
1

5/22/2008 1

MSP430 Tools: From Development to Production
Lane Westlund

2

Agenda

• Introduction to MSP430 Programming
• Software tools overview
• Hardware programming tools overview
• Programming using JTAG
• Programming using the ROM BSL
• Introduction to the 5xx BSL
• Tips and Tricks
• Demos
• Hands on

2

3

Programming the MSP430

• Programming options
– Custom in-system programming (most popular)
– TI factory programming option
– Distributor services
– 3rd party tools
– TI programming tools
– Mask-ROM version for some devices

• In-system programming
– Integrate with production test flow
– Reduces device handling (ESD, pin damage)
– Allows for “one time” code runs before programming

• Programming a blank device
– JTAG interface or Integrated Boot Strap Loader

4

Programming a blank MSP430

• Through JTAG Interface…
– Built into every MSP430
– For device programming, but also code development
– Four and two-wire options
– Fast
– IP Protection through security fuse

• Through Bootstrap Loader (BSL)…
– Built-into most MSP430s
– For device programming and read-out only
– UART-based serial interface
– Four signal connections needed
– IP protection through password protection and self erase

• TI and 3rd party tools available

3

5

TI Factory provided options

• Factory Flash programming
– Available for all MSP430s
– Devices get programmed with customer code during ATE
– Removes need for on-site programming
– Minimum yearly demand of 100ku
– NRE $3500
– Initial risk order of 3ku

• Factory ROM code
– Available for certain devices only, e.g., C11x1, C14x1, C41x
– Only basic analog peripherals available (e.g., no ADC)
– No non-volatile storage (Info Flash Memory Segments)
– Minimum yearly demand of 25ku
– NRE $3500
– Initial risk order of 3ku

6

Agenda

• Introduction to MSP430 Programming
• Software tools overview
• Hardware programming tools overview
• Programming using JTAG
• Programming using the ROM BSL
• Introduction to the 5xx BSL
• Tips and Tricks
• Demos
• Hands on

4

7

Development Tools Overview

• IAR Embedded Workbench
• TI Code Composer Essentials
• Rowley CrossWorks

– Complete solution, High code density, Simulator
– http://www.rowley.co.uk

• ImageCraft
– ANSI C Compiler, Easy to use IDE with source level debugging
– http://www.imagecraft.com/software

• GCC Toolchain – Free
– GNU C Compiler, Assembler / Linker (binutils), GDB Debugger
– Windows, Linux, Unix
– http://mspgcc.sourceforge.net

• Which tool should I use?

8

IAR Embedded Workbench V4.09A

• Kickstart Version – Free
– 4KB Limit on C code size for 430 devices
– 8KB Limit on C code size for 430X devices
– Unlimited assembler code size
– Available from MSP430 web page
– Supported by TI PIC
– Able to use SimpliciTI libraries in project

• Baseline Version ~$995
– 12KB Limit on C code size
– Unlimited assembler code size
– Available and supported by IAR

• Full Version ~$2695
– Unlimited code size
– Available and supported by IAR

• All versions support all available MSP430 devices

5

9

TI Code Composer Essentials v3

• Free upgrade to v3 for existing v2 users
• Professional Version – $499

– Unlimited code size
– Orderable from MSP430 web page
– Supported by TI Software Support

• Evaluation Version – Free
– 16KB Limit on C/ASM code size
– Download from MSP430 web page
– Supported by TI Software Support

• Supports all available
MSP430 devices

• Available today!

10

CCE v3 new features

• Free 16k code-limited version
• Supports Large Memory model

– Place data >64k
• Enhanced Compatibility with IAR C-code

– #pragma (ISR declarations), most intrinsics
• GDB Debugger replaced by TI proprietary debugger

– Faster single stepping
• HW Multiplayer libraries

– 16-bit HWM, 16-bit HWM (2xx family), 32-bit HWM
• CCE v2 project support (auto convert)
• Breakpoints

– EEM support via unified breakpoint manager
– Using of EEM (predefined Use Cases)
– Unlimited Breakpoints

6

11

Agenda

• Introduction to MSP430 Programming
• Software tools overview
• Hardware programming tools overview
• Programming using JTAG
• Programming using the ROM BSL
• Introduction to the 5xx BSL
• Tips and Tricks
• Demos
• Hands on

12

MSP430 Programmer Overview

• TI debugging tools
– Mainly used for code development
– Can be used for limited production programming
– In-system programming and debugging solutions

• TI production programming tools
– GANG Programmer
– JTAG Replicator
– Bootstrap Loader

• 3rd party tools
– All or some of the above
– Differentiated features & support
– ATE solutions
– Integrated production programming with test

7

13

Parallel-Port Based JTAG Interface

• Supports ALL MSP430 devices
• Supports 4-Wire JTAG mode only
• Fixed output voltage of 2.8V
• No JTAG fuse blow
• Simple hardware circuit, possible to implement as part of a

product

14

USB-Based JTAG Interface, UIF v1

• Supports ALL MSP430 devices
• Supports 4-Wire and 2-Wire (Spy-Bi-Wire) JTAG
• Adjustable output voltage: 1.8 … 3.6V, 100mA
• JTAG fuse blow
• Fast operation

8

15

USB-Based “eZ430“ JTAG Interface

• Simplified version of USB JTAG interface
• Supports MSP430F20xx devices only
• 2-Wire (Spy-Bi-Wire) JTAG support only
• Unrestricted programming and debugging capabilities
• Fixed output voltage of 3.6V
• No JTAG fuse blow
• Fast operation
• Small
• $20

16

USB-Based “eZ430-RF“ JTAG Interface

• Simplified version of USB JTAG interface
• Supports MSP430F22x4 and MSP430F20xx only
• 2-Wire (Spy-Bi-Wire) JTAG support only
• Unrestricted programming and debugging capabilities
• USB Integrated UART Back channel
• Fixed output voltage of 3.6V
• No JTAG fuse blow
• Fast operation
• Small

9

17

Gang Programmer GANG430

• Supports ALL Flash based MSP430 devices
• Supports 4-Wire and 2-Wire (Spy-Bi-Wire) JTAG
• Adjustable output voltage: 1.8 … 3.6V
• PC and stand-alone operation
• Programs up to 8 devices

simultaneously
• Fast operation

~ 8 * 6 KB/sec
• JTAG fuse blow
• GUI Interface
• DLL Interface

18

JTAG Replicator

Replicator.c
Target.txt

JTAG Protocol
Firmware

Target Source
Firmware

MSP430 JTAG
Replicator H/W

Application
Source Code

Target MSP430

MSP430
Programmer

TI-provided

Customer-specific

• Supports ALL Flash based MSP430 devices
• Supports 4-Wire and 2-Wire JTAG
• Application note SLAA149
• Example for a custom system
• Fuse blow
• ~6 KB/sec

10

19

Third parties – Elprotronic

• FlashPro430 and GangPro430
– USB JTAG / Spy-Bi-Wire / BSL Flash programmer
– GangPro430 supports 6 devices simultaneously
– Use with supplied GUI
– Use with common MSP430 IDEs
– Use in custom solutions (DLL)
– Program up to 26 KByte/s
– JTAG fuse blow

• FET-Pro430
– Stand-alone GUI
– Works with TI FETs
– Device Program / Verify / Readout

• http://www.elprotronic.com

20

Third parties – SoftBaugh
• USBP

– USB Programming Adapter
– JTAG fuse blow
– Use with common MSP430 IDEs

• ISOFET
– Parallel FET interface
– Electrically isolated
– For line-powered applications
– Use with common MSP430 IDEs

• UBSL
– USB Bootstrap loader interface
– Comes with both GUI and SDK

• REP430 – JTAG Replicator
• http://www.softbaugh.com

11

21

Automated Device Programming

• Advanced automated programming hardware
• High throughput for high-volume applications
• Program many ‘430s out-of-system very quickly
• Integration into production line
• See 3rd party web pages
• http://www.bpmicro.com
• http://www.dataio.com

22

Agenda

• Introduction to MSP430 Programming
• Software tools overview
• Hardware programming tools overview
• Programming using JTAG
• Programming using the ROM BSL
• Introduction to the 5xx BSL
• Tips and Tricks
• Demos
• Hands on

12

23

JTAG Fundamentals

• Two different protocols available
– 4-Wire JTAG: Supported by all MSP430s
– 2-Wire JTAG (“Spy-Bi-Wire”): Selected MSP430F2xx devices

• TI MSP430 JTAG Tools
– Flash Emulation Tool (FET): USB & Parallel Port
– Gang Programmer GANG430
– JTAG Replicator Hardware

• Applications Collateral
– Programming a Flash-Based MSP430 Using the JTAG Interface

Application note (also covers JTAG Replicator Hardware) – SLAA149
– MSP430.DLL Developer Distribution Package (2H2007)
– FET User’s Guide (for IAR and CCE)

24

JTAG Implementation Overview

• Implements the test access port state machine, or TAP, as specified
by IEEE 1149.1

• MSP430 JTAG does NOT implement boundary scan
• Access is protected by JTAG security fuse

– Physical fuse to permanently disable I/F
– Fuse blow cannot be made undone

NOYESYES20- and 28-pin MSP430F1xx devices

NOYESNO64-, 80-, and 100-pin MSP430F2xx devices

YESYESYES14-, 20-, 28-, and 38-pin MSP430F2xx devices

NOYESYESMSP430F21x1 family

NOYESNO64-, 80-, and 100-pin MSP430F1xx / 4xx devices

2-Wire JTAG
(SBW)4-Wire JTAGTEST PinDevices

13

25

4-Wire JTAG Connections

• J1 vs. J2: JTAG matches or supplies target VCC
• RST is optional, TEST for 20/28-pin devices only
• See UG for recommended reset R/C

1
3
5
7
9

11
13

2
4
6
8
10
12
14

VCC / AVCC / DVCC

VSS / AVSS / DVSS

TEST/VPP

TDO/TDI
TDI/VPP
TMS
TCK

MSP430Fxxx

RST/NMI

10μF 0.1μF

47kΩ

TDO/TDI
TDI/VPP
TMS
TCK
GND

TEST/VPP

VCC

RST

JTAG

R1

VCC TOOL
VCC TARGET

10nF/2.2nF
C1

C2 C3

J1
J2

26

4-Wire JTAG Details

• Larger MSP430 devices: dedicated JTAG pins
• Smaller MSP430 devices: shared JTAG/GPIO pins
• The mode of the shared pins is determined by an additional TEST pin
• TEST is pulled low internally, enabling GPIO mode

Enable JTAG pins (shared JTAG devices only)INTEST

JTAG data outputOUTTDO

JTAG data input/TCLK inputINTDI

JTAG clock inputINTCK

Signal to control the JTAG state machineINTMS

UsageDirectionPin

14

27

2-Wire JTAG Connections

• J1 vs. J2: JTAG matches or supplies target VCC
• R2 only needed in case of fuse blow
• See UG for recommended reset R/C

28

2-Wire JTAG Details

• Same JTAG core logic, but optimized interface
• Only two signals: Test Clock, Test Data In/Out
• Use of time-division multiplexing
• No multiplexed GPIO pins are needed for JTAG

15

29

MSP430.DLL

• Provides an API to access a target MSP430
• For use with USB / Parallel Port JTAG IF
• Pair of two Windows DLL library modules

– MSP430.DLL – Contains all device control functions
– HIL.DLL – Abstracts the physical parallel-port interface

• Included with all MSP430 IDEs
• Built-in functionality

– Target device identification
– Target voltage control
– Full device memory access
– Full device control / debug
– 4-Wire and 2-wire JTAG access
– Parallel und USB JTAG emulator

30

• When would I need it? Only when…
– …creating a custom programming solution
– …creating a custom debugging solution

• NOT needed when using off the shelf solutions
– IAR Embedded Workbench / TI Code Composer Essentials
– GANG Programmer

• Provides information on MSP430.DLL access
• API Documentation and header files
• Application examples (provided in C)

– Initialize and identify device
– Download and verify code
– Debug (access registers, single step, breakpoints, etc.)

MSP430.DLL Developer’s Package

16

31

MSP430.DLL Usage Flow Example

32

GANG430.DLL

• Alternate method of using GANG430 without using the supplied GUI
• Part of the GANG430 software package
• Available in the GANG430 folder on the TI Web Page
• Direct access to GANG430 functions:

– Device programming & Verify
– Program, erase, fuse blow configurable
– Supply voltage selection
– Variable serial communication speed
– Can use TI txt or Intel hex output directly from compiler
– Fast and Reliable mass programming technique
– Target readout supported
– Access of target SFRs

• Comes with application examples

17

33

GANG430.DLL

• Possible to send raw commands out the PC serial port:
described in Gang Programmer User’s Guide

• Using the TI-provided GANG430.DLL is easier and more
reliable than a custom solution

• Example programs provided: C, C++, LabView, VB
– <Install Dir>\GANG\DLL_usage_examples\

• Custom uses:
– Target serialization
– Random number seeding
– Temporary test program loading

34

GANG430.DLL Usage Flow Example

GangLoadImage()
(Write target code into image Flash)

GangLoadParameters()
(Determine process flow)

InitCom()
(Open Communication Port)

ReleaseCom()
(Close communication port)

GangEraseImage()
(Erase Image Flash Memory)

GangMainProcess()
(Execute programming process)

GangGetResult()
(Receive result for diagnostic)

InitCom()
(Open Communication Port)

GangSelectBaudrate()
(Opt.: Change comm. speed)

GangAccessTargetSFR()
(Opt.: Access device peripherals)

GangProgramTarget()
(Opt.: Program serial numbers etc.)

ReleaseCom()
(Close communication port)

18

35

Agenda

• Introduction to MSP430 Programming
• Software tools overview
• Hardware programming tools overview
• Programming using JTAG
• Programming using the ROM BSL
• Introduction to the 5xx BSL
• Tips and Tricks
• Demos
• Hands on

36

What is the (1xx,2xx,4xx) Boot Strap Loader?

• Flash ISP kernel in ROM
• Firmware processes commands

received via UART link
• External pin toggle sequence

initiates execution
• Target device software can jump

into BSL ROM code
• Program / Verify ~3KB/sec using

BSL Version 1.60+
• ROM also contains chip

identification information 0FF0h –
0FF1h

01FFh – 0100h
0FFh – 010h

0Fh – 00h

16-bit
8-bit
8-bit SFR

Peripherals

256 Byte
02FFh – 0200h

SizeRAM

1KB
0FFFh – 0C00h

Size
ROM

Boot Memory

256 Byte
010FFh – 01000h

Size
Flash

Information
memory

0FFFFh - 08000hFlashCode memory
0FFFFh - 0FFE0hFlashInterrupt vectors

32KBSizeMain Memory
MSP430F4270

19

37

Using the BSL

• Features of the MSP430 Bootstrap Loader, SLAA089
– Illustrates BSL pin toggle sequence for all devices
– Defines BSL protocol & commands
– Documents BSL ROM code versions & features
– Describes a stand-alone MSP430 based “BSL Replicator” design

• Application of Bootstrap Loader in MSP430 with Flash Hardware,
Software Proposal, SLAA096
– Proposal for MSP430 hardware for interfacing from a PC to the BSL
– Software framework for low-level communication via DLL
– Hardware schematics
– Command line information

• Use these application reports for BSL use & programmer tool
development

38

BSL Connections

• J1 vs. J2: JTAG matches or supplies target VCC
• TEST for 20/28-pin devices only, TCK for all others
• See UG for recommended reset R/C

20

39

Invoking BSL via H/W

• Specific pin sequence required to initiate BSL firmware execution
• RST & TEST or RST & TCK are used
• CPU jumps to BSL ROM
• MSP430 gets configured and ready to communicate

40

Invoking BSL via S/W

• BSL activation initiated by the MSP430 application
• PC jumps to the start of the BSL ROM code
• Address vector information provided in SLAA089
• Entering BSL will reset stack pointer and other RAM based application

information
• Debug tools can view BSL disassembly in ROM

// BSL Cold Start from C
((void(*)(void))0x0c00)(); // Indirect Call

; BSL Cold Start from Assembly
bra &0c00h ; Indirect Call

// BSL Cold Start from C
((void(*)(void))0x0c00)(); // Indirect Call

; BSL Cold Start from Assembly
bra &0c00h ; Indirect Call

21

41

BSL Protection Features

• Prohibits commands allowing direct or indirect data access without
BSL password

• Password = 16 x 16-bit ISR vector addresses
• Changing ISR vectors changes password
• Unprotected commands like mass erase and RX password are always

allowed
• Applying the RX password command and proper password unlocks all

protected commands
• After mass erase all password bits are = 1
• F2xx BSL can be totally disabled
• F2xx BSL erases entire Flash memory when invalid password is

supplied (feature can be disabled)

42

BSL Password Details

• The password is the 16x16-bit interrupt vector values
• Max Code Crack Duration:

• Enhance security by initializing unused int vectors
• In IAR C, use ”__root” and absolute variable placement

 years 134e66
baud9600

bits 8 bytes 44 nscombinatio 2256 ≈
×

×

// Program unused interrupt vectors
__root const int BSLPW1 @ 0xffe0 = 0x1234;
__root const int BSLPW2 @ 0xffe2 = 0x5678;

// Program unused interrupt vectors
__root const int BSLPW1 @ 0xffe0 = 0x1234;
__root const int BSLPW2 @ 0xffe2 = 0x5678;

22

43

BSL Commands Overview

• Mass erase, Segment erase, Erase check
• TX / RX Data block

– Use to program and read Flash memory and RAM
• Set Memory Offset

– For devices with more than 64K of memory
– Used as memory pointer’s upper word
– BSL versions V2.12+

• Load PC
– BSL section is terminated and code starts execution at given address
– Note: Password protection is not active until next POR

• Change baud rate
– Select up to 38,400 Baud for higher throughput

44

BSL Usage Ideas

• Field firmware upgrades after JTAG fuse is blown
– Method that always works
– Fail-safe in case of upgrade interruption or anomalies

• Basic device debugging after JTAG fuse is blown
– BSL is used as a device monitor
– Use BSL commands to modify peripheral address range
– Pins and peripherals can be controlled
– Use to examine field returns
– Custom PC software required
– Use application note SLAA098 as template

• Production testing without Flash modification
– Load and execute test code in RAM using BSL
– Test code exercises peripherals and custom board circuitry

23

45

Agenda

• Introduction to MSP430 Programming
• Software tools overview
• Hardware programming tools overview
• Programming using JTAG
• Programming using the ROM BSL
• Introduction to the 5xx BSL
• Tips and Tricks
• Demos
• Hands on

46

Overview of 5xx BSL

• Built in System level protection
• 5xx BSL has a flash area of selectable size, from 512 bytes-2k bytes

of protected flash
• Flash area can be protected against read and write
• PC can not jump into protected flash area
• Can be programmed, erased, or disabled through JTAG
• Built in BSL features
• Modular design for code re-use
• 16x16 Password like previous BSLs
• Automatic erase on incorrect password
• Larger buffer size for data transmission
• UART Communication programmed into BSL flash

24

47

5xx BSL connections

• P1.1 Data Transmit
• P1.2 Data Receive

48

Invoking 5xx BSL

• Two methods of
starting the BSL:

• TCK pulsed while RST
is held

• BSL can always be
started after POR

25

49

Register Overview
• SYSBSLC Register
• SYSBSLPE

• 0 area not protected against read, program, or erase
• 1 area protected

• SYSBSLOFF
• 0 BSL memory is addressed when this area is read
• 1 BSL memory behaves like vacant memory

• SYSBSLR
• 0 no protected RAM assigned to BSL area (BSL can still use all device RAM)
• 1 Lowest 16 bytes of RAM assigned to BSL (unreadable by other apps)

• SYSBSLSIZE
• 00 512 Bytes of flash
• 01 1024 Bytes of flash
• 10 1536 Bytes of flash
• 11 2048 Bytes of flash

50

BSL Software Architecture

• BSL Core communicates through a
peripheral interface (PI)

• PI configures device and peripheral
for desired communication

• PI can be substituted without
having to re-write the BSL Core,
adding to security and code-reuse

• Extremely simple interface

void PI_init();

char PI_receivePacket();

void PI_sendData();

void PI_init();

char PI_receivePacket();

void PI_sendData();

26

51

BSL Software Architecture

• Command Interpreter (CI) has BSL “engine” which interprets received
commands

• Command Interpreter completely device independent
• 430 API is device interface, and has device specific code and definitions
• 430 API performs simple device operations such as read/write/erase

• Program flow:
– Command Interpreter starts PI
– PI receive packet, puts packet in CI
– CI parses Command
– CI calls required API functions
– API returns status
– CI sends reply through PI

BSL Core

BSL Command
Interpreter

BSL 430 API

MSP430
RAM/

FLASH

52

Protocol Overview

• Peripheral Interface “Wrapper”

• BSL Core Data Format

ACKCKHCKLNHNL80

ACKCKHCKLBSL Core DataLengthLengthHeader

D1..D15------11RX Password

D1..Dn(AH)(AM)(AL)10RX Data Block

DataAHAMALCMDBSL Command

27

53

5xx BSL Security

• Built In Security:
• Password protected commands
• 16x16 password
• Device erased on wrong password
• BSL Flash area protected against read, write, jump
• Flash area can be erased at production to remove all code

• Ongoing Security:
• “Open Source” security model. All source code published for review
• Flash area allows production programming of latest firmware
• BSL Command Interpreter contains most security elements
• Additional security possible (encrypted Peripheral Interface?)

54

Agenda

• Introduction to MSP430 Programming
• Software tools overview
• Hardware programming tools overview
• Programming using JTAG
• Programming using the ROM BSL
• Introduction to the 5xx BSL
• Tips and Tricks
• Demos

28

55

CCE: Creating a TXT output file

• Simply look in the project properties
• File is output to the “Debug” directory

56

IAR: Creating a TXT output file

• Go to “Linker Options”
• Select “Format / Other”
• Choose MSP430-TXT,

Intel Hex, or others

4. Text file is located in
the output directory of
the current project

5. Hex file has the same
name as the project

29

57

• Download Filemaker.exe from SLAA149
• This program can convert a .txt to C/Assembly code for inclusion in a project

Creating a .s43 from .txt

@1000
FF 3F 06 3C FF 3F FF 3F FF 3F FF 3F FF 3F FF 3F
3D 90 AD DE 07 20 3E 90 EF BE 04 20 1C 93 08 24

@1000
FF 3F 06 3C FF 3F FF 3F FF 3F FF 3F FF 3F FF 3F
3D 90 AD DE 07 20 3E 90 EF BE 04 20 1C 93 08 24

const word CodeArray[] = {
0x0003, /* Number of Sections*/
0x1000, /* Start address of section */
0x039E, /* Number of words in section */

0x3FFF,0x3C06,0x3FFF,0x3FFF,0x3FFF,0x3FFF,0x3FFF,0x3FFF

const word CodeArray[] = {
0x0003, /* Number of Sections*/
0x1000, /* Start address of section */
0x039E, /* Number of words in section */

0x3FFF,0x3C06,0x3FFF,0x3FFF,0x3FFF,0x3FFF,0x3FFF,0x3FFF

CodeArray
DW 0x0003 ; Number of Sections
DW 0x1000 ; Start address of section
DW 0x039E ; Number of words in section
DW 0x3FFF, 0x3C06, 0x3FFF, 0x3FFF, 0x3FFF, 0x3FFF,

CodeArray
DW 0x0003 ; Number of Sections
DW 0x1000 ; Start address of section
DW 0x039E ; Number of words in section
DW 0x3FFF, 0x3C06, 0x3FFF, 0x3FFF, 0x3FFF, 0x3FFF,

58

FET-Pro430 Lite

• Programs MSP430s using TI’s USB and Parallel Port
JTAG Emulators

• Easy to use
GUI interface

• Provided by 3rd party
Elprotronic

• Free

30

59

Thank you

