
Application Report
SLAA096D–September 2005–Revised August 2006

Application of Bootstrap Loader in MSP430
With Flash Hardware and Software Proposal

Volker Rzehak and Stefan Schauer .. MSP430

ABSTRACT
The bootstrap loader (sometimes called the bootloader) of MSP430 derivatives with
flash memory allows access to their embedded memories during prototyping,
production, and in the field. It is possible to download or modify code in flash memory
(electrically-erasable and programmable memory) or to store calibration data or other
system-relevant data in flash memory or in RAM.

This application report describes simple and low-cost hardware and software solutions
to access the bootstrap loader functions of the MSP430 flash devices via the serial port
(RS-232) of a PC. The description provided and the C-source code of the software
routines allow adaptation of the software to specific requirements.

Contents
1 Introduction .. 2
2 Bootstrap Loader Basics... 2
3 Hardware Description .. 3
4 Software Description ... 7
5 References... 17
Appendix A Software .. 18
Appendix B PCB Layout Suggestion .. 19
Appendix C Demonstration Program Usage ... 22
Appendix D Errata ... 24
Appendix E Third-Party Support ... 25

List of Figures

1 Bootstrap Loader Interface Schematic... 3
B-1 Universal BSL Interface PCB Layout—Top.. 19
B-2 Universal BSL Interface PCB Layout—Bottom.. 19
B-3 Universal BSL Interface Component Placement.. 20
B-4 Universal BSL Interface Component Placement.. 21

List of Tables

1 Bootstrap Loader UART Settings... 2
2 Serial-Port Signals and Pin Assignments ... 4
3 RS-232 Levels .. 4
4 Pin Assignment of Target Connector .. 5
5 Universal BSL Interface Parts List.. 6
6 Bootstrap Loader Access Functions.. 10
C-1 Command-Line Parameters ... 22
C-2 Program-Flow Modifiers .. 22
C-3 Invocation Examples.. 23

All trademarks are the property of their respective owners.

SLAA096D–September 2005–Revised August 2006 Application of Bootstrap Loader in MSP430 1
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA096D

www.ti.com

1 Introduction

2 Bootstrap Loader Basics

2.1 Access to the Bootstrap Loader

Introduction

The MSP430 derivatives with flash memory (electrically-erasable and programmable memory) allow
modification of data and program code in a matter of seconds. Erasure cycles using UV light to clear the
EPROM are no longer required. A control unit is required to access and use these features. Part of this
control unit is the bootstrap loader, implemented in MSP430 devices with flash memory. This report
describes hardware and software solutions to access the loader from a PC for control and simple use of
the bootstrap loader.

Note: For additional information, refer to the MSP430 application report, Features of the
MSP430 Bootstrap Loader, literature number SLAA089.

The bootstrap loader is a program that allows communication with the MSP430 via a serial link, even
when the flash memory is completely erased. Do not confuse the bootstrap loader with programs found in
some digital signal processors (DSPs) that automatically load program code (and data) from external
memory to the internal memory of the DSP. These programs are often referred to as bootstrap loaders as
well.

The MSP430 bootstrap loader has protected and unprotected functions. To enable the protected
functions, the fully-programmed interrupt-vector table (located in address range 0FFE0h to 0FFFFh) must
be sent to the bootstrap loader. The commands and their usage are described in more detail in Features
of the MSP430 Bootstrap Loader (literature number SLAA089), in the software available along with this
application report, and in the device-specific data sheets for the flash-based MSP430 devices. Note that
currently it is not possible to blow the JTAG security fuse using the bootstrap loader. If the JTAG fuse is
blown, it is still possible to use the bootstrap loader. Access to the code via the bootstrap loader is
password protected.

After invoking the bootstrap loader via the RST/NMI and TEST or TCK pins, communication can be
established using a standard asynchronous serial protocol. The UART settings are shown in Table 1.

MSP430 port pins are used to transmit and receive data. Usually port pins shared with TA0 are used (e.g.,
P1.1 for transmit and P2.2 for receive on F1xx derivatives; P1.0 for transmit and P1.1 for receive on F4xx
derivatives). Consult the data sheet for the appropriate pinning information.

Table 1. Bootstrap Loader UART Settings

SETTING VALUE

Baud rate 9600 baud

Data bits 8 (binary)

Parity Even

Stop bits 1

Note: Timing limitations: Between receiving the ACK character from the MSP430 and the start
of the next transmission for the PC side, a delay of 1.2 ms should be ensured. See
Features of the MSP430 Bootstrap Loader, literature number SLAA089, for more
information.

Application of Bootstrap Loader in MSP4302 SLAA096D–September 2005–Revised August 2006
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA096D

www.ti.com

3 Hardware Description

TL062D

TL062D

3.1 Power Supply

Hardware Description

The low-cost hardware presented in this application report (see Figure 1) consists mainly of a low-dropout
voltage regulator, some inverters, and operational amplifiers. There are also some resistors, capacitors,
and diodes. A complete parts list is provided later in this section.

The functional blocks are described in more detail in the following subsections.

Figure 1. Bootstrap Loader Interface Schematic

Power for the bootstrap loader hardware can be supplied via the RS-232 interface. RS-232 signals DTR
(pin 7 of the serial connector) and RTS (pin 4 of the serial connector) normally deliver a positive voltage to
load capacitor C1 and power to the low-dropout voltage regulator IC1 (TI TPS76030 or LP2980-3.0, or
equivalent 3-V low-dropout regulator).

Using a fairly big capacitor, it is possible to draw a short-duration current that is higher than the driving
serial port can supply. This feature is required to program the flash memory, for example.

It is also possible to connect an external supply voltage to the hardware via pin 8 of the BSL target
connector (J1). Diodes are used to prevent reverse-polarity flow.

SLAA096D–September 2005–Revised August 2006 Application of Bootstrap Loader in MSP430 3
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA096D

www.ti.com

3.2 Serial Interface

3.2.1 Level Shifting

Hardware Description

Table 2 shows the signals used to communicate with the bootstrap loader (via connector J2). The names
refer to the pin function as seen from the PC. For example, the PC receives data via the RxD pin,
whereas the bootstrap loader needs to drive this signal.

Table 2. Serial-Port Signals and Pin Assignments

PIN NAME FULL NAME (PC) 9-PIN SUB-D FUNCTION ON BSL INTERFACE

RxD Receive data 2 Transmit data to PC

TxD Transmit data 3 Receive data from PC (and negative supply)

DTR Data terminal ready 4 Reset control (and positive supply)

RTS Request to send 7 TEST or TCK control (and positive supply)

GND Ground 5 Ground

Simple CMOS inverters with Schmitt-trigger characteristics (IC2) are used to transform the RS-232 levels
(see Table 3) to CMOS levels.

Table 3. RS-232 Levels

LOGIC LEVEL RS-232 LEVEL RS-232 VOLTAGE LEVEL

1 Mark –3 V to 15 V

0 Space 3 V to 15 V

The inverters are powered via the operational amplifier IC3A. This amplifier permits adjusting the provided
logic level to the requirements of the connected target application. A voltage applied to pin 8 of the BSL
target connector (VCC_IN) overrides the default 3-V level provided via IC1 and the 100-kΩ series resistor
R11. Thus, the output voltage of the operational amplifier is pulled to the applied voltage VCC_IN.

Depending on the overvoltage protection of the device family selected, the excess voltage is either
conducted to VCC (as in the TI 74HC14) or to GND (as in the TI 74AHC14). If the protection diode
conducts to VCC, the operational amplifier IC3A needs to compensate for the overvoltage. Therefore, the
74AHC14 device, which conducts to ground (GND), is recommended.

To avoid excessive power dissipation and damage of the protection diodes, series resistors (R1, R2, and
R3) are used to limit the input current.

An operational amplifier (IC3B) is used to generate RS-232 levels out of CMOS levels. The level at the
positive input is set to VCC/2 (1.5 V nominal). If the level at the negative input rises above this level, the
output is pulled to the negative supply of the operational amplifier (mark). If the level drops below VCC/2,
the output is pulled to the positive rail (space).

The positive supply of the operational amplifier is the same as the input to the voltage regulator. A
separate capacitor (C5) is used to generate the negative-supply voltage. This capacitor is charged via the
receiving signal of the bootstrap loader hardware (pin 3 on SUB-D connector J2).

During an asynchronous serial communication, the combination of stop bit and start bit is used to
synchronize sender and receiver. After the transmission of a data byte, the stop bit forces the transmission
line into a defined state, which is usually a logic 1 or, in RS-232 terms, a mark. This means that the
transmission-line voltage is negative when there is no transmission and the capacitor can be charged.
Diodes are used to prevent discharge of the capacitor during transmission.

In very rare circumstances, the data sent to the bootstrap loader interface might hold too many zeros, so
that the capacitor C5 required for the negative supply is discharged, causing a malfunction of the
interface. (A possible work around is to send the respective data in smaller chunks.) But under normal
operating conditions, even data containing all zeros does not cause problems.

Application of Bootstrap Loader in MSP4304 SLAA096D–September 2005–Revised August 2006
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA096D

www.ti.com

3.2.2 Control of RST/NMI and TEST or TCK Pins

3.3 Target Connector

Hardware Description

The two pins used to invoke the bootstrap loader software of the MSP430—RST/NMI and TEST or TCK
(for devices without a dedicated TEST pin)—are controlled via the DTR and RTS signals, respectively.
These signals also deliver a positive voltage to supply the bootstrap loader hardware.

For devices with a dedicated TEST pin, the levels at RST/NMI and TEST during normal operation are
logic 1 and logic 0, respectively. To achieve these levels and to use the corresponding RS-232 signals as
power-supply lines, it is necessary to use two inverters (IC1A, IC2B) for the RST/NMI pin and one inverter
(IC2E) for the TEST pin.

Devices without the TEST pin require the inverted TEST pin sequence on their TCK pin to invoke the
bootstrap loader. Thus, the corresponding signal is inverted (inverter IC2F).

Diodes prevent discharge of capacitor C1 to allow control of the RS-232 lines (RTS and DTR).

Table 4. Pin Assignment of Target Connector (1)

PIN ON MSP430F13x ORPIN SIGNAL NAME DEVICES WITH TEST PIN PIN ON MSP430F4xxMSP430F14x

1 TXD P1.1 P1.1 P1.0

2 TCK Do not connect (2) TCK TCK

3 RXD P2.2 P2.2 P1.1

4 RXD RST/NMI RST/NMI RST/NMI

5 GND GND GND GND

6 VCC (3.0 V) VCC
(3) VCC

(3) VCC
(3)

7 TST TEST Do not connect Do not connect

8 VCC_IN VCC
(3) VCC

(3) VCC
(3)

9 Not connected — — —

10 Not connected — — —

(1) For device-specific BSL pin information, refer to the applicable device data sheet.
(2) Signal TCK must not be connected on devices with the TEST pin.
(3) Pin VCC (3.0 V) is a voltage source that can provide a limited current, depending on the serial port driver capability. If an

external power supply is used, VCC (3.0 V) must not be connected to the target. In this case, the external supply voltage must
be connected to pin VCC_IN. Otherwise, VCC_IN must be unconnected.

SLAA096D–September 2005–Revised August 2006 Application of Bootstrap Loader in MSP430 5
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA096D

www.ti.com

3.4 Parts List

Hardware Description

Table 5. Universal BSL Interface Parts List

PART VALUE/PART NUMBER PACKAGE COMMENT

C1 33 µF, 16 V SMD 7243

C2 100 nF SMD 0805

C3 2.2 µF, 6.3 V SMD 1206

C4 100 nF SMD 0805

C5 33 µF, 16 V SMD 7243

C6 100 nF SMD 0805

D1 BAV70 SOT23 High-speed double diode

D2 BAV70 SOT23 High-speed double diode

D3 BAV70 SOT23

IC1 TPS76030 SOT23/5 TI

IC2 74AHC14 SO14 TI

IC3 TL062D SO8 TI

R1 330 kΩ SMD 0805

R2 330 kΩ SMD 0805

R3 330 kΩ SMD 0805

R4 680 kΩ SMD 0805

R5 680 kΩ SMD 0805

R6 680 kΩ SMD 0805

R7 330 kΩ SMD 0805

R8 330 kΩ SMD 0805

R9 3.3 kΩ SMD 0805

R10 3.3 kΩ SMD 0805

R11 100 kΩ SMD 0805

R12 0 kΩ SMD 0805

R13 680 kΩ SMD 0805

J1 pinhd-2x5 2X05 Target connector (see Table D-2)

J2 F09HP284 9-SUB-D female RS-232 connector

CON3 RESET SMD0805 Pads to connect an optional reset button

Application of Bootstrap Loader in MSP4306 SLAA096D–September 2005–Revised August 2006
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA096D

www.ti.com

4 Software Description

4.1 Global Variables

4.2 Initialization of the RS-232 Port

Software Description

This section explains the basic sequences required to access the bootstrap loader using the RS-232
interface of a PC. The code presented here is written in C language using 32-bit Windows™ API calls
under Microsoft Visual C++™ 5.0 (it may also work seamlessly under version 6.0). The code was
originally written for 16-bit Windows and ported to 32-bit Windows (Win32™, Windows 95/98™, and
Windows NT™), mainly by replacing the function names. Some of the Win32 features were not used, to
maintain portability. A commercial library may be used instead of the Windows API interface.

A detailed description titled Serial Communications in Win32 is available online at
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnfiles/html/msdn_serial.asp. Online
documentation on Visual C++ is also available from the Microsoft development network library.

Please consult the Windows software development kit (SDK) documentation for a detailed description of
the API functions used.

Complete software listings can be found in Appendix A.

The following global variables are used throughout the code examples. The definitions of types DCB,
COMSTAT, and COMMTIMEOUTS can be found in the Windows SDK documentation.
HANDLE hComPort; /* COM-port handle */
DCB comDCB; /* COM-port control settings */
COMSTAT comState; /* COM-port status information */
COMMTIMEOUTS orgTimeouts; /* Original COM-port time-out */

To access the serial RS-232 port, the program must request a handle for the port it wants to use (usually
either COM1 or COM2). The following code can be used for this request:
/* Size of internal WINDOWS-Comm buffer: */
#define QUEUE_SIZE 512
. . .
char* lpszDevice= "COM1" /* For example ... *./
. . .
hComPort= CreateFile(lpszDevice, GENERIC_READ | GENERIC_WRITE,

0, 0, OPEN_EXISTING, 0, 0);
if (hComPort == INVALID_HANDLE_VALUE)
{ . . . /* Error! */
}
if (SetupComm(hComPort, QUEUE_SIZE, QUEUE_SIZE) == 0)
{ . . . /* Error! */
}

An operation known as overlapped input/output (I/O) can be performed under Win32. This means that the
system may immediately return to the caller, even if the I/O operation is not finished, and signal the caller
when the operation is complete. Overlapped operation is not a good choice when portability is a concern
because most operating systems do not support it. For this reason it is not used in this program, and the
corresponding parameters required when calling CreateFile are set to zero.

After receiving a valid handle, the settings of the communication port must be defined and assigned (see
Table 1).

Get original settings first:
if (!GetCommState(hComPort, &comDCB))
{ . . . /* Error! */
}

SLAA096D–September 2005–Revised August 2006 Application of Bootstrap Loader in MSP430 7
Submit Documentation Feedback

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnfiles/html/msdn_serial.asp
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA096D

www.ti.com

Software Description

The settings then can be modified. The most important settings for communication with the bootstrap
loader are shown in the following program section:
comDCB.BaudRate = CBR_9600; /* Startup Baudrate: 9,6kBaud */
comDCB.ByteSize = 8;
comDCB.Parity = EVENPARITY;
comDCB.StopBits = ONESTOPBIT;
comDCB.fBinary = TRUE; /* Enable Binary Transmission */
comDCB.fParity = TRUE; /* Enable Parity Check */
comDCB.fRtsControl = RTS_CONTROL_ENABLE; /* For power supply and TEST */

/* pin control */
comDCB.fDtrControl = DTR_CONTROL_ENABLE; /* For power supply and RST/NMI */

/* pin control */
. . .

Finally, the modified settings are assigned to the port:
if (!SetCommState(hComPort, &comDCB))
{ . . . /* Error! */
}

A Win32 application should always set communication time-outs when using a communication port;
otherwise, default settings or left-over values from previous applications are used. This application does
not require time-out functionality. Therefore, the time-outs are completely disabled once the original
settings are saved so they can be restored at the end of the program:
/* Save original time-out values: */
GetCommTimeouts(hComPort, &orgTimeouts);
/* Set Windows time-out values (disable built-in time-outs): */
COMMTIMEOUTS timeouts;
timeouts.ReadIntervalTimeout= 0;
timeouts.ReadTotalTimeoutMultiplier= 0;
timeouts.ReadTotalTimeoutConstant= 0;
timeouts.WriteTotalTimeoutMultiplier= 0;
timeouts.WriteTotalTimeoutConstant= 0;
if (!SetCommTimeouts(hComPort, &timeouts))
{ . . . /* Error! */
}

The transmit and receive buffers are cleared to complete the initialization sequence:
PurgeComm(hComPort, PURGE_TXCLEAR | PURGE_TXABORT);
PurgeComm(hComPort, PURGE_RXCLEAR | PURGE_RXABORT);

A complete example of the initialization routine can be found in Serial Communication Implementation File
(see Appendix A) in this routine:
int comInit(LPCSTR lpszDevice, DWORD aTimeout, int aProlongFactor)

Application of Bootstrap Loader in MSP4308 SLAA096D–September 2005–Revised August 2006
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA096D

www.ti.com

4.3 Invoking the Bootstrap Loader

Software Description

The levels on RST/NMI and TEST must be toggled as shown in section 2.1 to invoke the bootstrap loader.

The following subroutines can be used to control the corresponding RS-232 lines RTS and DTR:
void SetRSTpin(BOOL level)
/* Controls RST/NMI pin (0: GND; 1: VCC) */
{
if (level == TRUE)
comDCB.fDtrControl = DTR_CONTROL_ENABLE;

else
comDCB.fDtrControl = DTR_CONTROL_DISABLE;

SetCommState(hComPort, &comDCB);
} /* SetRSTpin */
void SetTESTpin(BOOL level)
/* Controls TEST pin (0: VCC; 1: GND) */
{
if (level == TRUE)
comDCB.fRtsControl = RTS_CONTROL_ENABLE;

else
comDCB.fRtsControl = RTS_CONTROL_DISABLE;

SetCommState(hComPort, &comDCB);
} /* SetTESTpin */

Calling the function SetRSTpin with a 0 pulls the RST/NMI pin to ground, whereas calling the function
SetTESTpin with a 0 applies VCC to the TEST pin. This difference is due to the different number of
inverters used at these pins (see Section 3).

The following subroutine allows resetting of the MSP430 on the bootstrap loader hardware using the
functions previously shown. First it is necessary to charge capacitor C1 to supply power to the board.
Then the RST/NMI and TEST pins can be toggled as required. It is possible to reset the MSP430 and start
the user program (invokeBSL=FALSE) or to invoke the bootstrap loader with invokeBSL=TRUE:
void bslReset(BOOL invokeBSL)
{
/* To charge capacitor on boot loader hardware: */
SetRSTpin(1);
SetTESTpin(1);
delay(250);
SetRSTpin(0); /* RST pin: GND */
if (invokeBSL)
{
SetTESTpin(1); /* TEST pin: GND */
SetTESTpin(0); /* TEST pin: Vcc */
SetTESTpin(1); /* TEST pin: GND */
SetTESTpin(0); /* TEST pin: Vcc */
SetRSTpin (1); /* RST pin: Vcc */
SetTESTpin(1); /* TEST pin: GND */

}

else
{
SetRSTpin(1); /* RST pin: Vcc */

}
/* Give MSP430's oscillator time to stabilize: */
delay(250);
/* Clear buffers: */
PurgeComm(hComPort, PURGE_TXCLEAR); PurgeComm(hComPort, PURGE_RXCLEAR);

} /* bslReset */

It is possible to gain access to the RS-232 interface of the PC and to invoke the bootstrap loader using the
functions presented so far.

We are now ready to access the bootstrap loader.

SLAA096D–September 2005–Revised August 2006 Application of Bootstrap Loader in MSP430 9
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA096D

www.ti.com

4.4 Access to the Bootstrap Loader

4.4.1 Synchronization

Software Description

This section describes the basic routines to access the bootstrap loader. Table 6 gives an overview of the
functions presented and indicates the sections within Appendix A where their complete listings can be
found. The constant definitions are located in the header listings.

Table 6. Bootstrap Loader Access Functions

SECTIONS FUNCTIONS

Bootstrap loader communication header file, bslReset, bslSync, bslTxRxbootstrap loader communication implementation file

Serial-communication header file, comInit, comTxRx, comDoneserial-communication implementation file

The PC and the MSP430 must be synchronized before each frame that calls a function. The following
character (0x80) must be sent by the PC to the MSP430 for this purpose:
#define BSL_SYNC 0x80

Therefore, this value is assigned to a variable and the function WriteFile is called with the
communication-port handle as the first parameter. The number of bytes to transmit must be specified (1 is
used here). The last two parameters are unimportant and can be ignored in this particular case.
/* Send synchronization byte: */
ch = BSL_SYNC;
WriteFile(hComPort, &ch, 1, &NrTx, NULL);

If the bootstrap loader receives this character correctly, it returns a DATA_ACK (0x90); otherwise, it
returns an unknown value because the loader needs this synchronization character to generate its timing
(for serial communication, for example). It is also possible that no character is returned, as when no
MSP430 with bootstrap loader function is connected. The following subroutine is used to check whether a
given number of characters was received within a given time period. It uses the function ClearCommError
to receive the actual status of the communication port. The field cbInQue in the COMSTAT structure holds
the number of received bytes:
int comWaitForData(int count, DWORD timeout)
{
DWORD errors;
int rxCount= 0;
DWORD startTime= GetTickCount();
do
{
ClearCommError(hComPort, &errors, &comState);

} while (((rxCount= comState.cbInQue) < count) &&
(calcTimeout(startTime) <= timeout));

return(rxCount);
}

This subroutine is used in the synchronization function to wait for one character. If characters are
received, they can be queried using the function ReadFile, shown in the following program section. The
synchronization is successful when the character received is a DATA_ACK.
/* Wait for 1 byte; time-out: 100ms */
rxCount= comWaitForData(1, 100);
if (rxCount > 0)
{
ReadFile(hComPort, &ch, 1, &NrRx, NULL);
if (ch == DATA_ACK)
{ return(ERR_NONE); } /* Sync. successful */

}

The routine int bslSync() implements the function previously described.

Application of Bootstrap Loader in MSP43010 SLAA096D–September 2005–Revised August 2006
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA096D

www.ti.com

4.4.2 Transmission of Frame

4.5 Calling the Bootstrap Loader Functions

4.6 Releasing the RS-232 Port

Software Description

The following function is used to send and receive a frame:
int comTxRx(BYTE cmd, BYTE data[], BYTE length)

This function implements the functionality of the TI Standard Serial Protocol. Only a subset of the
functionality is needed and supported for bootstrap loader communication. This routine uses the Win32
functions previously described.

The function
int bslTxRx(BYTE cmd, WORD addr, WORD len, BYTE blkout[], BYTE blkin[])

combines the synchronization and transmission of the frame. It also configures the frame to the
requirements of the bootstrap loader. One important requirement is that the number of bytes sent to the
bootstrap loader (using the command TXBLK, for instance) or requested by the loader (using command
RXBLK) must always be even.

It is fairly simple to call the functions of the bootstrap loader using the function bslTxRx previously
presented. The parameters must be set as required within the function call (see examples in the Complete
Application section).

The constant definitions corresponding to the available commands are found in the Bootstrap Loader
Communication Header File (see Appendix A).

At the end of a program, the RS-232 port must be released using the function CloseHandle(hComPort).
Otherwise, other applications cannot use this port because the access rights to the serial communication
ports are usually granted to only one program at a time.

The routine int comDone() provides a more sophisticated method to release the RS-232 port. It waits until
all remaining data is transmitted, clears all buffers, and restores the original time-out settings.

Note that closing the serial communication port usually cuts power to an application that is powered via
the serial port, because the corresponding control lines are disabled.

SLAA096D–September 2005–Revised August 2006 Application of Bootstrap Loader in MSP430 11
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA096D

www.ti.com

4.7 Complete Application

Software Description

A small application is developed in this section to program a file in TI-TXT format into the MSP430 flash
memory. The complete demonstration program code is contained in Bootstrap Loader Demonstration
Program in Appendix A. The definitions of the variables used are also found there.

First, the communication port has to be opened. The COM-port name can be changed to fit any particular
needs, or it can be obtained from the command line.
if (comInit("COM1", DEFAULT_TIMEOUT, 4) != 0)
{ . . . /* Error! */
}

Then the bootstrap loader is invoked:
bslReset(1);

In the next step, the flash memory is completely erased using the mass erase command:
if ((error= bslTxRx(BSL_MERAS, /* Command: Mass Erase */

0xff00, /* Any address within flash memory. */
0xa506, /* Required setting for mass erase! */
NULL, blkin)) != 0)

{ . . . /* Error! */
}

The password to access the protected functions of the bootstrap loader gets reset when the flash memory
is erased. All memory cells are now set to 0FFh. The protected functions are enabled by sending the
corresponding password.
/* Fill blkout with 0xff */
for (I= 0; I < 0x20; I++)
{
blkout[i]= 0xff;

}
if ((error= bslTxRx(BSL_TXPWORD, /* Command: transmit password */

0xffe0, /* Address of interrupt vectors */
0x0020, /* Number of bytes */
blkout, blkin)) != 0)

{ . . . /* Error! */
/* Special case here: 7(ERR_RX_NAK): Password not accepted! */

}

Afterwards, the file in TI-TXT format is parsed and the data is programmed into the flash memory and
verified.

There is a separate subroutine in the demonstration listing that can be called from the main program to
parse the file and to program or verify the flash contents:
/* Program: */
/if ((error= programFlash("TEST.TXT", ACTION_PROGRAM)) != 0)
{ . . . /* Error! */
}
/* Verify: */
if ((error= programFlash("TEST.TXT", ACTION_VERIFY)) != 0)
{ . . . /* Error! */
}

The routine programFlash parses the file with a given name (the file name can be derived from the
command line), fills a buffer with the extracted data, and calls another subroutine when the buffer is
almost full.

If the data must be programmed, it is sent to the bootstrap loader using the transmit-block command
(BSL_TXBLK):
error= bslTxRx(BSL_TXBLK, addr, len, blkout, blkin);

Data is read from the bootstrap loader (receive block, BSL_RXBLK) and compared against the contents of
the transmission buffer for verification:
error= bslTxRx(BSL_RXBLK, addr, len, NULL, blkin);
if (error != 0)

12 Application of Bootstrap Loader in MSP430 SLAA096D–September 2005–Revised August 2006
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA096D

www.ti.com

4.8 Error Recovery

Software Description

{ . . . /* Cancel! */
}
else
{
for (I= 0; I < len; I++)
{ /* Compare data in blkout and blkin: */
if (blkin[i] != blkout[i])
{

printf("Verification failed at %x (%x, %x)\n", addr+I, blkin[i], blkout[i]);
return(ERR_VERIFY_FAILED); /* Verify failed! */

}
}

} /* for (I) */

Note that a similar sequence can be used to check the erasure of this range. In this case, the contents of
blkin are compared against the erasure pattern 0xff.

If a readout functionality is required, it is also possible to write the received data to a file instead of
comparing it with given data. (Note that this feature is not included in the provided source code.)

After successful verification, the MSP430 can be reset and the user program can start executing:
bslReset(0);

The serial communication port must be released at the end of the program:
comDone();

Now users have all the pieces together to write their own applications to access the MSP430 bootstrap
loader and to adapt it to their special needs.

There is no error-recovery mechanism implemented within the demonstration program. The program is
aborted when an error is detected. In some cases, it might be useful to implement some kind of
error-recovery mechanism.

If a data frame transmitted to the MSP430 is rejected with a data-not-acknowledged signal (DATA_NAK),
the transmission of the frame can be repeated. But it is possible that wrong data has been programmed in
the flash, and a more complex recovery mechanism that includes verification, erasure, and reprogramming
might be required.

If a received frame is not correct (wrong checksum, inconsistent lengths), the command previously sent to
receive a block from the MSP430 must be repeated.

SLAA096D–September 2005–Revised August 2006 Application of Bootstrap Loader in MSP430 13
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA096D

www.ti.com

4.9 Advanced Features

4.9.1 Detecting the Bootstrap Loader Version

4.9.2 Executing Code

Software Description

Detecting the bootstrap loader version within the currently connected device requires unlocking the
protected functions (see previous sections). The address (0x0ffa) where the bootstrap loader version is
stored then can be read. The version information consists of two bytes — a main revision number stored
in the first byte, and a subrevision number stored in the second byte. After extracting this information from
the input buffer, the version can be displayed or used for further processing, depending on the current
loader version.
/* Read actual bootstrap loader version. */
if ((error= bslTxRx(BSL_RXBLK, /* Command: Read/Receive Block */

0x0ffa, /* Start address */
2, /* No. of bytes to read */
NULL, blkin)) == ERR_NONE)

{
BYTE bslVerLo;
BYTE bslVerHi;
memcpy(&bslVerHi, &blkin[0], 1);
memcpy(&bslVerLo, &blkin[1], 1);
bslVer= (bslVerHi << 8) | bslVerLo;
printf("Current bootstrap loader version: %x.%x\n", bslVerHi, bslVerLo);

}
else
{ . . . /* Error Handling */ . . . }

The bootstrap loader command LOADPC allows the execution of previously-programmed code. This
command loads a given address in the program counter and starts execution at this address. The
executed code may be located in any type of memory (such as RAM or flash memory).

For example, this feature can be used to load a calibration routine into RAM, run the calibration, return to
the bootstrap loader, and read back the calibration data. Or it can be used to program and execute
another loader with additional features. The available memory (RAM or flash), the resources required by
the bootstrap loader, their initialization (for example, P1SEL, P2SEL, and CCTL0 must be cleared), and
especially the stack usage must be carefully considered. Note that the initialization of the stack pointer
differs from version to version of the bootstrap loader.

The loader start-address vector stored at address (0x0c00) can be used to return from a loaded routine to
the bootstrap loader:

br &00C00h ; Return to bootstrap loader

The demonstration program shows how to program an updated bootstrap loader into RAM and then
execute it. As a prerequisite, the protected functions of the loader must be unlocked by sending the
appropriate password.

After obtaining access to the protected bootstrap loader commands, a subroutine within the loader code
must be called to prepare the position of the stack pointer, if the loader version is 1.10 or below. These
versions of the loader have a so-called dynamic stack pointer initialization, and there is no assurance that
loading data to RAM will not interfere with the actual stack. The stack pointer is initialized to point to the
fixed loader stack frame by loading the PC with the address of the appropriate routine within the bootstrap
loader. Calling this function locks the protected commands, and the password must be resent.
if (bslVer <= 0x0110) /* BSL Version 1.10 or below? */
{
if ((error= bslTxRx(BSL_LOADPC, /* Command: load PC */

0x0C22, /* Address to load into PC */
0, /* No additional data! */
NULL, blkin)) != ERR_NONE)

{ . . . /* Error! */
}
/* Resend password to regain access to protected functions. */
if ((error= txPasswd(passwdFile)) != ERR_NONE)

14 Application of Bootstrap Loader in MSP430 SLAA096D–September 2005–Revised August 2006
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA096D

www.ti.com

Software Description

{ . . . /* Error! */
/* Special case here: 7(ERR_RX_NAK): Password not accepted! */

}
}

It is now possible to program any data into RAM using the standard bootstrap loader methods. In the
demonstration program, routineTIText is used to program and verify another loader with the name of the
corresponding TI-TXT file given in the variable newBSLFile:
printf("Load new BSL \"%s\" into RAM...\n", newBSLFile);
if ((error= programTIText(newBSLFile, /* File to program */

ACTION_PROGRAM)) != ERR_NONE)
{ . . . /* Error! */ }
printf("Verify new BSL \"%s\"...\n", newBSLFile);
if ((error= programTIText(newBSLFile, /* File to verify */

ACTION_VERIFY)) != ERR_NONE)
{ . . . /* Error! */ }

The programmed code now can be executed. The new loader has a start-up vector located at address
0x0300. After reading this address, the contents of the start-up vector (variable startaddr in the following
code snippet) are used to load the program counter:
/* Read startvector of bootstrap loader: */
if ((error= bslTxRx(BSL_RXBLK, 0x0300, 2, NULL, blkin)) == ERR_NONE)
{
WORD startaddr;
memcpy(&startaddr, &blkin[0], 2);
printf("Starting new BSL at %x...\n", startaddr);
error= bslTxRx(BSL_LOADPC, /* Command: Load PC */

startaddr, /* Address to load into PC */
0, /* No additional data! */
NULL, blkin);

}
/* . . . Error Handling . . . */

The loaded program is executed now. Since it is just another loader with the same communication
protocol as the original one, it is possible to continue programming the flash memory as if it was the
original loader.

The protected functions of the loader are locked, since it was started with the start address pointing to its
initialization routine. The password must be sent again to unlock these commands. Execution then can
proceed as normal.

Within the demonstration program, the command-line parameter -b controls if a new loader is used. For
example, to use the loader contained in the TI-TXT file BL_130V.TXT, the following command line may be
used:
BSLDEMO -bBL_130V.TXT +epr TEST.TXT

SLAA096D–September 2005–Revised August 2006 Application of Bootstrap Loader in MSP430 15
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA096D

www.ti.com

4.10 Patch for First Version of Bootstrap Loader

Software Description

The first versions (1.10 and below) of the bootstrap loader require a small patch to program the flash (Bug
Ids: BSL2, BSL3, and BSL4). The patch is described in this section, and its handling is included in the
program BSLDEMO.C (see Bootstrap Loader Demonstration Program in Appendix A). The TI-TXT file
patch.txt, included in Appendix A, is also required. The patch handling within the demonstration program
can be switched off (for future versions of the bootstrap loader) by deleting, or commenting out, the
following line:
#define WORKAROUND

The parts of the code required for the workaround are surrounded by preprocessor commands:
#ifdef WORKAROUND

. . .
#endif

After obtaining access to the protected bootstrap loader commands, the position of the stack pointer must
be prepared for the patch, as described in Section 4.9.2. Afterwards, the patch can be written into RAM.
The text file patch.txt holding the patch can be found in Appendix A. Downloading is performed by the
flash-programming function that parses a text file:
programFlash("PATCH.TXT", ACTION_PROGRAM | ACTION_VERIFY);

In this case, the masks ACTION_PROGRAM and ACTION_VERIFY are used together to program and
verify the patch in one single pass. This means that the file patch.txt is read only once. Note that the patch
must be located in the same directory as the executable program. To use the patch for programming, only
the PC needs to be loaded with the start address of the patch (0x0220) before sending a frame. In the
demonstration program, the invocation of the patch is done in the separate preparePatch function (see
Bootstrap Loader Demonstration Program in Appendix A).

There is another bug that can affect memory cells (either RAM or peripheral-module registers) if the
transmitted frame has a certain checksum; unfortunately, a general workaround can not be provided.
Transmitting data to, or receiving data from the MSP430 using the patch prevents this error. In all other
cases, the only help that can be provided is a warning when this situation occurs (however, it is unlikely
that the error occurs if reading and writing are performed using the patch). The warning is generated
within the comRxTx function contained in file SSP.C (see Serial Communication Implementation File in
Appendix A).
#define BSL_CRITICAL_ADDR 0x0A00
{
WORD accessAddr= (0x0212 + (checksum^0xffff)) & 0xfffe;
if (BSLMemAccessWarning && (accessAddr < BSL_CRITICAL_ADDR))
{
printf("WARNING: This command might change data

"at address %x or %x!\n",
accessAddr, accessAddr + 1);

}
}

The global variable BSLMemAccessWarning allows warning message turnon or turnoff. Since the patch
fixes this bug, the warning is turned off within the preparePatch function, and turned back on in the
postPatch function (see Bootstrap Loader Demonstration Program listing in Appendix A).

The complete sequence for receiving data from the MSP430 becomes:
error= preparePatch();
if (error != ERR_NONE) return(error);
error= bslTxRx(BSL_RXBLK, addr, len, NULL, blkin);
postPatch();

Similarly, the transmission of data to the MSP430 is handled as:
error= preparePatch();
if (error != ERR_NONE) return(error);
error= bslTxRx(BSL_TXBLK, addr, len, blkout, blkin);
postPatch();

16 Application of Bootstrap Loader in MSP430 SLAA096D–September 2005–Revised August 2006
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA096D

www.ti.com

5 References

References

The demonstration program solves an additional problem that applies only to devices with flash memory
sizes greater than 4K bytes. For these memories, the built-in mass-erase time may be too short to erase it
completely. This problem can be fixed simply by repeating the mass-erase command several times. This
workaround is activated by defining the default number of mass-erase cycles:
#define ADD_MERASE_CYCLES 20

The number of mass-erase cycles can be changed to any value using the demonstration program's
command-line parameter -m. For example, -m1 can be used to have only one mass-erase cycle with
MSP430F11x(1), which is sufficient for these devices.

1. MSP430F11x Mixed Signal Microcontroller data sheet, literature number SLAS256
2. MSP430F11x1 Mixed Signal Controller data sheet, literature number SLAS241
3. Features of the MSP430 Bootstrap Loader application report, literature number SLAA089
4. Denver, Allen. Serial Communication in Win32, Microsoft Developer Network (MSDN) Library
5. Microsoft Win32 Software Development Kit (SDK) documentation

SLAA096D–September 2005–Revised August 2006 Application of Bootstrap Loader in MSP430 17
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA096D

www.ti.com

Appendix A Software

A.1 Building the Demonstration Program

A.2 TI-TXT File for Bootstrap Loader Patch (patch.txt)

Appendix A

To build the demonstration program, it is necessary to compile the files bslcomm.c and bsldemo.c and to
link the resulting object files. It is not necessary to compile the file ssp.c separately because it is directly
included in the file bslcomm.c. For a different approach, copy and paste the contents of ssp.c into
bslcomm.c at the position of the following line, and remove this line:
#include "ssp.c"

For example, if using Visual C++, create a new project and select the Win32 Console Application
template. The project created must be empty. Include the files bsldemo.c, bslcomm.c, and bslcomm.h to
build the project. As previously stated, the files ssp.c and ssp.h automatically are included. The building
process will fail if the ssp.c file is included in the project.

@0220
31 40 1A 02 09 43 B0 12 2A 0E B0 12 BA 0D 55 42
0B 02 75 90 12 00 1F 24 B0 12 BA 02 55 42 0B 02
75 90 16 00 16 24 75 90 14 00 11 24 B0 12 84 0E
06 3C B0 12 94 0E 03 3C 21 53 B0 12 8C 0E B2 40
10 A5 2C 01 B2 40 00 A5 28 01 30 40 42 0C 30 40
76 0D 30 40 AC 0C 16 42 0E 02 17 42 10 02 E2 B2
08 02 14 24 B0 12 10 0F 36 90 00 10 06 28 B2 40
00 A5 2C 01 B2 40 40 A5 28 01 D6 42 06 02 00 00
16 53 17 83 EF 23 B0 12 BA 02 D3 3F B0 12 10 0F
17 83 FC 23 B0 12 BA 02 D0 3F 18 42 12 02 B0 12
10 0F D2 42 06 02 12 02 B0 12 10 0F D2 42 06 02
13 02 38 E3 18 92 12 02 BF 23 E2 B3 08 02 BC 23
30 41
q

18 Application of Bootstrap Loader in MSP430 SLAA096D–September 2005–Revised August 2006
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA096D

www.ti.com

Appendix B PCB Layout Suggestion

unitop.wmf@

unibottom.wmf@

Appendix B

Figure B-1. Universal BSL Interface PCB Layout—Top

Figure B-2. Universal BSL Interface PCB Layout—Bottom

SLAA096D–September 2005–Revised August 2006 Application of Bootstrap Loader in MSP430 19
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA096D

www.ti.com

3,5 mm

6
0

,0
0

m
m

Appendix B

Figure B-3. Universal BSL Interface Component Placement

20 Application of Bootstrap Loader in MSP430 SLAA096D–September 2005–Revised August 2006
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA096D

www.ti.com

3,5 mm

6
0

,0
m

m

T
L

0
6

2
D

Appendix B

Figure B-4. Universal BSL Interface Component Placement

SLAA096D–September 2005–Revised August 2006 Application of Bootstrap Loader in MSP430 21
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA096D

www.ti.com

Appendix C Demonstration Program Usage

Appendix C

The bootstrap loader demonstration program has a simple command-line interface. The only parameter
required is the name of the TI-TXT file to program. All other parameters are optional and must be entered
before of the TI-TXT file name. The TI-TXT file name must be the last parameter.

Table C-1 shows the command-line parameters available.

Table C-1. Command-Line Parameters

PARAMETER DESCRIPTION EXAMPLE

-h Shows help screen -h

-c{COM-port name} Specifies the COM port to be used (default: COM1) -cCOM2

Specifies a TI-TXT file containing the actual password to access the-p{TI-TXT file name} -pint_vect.txtbootstrap loader

The program will wait after successful programming and reset for the-w -w<ENTER> key. The application can run powered via the serial port.

Do erase-check, programming, and verification in one pass (the TI-TXT
file is read and parsed only once). This option is discouraged with the-1 -1first version(s) of the bootstrap loader that require the work-around
patch.

-a{TI-TXT file name} Specifies a TI-TXT file containing a valid patch for the bootstrap loader -apatch.txt

Specifies a TI-TXT file containing a valid loadable bootstrap loader that
-b{TI-TXT file name} is loaded before any further programming takes place and that replaces -bbl_130v.txt

the original one for programming

Specifies the maximum number of data bytes within one transmitted-f{num} -f240frame

-e{startnum} Erase segment specified by {startnum} -e 0xF000

-m{num} Specifies the number of mass-erase cycles -m20

-s{num} Changes the baud rate (num=0:9600; 1:19200; 2:38400) -s2

Read memory from startnum for a size of lenmum and write data to file-r{startnum} {lenmum} {file} -r0xF000 0x1000 out.txtin TI-TXT format (values are in HEX-format)

-x Enables MSP430X extended memory support -x

In addition to these command-line parameters, a parameter exists that allows control of the program flow.
For example, it is possible to just verify the contents of the flash memory. This parameter is introduced by
the + character. The + character is followed by the specification of the steps to be taken (and only these
steps are taken). Table C-2 shows the modifiers available. The steps are taken in the order of the
modifiers within Table C-2.

Table C-2. Program-Flow Modifiers (1)

MODIFIER DESCRIPTION

Restore INFOA after mass erase (only with massa erase)

e Erase complete flash (mass erase)

c Check erasure

p Program given file

v Verify against given file

r Reset device

w Wait for <ENTER> at the end

u User called – Skip entry sequence
(1) If the modifier e is omitted, the flash is not erased completely and,

thus, it is required to provide a password file using the –p
parameter (see fourth invocation example in Table C-3).

Application of Bootstrap Loader in MSP43022 SLAA096D–September 2005–Revised August 2006
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA096D

www.ti.com

Appendix C

Table C-3 shows examples of the demonstration program invocation.

Table C-3. Invocation Examples (1)

EXAMPLE DESCRIPTION

bsldemo -h Shows help screen

bsldemo test.txt Erase flash, check erasure, program and verify file test.txt, exit

bsldemo -1 -w -cCOM2 test.txt Same as above, but the hardware is connected to COM2; erase-check, program, and verify
are done in one pass through file test.txt; the program waits for <ENTER> at the end.

bsldemo +vrw -pint_vect.txt test.txt Use data within file int_vect.txt as password, verify against file test.txt (no erasure or
programming), reset MSP430, wait for <ENTER> at the end.

bsldemo +rw -pint_vect.txt test.txt Reset MSP430 and wait for <ENTER> at the end. Password and file name are also
required.

bsldemo -bbl_130v.txt +epr test.txt Load new bootstrap loader bl_130v.txt into RAM and program file test.txt using the new
loader (the verification step is omitted because the loader bl_130v.txt does the verification
internally during programming.) Note: There must be enough memory to load the new
loader.

(1) If the downloaded bootstrap loader Bl_130v.txt is used or the connected device has a bootstrap loader version 1.40 and higher,
the verification step can be omitted because these loaders perform the verification during programming (see last invocation
example in Table C-3).

SLAA096D–September 2005–Revised August 2006 Application of Bootstrap Loader in MSP430 23
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA096D

www.ti.com

Appendix D Errata

Appendix D

This appendix summarizes errata in former revisions of the Application of Bootstrap Loader in MSP430
application report.

Errata SLAA096A:
• Appendix D: Universal Bootstrap Loader Interface Board: Operational amplifier IC2 must be replaced

with TL062D or equivalent type.

24 Application of Bootstrap Loader in MSP430 SLAA096D–September 2005–Revised August 2006
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA096D

www.ti.com

Appendix E Third-Party Support

Appendix E

Please visit the MSP430 third-party web page at www.ti.com/msp430 for updated information on available
MSP430 BSL tools.

SLAA096D–September 2005–Revised August 2006 Application of Bootstrap Loader in MSP430 25
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA096D

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,
enhancements, improvements, and other changes to its products and services at any time and to discontinue
any product or service without notice. Customers should obtain the latest relevant information before placing
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms
and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI
deems necessary to support this warranty. Except where mandated by government requirements, testing of all
parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for
their products and applications using TI components. To minimize the risks associated with customer products
and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process
in which TI products or services are used. Information published by TI regarding third-party products or services
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.
Use of such information may require a license from a third party under the patents or other intellectual property
of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for
such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that
product or service voids all express and any implied warranties for the associated TI product or service and
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application
solutions:

Products Applications

Amplifiers amplifier.ti.com Audio www.ti.com/audio

Data Converters dataconverter.ti.com Automotive www.ti.com/automotive

DSP dsp.ti.com Broadband www.ti.com/broadband

Interface interface.ti.com Digital Control www.ti.com/digitalcontrol

Logic logic.ti.com Military www.ti.com/military

Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork

Microcontrollers microcontroller.ti.com Security www.ti.com/security

Low Power Wireless www.ti.com/lpw Telephony www.ti.com/telephony

Video & Imaging www.ti.com/video

Wireless www.ti.com/wireless

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright  2006, Texas Instruments Incorporated

	1 Introduction
	2 Bootstrap Loader Basics
	2.1 Access to the Bootstrap Loader

	3 Hardware Description
	3.1 Power Supply
	3.2 Serial Interface
	3.2.1 Level Shifting
	3.2.2 Control of RST/NMI and TEST or TCK Pins

	3.3 Target Connector
	3.4 Parts List

	4 Software Description
	4.1 Global Variables
	4.2 Initialization of the RS-232 Port
	4.3 Invoking the Bootstrap Loader
	4.4 Access to the Bootstrap Loader
	4.4.1 Synchronization
	4.4.2 Transmission of Frame

	4.5 Calling the Bootstrap Loader Functions
	4.6 Releasing the RS-232 Port
	4.7 Complete Application
	4.8 Error Recovery
	4.9 Advanced Features
	4.9.1 Detecting the Bootstrap Loader Version
	4.9.2 Executing Code

	4.10 Patch for First Version of Bootstrap Loader

	5 References
	Appendix A Software
	A.1 Building the Demonstration Program
	A.2 TI-TXT File for Bootstrap Loader Patch (patch.txt)

	Appendix B PCB Layout Suggestion
	Appendix C Demonstration Program Usage
	Appendix D Errata
	Appendix E Third-Party Support

