that is compatible with the MSP430F149-based software presented in this
application report can be purchased from SoftBaugh (www.softbaugh.com). The part number is
DIr169.

Implementing IrDA With The MSP430 3



{’? TeExAS
SLAA202A INSTRUMENTS

2.2 Circuit Description

The circuitry around the GP2W0110YPSF is simple (Figure 1). Two pins are connected to the
3.0-V supply voltage (VCC and LEDA), one pin is connected to the common ground, and three
pins interface to the MSP430 (TxD, RxD, and SD). Two bypass capacitors are placed in parallel
between VCC and ground close to the transceiver to compensate for current pulses that occur
when the transmit IR LED is operated. The TxD and RxD connections are made to Timer_A pins
in case of the MSP430F149 (Figure 1), and to USCI_AO pins in case of the MSP430FG4619
(Figure 2) and the MSP430F2274 (Figure 3).

For the MSP430F149 based design, the device is sourced by a 32-kHz watch crystal that
provides a reference clock for calibrating the internal high-speed DCO using a software FLL.
This is needed to meet the requirements of the IrPHY physical layer timing specification. The
MSP430FG4619-based design is also using a 32-kHz watch crystal. However in this case the
device’s clock module built-in FLL circuit is used to generate the system clock. No external
crystal is needed for the MSP430F2274-based design. In this case, the factory provided DCO
calibration constants are loaded into the DCO during device startup, providing an accurate and
stable system clock.

3V
RST XIN — ]
[ 32kHz 3V
XOouT T
DvCC P1.6/TA1 TxD VCC
AVCC P1.2/TA1 RxD LEDA
0.1uF 22uF | 0.1pF
AT T
DVSS
AVSS P1.3 SD GND L
MSP430F149 GP2W0110YPSF N4

Figure 1. Schematic using MSP430F149

4 Implementing IrDA With The MSP430



‘v’? TEXAS

INSTRUMENTS SLAA202A
3V

RST XINF——

[ 32kHz 3V

XouT —
DVCC P2.4/UCAOTXD TxD VCC
AVCC P2.5/UCAORXD RxD LEDA
0.1uF 22uF | 0.1pF
TN T
DVSS
AVSS P1.3 SD GND 3
MSP430FG4619 GP2W0110YPSF 7
Figure 2. Schematic using MSP430FG4619
3V
RST
3V
DVCC P3.4/UCAOTXD TxD VCC
AvCC P3.5/UCAORXD RxD LEDA
0.1pF 22pF | 0.1pF
TN 1
DVSS
AVSS P1.3 SD GND .
MSP430F2274 GP2WOT10YPSF
Figure 3. Schematic using MSP430F2274
Implementing IrDA With The MSP430



{’? TEXAS

SLAA202A INSTRUMENTS

3 Software Description

3.1

3.1.1

This section provides a description of the implemented IrDA protocol stack. The entire
demonstration application is written in assembly language and resides in one file. Functions
have been named in ways which make it simple to understand which layer they belong to and
what their functionality is. All service primitives for the IrPHY, IrLAP, and IrLMP layers have been
implemented as specified by the IrDA Lite documentation. The TTP and IrCOMM 3-wire cooked
services have been implemented in order to provide a demonstration of the working stack.

Note that this chapter discusses two different implementation methods of the IrPHY layer. The
first method uses Timer_A, and is utilized by the MSP430F149-based design discussed in this
application report. The second method uses the USCI_AO hardware communication module,
and is used by both MSP430FG4619- and MSP430F2274-based designs. However all designs
use the exact same IrDA communication algorithms.

Implementing IrPHY Layer using Timer_A

The Timer_A peripheral module found on all MSP430s can be used to implement the IrPHY
layer, in case that no hardware module with IrDA support is available.

The approach is to design a unit that behaves as a UART but processes data received from and
sent to the IR transceiver. The IR-pulse duty cycle is 3/16" of a bit period as specified in the
IrPHY documentation. The transmission and reception schemes are similar.

Transmission

For transmission, the initial XBOF flags are sent first followed by the BOF flag. Then the rest of
the frame is transmitted. The FCS is calculated and sent after the whole frame has been sent,
followed by the EOF flag. The actual sending of the individual bytes is performed by fitting each
bit into 3/16" of a pulse, where a 0 is represented by a pulse and a 1 is represented by no pulse
as shown in Figure 4. The transmission process is interrupt driven and is handled by the
Timer_A module.

Start Stop
Bit Bit
¢ >« Data Bits > < | g
0 1 0 1 0 0 1 1 0 1
Pulse Width
S 316BitTme ¥ [€
Time

Figure 4. IR Byte

Implementing IrDA With The MSP430



{’? TeExAS
INSTRUMENTS SLAA202A

The actual encoding is manipulated in its entirety by the Timer_A module. The bit length and
3/16" of the bit length are calculated given the speed at which the Timer_A clock source is
operating, and they are stored as constants in order to be able to use them during the
transmission process. Timer_A is cleared and the clock source is set to SMCLK. The pin being
used for transmitting data is configured for the CCR1 peripheral function, and its direction is set
to output. Next, the current state of TAR is stored in register CCR1 which, given that TAR has
been previously cleared, holds a value of 0. One bit length is added to the value stored in CCR1,
and then CCR1 is copied into register CCRO. Then, the number of counts which is equal to 3/16"
of a pulse width is added to CCRO. Next, the stop bit and start bit are added to the 8 bits of data
to be transmitted. The transmission counter is loaded with 10 because it is necessary to include
the start and stop bits. The CCRO interrupt is enabled in the CCTLO control register. Output
Mode 3: Set/Reset is selected for CCR1 to transmit the start bit, and then Timer_A is started in
continuous mode. The CCIE flag is polled in order to be able to determine when the
transmission has ended because the ISR clears the CCIE flag when all bits of the byte have
been transmitted. The CCIE flag is polled by a subroutine inside the transmission routine and as
soon as the CCIE flag is cleared, the transmission routine returns. When TAR reaches CCR1,
the output goes high and it returns back low when TAR reaches CCRO. This generates the start
bit. Figure 5 shows the switching between the output modes as well as the resulting output
signals.

The Timer_A module first adds 1 bit length to CCR1 and CCRO. This keeps them 3/16" of a bit
apart from each other but sets them up in time to transmit the next bit. If the bit is 0, then it is
sent using Output Mode 3: Set/Reset which produces a pulse, given that all bits must be sent
inverted. If the bit is 1, then the Output Mode is changed from 3 to 5: Reset; this ensures that the
output is held low. When the bit counter reaches 0, the interrupts for CCRO are disabled and the

ISR returns.
Start Bit Data Bits Stop Bit
OutputMode 3:  OutputMode 5: OutputMode 3:  OutputMode 5:
Set/Reset Reset Set/Reset Reset
0 1 (...) 0 1
EQU1: EQUO: EQU1: EQU1: EQUO: EQU1:
Set Reset Reset Set Reset Reset

Figure 5. Transmission With Timer_A

Implementing IrDA With The MSP430 7



{’? TeExAS
SLAA202A INSTRUMENTS

3.1.2 Reception

The idea implemented for reception is based on not trying to capture the pulse when it comes in
but in latching the input and testing for the presence of a pulse some time after the bit has been
sent by the primary. Therefore, the interrupt flag for the port pin is checked before the time
allocated for sending the bit is over. The main reason for this implementation is that 3/16" of a
pulse does not allow much room for error and if reception was off by a small percentage, then
more bits could be missed and the frame would be corrupted.

The pointer to the buffer is incremented, and the following bytes are stored through the same
process until the EOF flag is encountered. Finally, the pointer is offset to the next location in
memory. When idle, the application is always in receive mode waiting for an incoming start bit.

The process through which each byte is received depends on the IrDA_RX routine and the
TA1_ISR. In order to be able to receive, a bit counter is loaded with 8 bits, the clock source for
Timer_A is set to SMCLK, and the mode control bits are set to use the timer in continuous
mode. The capture/compare block 1 is configured to capture the falling edge of the input signal
synchronized with the timer clock (SMCLK), and interrupts are also enabled. Then, when the
ISR is done collecting the bits, it clears the CCIE flag, indicating that the reception of one byte
has finished.

Every time the TA1_ISR is called, it adds the time to the next bit to CCR1 and tests CCTL1 for
its capture/compare setting. If it is in capture mode, then the start bit is being handled. The
routine adds an additional quarter of the bit length to the value in CCR1 which now holds a total
of one and a quarter bit length and then sets the pin to I/0 function. The I/O interrupt edge select
is set to be triggered on a high-to-low transition (register P11ES), and the interrupt flag is cleared
(register P1IFG) in order to clear the latched edge. After this, a switch is made to compare mode
before returning from the ISR.

If the test for the capture/compare setting of CCTL1 resulted in a 0, then this means there are
incoming data bits. The P1IFG flag for the I/O pin is then tested. If the bit is set, then a 0 was
received; if the bit is not set, then a 1 was received. Next, the received bit is rotated through the
use of an RRC instruction into the IR_DATA variable which holds the byte being received.

The received bit is then inverted, and the edge latch is cleared. Finally, the counter for bit
reception is decremented by 1. If the counter is not 0, then the interrupts continue to be enabled
and because, at the return from the interrupt, the CCIE flag is still not 0, the next incoming data
bits are processed until the counter reaches 0 and interrupts are stopped. At this point, the entire
byte has been successfully received. Figure 6 shows this process.

8 Implementing IrDA With The MSP430



{’? TEXAS

INSTRUMENTS SLAA202A
Start Bit First Data Bit Data Bits Last Data Bit Stop Bit
P1IFG Set P1IFG Set
0 Oy (...) 0 1
I T \ T T
CCR1 Int,, CCR1 Int., CCR1 Int., CCR1 Int,,
(Capture) (Compare) (Compare) (Compare)

Figure 6. Detailed Byte Reception

3.2 Implementing IrPHY Layer using USCI_AO

On MSP430 devices with a USCI peripheral module, the USCI_AO can be used in UART mode
to conveniently decode and encode the IrDA PHY pulse train. To activate the hardware bit
shaping, the bit UCIREN in the UCAOIRCTL control register needs to be set.

The provided MSP430FG4619 and the MSP430F2274 demo applications operate with an
SMCLK frequency of 4 MHz and use the exact same USClI initialization sequence. In order to
achieve an IrDA baud rate of 9,600 bps using a BRCLK frequency of 4 MHz with the
oversampling mode enabled (UCOS16 = 1), the BITCLK16 frequency must be

9,600 bps x 16 = 153.6 kHz. For this, the baud rate prescaler is set to 26, and a first-stage
modulator setting of 1 is used, giving a very close match to the desired divider.

The IrDA transmitter is configured to generate pulses with a pulse length of exactly 3/16" of a bit
time by setting UCIRTXCLK = 1 and UCITXPLx = 5. This setting can be reduced if a shorter
pulse length is permissible, resulting in current savings during the operation of the externally
connected IrDA transceiver. The byte transmission in IrDA mode is exactly the same as in UART
mode. The application ensures that the transmit buffer can be loaded by ensuring that
UCAOTXIFG is clear, and then simply loads the transmit data byte into UCAOTXBUF. The USCI
module will then start transmitting and bit-shaping the IrDA pulse train.

The receiver configuration includes the setting of UCIRRXPL to match the polarity of the receive
signal provided by the IrDA transceiver. Note that an optional analog deglitch filter can be
configured to improve system robustness; however, this feature is not used here. In order to
receive data, the USCI_AO receive interrupt is enabled, and the low-power mode is entered.
Upon the reception of a data byte, the receive interrupt service routine is entered, and the data
is fetched from the UCAORXBUF receive buffer.

For more information on the configuration and operation of the USCI module, see the
MSP430F4xx or MSP430F2xx family user’s guides [12][13].

Implementing IrDA With The MSP430 9



{’? TEXAS

SLAA202A INSTRUMENTS

3.3

3.3.1

10

Implementing IrLAP

The approach for the implementation of the IrLAP layer was to develop functions performing all
the tasks described in the primitives that also behave according to the state tables found in the
IrDA Lite documentation. This layer depends on the services provided by the IrPHY layer in
order to function properly. This layer provides a reliable connection for data transfer.

In order to be able to process the frames correctly, first it is necessary to know which of the
three classes of frames is being handled. The three types of frames in Ir(LAP are supervisory (S),
information (I), and unnumbered (U). The most effective way to identify the frame is through
parsing of the bytes. As soon as the byte pattern that identifies a certain type of frame is found,
the program jumps to the routines responsible for its handling. Then, as the bytes are identified
and decoded, actions are taken depending on the primitive to which they correspond as shown
below in a code excerpt from the application. This routine is called IR_MSG_PROCESS, and it
is the piece of code responsible for parsing of the frame and sending the data to the right
primitive for processing.

It is simple to identify which type of frame was received, given the bytes used to identify each
command. It is enough to check one or two bits of the byte which are in a certain position in
order to be able to identify the IrLAP command that was received. After the command has been
identified, the proper response is generated and sent through the IrPHY layer to the transceiver.
After this, the program goes back to the main loop and waits until the next frame is received
from the primary.

Discovery Services

IrLAP routines are responsible for the negotiation of the link and identification exchange while in
NDM mode. The first communication that happens between devices is the identification
exchange (XID) process. During this time, the primary issues a cycle of XID frames according to
the set number of discovery slots. The frame is received and parsed. First, it is identified as an
unnumbered (U) frame by checking bits 0 and 1 of the IrLAP control byte, and if they are both 1,
then the frame is in the unnumbered format. In order to identify the unnumbered frame as an
XID command frame, bit 5 of the byte is tested next. If this bit is 1, then the identification process
of an XID command frame is positive (control bytes shown in Figure 7).

Unnumbered: XID command control:
P

X|IX|X| /7| X|X|1]1 o o0/ 1T P/ 1] 1]1]1
F

Figure 7. Unnumbered and XID Command Frame Formats

As soon as an XID command frame is identified, the discovery flag is checked to see if the XID
command has been answered already. If discovery has not happened yet and the frame is not
the final slot frame, which is marked by a OFFh slot number, then an XID response is sent out.
The routine in charge of assembling the XID response frame first verifies that the frame was
sent for the broadcast address (OFFh) and then produces a frame with the format of an IrLAP
XID response frame as the one seen in Figure 8.

Implementing IrDA With The MSP430



{’? TEXAS

INSTRUMENTS SLAA202A
ADDR XID Form. Source Destination Disc. Slot Ver. Discovery
Resp. ID Device Address | Device Address | Flags Nr. Nr. Info
1Byte 1Byte 1Byte 4 Bytes 4 Bytes 1 Byte 1Byte 1Byte 32 Bytes

Figure 8. Discovery Response XID Format

The MSP430 is set to always answer to discovery slot 0. Therefore, when the first discovery slot
is sent by the primary, a frame is sent that claims that spot by issuing the XID response frame.
This means the following XID command frames are ignored.

3.3.2 Connect Services

After the exchange identification frames have been handled, it is time to negotiate the
connection parameters. For the negotiation procedure, accepted connection parameters are
established using constants. For the purpose of this application, the constants defined in the
IrDA Lite specification are used as the default transmission parameters (9.6 kbps, 64 bytes,

1 frame, etc.). Then, the primary device produces a set of parameters which it supports and
sends it as soon as the discovery process is completed successfully. The other important value
introduced by the set normal response mode (SNRM) frame is the connection address (CA).
The CA is the byte which is used to contact the specific peer by the primary device instead of
the broadcast address.

The format of this SNRM frame is the IrLAP unnumbered type (Figure 9). An SNRM frame can
be easily identified by its control field 093h at byte 2 of the frame (IrLAP control byte). The only
bit that is necessary to check is bit 7 because this bit is not set for any other control field of an
unnumbered format frame.

XID Source Destination Conn. o
ADDR Cmd. | Device Address | Device Address | Addr. Negotiation Parameters
1 Byte 1 Byte 4 Bytes 4 Bytes 1 Byte N Bytes
C
New Connection Address /
R

Figure 9. SNRM Frame Format

When entering the connection process, the UA response to the SNRM command is issued. The
routine responsible for issuing this response verifies that the frame is coming from the device
with the same address as the one which caused the discovery sequence to take place. It also
includes in the response frame the parameters supported by the secondary for the connection.
As part of the routine responsible for assembling the UA response frame to the SNRM
command, the counters for amount of sent and received frames (Ns and Nr, respectively) are
reset, and the connected flag is set high in order to let other services know that a connection has
been successfully established. On the success of the connection process, NRM is entered.

Implementing IrDA With The MSP430 11



{’? TEXAS

SLAA202A INSTRUMENTS

3.3.3 Data Services

12

After a connection has been established, a change occurs from NDM to NRM. Once in NRM
mode, higher layers take over the connection, and IrLAP frames are used as a means to transfer
their data reliably. All the frames exchanged must follow the IrLAP information (I) format. The
main feature of this frame format is the inclusion of the Nr, Ns, and Poll/Final (P/F) bits as seen
in Figure 10.

ADDR | CTRL DATA
1 Byte | 1 Byte N Bytes
P
NR / NS 0
F

Figure 10. Information Frame Format

First, the connection address is verified to ensure that a reply to a frame that was not meant for
the MSP430 is ignored. If the connection address was the one assigned to the MSP430, then
the frame sequence is verified through the comparison of the value stored in Nr and the value of
Ns in the incoming frame. If this check is successful, then the value stored in Nr is now
incremented by 1, and the frame is passed to the upper layers for proper manipulation. If the
check is unsuccessful, then the frame is ignored, and the connection is dropped. The other
condition while in NRM that could cause the connection to be dropped from the IrLAP layer, not
including a disconnect request, is if an SNRM frame is received, in which case a request
disconnect (RD) response is issued to the primary.

If data is requested by an upper layer while in NRM, then data is queued and buffered, the parts
of the frame corresponding to IrLAP are prepared, and the frame is the responsibility of the
higher layer. If an I-command frame is received, then it means that the secondary stack is now
allowed to transmit frames. Depending on the state of the Ns and Nr counts, either an I-
response frame carrying data or an S-response of the type receive ready (RR) or receive not
ready (RNR) is sent. The response to receiving a RR command frame is similar to the one
explained above as are the responses to RNR and reject (REJ) commands. The same response
is also issued in the case of an unknown command frame with the P bit set and from an
unknown type frame as it is described in the IrLAP state table for IrDA Lite.

On the other hand, if a U-frame carrying a disconnect command is received, then the proper UA
response is issued and the connection state is now NDM.

Implementing IrDA With The MSP430



{’? TeExAS
INSTRUMENTS SLAA202A

3.3.4 Disconnect Services

3.4

3.4.1

A disconnect command frame is of unnumbered format and has a control field equal to 053h.
The IrLAP frame size is 2 bytes only (Figure 11).

DISC

ADDR cmd.

1 Byte 1 Byte

Figure 11. Disconnect Command Frame Format

When this frame is identified, a UA response is issued immediately, and the NDM state is
entered. A disconnect command can only be issued by a primary and is received by the

disconnect primitive whose only responsibility is to issue the UA response and to notify the
success of the disconnection to the user layer.

Implementing IrLMP

The implementation of the IrLMP layer was accomplished by following the specifications of the
IrDA Lite documentation. The main task of this layer is to verify that the DLSAP-SEL and
SLSAP-SEL values are correct and that the correct service is using them. It also verifies that the
services requested by the peer are supported as specified in the GetValueByClass function.
Finally, it provides the frame format that carries the data to be exchanged by the two devices.

Discovery Services

These services are in charge of starting an IrLAP discovery procedure when requested by the
user layer. Its only involvement is in adding the service hints and the device information field to
the IrLAP XID frame. As shown in Figure 8, the XID response frame includes a field for the
device information named discovery info. This field, as described by the IrLMP documentation, is
composed of the service hints and the device nickname. The device nickname is itself divided
into two other fields which are the character set and the actual name of the device as shown in
Figure 12. The service hints provided in this application are 08204h. As can be seen from Table
1 (Appendix A), these bits correspond to an extension bit, PDA/Palmtop support, and IrCOMM
implementation. The total length of the device information field must not exceed 23 bytes,
although the IrLAP XID frame reserves 32 bytes.

Service Hints | Char DATA
Set
N Bytes 1 Byte < (23 - N) Bytes

Figure 12. Device Information Field Format

Implementing IrDA With The MSP430 13



{’? TEXAS

SLAA202A INSTRUMENTS

3.4.2 Link Connect and Connect Services

Because all IrLMP data is exclusively in I-format frames from IrLAP, the first parsing that occurs
to identify an IrLMP frame is at an IrLAP level. If the frame is not recognized as an IrLAP packet,
then IrLMP parsing takes place. First, there is a check to see if it is an IrLMP data frame by
checking byte 3 of the IrLAP frame and testing bit 7. This is a characteristic of data transfer
packets in IrLMP which provides easy identification of frames carrying Ir(LMP data. Then, by
checking byte 5 of the frame it is possible to recognize the IrLMP command being issued by the
primary. If bit 0 of this byte is set, then the command is an IrLMP connect command. On the
receipt of this command, the program enters the IrLMP connect confirm routine.

The responsibilities of this routine are to store the DLSAP-SEL and the SLSAP-SEL bytes from
the IrLMP connect command frame that was received. These are values used by the two
devices when communicating at the IrLMP level and, whenever called later by another service,
other LSAP-SELs are assigned and stored as the ones corresponding to the particular service.
Next, the value of Nr is incremented by 1 and the value of Ns is placed in the following byte. The
F bit is set because the connection parameters specify one window frame. This means that each
device is allowed to transmit only one frame on each turn. The next two bytes are occupied by
DLSAP-SEL and SLSAP-SEL, respectively, and then the opcode for a connect confirm 081h is
placed on the next byte. The following byte is reserved and must be set to 0. The next field is the
LMP-User Data field which is used by the user layer. The total number of bytes in the frame is
loaded into the transmit counter variable, the buffer containing the assembled byte is passed to
the transmission pointer, and the routine responsible for sending the frame is called. After this,
the program waits for the next incoming frame from the primary peer.

3.4.3 Data Services

After the frame has been identified as an IrLAP I|-frame carrying user-data, the first test in the
IrLMP parsing process is to determine if it is an Ir[LMP frame carrying data, IrLMP-connection
parameters, or TTP-connection parameters. After bit 7 of the third IrLAP byte has been tested
and if it is a 0, then the frame is positively identified as an IrLMP frame carrying data. Figure 13
shows the encoding of an IrLMP data frame.

0/ DS|0|SS DATA

1 Byte 1 Byte N Bytes

Figure 13. IrLMP Data Transfer Frame Format

3.4.4 Disconnect Services

14

Disconnect services as specified by the IrDA Lite documentation are linked directly to IrLAP
disconnect. As soon as a disconnect frame is identified, given its I[LMP opcode 002h, the
following byte is passed to the user layer. Immediately afterwards, an IrLAP disconnect
command is issued, dropping all connections and entering the NDM state once more until
another discovery session occurs.

Implementing IrDA With The MSP430



{’? TeExAS
INSTRUMENTS SLAA202A

3.5 IAS Implementation

The IAS services store information about other devices. It also provides information about the
services supported by the implementation. As specified by the IrDA Lite documentation, the only
service primitive required is GetValueByClass. Figure 14 shows the IAP Ir(LMP data frame

format.
0/ DS|0|SS| CTRL DATA
1 Byte 1 Byte | 1 Byte N Bytes
LA
S|C OPCODE
T|K

Figure 14. 1AP Frame Format

The GetValueByClass call issued by the primary carries the class and attribute names which are
supported by its IrDA implementation and that are relevant to the service to be used for the
connection. As soon as this frame is identified by GetValueByClass opcode 084h which is in
byte 3 of the Ir(LMP data frame, the first thing that must be done is to confirm that the class and
attributes advertised are supported by the implementation. The routine
CHECK_CLASS_ATTRIB verifies that the class and attributes are both supported by the

implementation by checking those received in the frame against the values stored in a memory
table.

First, the class is checked. If the class name is unknown, then the GetValueByClass return
frame is assembled with the return code corresponding to: “No such class: no other results”. If
the class check passes, then the attributes are checked. If the attributes are not known, then the
return code used corresponds to: “No such attribute: no other results”. If the check for both class
and attributes is successful, then the frame contains not only the return code for success but
also the results. Results include a list length encoded as a 16-bit unsigned integer for which this
implementation has a value of 1, followed by the object identifier encoded also as a 16-bit
unsigned integer with a value of 3, and finally an attribute value of type integer with a fixed
length of 4 octets equal to 003h. This is the extent of the implementation of the IAS capabilities
according to the IrDA Lite documentation.

3.6 TTP Implementation

The operation of TTP involves the exchange of data TTP-PDUs (protocol data units). Effectively,
this adds a single octet of header to the Ir(LMP-MUX data LM-PDUs. This additional octet is used
to convey increments (credits) to the number of data TTP-PDUs that may be exchanged in each
direction using the underlying IrLMP service.

In this implementation, a simple policy for advancing credit is used. This means that the credit is
held longer at AvailCredit rather than being advanced at the earliest opportunity. This leaves
buffers available to be reclaimed and redeployed to other needy TTP connections or to relieve
resource problems elsewhere in a system.

Implementing IrDA With The MSP430 15



{’? TEXAS

SLAA202A INSTRUMENTS

3.7

Note that connect TTP-PDUs exchanged during connection establishment are not regarded as
requiring or consuming credit. Segmentation and reassembly is not implemented. Because the
IrLAP window size is equal to 1, a single TTP connection can take full advantage of the
underlying IrLAP window.

For this particular implementation, when the initial TTP connection frame is identified, credit is
issued so that the peer entity can transfer its data. As soon as the MSP430 responds and after it
has received an RR command from the primary, it then issues more credit for the peer entity to
continue transmitting data.

IrCOMM Implementation

This is the layer that is in charge of the actual data exchange. The only times when it does not
use the IrLMP services is for identifying the frames that carry user data, for constructing the
frames that send data to the peer device, and when dealing with TTP services. For connection
and disconnection, it uses the respective I[rLMP services.

IrCOMM services are the same services as provided by the IrLMP layer. rCOMM uses the
services provided by the service layer, and this call would propagate down the protocol stack. It
uses the data PDUs from IrLMP to transmit all data and control channel information. These two
types of frames can be differentiated because when sending data there is an overhead of two
bytes. The first byte is equal to the amount of credit that the peer has left to transmit after the
data-carrying frame is received, and the second one is equal to 0 following the IFLMP LM-MUX
overhead. In the case of the connection frames, a control field follows the TTP overhead where
the first byte indicates the length in bytes of the connection parameters. As the connection
parameters for IrLAP and TTP, these are in groups of three.

3.8 Application Layer

16

The application layer is the layer that uses the services provided by the stack to perform a
specific task. In this case, for demonstrating functionality, the user layer waits for the ASCI|I
character ‘t’. After the character has been received, the MSP430 obtains a temperature reading
from the ADC module integrated temperature sensor and appends it through the use of the
IrCOMM layer to the user data field of a data carrying IrLMP frame. The temperature sent then is
displayed by the peer device, and the MSP430 then issues more credit to the peer entity so that
more data can be sent.

Implementing IrDA With The MSP430



{’? TeExAS
INSTRUMENTS SLAA202A

4 PC Demonstration Application

The PC demonstration application supplied with this application report is provided as both C
source code and as an executable single-file Win32 command line application. It has been
decided to develop the software as a command line application to make it both easy to
understand and also compatible with all common Windows-based C development systems such
as Microsoft Visual C++ or Borland C++. The demonstration software requires at least
Windows 2000 or Windows XP operating system and a properly installed infrared port. This IR
port can either be integrated (such as found in notebook computers) or provided by an external
Windows-supported IrDA adaptor (for example, the Actisys ACT-IR220L+).

The current Windows operating systems come with a built-in IrDA stack that implements various
IrDA communication modes, such as the 9-wire IrCOMM mode. This mode can easily interface
with external devices like PDAs, cell-phones, and the presented MSP430 IrDA stack. Microsoft
decided to expose the IrDA stack through the Windows sockets library rather than by providing
virtual COM ports. If virtual COM ports need to be used, then additional third-party driver
software such as IrCOMM2k is required [9]. However, the more elegant approach is to perform
IrDA communication by using the standard Windows built-in driver model as shown in this
demonstration application.

The PC demonstration application provides feedback about every Windows API call it does. If
one of the calls fail, the application terminates and displays the Windows error code as obtained
by the Windows sockets function WSAGetLastError(). For detailed information about the error
codes, see the Microsoft Windows Platform SDK documentation [8].

When starting the application, it tries to open the Winsock system library (DLL). At least version
2.2 is required for proper operation of the IrDA communication. The program exits with an error
message if an incompatible version is located. After opening the Windows IrDA socket, the
reception and transmit timeouts are configured to 3 seconds to prevent the software from
indefinitely waiting for the end of the communication. The software then generates a list of IrDA
devices which have been discovered already. For the sake of simplicity, the first device is taken
from the list and assumed to be the IrDA peer the user wants to communicate with. At this point,
the user could be provided with a list of the discovered devices. Next, the peer’s IAS database is
scanned to check whether or not it supports the 9-wire communication mode. If the 9-wire mode
is supported, then it is activated. Otherwise, the application terminates with an error message.

From this point on, using the Windows IrDA stack does not differ from using any other Windows
sockets such as TCP or UDP. The connection is opened by calling the connect() function. After
that, a single t character is transmitted using send(). When the MSP430 IrDA stack receives this
character, it initiates an A/D conversion of the ADC12 module internal temperature sensor and
then sends back the current MCU temperature as an ASCII string. Finally, the data that was
received and buffered by the Windows IrDA stack is read out using the sockets function recv()
and displayed on the screen. The Windows socket and therefore the IrDA stack are now closed
by calling closesocket(). It is important that the socket is closed every time it has been used,
even if an error occurred. Otherwise, internal Windows IrDA stack resources could remain
locked and the IrDA port can no longer be accessed until the next system start-up. Therefore,
make sure not to interrupt the demo application by not pressing Ctrl+C. Detailed information
about the built-in Windows IrDA functionality can be found in the Microsoft Windows Platform
SDK.

Implementing IrDA With The MSP430 17



{’? TEXAS

SLAA202A INSTRUMENTS

5 References

18

1.
2.

w

10.

11

Serial Infrared Physical Layer Specification V1.4, Infrared Data Association, 2001

Serial Infrared Link Access Protocol (IrLAP) V1.1, Infrared Data Association, IBM
Corporation, Hewlett-Packard Company, Apple Computer, Inc., Counterpoint Systems
Foundry, Inc., 1996

Link Management Protocol V1.1, Infrared Data Association, 1996

Minimal IrDA Protocol Implementation (IrDA Lite) V1.0, Infrared Data Association,
Counterpoint Systems Foundry, Actisys Corporation, 1996

‘Tiny TP: A Flow Control Mechanism for use with IrLMP V1.1, Infrared Data Association,
1996

IrDA Object Exchange Protocol OBEX™ V1.3, Extended Systems, Microsoft Corporation,
2003

‘IrCOMM’: Serial and Parallel Port Emulation over IR (Wire Replacement) V1.0, Counterpoint
Systems Foundry, Inc., Hewlett-Packard Company, Lexmark International, Inc., Sharp
Corporation, NTT Corporation, Nokia, 1995

Microsoft Windows Platform SDK (http://msdn.microsoft.com/library)

IrCOMMZ2k, Virtual Infrared COM Port for Windows 2000/XP (http://www.ircomm2k.de)
MSP430x13x, MSP430x14x Mixed Signal Microcontroller Datasheet (SLAS272)

. MSP430x1xx Family User’s Guide (SLAU049)
12.
13.
14,

MSP430x2xx Family User’s Guide (SLAU144)
MSP430x4xx Family User’'s Guide (SLAUO056)
GP2WO0110YPSF Low Power IrDA Transceiver Module Datasheet, Sharp Corporation, 2002

Implementing IrDA With The MSP430



{’? TeExAS
INSTRUMENTS SLAA202A

Appendix A. IrDA Protocol Basics

Communication protocols are commonly divided into layers. These layers have their own
responsibilities and dependencies to the layers above and below them, thus creating the
concept of a protocol stack. Figure 15 shows the IrDA stack. This stack is built from the bottom
up, with each layer dependant on the layers below. The first three layers shown are mandatory
while those on top of IrLMP, except IAS, are optional protocols required only for specific
applications. The required layers are:

e IrPHY: Specifies optical characteristics following ISO standards, data encoding/decoding,
and framing for various speeds.

e IrLAP: Establishes the basic reliable connection, frame formatting, and parameter
negotiation procedures.

e [rLMP: Multiplexes services and applications on the IrLAP connection level.

e |AS: Provides a database of services on a device.

Some of the optional layers are:

e TTP: Manages per-channel flow control.

e OBEX: Object exchange protocol, used to easily transfer files or other data objects.

e IrCOMM: Serial and parallel port emulation enabling devices that use these services to use
IrDA interchangeably without problems.

IAS (Information IrCOMM, TP
Access Services) OBEX, IrLAN, (Tiny Transport
IrFM, etc. Protocol)

IrLMP (Link Management Layer)

IrLAP (Link Access Protocol Layer)
IrPHY (Physical Layer)
IR Adapter

Figure 15. IrDA Stack

A.1 Physical (IrPHY) Layer

The physical (IrPHY) layer is responsible for the sending and receiving of frames, some framing
as beginning- and end-of-frame flags, and cyclic redundancy checks (CRC) or check sums. The
latter are used as means of error detection mechanisms. Even though there is no means by
which to repair the data (if the data is known to be corrupted), it could be requested again.

Implementing IrDA With The MSP430 19



{’? TEXAS

SLAA202A INSTRUMENTS

A frame at the IrPHY level is identified by 10 extra beginning-of-frame (XBOF) flags, 1 byte each
as specified by the IrDA Lite documentation. After the XBOF flags are sent, a single beginning-
of-frame (BOF) flag, 1 byte, is sent followed by data (payload). At the end of each frame, there
are 2 bytes which compose the frame check sum (FCS) followed by a single end-of-frame (EOF)
flag marking the end of the frame. Figure 16 shows the frame structure.

XBOF BOF DATA FCS EOF

10 Bytes 1 Byte N Bytes 2 Bytes 1 Byte

Figure 16. IrPHY Frame

A.2 Link Access Protocol (IrLAP) Layer

20

The link access protocol (IrFLAP) layer is responsible for reliable data transfer at a low level;
upper layers can then rely on the services provided by this layer. The data is delivered and if
delivery is not possible, then the upper layer is aware of this fact and acts accordingly. The
IrLAP layer provides a point-to-point half-duplex connection with no data collision control
mechanism. It is possible to simulate a full-duplex connection when the timing requirements are
not critical.

The devices connected to the IrLAP layer are known as the primary and secondary devices
which correspond to a master-slave relationship, respectively. The responsibilities of each
device vary depending on the role it performs. Although many times a primary station can take
on the role of a secondary, the opposite is not true when a secondary-only implementation is
followed.

The primary station is responsible for:

e Sending command frames (commencing connections and transfers)
e Control and organization of data

e Manipulating data link errors

The secondary station:

e Sends response frames only

The IrLAP layer is built around two modes of operations: normal disconnect mode (NDM) and
normal response mode (NRM). NDM is used when a connection does not yet exist. When the
devices identify the IR media to be free, then the discovery process can begin with the default
parameters for negotiating a connection. NRM is used when a connection exists and then upper
layers proceed to exchange information. Figure 17 shows the basic Ir'LAP frame format.

Implementing IrDA With The MSP430



‘v’? TeExAS
INSTRUMENTS

SLAA202A

ADDR | CTRL DATA

1 Byte | 1 Byte N Bytes
C
Connection Address /
R

Figure 17.

IrLAP Frame Format

The address and control fields only take 1 byte each; thus, adding little overhead to user data.
Three different framings exist that are applied to the data before it is sent. Proper framing
depends solely on the speed at which the data is sent. The scope of this report is up to

115.2 kbps; therefore, asynchronous framings schemes are followed.

The operations performed by this layer are defined in its service primitives; these can be
understood as Ir(LAP API definitions. Figure 18 shows an example of how these service
primitives work. Not all the primitives defined are required to have an IrDA implementation. The
primitives defined by the IrDA Lite protocol as required are:

e Discovery and address conflict services

e  Connect services

e Data services

e Disconnect services

Indication

Upper Layers Upper Layers
(Primary) (Secondary)
A A
Confirm
Request Response
y y
IrLAP Layer IrLAP Layer
(Primary) (Secondary)
Y Y
Frames
Figure 18. IrLAP Service Primitives

Implementing IrDA With The MSP430

21



{’? TEXAS

SLAA202A INSTRUMENTS

A.3 Link Management Protocol (IrLMP) Layer

22

The link management protocol (IrLMP) layer depends completely on the reliable connection
services and the negotiated link provided by the IrLAP layer. The services provided by the IrLMP
layer include: multiplexing of the link, address conflict resolution above the IrLAP layer, and
information access services (IAS).

To be able to have multiple LMP connections on one single LAP connection, the IrDA developed
a way of addressing these connections. Its method consists of having various logical service
access points (LSAPs) which access a service or application. This is accomplished through the
use of LSAP-SELs (LSAP selectors), which are 1-byte numbers that depending on the range
they belong to is the service they provide.

Just like the IrLAP layer, the IrLMP layer has a series of primitives that stipulate the services it
provides, which are, according to the IrDA Lite specification:

e Discovery services

e Link connect services
e Connect services

e Data services

e Disconnect services

The IrLMP layer adds 2 bytes of overhead in the information field of the IrLAP frame. Figure 19
shows the IrLMP frame format.

C/ DS |r|SS DATA

1 Byte 1 Byte N Bytes

Figure 19. IrLMP Frame Format

The control bit (C) identifies the frame as a command (C = 1) or data frame (C = 0) and the r bit
is reserved. DLSAP-SEL (DS) and SLSAP-SEL (SS) are the service addresses of the
destination of the frame and for the sender of the frame, respectively.

As part of the discovery services, the IrLMP layer adds overhead to the IrLAP XID frame. This
overhead is constituted by the device discovery information. This field is then divided in three
fields which are: service hint bits, character set, and device nickname. The service hint bits are
2 bytes that, depending on which bits are set, determine which services that specific device
supports (Table 1). The character set most widely used is ASCII, although other character sets
are permitted. Finally, the device nickname is the name by which the device is identified in the
IAS database service.

Implementing IrDA With The MSP430



{’? TEXAS

INSTRUMENTS SLAA202A
Table 1. Service Hint Bits
Byte 1 Byte 2
Bit Function Bit | Function
0 PnP compatible 0 Telephony
1 PDA/Palmtop 1 Fileserver
2 Computer 2 IrCOMM
3 Printer 3 Reserved
4 Modem 4 Reserved
5 Fax 5 OBEX
6 LAN access 6 Reserved
7 Extension (additional hint- 7 Extension
byte follows if this bit is set)

A.4 Information Access Services (IAS)

Information access services (IAS) provide a directory of services for a device. All the
applications available for connections must have entries in the IAS which determine their
LSAP-SEL. This address is used when querying the application for further information about the
services it provides.

According to the IrDA Lite standard, the only service primitive which is mandatory when
implementing IAS is the GetValueByClass primitive. The application which makes the inquiry
must provide the following information: class and attribute name. The application responding
provides the LSAP-SELs that provide the requested service or an indication that the specific
attribute does not exist in its database.

A.5 Tiny Transfer Protocol (TTP)

Tiny transfer protocol (TTP) provides a higher level of flow control than that of the IrLAP layer. It
makes use of the multiplexing capabilities of the IrLMP layer to enable two different LMP
connections to use the same underlying IrLAP connection without the loss of any data in the
process. The way in which TTP is able to provide this service is by issuing a credit to each party.
This credit is directly proportional to the buffer space that one side has. Sending data causes
one credit to be used. Periodically, the receiver issues more credit to the sender in order to be
able to keep receiving the intended data. TTP also has segmentation and reassembly
capabilities; this feature is not described in this application report.

TTP has its own set of primitives which describe the behavior of this layer. The primitives for
TTP are:

e  Connect services

e Disconnect services

¢ Reliable/unreliable data services
e Local flow control services

Two frame formats are used in TTP. Both add overhead to the User-Data field of the IrLMP
frame. These frames, as shown in Figure 20, establish a connection where initial credit (IC) is

Implementing IrDA With The MSP430 23



{’? TEXAS

SLAA202A INSTRUMENTS

issued or transfer data where delta credit is accounted for. Delta credit (DC) is the amount of
data frames that a device is allowed to send before it has to turn the connection over to another
device.

Connect Packet:

P| IC DATA

1 Byte N Bytes

P = 0: No parameters included IC: Initial Credit
P = 1: Parameters included

Data Packet:

M| DC DATA
1 Byte N Bytes
M = 0: Last segment . ;
M = 1: Not last segment DC: Delta Credit

Figure 20. TTP Frame Formats

A.6 IrCOMM

24

IrCOMM is serial and parallel port emulation over IR, also known as wire replacement. It
provides four different services: 3-wire raw, 3-wire cooked, 9-wire, and Centronics. For this
application, the IrCOMM 3-wire services are implemented. 9-wire services are needed in order
to communicate with Windows. Because the Windows IrDA stack does not actually handle the
control channel, it is possible to achieve communications with Windows by the same means as
3-wire cooked as long as the 9-wire service is advertised.

The 3-wire cooked service class makes use of TTP flow control, so that it may coexist with other
connections that employ a higher level (not IrLAP) flow control (including other cooked IrCOMM
connections). Therefore, it is not limited to a single Ir(LMP connection. It also supports a control
channel for sending information like data format. Because of the need for flow control and the
use of the control channel, the 3-wire service type uses a more elaborate frame format.

IrCOMM introduces a new service hint bit to indicate that the device supports IrCOMM services.
The [rCOMM IAS entry is I[rDA:IrCOMM with the following attributes: LsapSel and Parameters.
The LsapSel attribute is needed in order to make a connection. The Parameters attribute allows
the client application to distinguish among multiple IlCOMM services, because many different
applications can use serial and parallel ports to communicate. It has at least the service-type
parameter with at least the 3-wire cooked-bit set. The LsapSel attribute is also the unique
address of the service within the context of one device and is needed to connect to that service.
If the IrDA:IrCOMM IAS entry is for 3-wire cooked service, then the format to be used is
IrDA:TinyTP:LsapSel.

Implementing IrDA With The MSP430



{’? TeExAS
INSTRUMENTS SLAA202A

The Parameters attribute contains one or more values which characterize the rCOMM service
being provided. The attribute Parameters is mandatory, and it is to have a value type of octet
sequence (002h). Each parameter in the Parameters attribute consists of tuples of 3 (PI, PL, and
PV). The parameters that can be set are service type, port type, and fixed port name.

3-wire connections can coexist with other nonexclusive Ir(LMP connections. This is because
3-wire cooked uses TTP flow control, a method which allows various connections with their own
flow control to exist concurrently. Despite the presence of a control channel, 3-wire cooked
cannot emulate hardware handshaking, because nondata signals are not emulated. If hardware
handshaking is required, then the 9-wire or Centronics service type is necessary.

In 3-wire cooked, the control channel is used for three purposes:
e Selecting the service type

e To exchange port communication settings (data rate, data format, and flow control
information) when emulating a serial port

e  For certain Type 2 devices to deliver port line status (overrun, parity, and framing errors)
back to Type 1 devices

Implementing IrDA With The MSP430 25



SLAA202A

{'f TeExAS
INSTRUMENTS

Appendix B. IrDA Communication Diagram

Primary (Palm V)

NDM (Normal Disconnect Mode)

Send XID command
(Palm has 6 discovery
slots)

Secondary (MSP430)

Finish sending XIDs

Send XID response
(MSP430 always
answers in slot zero)

Discovery

Send SNRM command
(negotiate parameter
and connection address)

No response to XIDs for
other slots

Send S-frame with RR
command control field

Send UA response with
parameters using
connection address

Send IAS queries
(GetValueByClass)

Send S-frame with RR
response control field

Open channel for data

Send IAS queries
response

NRM (Normal Response Mode)

\>

Send data or status

Confirm channel open
for data

o

Send data or status

Send data or status

Send DISC command
(link shutdown)

Send data or status
(repeat until data
exchange is done)

Shutdown link
(back to NDM)

Send UA response

Figure 21. IrDA Communication Diagram

26 Implementing IrDA With The MSP430



{’? TeExAS
INSTRUMENTS SLAA202A

Appendix C. Frame Exchange Log

This section shows the frames exchanged in a connection between the IrCOMM2k driver for the
PC and the MSP430 IrDA stack. This is only meant to be an example, and it shows
communication with no errors. When a frame is similar to the previous frame, only the different
fields are commented on. All the numbers are in hexadecimal format, unless noted otherwise.

NOTE: IrCOMM2Kk is a driver for Windows that makes possible to use the IrCOMM services in
the Windows IrDA stack. It also enables the user to be able to use the Linux-IrDA stack ported to
Windows, if so desired [9].

(001 from IrCOMM2k) XID command: FF 3F 01 29 23 BE 84 FF FF FF FF 01 00

Address Field: FF, where the last bit is the C/R bit. When set, the C/R bit indicates a
command frame. The previous seven bits, equal to 7F are the broadcast address.

Control Field: 3F, 001x1111_ indicates an unnumbered type frame. 2F is the opcode for
exchange station identification. Bit 4 is the Poll/Final bit, which, when set by the primary,
indicates the frame is the final frame.

Format Identifier: 01 is a set value as defined in the IrLAP documentation.
Source Device Address: 2923BE84 is the address of the device sending the frame.
Destination Device Address: FFFFFFFF is the broadcast address during discovery.

Discovery Flags: 01. The last two bits indicate the amount of slots to be used during the
discovery, in this case six. Bit 2 is the conflict bit which is not set in this case.

Slot Number: 00, marks the first discovery slot.
Version Number: 00, as specified in the IrLAP documentation.

(002 from MSP430) XID response: FE BF 01 AB CD 12 34 29 23 BE 84 01 00 00 82 04 00 20
4D 53 50 34 33 30 20

Destination Device Address: 2329BE84 is the address of the device for which the frame
is intended.

Service Hint Bits: 8204. These bits are set according to the IrLMP documentation and in
this case they are set to support PDA/Palmtop and IrCOMM.

Character Set: 00 indicates ASCI|I is used.

Device Nickname: 204D535034333220 reads MSP430 and is the name that stores this
device information in the peer device IAS database.

(003 from IrCOMM2k) XID command: FF 3F 01 29 23 BE 84 FF FF FF FF 01 01
(004 from IrCOMM2k) XID command: FF 3F 01 29 23 BE 84 FF FF FF FF 01 02
(005 from IrCOMM2k) XID command: FF 3F 01 29 23 BE 84 FF FF FF FF 01 03
(006 from IrCOMM2k) XID command: FF 3F 01 29 23 BE 84 FF FF FF FF 01 04

Implementing IrDA With The MSP430 27



SLAA202A

{’.’ TeExAS
INSTRUMENTS

28

(007 from IrCOMM2k) XID command: FF 3F 01 29 23 BE 84 FF FF FF FF 01 FF 00 84 04 00
4C 54 41 30 38 36 36 32 36 35

Slot Number: FF marks the final discovery slot in the discovery sequence.

Service Hint Bits: 8404. This device supports PCs, PDA/Palmtops, and IrCOMM.

(008 from IrCOMM2k) SNRM command: FF 93 29 23 BE 84 AB CD 12 34 70 01 01 3E 82 01
018301 3F84017F 8501808601 1F 080107

Control Field: 93, 100x0011, = Unnumbered: Set Normal Response Mode (83) with the
final bit set.

Connection Address: 38 this corresponds to the middle six bits of 70.

Negotiation Parameters:

Baud Rate: (01, 01, 3E) 9600, 19200, 38400, 57600, and 115200 bps supported.
Max. Turnaround Time: (82, 01, 01) 500 ms.

Data Size: (83, 01, 3F) 64, 128, 256, 512, 1024, and 2048 bytes.

Window Size: (84, 01, 7F) 1, 2, 3, 4, 5, 6, and 7 frame windows.

Additional BOFs: (85, 01, 80) 0 additional BOFs at 115200 bps.

Min. Turnaround Time: (86, 01, 1F) 10, 5, 1, 0.5, and 0.1 ms.

Link Disconnect/Threshold Time: (08, 01, 07) 3/0, 8/3, and 12/3 seconds.

(009 from MSP430) UA Response: 70 73 AB CD 12 34 23 29 BE 84 01 01 02 82 01 01 83 01
0184 0101850101860101080101

Address Field: 70. Bit 0 is the C/R bit indicating a response, and the upper 7 bits use
from now on the ‘Connection Address’ received in the SNRM frame number 38.

Control Field: 73, 011x0011, = Unnumbered: Unnumbered Acknowledgement (63) with
the poll bit set.

(010 from IrCOMM2k) RR command: 71 11

Address Field: 71 with the C/R bit set and the CA (connection address) set to 38.

Control Field: 11 where bits 0-3 indicate a supervisory frame with a receive ready
opcode, bit 4 is the P/F bit, and bits 5-7 indicate the received frame count (Nr).

(011 from MSP430) RR response: 70 11

(012 from IrCOMMZ2k) IrLMP Connect Command: 71 10 80 5A 01 00

Control Field: 10 where bit 0 indicates an information type frame, bits 1-3 indicate the
sent frame count (Ns), bit 4 is the P/F bit, and bits 5-7 indicate the received frame count.

Destination: 80 where bit 7 is the control bit, and bits 0-6 are the DLSAP.

Implementing IrDA With The MSP430



{’? TeExAS
INSTRUMENTS SLAA202A

Source: 5A where bit 7 is reserved, and bits 0-6 are the SLSAP.
Opcode: 01 this corresponds to the connect command.
Reserved: 00 for future use.

(013 from MSP430) IrLMP Connect Confirm: 70 30 DA 00 81 00
Opcode: 81 corresponds to the connect confirm.

(014 from IrCOMM2Kk) IAS query: 71 32 00 5A 84 0B 49 72 44 41 3A 49 72 43 4F 4D 4D 0A 50
6172616D 6574657273

IAP Control Field: 84 where bit 7 corresponds to the last frame bit, bit 6 is the
acknowledge bit, and bits 0-5 are the opcode to the GetValueByClass IAS query.

Class Name: 0B497244413A4972434F4D4D where the first byte represents the length
of the class name, and the rest is the ASCII hex for the class name: “IrDA:IrCOMM”

Attribute Name: 0A506172616D6574657273 where the first byte represents the length

of the attribute, name and the rest is the ASCII hex for the attribute name: “Parameters”.
(015 from MSP430) IAS result: 70 52 5A 00 84 00 00 01 00 01 02 00 03 00 01 07

IAP Control Field: 84 where bit 7 corresponds to the last frame bit, bit 6 is the
acknowledge bit, and bits 0-5 are the opcode to the GetValueByClass IAS response.

Return: 00, success

List Length: 01

Object Identifier: 0001
Type: 02 for octet sequence
Sequence Length: 03

Sequence: 000107, where the first byte means service type, second byte is the length of
result, and the last byte has bits set for: 3-wire raw, 3-wire, or 9-wire service.

(016 from IrCOMMZ2k) IrLMP Disconnect: 71 54 80 5A 02 01
IrLMP opcode: 02.
Reason: 01 meaning user request.
(017 from MSP430) RR response: 70 71
(018 from IrCOMM2k) IrLMP Connect Command: 71 56 80 5B 01 00
(019 from MSP430) IrLMP Connect Confirm: 70 94 DB 00 81 00

Implementing IrDA With The MSP430 29



{’? TEXAS

SLAA202A INSTRUMENTS

30

(020 from IrCOMM2K) IAS query: 71 78 00 5B 84 0B 49 72 44 41 3A 49 72 43 4F 4D 4D 13 49
72 44 41 3A 54 69 6E 79 54 50 3A 4C 73 61 70 53 65 6C

IAP Control Field: 84 where bit 7 corresponds to the last frame bit, bit 6 is the
acknowledge bit, and bits 0-5 are the opcode to the GetValueByClass IAS query.

Class Name: 0B497244413A4972434F4D4D where the first byte represents the length
of the class name, and the rest is the ASCII hex for the class name: “IrDA:IrCOMM”.

Attribute Name: 13497244413A54696E7954503A4C73617053656C where the first byte
represents the length of the attribute name, and the rest is the ASCII hex for the
attribute name: “IrDA:TinyTP:LsapSel”.

(021 from MSP430) IAS result: 70 B6 5B 00 84 00 00 01 00 01 01 00 00 00 02
Type: 01 indicating an integer result.
Value: 000002 indicating the LSAP to use for TTP.

(022 from IrCOMMZ2k) IrLMP Disconnect: 71 9A 80 5B 02 01

(023 from MSP430) RR response: 70 D1

(024 from IrCOMM2k) IrLMP/TTP Connect Command: 71 9C 82 55 01 00 10

TTP Connect Frame: 10 where bit 7 is the P bit indicating a parameter-less connection
frame, and where the remaining 7 bits indicate the Initial Credit given to the peer entity.

(025 from MSP430) IrLMP/TTP Connect Confirm: 70 F8 D5 02 81 00 01
(026 from IrCOMM2k) RR command: 71 B1
(027 from MSP430) RR response: 70 F1

(028 from IrCOMM2k) IrCOMM Parameter Set: 71 BE 02 55 00 12 00 01 04 10 04 00 00 25 80
1101031201 0C 20 01 0C

[rCOMM header: 00.

Length of Parameters: 12.

Service Type: (00, 01 04) Service selected, equal to highest service in common, 9-wire.
Data Rate: (10, 04, 00002580) 9600 bps.

Data Format: (11, 01, 03) 8 bits, 1 stop bit, no parity.

Flow Control: (12, 01, 0C) RTS/CTS on input and output.

DTE Line Settings and Changes: (20, 01, 0C) DTR and RTS state.

Implementing IrDA With The MSP430



{’? TeExAS
INSTRUMENTS SLAA202A

(029 from MSP430) IrCOMM Parameter Accept and TTP credit: 70 1A 55 02 02

TTP Credit: 02, where bit 7 is the M (more) bit, and the remaining six bits indicate the
delta credit.

(030 from IrCOMM2k) RR command: 71 D1
(031 from MSP430) RR response: 70 11

NOTE: The RR command and response and exchange continue (frames 32-37) until a device
starts sending.

(038 from IrCOMMZ2k) IrLMP PDU/IrCOMM: 71 DO 02 55 00 00 74
IrCOMM data header: 0000.
User Data: 74, this is hex value for the ASCII character t.
(039 from MSP430) IrLMP PDU/IrCOMM: 70 3C 55 02 00 00 38 37 46 20
IrCOMM data header: 0000
User Data: 38374620 this is hex sequence for the ASCII string 87F.
(040 from IrCOMM2k) RR command: 71 F1
(041 from MSP430) TTP advancing credit: 70 3E 55 02 02

TTP Credit: 02, where bit 7 is the M (more) bit, and the remaining six bits indicate the
delta credit.

The exchange of RR command/response frames, IrCOMM user data and TTP credit continues
until one of the peers requests disconnection after finishing the data transfer.

Implementing IrDA With The MSP430 31



IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements,
improvements, and other changes to its products and services at any time and to discontinue any product or service without notice.
Customers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's
standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this
warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily
performed.

Tl assumes no liability for applications assistance or customer product design. Customers are responsible for their products and
applications using TI components. To minimize the risks associated with customer products and applications, customers should
provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any Tl patent right, copyright, mask
work right, or other Tl intellectual property right relating to any combination, machine, or process in which TI products or services
are used. Information published by TI regarding third-party products or services does not constitute a license from Tl to use such
products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under
the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of Tl information in Tl data books or data sheets is permissible only if reproduction is without alteration and is
accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an
unfair and deceptive business practice. Tl is not responsible or liable for such altered documentation. Information of third parties
may be subject to additional restrictions.

Resale of Tl products or services with statements different from or beyond the parameters stated by TI for that product or service
voids all express and any implied warranties for the associated T| product or service and is an unfair and deceptive business
practice. Tl is not responsible or liable for any such statements.

Tl products are not authorized for use in safety-critical applications (such as life support) where a failure of the Tl product would
reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement
specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications
of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related
requirements concerning their products and any use of Tl products in such safety-critical applications, notwithstanding any
applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify Tl and its
representatives against any damages arising out of the use of Tl products in such safety-critical applications.

Tl products are neither designed nor intended for use in military/aerospace applications or environments unless the Tl products are
specifically designated by Tl as military-grade or "enhanced plastic." Only products designated by Tl as military-grade meet military
specifications. Buyers acknowledge and agree that any such use of Tl products which Tl has not designated as military-grade is
solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in
connection with such use.

Tl products are neither designed nor intended for use in automotive applications or environments unless the specific Tl products
are designated by Tl as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any
non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products Applications
Amplifiers Bmplifier.fi.con Audio [nww ircom/audid
Data Converters Automotive [www ii-com/automofivg
DSP [sp Broadband
Interface Digital Control [yww ii.com/digitalcontro]
Logic [oaiciiconi Military [vww T com/militany
Power Mgmt Rowerirconj Optical Networking [xww i.com/opficalnetworR
Microcontrollers Security
RFID Telephony [yww Ti.com/telephony
Low Power Video & Imaging [vww ti.com/vided
Wireless

Wireless [ww ircomiwirelesd

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2007, Texas Instruments Incorporated


http://amplifier.ti.com
http://www.ti.com/audio
http://dataconverter.ti.com
http://www.ti.com/automotive
http://dsp.ti.com
http://www.ti.com/broadband
http://interface.ti.com
http://www.ti.com/digitalcontrol
http://logic.ti.com
http://www.ti.com/military
http://power.ti.com
http://www.ti.com/opticalnetwork
http://microcontroller.ti.com
http://www.ti.com/security
http://www.ti-rfid.com
http://www.ti.com/telephony
http://www.ti.com/lpw
http://www.ti.com/video
http://www.ti.com/wireless



