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The MSP430 Hardware Multiplier

Lutz Bierl

ABSTRACT
The 16x16-bit hardware multiplier of the MSP430 family is explained in detail. Function,
modes and proven application examples are given for this fast and versatile peripheral.
Also shown is a comparison of the speed of solutions using this peripheral versus pure
software solutions.

1 Introduction

The hardware multiplier allows three different multiply operations (modes):
* Multiplication of unsigned 8-bit and 16-bit operands (MPY)
e Multiplication of signed 8-bit and 16-bit operands (MPYS)

* Multiply-and-accumulate function (MAC) using unsigned 8-bit and 16-bit
operands

Any mixture of operand lengths (8 and 16 bits) is possible. Additional operations
are possible when supplemental software is used, such as signed multiply-
and-accumulate.

Figure 1 shows the hardware modules that comprise the MSP430 multiplier. The
accessible registers are explained in the following sections. Figure 1 is not
intended to depict the physical reality; it illustrates the hardware multiplier from
the programmer’s point of view.
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Figure 1. Hardware Multiplier Block Diagram

1.1 Hardware and Registers

The hardware multiplier is not part of the MSP430 CPU—it is a peripheral that
does not interfere with the CPU activities. The multiplier uses normal peripheral
registers that are loaded and read using CPU instructions. The programmer-
accessible registers are explained in this chapter.

The hardware multiplier registers are not affected by POR or PUC events. Read
and write operations can be performed in all the registers but the SumExt register.
Hardware multiplier definitions are presented in Section 3.
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Figure 2. Hardware Multiplier Internal Connections

1.1.1 Operandl Registers

The operational mode of the MSP430 hardware multiplier is determined by the
address where Operandl is written:

* Address 130h: execute unsigned multiplication (MPY)
* Address 132h: execute signed multiplication (MPYS)
* Address 134h: execute unsigned multiply-and-accumulate (MAC)

The address of Operandl alone determines the operation to be performed by the
multiplier (after modification of Operand2). No operation is started by
modification of Operandl alone.

EXAMPLE: a multiply unsigned (MPY) operation is defined and started. The two
operands reside in R14 and R15.
MOV R15,&130h ; Define MPY operation

MOV R14,&138h ; Start MPY with operand 2
; Product in SumHi|SumLo

1.1.2 OperandZ2 Register

The Operand2 Register (at address 138h) is common to all three multiplier
modes. Modification of this register (normally with a MOV instruction) starts the
selected multiplication of the two operands contained in Operandl1 and Operand2
registers. The result is written immediately into the three hardware registers
SumExt, SumHi, and SumLo. The result can be accessed with the next
instruction, unless indirect addressing modes are used for source addressing.

The MSP430 Hardware Multiplier 3



Introduction

1.1.3 SumLo Register

This 16-bit register contains the lower 16 bits of the calculated product or sum.
All instructions may be used to access or modify the SumLo register. The high
byte cannot be accessed with byte instructions.

1.1.4 SumHi Register

The contents of this 16-bit register, which depend on the previously executed
operation, are as follows:

* MPY: the most-significant word of the calculated product.

* MPYS: the most-significant word, including the sign of the calculated product.
Twos complement notation is used for the product.

* MAC: the most significant word of the calculated sum.

All instructions may be used with the SumHi register. The high byte cannot be
accessed using byte instructions.

1.1.5 SumExt Register

The sum extension register SumeExt allows calculations with results exceeding
the 32-bit range. This read-only register holds the most significant part of the
result (bits 32 and higher). The content of SumExt is different for each
multiplication mode:

e MPY: SumExt always contains zero, with no carry possible. The largest
possible result is: OFFFFh x OFFFFh = OFFFEQO0O01h.

* MPYS: SumExt contains the extended sign of the 32-bit result (bit 31). If the
result of the multiplication is negative (MSB=1) SumExt contains OFFFFh. If
the result is positive (MSB = 0) SumExt contains 0000h.

e MAC: SumExt contains the carry of the accumulate operation. SumExt
contains 0001 if a carry occurred during the accumulation of the new product
to the old one, and zero otherwise.

Register SumExt simplifies multiple word operations—straightforward additions
are performed without conditional jumps, saving time and ROM space.

EXAMPLE: the new product of a MPYS operation (operands in R14 and R15) is
added to a signed 64-bit result located in RAM words RESULT through

RESULT+6:
MOV R15,&4MPYS ; First operand
MOV R14,&0P2 ; Start MPYS with operand 2
ADD SumLo,RESULT : Lower 16 bits of result

ADDC  SumHi,RESULT+2 ; Upper 16 bits
ADDC  SumExt,RESULT+4 ; Result bits 32 to 47
ADDC  SumExt,RESULT+6 ; Result bits 48 to 63

NOTE: Using the MACROs defined in the Assembler MACROS
section instead of the method shown above is strongly
recommended. The resulting code is much more descriptive when
using MACROs containing known abbreviations such as MPYU,
MPYS, and MACU.

4 SLAA042
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With the software shown above, no checks and conditional jumps are necessary.
The result automatically contains the signed-accumulated sum.

1.2 Hardware Multiplier Rules

The hardware multiplier is essentially a word module. The hardware registers can
be addressed in word mode or in byte mode, but the byte mode can only address
the lower bytes. The upper byte cannot be addressed.

The operand registers of the hardware multiplier (addresses 0130h, 0132h,
0134h and 0138h) behave like the CPU’s working registers RO to R15 when
modified in byte mode: the upper byte is cleared in this case. This allows for any
combination of 8-bit and 16-bit multiplications. See the examples in section 2.4.

The floating point package (FPP) version 4 uses the hardware multiplier when
variable HW_MPY is set to one:

HW_MPY .equl

See the Metering Application Report for details.
If the result of a hardware multiplier operation is addressed using indirect mode,
or indirect-autoincrement mode, then an NOP instruction is necessary after

multiplication to allow time to complete the multiplication. See the examples in
section 3.1.

The MSP430 Hardware Multiplier 5
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2 Multiplication Modes

The three different multiplication modes available are explained in the following
sections.

2.1 Unsigned Multiply
The two operands written to operand registers 1 and 2 are treated as unsigned
numbers with:
00000h being the smallest number
OFFFFh being the largest number
The maximum possible result is obtained with input operands OFFFFh and
OFFFFh:
OFFFFh x OFFFFh = OFFFEO001h

No carry is possible, the SumExtregister always contains zero. Table 1 gives the
products for some selected operands.

Table 1. Results With Unsigned-Multiply Mode

Operands SumExt | SumHi | SumLo
0000 x 0000 0000 0000 0000
0001 x 0001 0000 0000 0001
7TFFF x TFFF 0000 3FFF 0001
FFFF x FFFF 0000 FFFE 0001
7FFF x FFFF 0000 7TFFE 8001
8000 x 7FFF 0000 3FFF 8000
8000 x FFFF 0000 7FFF 8000
8000 x 8000 0000 4000 0000

2.2 Signed Multiply
The two operands written to operand registers 1 and 2 are treated as signed twos
complement numbers with:
08000h being the most negative number (—32768)
07FFFh being the most positive number (+32767)
The SumExt register contains the extended sign of the calculated result:

SumExt = 00000h:  the result is positive
SumExt = OFFFFh: the result is negative

6 SLAA042
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Table 2 gives the signed-multiply products for some selected operands.
Table 2. Results With Signed-Multiply Mode

Operands SumExt | SumHi | SumLo
0000 x 0000 0000 0000 0000
0001 x 0001 0000 0000 0001
TFFF x 7TFFF 0000 3FFF 0001
FFFF x FFFF 0000 0000 0001
7FFF x FFFF FFFF FFFF 8001
8000 x 7FFF FFFF C000 8000
8000 x FFFF 0000 0000 8000
8000 x 8000 0000 4000 0000

2.3 Multiply-and-Accumulate (MAC)

The two operands written to operand registers 1 and 2 are treated as unsigned
numbers (Oh to OFFFFh). The maximum possible result is obtained with input
operands OFFFFh and OFFFFh:

OFFFFh x OFFFFh = OFFFEO0001h
This result is added to the previous content of the two sum registers (SumLo and

SumH). If a carry occurs during this operation, the SumExt register contains 1
and is cleared otherwise.
SumExt = 00000h:  no carry occurred during the accumulation
SumExt=00001h: a carry occurred during the accumulation

The results of Table 3 assume that SumHiand SumLo contain the accumulated
content C000,0000 before the execution of each example. See Table 1 for the
results of an unsigned multiplication without accumulation.

Table 3. Results With Unsigned Multiply-and-Accumulate Mode

Operands SumExt | SumHi | SumLo
0000 x 0000 0000 C000 0000
0001 x 0001 0000 C000 0001
7TFFF x 7TFFF 0000 FFFF 0001
FFFF x FFFF 0001 BFFE 0001
7FFF x FFFF 0001 3FFE 8001
8000 x 7FFF 0000 FFFF 8000
8000 x FFFF 0001 3FFF 8000
8000 x 8000 0001 0000 0000

2.4 Multiplication Word Lengths

The MSP430 hardware multiplier allows all possible combinations of 8-bit and
16-bit operands. The examples given in chapter 3 for 8-bit and 16-bit operands
may be adapted to mixed length operands.

Notice that input registers Operandl and Operand2 behave like CPU registers,
where the high-register byte is cleared if the register is modified by a byte
instruction. This simplifies the use of 8-bit operands. The following are examples
of 8-bit operand use for all three modes of the hardware multiplier.

The MSP430 Hardware Multiplier 7
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; Use the 8-bit operand in R5 for an unsigned multiply.
. MOV.B R5,&MPY ; The high byte is cleared
; Use an 8-bit operand for a signed multiply.
MOV.B R5,&MPYS ; The high byte is cleared
SXT &MPYS ; Extend sign to high byte
; Use an 8-bit operand for a multiply—and—accumulate.
;. MOV.B R5,&MAC ; The high byte is cleared

Operand2is loaded in a similar fashion. This allows all four possible combinations
of input operands:

16 x 16 8 x16 16 x 8 8 x8

The MACROS that can be modified are discussed in the following section.

8 SLAA042
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3 Hardware Multiplier Programming

The hardware multiplier registers are initially defined in accordance with the
MSP430 Family Architecture Guide and Module Library to prevent
misunderstandings.

; MSP430 Hardware Multiplier Definitions

MPY .equ  130h ; Multiply unsigned

MPYS .equ 132h ; Multiply signed

MAC .equ 134 ; Multiply—and—Accumulate
OP2 .equ 138h ; Operand 2 Register

SumLo .equ 013Ah ; Result Register LSBs 15..0
SumHi .equ 013Ch ; Result Register MSBs 32..16
SumExt .equ  013Eh ; Sum Extension Register 47..33

3.1 Assembler MACROS

Due to the MACRO construct of the multiply instructions (normally two MOV
instructions form a multiplication sequence), all seven addressing modes are
possible for source and destination. If the register-indirect or register-indirect with
autoincrement addressing modes are used to address the result, an NOP is
necessary after the .MACRO call due to the fast access time of these addressing
modes. This allows sufficient time to complete the multiplication.

Examples for each .MACRO definition are given. The number of execution cycles
required depends on the addressing modes used with multiplier and multiplicand.

The given MACROSs can be easily converted to subroutines. An example follows
for unsigned multiplication:

; Subroutine Definition for the unsigned multiplication

; 16x16 bits. The two operands are contained in R4 and R5

MPYU_16  MPYU16 R4,R5 ; Unsigned MPY 16x16
RET ; Result in SumHi|SumLo

3.1.1 Unsigned Multiplication 16 x16-Bits

; Macro Definition for the unsigned multiplication 16x16 bits

MPYU16 .MACRO argl,arg2 ; Unsigned MPY 16x16
MOV arg1,&0130h
MOV arg2,&0138h
.ENDM ; Result in SumHi|SumLo

; Multiply the contents of the two registers R4 and R5

; MPYU16 R4,R5 ; MPY R4 and R5 unsigned
MOV SumLo,R6 ; LSBs of result to R6
MOV SumHi,R7 ; MSBs of result to R7
; Continue

The MSP430 Hardware Multiplier
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; Multiply the contents located in a table, R6 points to
; The result is addressed in indirect mode: a NOP is necessary
; to allow the completion of the multiplication

MOV #SumLo,R5 : Pointer to LSBs of result
MPYU16 @R6+,@R6 : MPYU the table contents
NOP ; Allow completion of MPYU16
MOV @R5+,R7 : Fetch LSBs of result
MOV @R5,R8 ; Fetch MSBs of result

: Continue

; Macro Definition for the unsigned multiplication and
; accumulation 16x16 bits.
MACU16 .MACRO arg1l,arg2 ; Unsigned MAC 16x16
MOV argl,&0134h ; Carry in SumExt
MOV arg2,&0138h
.ENDM ; Result in SumExt | SumHi | SumLo
; Multiply—and—accumulate the contents of registers R5 and R6
; to the previous content (IROP1 x IROP2L) of the Sum registers

MPYU16 IROP1,IROP2L ; Initialize Sum registers

MACU16 R5,R6 ; Add (R5 x R6) to result
ADD &SumExt,RAM ; Add carry to RAM extension
: Continue

3.1.2 Signed Muiltiplication 16 x16-Bits

The following software examples perform signed 16x16-bit multiplication
(MPYS16), or 16x16-bit signed multiplication-and-accumulation (MACS16).

The SumExt register contains the extended sign of the result in SumHi and
SumLo: 0000h (positive result), or OFFFFh (negative result).

; Macro Definition for the signed multiplication 16x16 bits

MPYS16 .MACRO argl,arg2 ; Signed MPY 16x16 bits
MOV argl,&0132h
MOV arg2,&0138h
.ENDM ; Result in SumExt|SumHi|SumLo

; Multiply the contents of two registers R4 and R5

)

MPYS16 R4,R5 ; MPY signed R4 and R5
MOV &SumlLo,R6 : LSBs of result to R6
MOV &SumHi,R7 : MSBs of result to R7
MOV &SumExt,R8 ; Sign of result to R8

; Continue

; Multiply the contents located in a table, R6 points to
; The result is addressed in indirect mode: a NOP is necessary

10 SLAA042
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; to allow the completion of the multiplication

MOV #SumLo,R5 ; Pointer to LSBs of result
MPYS16 @R6+,@R6 ; MPY signed table contents
NOP ; Allow completion of MPYS16
MOV @R5+,R7 : LSBs of result to R7
MOV @R5+,R8 : MSBs of result to R8
MOV @R5,R9 ; Sign of result to R9

; Continue

; Macro Definition for the signed multiplication—and—

; accumulation 16x16 bits. The accumulation is made in the

: RAM: MACHi, MACmid and MACIo. If more than 48 bits are used
; for the accumulation, the SumExt register is added to all

; further extensions (RAM or registers) here shown for only

; one extension (48 bits).

MACS16 .MACRO argl,arg2 ; Signed MAC 16x16 bits
MOV argl,&0132h ; Signed MPY is used
MOV arg2,&0138h
ADD &SumlLo,MACIo ; Add LSBs to result
ADDC  &SumHi,MACmid ; Add MSBs to result
ADDC  &SumExt,MACHhi ; Add SumExt to MSBs
.ENDM

; Multiply and accumulate signed the contents of two tables

MACS16 2(R6),@R5+ ; MAC for the table contents
; Accumulation is yet made
3.1.3 Unsigned Multiplication 8 x8-Bits

When byte instructions are used to load the hardware multiplier registers, the high
byte of these registers is cleared like a CPU register. This feature is used with
unsigned 8x8-bit multiplication.

; Macro Definition for the unsigned multiplication 8x8 bits

MPYU8 .MACRO argl,arg2 ; Unsigned MPY 8x8
MOV.B argl,&0130h ; 00xx to 0130h
MOV.B arg2,&0138h  ; 00yy to 0138h
.ENDM ; Result in SumLo. SumHi =0

; Multiply the contents of the low bytes of two registers

MPYUS8 R12,R15 ; MPY low bytes of R12 and R15
MOV &SumLo,R6 : 16 bit result to R6
; SUMEXt = SumHi =0
; Macro Definition for the unsigned multiplication-and-
; accumulation 8x8 bits

The MSP430 Hardware Multiplier 11
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’

MACU8 .MACRO argl,arg2 ; Unsigned MAC 8x8
MOV.B argl,&0134h ; 00xx
MOV.B arg2,&0138h ; 00yy
.ENDM ; Result in SumExt|SumHi|SumLo

; Multiply—and—accumulate the low bytes of R14 and a table

MACUS8 R14,@R5+ ; CALL the MACU8 macro (R5+1)
3.1.4 Signed Multiplication 8 %8 Bits

When byte instructions are used to load the hardware multiplier registers, the high
bytes of their registers are cleared like a CPU register. Therefore only the sign
extension is required.

; Macro Definition for the signed multiplication 8x8 bits

MPYS8 .MACRO argl,arg2 ; Signed MPY 8x8
MOV.B argl,&0132h ; 00xx
SXT &0132h ; Extend sign: 00xx or FFxx
MOV.B arg2,&0138h ; 00yy
SXT &0138h ; Extend sign: 00yy or FFyy
.ENDM ; Result in SumExt|SumHi|SumLo

; Multiply signed the low bytes of R5 and location EDE

MPYS8 R5,EDE ; CALL the MPYS8 macro
MOV &SumLo,R6 ; Fetch result (16 bits)
MOV &SumHi,R7 ; Sign: 0000 or FFFF

; Macro Definition for the signed multiplication and

; accumulation 8x8 bits. The accumulation is made in the

; locations MACHi, MACmid and MACIo (registers or RAM)
; If more than 48 bits are used for the accumulation, the

; SUmEXt register is added to all further RAM extensions

MACS8 .MACRO argl,arg2 ; Signed MAC 8x8 bits
MOV.B argl,&0132h ; MPYS is used
SXT &0132h ; Extend sign: 00xx or FFxx
MOV.B arg2,&0138h ; 00yy
SXT &0138h ; Extend sign
ADD &SumLo,MAClo ; Accumulate LSBs 16 bits
ADDC  &SumHi,MACmid ; Accumulate MIDs
ADDC  &SumExt,MAChi : Add SumExt to MSBs
.ENDM ;

12 SLAA042
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; Multiply—and—accumulate signed the contents of two byte
: tables
MACS8 2(R6),@R5+ ; CALL the MACS8 macro (R5+1)
; Accumulation is yet made

3.2 Interrupt Usage

No special rules apply when the hardware multiplier is used in the foreground only
(interrupt handlers).

While not common in real-time programming, the hardware multiplier can be
used inthe foreground and the background, or in nested interrupt handlers. Three
rules must be observed in these particular cases:

e The loading of registers Operandl (MPY, MPYS and MAC) and Operand2
must not be separated by an interrupt while using the multiplier. The input
information for Operandl can not be restored because three different input
registers are possible. See the example below.

* Registers Operandl and Operand2 can not be reread by the background
software because they may be overwritten by the interrupt handler.

e Theinformation in Operandl can not be used in more than one multiplication
and therefore it must be rewritten. The Operand?2 register must be rewritten
to start the next multiplication. In normal operation, the float-point package
FPP4 speeds up the calculation by using Operand1l twice.

; Background: multiplication is used together with interrupt

; The interrupt latency time is increased by 9 cycles.

; The NOP is necessary: one additional instruction may

; be executed after the DINT instruction

DINT ; Ensure non-interrupted —
NOP ; load of the MPYer registers
MPYU16 R4,R6 ; (R4) x (R6) —> Sum

EINT ; Allow interrupts again

; Continue with result

; The interrupt handler must save and restore the Sum registers

INTRPT_H PUSH &SumLo ; Save the SumLo register

PUSH  &SumHi ; Save the SumHi register
PUSH  &SumExt ; Save the SumExt register
MPYU16 #X,C1 ; Call unsigned MPY: X x C1
; Continue with MPYer result
POP &SumExt ; Restore SumEXxt register
POP &SumHi ; SumHi register

POP &SumLo ; SumLo register

The MSP430 Hardware Multiplier 13
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RETI ; Return to background

3.3 Speed Comparison with Software Multiplication

Table 4 shows the speed increase for the four different 16x16-bit multiplication
modes. The software loop cycles include the subroutine call (CALL #MULXxX), the
multiplication subroutine itself, and the RET instruction. Only CPU registers are
used for the multiplication. See the Metering Application Reportfor details on the
four multiplication subroutines.

The cycles given for the hardware multiplier include the loading of the multiplier
operands Operandl and Operand2 from CPU registers and—in the case of the
signed MAC operation—the accumulation of the 48-bit result into three CPU
registers (see section 3.1.2).

Table 4. CPU Cycles Needed With Different Multiplication Modes

OPERATION SOFTWARE LOOP | HARDWARE MPYer | SPEED INCREASE
Unsigned Multiply MPY 139...171 8 17.4..21.4
Unsigned MAC 137...169 8 17.1..21.1
Signed Multiply MPYS 145...179 8 18.1..22.4
Signed MAC 143...177 17 8.4..104

3.4 Software Hints

14

Operandl can be used in consecutive multiplications without having to move it
again into the Operandl register. The first example shows two unsigned
multiplications with the content of address TONI. This method saves four bytes
and six CPU cycles over the normal procedure.

; Multiply TONI x R6 and TONI x R5. Results to diff. locations

MPYU16 TONI,R6 ; TONI x R6 —> SumHi|SumLo
MOV &SumLo,R7 ; Result to R8|R7

MOV &SumHi,R8

MOV R5,&0138h ; TONI still in &0130h

MOV &SumLo,RESULT ; TONI x R5 —> SumHi|SumLo
MOV &SumHi,RESULT+2 ; Resultto RESULT+2|RESULT

The second example shows three multiply-and-accumulate operations with the
same Operandl. The three OperandZ2s cannot be simply added and multiplied
once because their sum may exceed the16-bit range. This method saves eight
ROM bytes and twelve CPU cycles over the normal procedure.
; Multiply-and-accumulate TONI x R6, TONI x R5 and TONI x EDE
; The accumulated result is moved to RESULT..RESULT+4

; Initialize SumXxx registers

MACU16 TONI,R6 ; TONI x R6 + SumHi|SumLo

ADD &SumExt,RESULT+4 ; Add carry to extension

MOV R5,&0138h ; Add TONI x R5 to SumXxx

ADD &SumExt,RESULT+4 ; Add carry to extension
SLAA042
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MOV EDE,&0138h ; Add TONI x EDE to SumXxx

MOV &SumLo,RESULT ; TONI x (R5+R6+EDE) in SumXxx
MOV &SumHi,RESULT+2; Result to RESULT..RESULT+4
ADD &SumExt,RESULT+4

3.5 Speed Increase With Floating Point Package FPP4

The hardware multiplier increases the speed of the floating-point multiplication
only. The variables X and Y are used in the speed evaluation shown. They are
defined as follows:

.if DOUBLE=0 ; 32-bit format
X float 3.1416 ; 3.1416
Y .float 3.1416*100 ; 314.16

.else : 48-bit format
X .double  3.1416 ; 3.1416
Y .double  3.1416*100 ; 314.16

.endif

The execution cycles shown include the addressing of one operand and the
subroutine CALL:

MOV #X,RPRES ; Address 1st operand
MOV #Y,RPARG ; Address 2nd operand
CALL  #FLT_MUL ; Call the MPY subroutine

; Product X x Y on TOS
Table 5 shows the number of cycles required by the multiplication.

Table 5. CPU Cycles Required for FPP Multiplication (FLT_MUL)

OPERATION .FLOAT .DOUBLE COMMENT
Multiplication X xY 395 692 Software Loop
Multiplication X xY 153 213 Hardware MPYer used

Speed Increase 2.58 3.25 SW-cycles/HW-cycles

Substituting divisions with multiplications whenever possible to take advantage
of the hardware multiplier’s speed is recommended. The simplest case is when
dividing by a constant as the next example illustrates.

EXAMPLE: division of the last result, sitting on top of the stack, by the constant
2.7182818 is substituted with a multiplication by the constant 1/2.7182818. This
reduces calculation time by a factor of 405/153 = 2.65. First lets look at the original
sequence:

DOUBLE .equ 0 : Use the .FLOAT format
HW_MPY .equ 1 ; Use the HW-MPYer
MOV #FLTe,RPARG ; Address constant e
CALL #FLT_DIV ; TOS/e: Division 405 cycl.
; Quotient on TOS
FLTe float 2.7182818 ; Constant e

The MSP430 Hardware Multiplier
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16

Now lets look at the same calculation performed by the hardware multiplier and
substituting division with multiplication:

HW_MPY .equ 1 : Use the HW-MPYer
MOV #FLTei,RPARG ; Address constant 1/e
CALL #FLT_MUL ; TOS x 1/e. MPY 153 cycles
; Result on TOS
FLTei float 0.3678794 ; Constant 1/e

If the .DOUBLE version (48 bits) of FPP4 is used, the division’s execution time
is decreased by a factor of 756/213 = 3.55.
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4 Software Applications

Typical application examples using the hardware multiplier are given in this
section. The comments indicate the location of the decimal (or equivalent
hexadecimal) point:

+2.13

_—

S| Integer Bits l Fraction Bits

15 0
Figure 3. Multiplication Exceeding 16 Bits

4.1 Multiplication Exceeding 16 Bits

The first software example is the unsigned multiplication of two 40-bit numbers.
The most significant bytes contain 0, with 48 bits of the result used afterwards,
and the lower 32 bits of the product unused. The first operand is contained in
register ARG1_xxx, and the second operand in register ARG2_xxx. The resultis
placed into RESULT_xxx (CPU registers or RAM). The multiply routine is taken
out of the FPP4 package.

The execution time for CPU registers is 94 cycles.

Multiplier Multiplicand

| |
ARG2_ X ARGL_
| |

39 0 39 0

31 0
ARG1_MID x ARG2_LSB

ARGI1_LSB x ARG2_MID

00 ARG1_MSB x ARG2_LSB
00 ARGI1_LSB x ARG2_MSB
ARG1_MID x ARG2_MID Intermediate Product
00 ARG1_MSB x ARG2_MID
00 ARGI1_MID x ARG2_MSB
ARG1_MSB x ARG2_MSB
MSB MID LSB Final Product
79 32

Figure 4. 40 x40-Bit Unsigned Multiplication MPYU40

The MSP430 Hardware Multiplier 17
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; Register Definitions for the 40 x 40 unsigned MPY and MAC

’

18

Execution times (without CALL):

CLR RESULT_MID
CLR RESULT_LSB

MACU40 MPYU16 ARG2_LSB,ARG1_MID

MACU16 ARG1_LSB,ARG2_MID
ADD &SumHi,RESULT_LSB
ADDC  &SumExt,RESULT_MID
MPYU16 ARG1_MSB,ARG2_LSB
MACU16 ARG1_LSB,ARG2_MSB
MACU16 ARG1_MID,ARG2_MID
ADD &SumLo,RESULT_LSB
ADDC  &SumHi,RESULT_MID
ADDC  &SumExt,RESULT_MSB
MPYU16 ARG1_MSB,ARG2_MID
MACU16 ARG2_MSB,ARG1_MID
ADD &SumLo,RESULT_MID
ADDC  &SumHi,RESULT_MSB
MPYU16 ARG1_MSB,ARG2_MSB
ADD &SumLo,RESULT_MSB
RET

SLAA042

ARG1_MSB .equ R5 ; Argument 1 (Multiplicand)
ARG1_MID .equ R6

ARG1_LSB .equ R7

ARG2_MSB .equ RS8 ; Argument 2 (Multiplier)
ARG2_MID .equ  R9

ARG2_LSB .equ  R10

RESULT_MSB .equ  Ri11 ; Result (Product)
RESULT MID  .equ R12

RESULT_LSB .equ R13

MPYU40 CLR RESULT_MSB ; Clear Result

: Bits 16 to 47

; Bits 32 to 63

; Bits 48 to 79

; Bits 64 to 79

: 48 MSBs in result

The second software example shows all four possible multiplication routines for

two 32-bit numbers. The full 64-bit result may be used afterwards. The signed

16x16-bit hardware multiplication MPYS cannot be used, since it is designed for

the special case of 16x16 bits. Therefore, unsigned multiplication MPY is used

with a correction on the final sum at the start of the subroutine.

MACU32 58 cycles
MPYU32 64 cycles
MACS32 64 to 68 cycles signed MAC
MPYS32 68 to 72 cycles signed MPY

unsigned MAC
unsigned MPY
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Multiplier Multiplicand
S OP2HI OP2LO X S OP1HI OP1LO
15 0 15 0 15 0 15
31
OP2LO x OP1LO
OP2LO x OP1HI
OP2HIx OP1LO
OP2HIx OP1LO
Product
S SUM3 SUM2 SUM1 SUMO
63 0

Figure 5. 32 x32-Bit Signed Multiplication MPYS32

All four possible 32x32-bit multiplication modes and MAC functions are shown
below. The specified operands and result registers may be working registers (as
defined) or RAM locations.

SUM3 .equ RI15 ; Result: sign and MSBs

SUM2 .equ R14 ; (registers or RAM locations)

SUM1 .equ R13

SUMO .equ R12 ; LSBs

OP1HI .equ R11 ; 1st operand: sign and MSBs
OP1LO .equ R10 . LSBs
OP2HI .equ R9 ; 2nd operand: sign and MSBs
OP2LO .equ R8 ; LSBs

; The unsigned 32 x 32 bit multiplication

MPYU32 CLR SUM3 ; Clear the result registers
CLR SUM2 ; 64 cycles
CLR SUM1
CLR SUMO
JMP MS321 ; Proceed at common part

; The signed 32 x 32 bit multiplication

MPYS32 CLR SUM3 ; Clear the result registers
CLR SUM2 ; 6810 72 cycles
CLR SUM1
CLR SUMO

The MSP430 Hardware Multiplier
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; The signed 32-bit “Multiply—and—Accumulate” subroutine

; The final result is corrected. 64 to 68 cycles

MACS32 TST OP1HI ; Operandl negative?
JGE MS320 ; No
SUB OP2L0O,SUM2 ; Yes, correct final sum
SUBC  OP2HI,SUM3

MS320 TST OP2HI ; Operand2 negative?
JGE MS321 ; No
SUB OP1LO,SUM2 ;' Yes, correct final sum
SUBC  OP1HI,SUM3

; The unsigned 32-bit “Multiply—and—Accumulate” subroutine

MACU32 .equ $ ; 58 cycles

; Main part for all multiplication subroutines

MS321 MPYU16 OP1LO,0OP2LO ;LSBsxLSBs
ADD &SumLo,SumO ; Add product to result
ADDC  &SumHi,Sumil

ADC Sumz2 ; Necessary only for MACx32
ADC Sum3 ;

MPYU16 OP1LO,0OP2HI ;LSBs x MSBs

MACU16 OP2LO,0P1HI ;LSBsx MSBs

ADD &SumLo,Suml ; Add accumulated products
ADDC  &SumHi,Sum2 ;to result

ADDC  &SumExt,Sum3 ; Necessary only for MACx32
MPYU16 OP1HI,OP2HI ; MSBs x MSBs
ADD &SumLo,Sum2 ; Add product to final result

ADDC  &SumHi,Sum3
RET
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4.2 Sensor Characteristics

Many applications use digital values delivered by analog-to-digital converters,
I/0O-ports, or calculation results that may require correction or conditioning. This
is normally accomplished through the use of polynomials. For example a cubic
polynomial to calculate the corrected output value y from an input value x is:
y=agx3+ax2+ajx +ap

The following subroutine illustrates a common solution using the hardware
multiplier. To attain maximum speed, the coefficients az to ap have decreasing
number of bits after the decimal (or equivalent hexadecimal) point. If this
tolerance is not acceptable, then shifts and stores between multiplications may
be necessary. The input x remains in Operandl (MPYS 0132h) and is used in all
three multiplications.

Example: the output of an ADC is corrected using a cubic polynomial. All values
are normalized to be less than 1.0 to achieve maximum resolution. The
coefficients a, used for correction are:

as: +0.01 a :-0.25 a 1:-0.5 a o:+0.999
The Horner scheme is used for the computation:

y = (((a3x) + az)x + al) X + a,

The numbers +b.a in the comments indicate the bits before and after the decimal
point of the used numbers.

Execution time (without CALL): 45 cycles

; Polynomial Calculation fory = a 3x3 +a ox2 +a (x +a g
; Result in SumHi register

POLYNOM MPYS16 X,A3 ; #0.15 x +0.15 (+1.14)

ADD A2,&SumHi ;o +x1.14+  +1.14 = +1.14
MOV &SumHi,&0OP2 ; +1.14x +0.15( +2.13)
ADD Al,&SumHi ; +2.13+  £2.13 = £2.13
MOV &SumHi,&0OP2 ; +2.13x +0.15( £3.12)
ADD A0,&SumHi ; £3.12+ +3.12 > £3.12
RET ;SumHi:  £3.12

; Table of coefficients

A3 word  +100*08000h/10000  ;+0.01  ( +0.15)
A2 .word —2500*04000n/10000 ;-0.25  ( +1.14)
Al .word -5000*02000h/10000 ;-0.5 ( *2.13)
AO .word +9999*01000h/10000 ; +0.9999 ( +3.12)

4.3 Table Calculations

The .MACRO instructions used on the different multiplication options (8 or 16-bit,
signed and unsigned, multiply, and multiply-and-accumulate) allow the use of all
seven addressing modes of the MSP430 architecture on source and destination.
Therefore the MPY instructions are perfectly adapted to table processing where
indirect addressing can be used on both operands of a multiply instruction. An
example of table calculation is given in Section 4.5.
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4.4 Wave Digital Filters

The main advantage of wave digital filters is that no multiplication is required with
fixed coefficients. The filter algorithm uses an optimized shift-and-add sequence.
This optimization is not possible when adaptive filter algorithms are used, unless
the coefficients are changed. In this case a hardware multiplier has big
advantages as the calculation time is independent of the coefficients used.

4.5 Finite Impulse Response (FIR) Digital Filter

22

The formula for a simple FIR filter is:

Yn = apXp + 81Xp_1 + aXp-2 ...+ akXpk

Xn z-1 -1 z-1
ao > a3 —» ak-1 —® ak —»
- Yn
Yn=a0Xn *ta1Xp-1 ... +ak Xn-k

Figure 6. Finite Impulse Response Filter

The example below shows an algorithm that uses the last ADC result as the input
to a seventh-order finite impulse response (FIR) filter. The coefficients ap are
stored in ROM (fixed coefficients) or in RAM (adaptable coefficients). The filter
may be easily changed to a higher order as follows:

* Change the value k to the desired order.

* Allocate (k+1) RAM words for the input samples xp starting at label X.
* Enlarge the table with the ap, coefficients to (k+1) coefficients.
Execution time: 28 CPU cycles are necessary per filter tap.

The example does not show an actual filter. A linear phase-response requires the
following ap, coefficients:

an = 8k—n
which means: ag = ay , a; = ak_1, and so on.
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Input Values Coefficients
Xn ap
Xn-1 ai
T Addresses
Xn-k+1 ak-1
R5 —» Xn-k X R6 —» ak An
S R7 R8 R9 Result Registers
15 0 15 0 15 0
Yn=a0Xn ta1Xp-1 - ...+ Xn-k

Figure 7. Finite Impulse Response Filter Storage

; The special "Multiply—and—-Accumulate” .MACRO accumulates the
; products X x An in the registers R7|R8|R9.
; Execution time: 19 cycles for the example below with the
; indirect addressing mode used for both operands.
MACS16 .MACRO argl,arg2 ; Signed MAC 16x16
MOV argl,&0132h ; Signed MPY is used
MOV arg2,&0138h ; Start MPYS

ADD &SumLo,R9 ; Add LSBs to result
ADDC  &SumHi,R8 ; Add MSBs to result
ADDC  &SumExt,R7 ; Add SumExt to result
.ENDM ; Result in R7|R8|R9

; Definitions:

; — Value k defines the order of the FIR—filter

; — OFFSET is used to get signed values (E000h..1FFFh) out of
; the unsigned 14-bit ADC results (0...3FFFh)

; — X defines the address for the oldest input sample x(n—k)

in a sample buffer with (k+1) words length

k .equ 7 ; (k + 1)samples are used —
OFFSET .equ  02000h ; to get signed ADC values
X .equ  0200h ; X(n—K) sample address

; With the Timer_A interrupt the calculation is made

TIMA_INT PUSH R5 ; Save R5 and R6
PUSH R6
MOV #X,R5 ; Address xn buffer (oldest x)

The MSP430 Hardware Multiplier
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MOV #An,R6 ; Addressa |, constants (ak)
MOV &ADAT,2*k(R5) ; New ADC sample to xn
SUB #OFFSET, 2*k(R5) ; Create signed value for xn

CLR R7 ; Clear result reg. (MSBs)
CLR R8
CLR R9
TAOO MACS16 @R5+ @R6+ ; ak * xn—k added to R7|R8|R9
MOV @R5,-2(R5) : Xn—k+1 —> xn—k
CMP #X+2+(2*k),R5 ; Through? (R5 points outside)
JNE TAOO : No, once more
POP R6 : Restore R5 and R6
POP R5
BIS #CS,&ACTL ; Start next ADC conversion
RETI ; Result: +17.30 (3 words)
; The constants An are fixed in ROM. Format: +0.15

; (1 bit sign, 15 bits fraction)
; Range: —0.99996 to +0.99996

An .word +9999*8000h/10000 s ak +0.9999

.word —9999*8000h/10000  ; ak-1 —0.9999
; ak—2 to a2

.word +5000*8000h/10000 ;al +0.5
.word —5000*8000h/10000 ;a0 -0.5

4.6 Fast Fourier Transform Algorithm

24

The RAM buffer pointed by pQR is transformed and overwritten with the result of
the fast Fourier transformation (FFT). The formula used for each block consisting

of real and imaginary numbers is:
PRI’ = (PRi + (QRi x WRi + Qli x WIi))/2
Pli' = (Pli + (Qli x WRi — QRi x WIi))/2
QRi’ = (PRi — (QRi x WRi + Qli x WIi))/2
QIi" = (Pli — (Qli x WRi — QRi x WIi))/2

Where: WRI cos (ix21UN) = cos (wxi)
WIi sin (ix21UN) = sin (wxi)
W 27t
i Index number
PRI Real part of PRi before FFT
PRI’ Real part of PRi after FFT

real part of Pi
imaginary part of Pi
real part of Qi
imaginary part of Qi

Figure 7 shows the allocation of the three tables in MSP430's RAM and ROM.

Execution time: the buffer with eight complex numbers each for the P and Q parts
requires 717 cycles (without CALL) for the transformation (185 ps at 4 MHz).
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Sine/Cosine Table

PO Real pWI —p sin0
Pi Values
PO Imaginary sin (1/8 1)
Addresses
Pn-1 Real l sin (4/8 ) cos 0
Pn-1 Imaginary sin (5/81Y) cos (1/8 1)
PRQ —P QO Real sin (6/8 ) cos (2/8 ™)
Qi Values )
QO Imaginary sin (7/8 ) cos (3/8M)
sin (10/8 1) cos (6/8 ™)
Qn-1Real sin (11/8 ) cos (7/8T)

Qn-1 Imaginary

Figure 8. RAM and ROM Allocation for the Fast Fourier Transform Algorithm
; Algorithm: "FFT’ optimized butterfly radix 2 for MSP430x33x

; Originally developed by M.Christ/TID for TMS320C80

; Input data: PRO,PIO,PR1,PI1,...... ,QRNn-1,QIn-1 (16 bit words)
;  Algorithm:

. PR’ = (PR+(QR*WR+QI*WI)))2  WR=cos(wt)
PI' = (PI+(Q*WR-QR*WI))l2  WI=sin(wt)

. QR’ = (PR=(QR*WR+QI*WI))/2
QI = (PI-(QI*WR—-QR*WI))/2

: Procedure:

. real = (QR*WR+QI*WI)/2
. imag = (Q*WR-QR*WI)/2

PR’

; PR/2 + real
. QR

PR/2 —real

; PI' = PI/2 +imag
QI' = PI/2 —imag
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N .equ 16 ; 16 point complex FFT

N2 .equ  N*2 ; Byte count (QR - PR)

pQR .equ R5 ; Pointer to QR

pWI .equ  R6 ; Pointer to sine table tabsin
real .equ R7 ; Storage QR x WR + QI x WI
imag .equ RS8 ; Storage QI x WR + QR x WI
TEMP .equ  R9 ; Temporary storage
TEMP1 .equ R10 ;

; The subroutine FFT is called after the loading of the

; pointer to QRO.

; Call: MOV #QR,pQR ; Pointer to QRO of block (RAM)
; CALL #FFT ; Call the FFT subroutine

; ; Input table contains results

; Definition of the input table located in the RAM

.bss PR,2,0200h ; PRO Preal

.bss  PI,2 ; PI0 Pimaginary

.bss  PRi,N2-4 ; PR1, PI1...PRn-1, PIn-1
.bss QR,2 ; QRO Qreal

.bss  Ql,2 ; QIO  Qimaginary

.bss  QRi,N2-4 ; QR1, QI1...QRNn-1, QIn-1

; Start of the FFT subroutine. pQR contains address of QRO
FFT MOV #tabsin,pWI ; Pointer to sin 0
; Execution of the 4 multiplications. The halfed result is
: calculated without additional shifts due to the format 2.14
; Calculation of the real part: real = (QR x WR + QI x WI)/2
FFTLOP MPYS16 @pQR+,tabcos—tabsin(pWl);
MOV &SumHi,real ; Store (QR x WR)/2 (2.14)
MPYS16 @pQR,@pWI ; (Ql x WI)/2 (2.14)
ADD &SumHi,real ; Store real part
; Calculation of the imaginary part:
;imag = (QI x WR — QR x W1)/2
MPYS16 @pQR+,tabcos—tabsin(pWl);
MOV &SumHi,imag ; Store (Ql x WR)/2 (2.14)

SLAA042



Hardware Multiplier Programming

MPYS16 —4(pQR),@pWI+ J(QRXWN2  (2.14)
SUB &SumHi,imag ; Store imaginary part

; Calculation of PR’, PI', QR’, QI'. pQR points to QRi+1
; Calculation of PR: PR’ = (PR + (QR x WR + QI x WI))/2

MOV  —N2-4(pQR),TEMP ; PRito TEMP
RRA  TEMP : PRi/2

MOV  TEMP,TEMP1 : Copy PRi/2

ADD  real, TEMP1 : PRi/2 + (QRXWR + QIXWI)/2

MOV  TEMP1,-N2-4(pQR) ; to PR’ (1.15)

; Calculation of QR’: QR’ = (PR — (QR x WR + QI x W1))/2

SUB  real TEMP . PR/2 — (QRXWR + QIXWI)/2
MOV  TEMP,—4(pQR) ‘1o QR (1.15)

; Calculation of PI: PI' = (Pl + (Ql x WR — QR x WI))/2

MOV  -N2-2(pQR),TEMP :PI

RRA  TEMP S PI/2
MOV  TEMP,TEMP1 : Copy PI/2
ADD  imag,TEMP1 ;P12 + (QIXWR — QRXWI)/2

MOV  TEMP1,-N2-2(pQR) ;to PI' (1.15)

; Calculation of QI': QI' = (Pl — (Ql x WR — QR x WI))/2
SuB imag, TEMP ; P12 — (QI*WR+QR*WI)/2
MOV TEMP,-2(pQR) ;to QI (1.15)

; To next input data. Check if FFT is finished

CMP #tabsin0,pWI ; Through? (pWI = tabsin0)
JLO FFTLOP ; No
RET . Yes, return

; Sine and cosine table. Format: s.fraction (1.15)

tabsin .word +0000*8000h/10000 ;sin 0.0= 0.00000

.word +3827*8000h/10000 ;sin W8 = 0.38268
.word +7071*8000h/10000 ; sin 2 8= 0.70711
.word +9239*8000h/10000 ;sin 3 /8 = 0.92388
tabcos .word 10000*8000h/10000-1 ; sin 4 /8 cos 0.0
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tabsin0

.word +9239*8000h/10000 ;sin5 /8 cos 7178
.word +7071*8000h/10000 ;sin6 8 cos2 T1U8
.word +3827*8000h/10000 ;sin’7 /8 cos3 7178
.word +0000*8000h/10000  ; cos 4 /8
.word —3827*8000h/10000 ; cos 5 78
.word —-7071*8000h/10000 ; cos 6 U8
.word —-9239*8000h/10000 ; cos 7 /8

; An example is given for the FFT:

; The following table contains 32 values that are the data
; for the FFT
; 16 point complex FFT radix 2 DIT

’

DataSt

.word 014abh,02e90h,0f6d4h,005d3h ; PRO,PIO..PI1

.word
.word
.word
.word
.word
.word
.word

004b2h,0fecdh,0f78ch,0fcb2h ; PR2,PI2..PI3
0093ch,004f0h,0ffb5h,0017ch ; PR4,P14..PI5
0fbebh,002a5h,0f3a3h,0fb38h ; PR6,PI6..PI7
01854h,02a29h,0ffb9h,0f9beh ; QRO,QI0..QI1
0fa49h,00907h,00a10h,0f99bh ; QR2,QI2..QI3
0030ch,0fdadh,0fa2ah,002e3h ; QR4,Q14..QI5
0fddbh,0029bh,0fdf9h,00225h ; QR6,QI6. QI7

; The following 32 values are output by the FFT

Result
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.word 0167fh,02c5ch,0fal16h,00013h ; PR'0..PI'1

.word
.word
.word
.word
.word
.word

.word

00384h,0049ch,0fabeh,0f879h ; PR’2..PI'3
00374h,000f2h,0024dh,002e2h ; PR'4..PI'5
0Offa4h,00128h,0fb2ah,0fd01h ; PR'6..PI'7

0fe2bh,00233h,0fcbdh,005bfh ; QR’0..QI'1
0012dh,0fa30h,0fccdh,00438h ; QR’2..QI'3
005c7h,003fdh,0fd67h,0fe99h ; QR'4..QI'5
0fc47h,0017ch,0f879h,0fe36h ; QR’'6..QI'7



Conclusion

5 Conclusion

As shown by the examples, the hardware multiplier offers its biggest advantages
when used with signed and unsigned 16-bit operands, as well as in other
applications using 8-bit operands, 32-bit operands, and floating point numbers.
The speed increase is significant compared to a pure software solution.
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