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ABSTRACT
Digital filtering can be easily accomplished on the MSP430 using efficient
multiplication.[1] The tool accompanying this document automatically converts FIR filter
coefficients to MSP430 assembly code that can be used in any application. Horner’s
method and CSD format is used to accomplish the efficient multiply operations. The
performance of the filter on the MSP430 is shown by evaluating the gain across all
frequencies. Performance in terms of CPU cycles, code size, and frequency response
of low-pass, high-pass, band-pass, band-stop, and notch filters on the MSP430 is
shown in Appendix A.
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1 Introduction

2 FIR Filter Code Synthesizer

2.1 Input Parameters

2.1.1 Filter Coefficients

2.1.2 Filter Length

2.1.3 Bit Resolution for the Filter Coefficients

2.1.4 Sampling Frequency

Introduction

An FIR filter, known for its inherent stability and linear phase property, sometimes is an ideal choice for
digital filtering.[2] The filter coefficients are always floating point numbers that need to be scaled to the
nearest integer for their operation in fixed-point machines, such as the MSP430 microcontrollers.[3] In
addition, such a filtering in the absence of a hardware multiplier becomes expensive in terms of CPU
cycles. The solution to both these concerns is Horner’s method. Horner’s method has the ability to perform
an integer-float multiply, thus eliminating the need for scaling of the filter coefficients. The efficiency in
terms of CPU cycles is achieved by using only shift and add instructions to perform the multiplication.[1]
The tool downloadable with this document generates efficient MSP430 code for any FIR filter, given its
coefficients. Additionally, a C wrapper file and data file are generated that perform a frequency sweep of
the data to verify the filter's performance.

The FIR filter code synthesizer FIR_filter_codegen.exe is a tool that accompanies this document. Input to
this tool are the FIR filter coefficients, filter length, bit resolutions (integer and fractional part) for the
coefficients, and the sampling frequency.

When the tool is executed, an interactive command window appears asking for the input parameters
previously discussed. The performance of the filter code generated entirely depends on these parameters,
and entry in the incorrect format leads to wrong code generation and filter performance.

The filter coefficients of the FIR filter in floating point format must be copied and pasted in the file
FIR_filter_coeff.dat, and this file must reside in the same directory as the tool.

The filter length corresponds to number of filter coefficients. This number should match the number of
coefficients stored in the file FIR_filter_coeff.dat. Any mismatches are not reported by the tool and lead to
incorrect filter performance.

The filter’s performance greatly depends on the resolution chosen to represent the coefficients. Separate
bit resolutions are necessary for the integer part and the fractional part. The fractional bit resolution is
always chosen to have better resolution as it has a direct impact on performance. This increase in bit
resolution results in a proportional increase in code size and CPU cycles. These resolutions (fraction or
integer part) are held constant for each coefficient.

The sampling frequency entered should match the sampling frequency that was used to generate the FIR
filter coefficients. This parameter is used by the tool to generate sample data across valid frequencies and
evaluate the frequency response using the output time samples. Mismatches in this parameter would lead
to misinterpretation of the filter’s performance.
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2.2 Output

2.2.1 Frequency Sweep Data

2.2.2 FIR Filter MSP430 Assembly Code

2.2.3 Wrapper C File

2.3 Summary

FIR Filter Code Synthesizer

Once the input parameters are entered, the tool generates a set of files that must be included as an
MSP430 project using the IAR Embedded Workbench™.

The file FIR_sine_data.dat is a data file that has sine data for frequencies that range from 10 Hz to
[(sampling frequency/2) – 10] Hz equally spaced over 44 frequencies. For each frequency, 400 data
samples in integer format ranging from –2047 to +2047 are generated. This format is chosen to remain
consistent with a 12-bit ADC that is present on some of the MSP430 devices. This data facilitates the
verification of the generated FIR filter’s frequency response.

The file FIR_filter.s43 contains the MSP430 assembly code that performs the FIR filtering. Function calls
are made to this function on a sample-by-sample basis for each of the 400 samples at every frequency.
This function returns one output sample which is then used to evaluate the gain at each frequency.

The file FIR_filter_wrapper.c initializes all the variables necessary to simulate the filter’s performance on
the MSP430. It makes function calls to the assembly function FIR_filter.s43. The output samples are
accumulated to perform an approximate frequency response by evaluating the gain at the end of
400 samples for each frequency. This normalized gain versus frequency plot is shown in Appendix A for
the examples considered. These 44 accumulated gain values are also printed in the Terminal I/O window
selected from the View menu of IAR Embedded Workbench. These values can be graphed by entering
them in the Excel file FIR_gain_plot.xls.

In this section is a summary of instructions that need to be followed to use the FIR filter synthesizer tool.
Appendix B lists and describes each file included in the accompanying zip file.

To use the FIR filter synthesizer tool:

1. Decompress the zip file that accompanies this document.
2. A sample coefficient file, FIR_filter_coeff.dat, is provided in the parent directory. To verify the

performance of each filter example, overwrite the coefficients in this sample file with the coefficients of
the filter example included in the corresponding directories. To generate the code for any FIR filter,
paste the new set of coefficients in the sample file, maintaining the same format.

3. Execute FIR_filter_codegen.exe and enter the required parameters. Exact instructions have been
provided in an accompanying file, Instructions.pdf.

4. The output of the tool is a C-wrapper file, MSP430 assembly code, and a sine data file generated in
the same directory.

5. Create a new C project using IAR, add the C and the assembly files, and build. Open the Terminal I/O
window from the View menu of IAR and run the code to see the gain at each frequency.

Note: The C wrapper file uses file operations and printf() statements that require a very large
code size. Hence, it is recommended to run the project in simulator mode on one of the
MSP430 devices that have a larger memory model to test the functionality. The C
wrapper file only demonstrates the verification of the FIR filter on the MSP430 using
simulated data. In a real application, the MSP430 assembly code file is the only file
necessary for FIR filter operation.

Note: The tool generates assembly code that is compatible in all of the MSP430 family of
devices. However, if CPUx architecture is chosen, the last instruction, ret, in the assembly
file FIR_filter.s43 should be replaced by the instruction reta.
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Appendix A FIR Filter Examples

A.1 Low-Pass Filter

0 200 400 600 800 1000 1200 1400 1600 1800 2000
10

-4

10
-3

10
-2

10
-1

10
0

Frequency (Hz)

N
o

rm
a

liz
e

d
G

a
in

 (
lo

g
a

ri
th

m
ic

 s
c
a

le
)

This appendix shows the performance of basic FIR filters that have been generated using the tool
and executing the source files generated. The code size, CPU cycles and approximate plot of the
frequency response for each example is shown. In each example, the filter coefficients were all less
than one, hence the bits for Integer part are set to zero. However, the tool generates valid MSP430
code if some or all of the coefficients are greater than one.

Filter specifications:
Filter length = 21
Bits for integer part = 0
Bits for fraction part = 15
Sampling frequency = 4000 Hz
Cut-off frequency = 600 Hz

Figure A-1 shows the approximate frequency response of the filter after the execution of the code
generated from the tool on the MSP430. The plot of the normalized gain on the logarithmic scale versus
the frequency conforms to its design specifications.

Figure A-1. Low-Pass FIR Filter Response

Filter performance:
CPU cycles = 662
Code size in bytes = 1076
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A.2 High-Pass Filter
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High-Pass Filter

Filter specifications:

Filter length = 31

Bits for integer part = 0

Bits for fraction part = 15

Sampling frequency = 8000 Hz

Cut-off frequency = 2000 Hz

Figure A-2 shows the approximate frequency response of the filter after the execution of the code
generated from the tool on the MSP430. The plot of the normalized gain on the logarithmic scale versus
the frequency conforms to its design specifications.

Figure A-2. High-Pass FIR Filter Response

Filter performance:
CPU cycles = 636
Code size in bytes = 976
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A.3 Band-Pass Filter

0 500 1000 1500 2000 2500 3000
10

-4

10
-3

10
-2

10
-1

10
0

Frequency (Hz)

N
o
rm

a
liz

e
d

G
a
in

(l
o
g
a
ri
th

m
ic

s
c
a
le

)

Band-Pass Filter

Filter specifications:
Filter length = 41
Bits for integer part = 0
Bits for fraction part = 15
Sampling frequency = 6000 Hz
Lower Cut-off frequency = 500 Hz
Upper Cut-off frequency = 1500 Hz

Figure A-3 shows the approximate frequency response of the filter after the execution of the code
generated from the tool on the MSP430. The plot of the normalized gain on the logarithmic scale versus
the frequency conforms to its design specifications.

Figure A-3. Band-Pass FIR Filter Response

Filter performance:
CPU cycles = 1187
Code size in bytes = 1910
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A.4 Band-Stop Filter
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Band-Stop Filter

Filter specifications:
Filter length = 31
Bits for integer part = 0
Bits for fraction part = 15
Sampling frequency = 2000 Hz
Lower Cut-off frequency = 200 Hz
Upper Cut-off frequency = 800 Hz

Figure A-4 shows the approximate frequency response of the filter after the execution of the code
generated from the tool on the MSP430. The plot of the normalized gain on the logarithmic scale versus
the frequency conforms to its design specifications.

Figure A-4. Band-Stop FIR Filter Response

Filter performance:
CPU cycles = 531
Code size in bytes = 1187
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A.5 Notch Filter
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Notch Filter

Filter specifications:
Filter length = 60
Bits for integer part = 0
Bits for fraction part = 15
Sampling frequency = 400 Hz
Notch frequency = 60 Hz

Figure A-5 shows the approximate frequency response of the filter after the execution of the code
generated from the tool on the MSP430. The plot of the normalized gain on the logarithmic scale versus
the frequency conforms to its design specifications.

Figure A-5. Notch FIR Filter Response

Filter performance:
CPU cycles = 1891
Code size in bytes = 3060
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Appendix B File List

B.1 File List

This appendix includes the list of files contained within the zip file that accompanies this document,
along with a description of their functionality. Separate directories have been created to include files
that belong to each example.

FIR_filter_codegen.exe
This is the FIR filter code synthesizer utility that generates code to run on the MSP430.

FIR_filter_coeff.dat
This file must be present in the same directory as the code synthesizer. It has the FIR filter coefficients
in floating point format. A sample file has been included with the zip file, and the user can overwrite
this file with new coefficients.

FIR_filter_wrapper.c
This is the C wrapper file generated when the tool FIR_filter_codegen.exe is executed.

FIR_filter.s43
This is the MSP430 assembly code file generated by the tool FIR_filter_codegen.exe.

FIR_sine_data.dat
This file contains the frequency sweep sine data generated by the tool FIR_filter_codegen.exe. The file
has a total of 17600 samples in integer format ranging from –2047 to +2047. 400 samples are stored
continuously for each of the equally spaced 44 distinct frequencies ranging from 10 Hz to [(sampling
frequency/2) – 10] Hz. It must reside in the same directory of the C wrapper and MSP430 assembly file
to evaluate the frequency response.

FIR_gain_plot.xls
This file is used to graphically depict the approximate frequency response of the FIR filter when
executed on the MSP430. The user can overwrite the parameters and the gain values for each
frequency obtained at the Terminal I/O to see the filter’s response.

LPF_21_coeff.dat
This file contains the filter coefficients used to generate the example in Section A.1.

LPF_wrapper.c
This file is the C wrapper file filter for the example in Section A.1.

LPF_filter.s43
This file is the MSP430 assembly code that performs the filtering as specified in the example in
Section A.1.

LPF_sine_data.dat
This file is the simulated frequency sweep data for the verification of the filter’s frequency response for
the example in Section A.1.
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File List

HPF_31_coeff.dat
This file contains the filter coefficients used to generate the example in Section A.2.

HPF_wrapper.c
This file is the C wrapper file filter for the example in Section A.2.

HPF_filter.s43
This file is the MSP430 assembly code that performs the filtering as specified in the example in
Section A.2.

HPF_sine_data.dat
This file is the simulated frequency sweep data for the verification of the filter’s frequency response for
the example in Section A.2.

BPF_41_coeff.dat
This file contains the filter coefficients used to generate the example in Section A.3.

BPF_wrapper.c
This file is the C wrapper file filter for the example in Section A.3.

BPF_filter.s43
This file is the MSP430 assembly code that performs the filtering as specified in the example in
Section A.3.

BPF_sine_data.dat
This file is the simulated frequency sweep data for the verification of the filter’s frequency response
forthe example in Section A.3.

BSF_31_coeff.dat
This file contains the filter coefficients used to generate the example in Section A.4.

BSF_wrapper.c
This file is the C wrapper file filter for the example in Section A.4.

BSF_filter.s43
This file is the MSP430 assembly code that performs the filtering as specified in the example in
Section A.4.

BSF_sine_data.dat
This file is the simulated frequency sweep data for the verification of the filter’s frequency response for
the example in Section A.4.

Notch_60_coeff.dat
This file contains the filter coefficients used to generate the example in Section A.5.

Notch_wrapper.c
This file is the C wrapper file filter for the example in Section A.5.

Notch_filter.s43
This file is the MSP430 assembly code that performs the filtering as specified in the example in
Section A.5.

Notch_sine_data.dat
This file is the simulated frequency sweep data for the verification of the filter’s frequency response for
the example in Section A.5.
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