
www.msp430.ubi.pt Copyright 2009 Texas Instruments, All Rights Reserved 11-1

Chapter 11

11. Direct Memory Access (DMA)

Some devices in the MSP430 family support a multi-channel Direct
Memory Address (DMA) controller that can move data from one
location to another, without CPU intervention. This increases the
throughput of peripheral modules and also allows the CPU to remain
in a low-power mode, without needing to wake up to perform the
data transfer. This gives the benefit of reduced power consumption.
Data transfers to/from peripherals can be initiated by external and
internal events, using triggers.

This chapter covers DMA operation, supported addressing and
transfer modes, trigger selection, channel priorities and DMA
controller interrupts.

Topic Page

11.1 Direct Memory Access (DMA) capability11-2

11.2 DMA configuration and operation11-3

System interrupts ..11-8

DMA controller interrupts...11-8

11.3 DMA registers ..11-9

11.4 Laboratory 7: Direct Memory Access............................11-12

11.4.1 Lab7A: Data Memory transfer triggered by
software ..11-12

11.4.2 Lab7B: Sinusoidal signal generator11-14

11.5 Quiz ...11-17

11.6 FAQs ..11-18

Direct Memory Access (DMA)

11-2 Copyright 2009 Texas Instruments, All Rights Reserved www.msp430.ubi.pt

11.1 Direct Memory Access (DMA) capability

The MSP430 is well suited to low-power applications, and DMA is a
very useful facility to have in order to achieve this. The following
devices in the MSP430 family support DMA: 5xxx, FG4xx(x), F261x,
F16x(x) and F15x. The Experimenter’s Board uses the
MSP430FG4618.

When a low power application requires data handling, the direct
memory access (DMA) capability automatically handles data without
CPU intervention, lowering the power consumption because the CPU
remains sleeping.

The objective of DMA is to move functionality from the CPU to
peripherals (see Figure 11-1) because:

 Peripherals use less current than the CPU;

 Performing operations directly between peripherals allows the
CPU to shut down, saving system power;

 “Intelligent” peripherals are the most capable, providing more
opportunity for CPU shutoff;

 DMA can be enabled for repetitive data handling, increasing the
throughput of peripheral modules;

 Minimal software requirements and CPU cycles.

Figure 11-1. DMA data handling example.

The TI webpage gives some application notes, which explain the use
of the DMA controller for different applications, with the objective of
reducing power consumption:

 Streamlining the mixed-signal path with the signal-chain-on-
chip MSP430F169 <slyt078.pdf>

 An integrated signal chain contains a variable resistance that
generates a voltage level sampled by the ADC. The
conversion result is processed and used to determine the
update rate of the DAC and consequently, the analogue
output signal frequency. The DAC output frequency
adjustment is made by interrupting the DMA instead of the
CPU, freeing up CPU resources for other tasks.

DMA configuration and operation

www.msp430.ubi.pt Copyright 2009 Texas Instruments, All Rights Reserved 11-3

 Interfacing the MSP430 with MMC/SD Flash Memory Cards
<slaa281b.pdf>

 The MSP430F161x microcontroller is used to communicate
with an MMC or SD flash memory card via a serial peripheral
interface (SPI). The DMA module is used for data
transmission between the MSP430 and the MMC card,
resulting in higher communication speed and less CPU load.

 Digital FIR Filter Design Using the MSP430F16x <slaa228.pdf>

 A FIR filter is implemented using the MSP430F16x family of
devices. The complete filter algorithm is executed by the 3-
channel DMA peripheral and the hardware multiplier
peripheral. The 3-channel DMA peripheral is used to handle
the required data, coefficients and movement of results
between the memory and the multiply-and-accumulate
(MAC). This dramatically improves the efficiency of the
computation of the real-time FIR filter algorithm running on-
chip, without the intervention of the CPU.

 Using the USCI I2C Master <slaa382.pdf>

 Use of the I2C master function, for MSP430 devices with the
USCI module. These functions can be used by the MSP430
master device to ensure proper initialization of the USCI
module and provide I2C transmit and receive functionality.
The DMA module manages the loading of seven data bytes
that need to be sent, because during the transmission, the
CPU is in Low Power Mode 0.

11.2 DMA configuration and operation

The direct memory access (DMA) controller (see block diagram in
Figure 11-2) allows movement of data from one memory address to
another, across the entire address range, without CPU intervention.

Three DMA channels are implemented on the MSP430FG4618 device
on the Experimenter’s board.

Direct Memory Access (DMA)

11-4 Copyright 2009 Texas Instruments, All Rights Reserved www.msp430.ubi.pt

Figure 11-2. DMA block diagram.

DMA configuration and operation

www.msp430.ubi.pt Copyright 2009 Texas Instruments, All Rights Reserved 11-5

DMA controller features:

 Three independent transfer channels;

 Configurable (with the ROUNDROBIN bit) DMA channel priorities
(default: DMA0−DMA1−DMA2);

 DMA Transfer cycle time:

 Requires only two MCLK clock cycles per transfer;

 Each byte/word transfer requires two MCLK cycles after
synchronization, and one cycle of wait time after the transfer.

 Byte or word and mixed byte/word transfer capability:

 Byte-to-byte;

 Word-to-word;

 Byte-to-word (upper byte of the destination word is cleared
when the transfer occurs);

 Word-to-byte (lower byte of the source word transfers).

 Block sizes up to 65535 bytes or words;

 Configurable selection of transfer trigger (see Table 11-1);

Table 11-1. DMA trigger modes.

DMAxTSELx Transfer triggered

0000
when DMAREQ = 1
 (DMAREQ = 0 automatically when the transfer starts)

0001
<Timer_A> when TACCR2 CCIFG = 1
 (CCIFG = 0 automatically when the transfer starts)
 If CCIE = 1, CCIFG does not trigger a transfer

0010
<Timer_B> when TBCCR2 CCIFG = 1
 (CCIFG = 0 automatically when the transfer starts)
 If CCIE = 1, CCIFG does not trigger a transfer

0011

<USART0>:
 when URXIFG0 = 1
 (URXIFG0 = 0 automatically when the transfer starts)
 If URXIE0 = 1, URXIFG0 flag does not trigger a transfer
<USCI_A0>:
 when UCA0RXIFG = 1
 (UCA0RXIFG = 0 automatically when the transfer starts)
 If UCA0RXIE = 1, UCA0RXIFG flag does not trigger a transfer

0100

<USART0>:
 when UTXIFG0 =1
 (UTXIFG0 = 0 automatically when the transfer starts)
 If UTXIE0 = 1, UTXIFG0 flag does not trigger a transfer
<USCI_A0>:
 when UCA0TXIFG = 1
 (UCA0TXIFG = 0 automatically when the transfer starts)
 UCA0TXIE = 1, UCA0TXIFG flag does not trigger a transfer

0101
<DAC12> when DAC12_0CTL DAC12IFG = 1
(DAC12IFG = 0 automatically when the transfer starts)
If DAC12IE = 1, DAC12IFG does not trigger a transfer

Direct Memory Access (DMA)

11-6 Copyright 2009 Texas Instruments, All Rights Reserved www.msp430.ubi.pt

Table 11-1. DMA trigger modes (continued).

DMAxTSELx Transfer triggered

0110

<ADC12> when ADC12IFGx = 1 (corresponding ADC12IFGx flag for
single-channel conversions, and the ADC12IFGx for the last conversion for
sequence conversions)
(All ADC12IFGx = 0 automatically when the associated ADC12MEMx
register is accessed by the DMA controller)

0111
<Timer_A> when TACCR0 CCIFG = 1:
 CCIFG = 0 automatically when the transfer starts
 If CCIE = 1, CCIFG flag does not trigger a transfer

1000
<Timer_B> when TBCCR0 CCIFG = 1
 (CCIFG = 0 automatically when the transfer starts)
 If CCIE = 1, CCIFG does not trigger a transfer

1001

<USART1>:
 when URXIFG1 = 1
 (URXIFG1 = 0 automatically when the transfer starts)
 If URXIE1 = 1, URXIFG0 flag does not trigger a transfer

1010

<USART1>:
 when UTXIFG1 =1
 (UTXIFG1 = 0 automatically when the transfer starts)
 If UTXIE1 = 1, UTXIFG0 flag does not trigger a transfer

1011
<Hardware Multiplier>
 when the hardware multiplier is ready for a new operand

1100

<USCI_B0>:
 when UCB0RXIFG = 1
 (UCB0RXIFG = 0 automatically when the transfer starts)
 If UCB0RXIE = 1, UCB0RXIFG flag does not trigger a transfer

1101

<USCI_B0>:
 when UCB0TXIFG = 1
 (UCB0TXIFG = 0 automatically when the transfer starts)
 UCB0TXIE = 1, UCB0TXIFG flag does not trigger a transfer

1110

when the DMAxIFG = 1:
 DMA0IFG triggers channel 1
 DMA1IFG triggers channel 2
 DMA2IFG triggers channel 0
 (None of the DMAxIFG = 0 automatically when the transfer starts)

1111 When an external trigger DMAE0 = 1

 Selectable edge or level-triggered transfer (DMALEVEL bit);

 Four addressing modes (see Figure 11-3) for each DMA channel
independently configurable (DMASRCINCRx and DMADSTINCRx
control bits):

 Fixed address to fixed address;

 Fixed address to block of addresses;

 Block of addresses to fixed address;

 Block of addresses to block of addresses.

DMA configuration and operation

www.msp430.ubi.pt Copyright 2009 Texas Instruments, All Rights Reserved 11-7

Figure 11-3. DMA addressing modes.

 Six transfer modes. Each channel is individually configurable by
the DMADTx bits (see Table 11-2).

Table 11-2. DMA transfer modes.

DMADTx Transfer mode Description DMAEN after
transfer

000 Single transfer Each transfer requires a trigger 0

001 Block transfer
A complete block is transferred

with one trigger
0

010, 011 Burst-block transfer
CPU activity is interleaved with a

block transfer
0

100
Repeated single

transfer
Each transfer requires a trigger 1

101
Repeated block

transfer
A complete block is transferred

with one trigger
1

110, 111
Repeated burst-block

transfer
CPU activity is interleaved with a

block transfer
1

Direct Memory Access (DMA)

11-8 Copyright 2009 Texas Instruments, All Rights Reserved www.msp430.ubi.pt

System interrupts

DMA transfers are not interruptible by system interrupts, but system
interrupt service routines (ISRs) may be interrupted by DMA
transfers.

Only non-maskable interrupts (NMIs) can be configured to interrupt
the DMA controller, if the ENNMI bit is set. If it is not set, system
interrupts remain pending until the completion of the transfer.

DMA controller interrupts

Each DMA channel has its own DMAIFG flag, which is set when the
corresponding DMAxSZ register counts to zero (all modes). If the
corresponding DMAIE and GIE bits are set, an interrupt request is
generated.

The MSP430FG4618 device implements the interrupt vector register
DMAIV. In this case, all DMAIFG flags are prioritized and combined
to source a single interrupt vector. The interrupt vector register
DMAIV is used to determine which flag requested an interrupt.

 USCI_B I2C module with DMA

 Two trigger sources for the DMA controller;

 Triggers a transfer when new I2C data is received and when
data is needed for transmit.

 ADC12 with DMA

 Automatically moves data from any ADC12MEMx register to
another location;

 DAC12 with DMA

 Automatically moves data to the DAC12_xDAT register;

 Flash memory with the DMA

 Automatically moves data to the flash memory;

 Supports word/byte data transfers to the flash memory;

 The write timing control is performed by the flash controller;

 Write transfers to the flash memory succeed if the flash
controller set-up is prior to the DMA transfer and if the flash
is not busy.

All these DMA transfers occur without CPU intervention and
independently of any low-power modes. This increases throughput
of the modules and enhances low-power applications by allowing the
CPU to remain off while data transfers occur.

DMA registers

www.msp430.ubi.pt Copyright 2009 Texas Instruments, All Rights Reserved 11-9

11.3 DMA registers

The DMA controller registers are shown for the MSP430FG4618:

DMACTL0, DMA Control Register 0

15 14 13 12 11 10 9 8

Reserved DMA2TSELx

7 6 5 4 3 2 1 0

DMA1TSELx DMA0TSELx

See Table 11-1. All DMAxTSELx registers are the same.

DMACTL1, DMA Control Register 1

15 14 13 12 11 10 9 8

0 0 0 0 0 0 0 0

7 6 5 4 3 2 1 0

0 0 0 0 0 DMAONFETCH ROUNDROBIN ENNMI

Bit Description
2 DMAONFETCH DMA on fetch:

DMAONFETCH = 0 DMA transfer occurs immediately
DMAONFETCH = 1 DMA transfer occurs on next instruction fetch after
the trigger

1 ROUNDROBIN Round robin:
ROUNDROBIN = 0 DMA channel priority is DMA0 − DMA1 − DMA2
ROUNDROBIN = 1 DMA channel priority changes with each transfer

0 ENNMI Enable NMI when ENNMI = 1, allowing a NMI interrupt to interrupt a DMA
transfer

DMAxCTL, DMA Channel x Control Register

15 14 13 12 11 10 9 8

Reserved DMADTx DMADSTINCRx DMASRCINCRx

7 6 5 4 3 2 1 0
DMADSTBYTE DMASRCBYTE DMALEVEL DMAEN DMAIFG DMAIE DMAABORT DMAREQ

Direct Memory Access (DMA)

11-10 Copyright 2009 Texas Instruments, All Rights Reserved www.msp430.ubi.pt

Bit Description
14-12 DMADTx DMA transfer mode:

DMADT2 DMADT1 DMADT0 = 000 Single transfer
DMADT2 DMADT1 DMADT0 = 001 Block transfer
DMADT2 DMADT1 DMADT0 = 010 Burst-block transfer
DMADT2 DMADT1 DMADT0 = 011 Burst-block transfer
DMADT2 DMADT1 DMADT0 = 100 Repeated single transfer
DMADT2 DMADT1 DMADT0 = 101 Repeated block transfer
DMADT2 DMADT1 DMADT0 = 110 Repeated burst-block
transfer
DMADT2 DMADT1 DMADT0 = 111 Repeated burst-block
transfer

11-10 DMADSTINCRx DMA destination address increment/decrement after each byte
or word transfer:
When DMADSTBYTE = 1, the destination address increments /
decrements by one
When DMADSTBYTE = 0, the destination address increments /
decrements by two.
DMADSTINCR1 DMADSTINCR0 = 00 Address unchanged
DMADSTINCR1 DMADSTINCR0 = 01 Address unchanged
DMADSTINCR1 DMADSTINCR0 = 10 Address decremented
DMADSTINCR1 DMADSTINCR0 = 11 Address increment

9-8 DMASRCINCRx DMA source address increment/decrement after each byte or
word transfer:
When DMASRCBYTE = 1, the source address
increments/decrements by one
When DMASRCBYTE = 0, the source address
increments/decrements by two.
DMASRCINCR1 DMASRCINCR0 = 00 Address unchanged
DMASRCINCR1 DMASRCINCR0 = 01 Address unchanged
DMASRCINCR1 DMASRCINCR0 = 10 Address decremented
DMASRCINCR1 DMASRCINCR0 = 11 Address increment

7 DMADSTBYTE DMA destination length (byte or word):
DMADSTBYTE = 0 Word
DMADSTBYTE = 1 Byte

6 DMASRCBYTE DMA source length (byte or word):
DMASRCBYTE = 0 Word
DMASRCBYTE = 1 Byte

5 DMALEVEL DMA level:
DMALEVEL = 0 Edge sensitive trigger (rising edge)
DMALEVEL = 1 Level sensitive trigger (high level)

4 DMAEN DMA enable when DMAEN = 1
3 DMAIFG DMA interrupt flag DMAIFG = 1 when interrupt pending
2 DMAIE DMA interrupt enable when DMAIE = 1
1 DMAABORT DMA Abort DMAABORT = 1 when a DMA transfer is interrupted

by NMI
0 DMAREQ DMA request DMAREQ = 1 starts DMA

Laboratory 7: Direct Memory Access

www.msp430.ubi.pt Copyright 2009 Texas Instruments, All Rights Reserved 11-11

DMAxSA, DMA Source Address Register

The 32-bit DMAxSA register points to the DMA source address for
single transfers or to the first source address for block transfers.

 Bits 31−20 are reserved and always read as zeros;

 Reading or writing bits 19-16 requires the use of extended
instructions;

 When writing to DMAxSA with word instructions, bits 19-16 are
cleared.

DMAxDA, DMA Destination Address Register

The 32-bit DMAxDA register points to the DMA destination address
for single transfers or to the first source address for block transfers.

 Bits 31−20 are reserved and always read as zeros;

 Reading or writing bits 19-16 requires the use of extended
instructions;

 When writing to DMAxDA with word instructions, bits 19-16 are
cleared.

DMAxSZ, DMA Size Address Register

The 16-bit DMA size address register defines the number of
byte/word data values per block transfer.

 DMAxSZ register decrements with each word or byte transfer;

 When DMAxSZ = 0, it is immediately and automatically reloaded
with its previously initialized value.

DMAIV, DMA Interrupt Vector Register

The 16-bit DMA Interrupt Vector value only uses bits 3 to 1. The
remaining bits are always read as zero.

The content of the DMAIV provides the priority of the interrupt
source:

 DMAIV = 02h: DMA channel 0 (highest priority);

 DMAIV = 04h: DMA channel 1;

 DMAIV = 06h: DMA channel 2;

…

 DMAIV = 0Eh: Reserved (lowest priority);

Direct Memory Access (DMA)

11-12 Copyright 2009 Texas Instruments, All Rights Reserved www.msp430.ubi.pt

11.4 Laboratory 7: Direct Memory Access

11.4.1 Lab7A: Data Memory transfer triggered by software

Project files

 C source files: Chapter 11 > Lab7 > Lab7A_student.c

 Solution files: Chapter 11 > Lab7 > Lab7A_solution.c

Overview

During this laboratory, the data transfer between two regions of
memory is analyzed. The order of transfer is controlled by software.

A. Resources

The following resource is used in this laboratory:

 DMA controller.

B. Organization of the software application

The software begins by disabling the watchdog timer. Port P2.1 is
set as an output with a logic low level.

The memory addresses of the data vectors are passed to the source
data address DMA0SA and destination address DMA0DA registers.

The number of words to be transferred is loaded in the DMA0SZ
(size) register.

The DMA channel 0 is configured so that the data transfer trigger is
controlled by software, in order that after each transfer, the source
and destination addresses are correctly incremented.

The application enters an infinite loop, where port P2.1 state is
switched just before initiating the data transfer.

C. System configuration

 DMA channel configuration:

The source address and destination address of the data must be
loaded into their respective registers:

DMA0SA = _________________;

DMA0DA = _________________;

Laboratory 7: Direct Memory Access

www.msp430.ubi.pt Copyright 2009 Texas Instruments, All Rights Reserved 11-13

To move a total of 32 words, what is the value to write to the data
size register?

DMA0SZ = _________________;

The DMA channel must be configured to transfer the word under
software control. The source and destination addresses should be
incremented immediately after each of the transfers.

DMA0CTL = ________________;

D. Analysis of operation

In the Memory window, the addresses of data vector Tab_1 and
Tab_2 addresses are displayed. The contents of these blocks must
be identified in memory.

Add a breakpoint at line 60 of code, corresponding to the line of
code that performs the switching of port P2.1 state.

Execute the application, and whenever the breakpoint is reached,
the execution of the application will be suspended. Observe the
data being gradually transferred from source to destination.

The data transfer is suspended once the 32 elements of the source
data vector have been transferred.

MSP-EXP430FG4618 SOLUTION

Using the DMA controller included in the MSP-EXP430FG4618
Development Tool, analyse the data transfer between two regions
of memory.

 DMA channel configuration:

// Start block address:

DMA0SA = (void (*)()) &tab_1;

// Destination block address:

DMA0DA = (void (*)()) &tab_2;

DMA0SZ = 0x0020; // Block size

DMA0CTL=DMADT_0+DMASRCINCR_3+DMADSTINCR_3+DMAEN;

// Single transfer,

// DMA source and destination addresses increment,

// Enable DMA0

Direct Memory Access (DMA)

11-14 Copyright 2009 Texas Instruments, All Rights Reserved www.msp430.ubi.pt

11.4.2 Lab7B: Sinusoidal waveform generator

Project files

 C source files: Chapter 11 > Lab7 > Lab7B_student.c

 Solution files: Chapter 11 > Lab7 > Lab7B_solution.c

Overview

This laboratory uses the DMA controller to automatically transfer
data between data memory and the DAC12 data register. A
sinusoidal waveform is produced at the output of the DAC, without
CPU intervention.

A. Resources

This laboratory uses the following peripherals:

 DMA controller;

 DAC;

 ADC (reference generator: Vref+);

 Timer_A;

 Low power mode.

B. Organization of the software application

The successive samples needed to produce the sinusoidal waveform
using the DAC are stored in the data vector Sin_tab, which
contains 32 points.

The software begins by disabling the watchdog timer, followed by
activating the internal reference voltage Vref+. The source and
destination registers of the data vector to be transferred by the
DMA channel are loaded into the data vector Sin_tab (source)
address and with the DAC12 data register (destination) address.
There are 32 data values to be transferred.

The data transfer is initiated whenever the DAC12IFG flag is
enabled. In this application, the DAC interrupt should be disabled.

The DMA controller is configured to operate in repeat mode, to
transfer a word whenever the previous event occurs. The data
source address is set to increment after each transfer, while the
destination address must remain constant.

The timer is set to generate the PWM signal through the
capture/compare unit TACCR1. SMCLK is the clock signal that
counts up to the value in the TACCR0 register.

Finally, the settings and interrupts are enabled and the device
enters into low power mode LPM0.

Laboratory 7: Direct Memory Access

www.msp430.ubi.pt Copyright 2009 Texas Instruments, All Rights Reserved 11-15

C. System configuration

 DAC12 reference voltage activation:

The DAC12 requires a reference voltage. One of the options is to
use the internal voltage Vref+. Set the ADC12CTLO register to
activate this voltage:

ADC12CTL0 =____________________;

 DMA Controller configuration:

Configure the registers DMA0SA (source), DMA0DA (destination)
and DMA0SZ (size) to transfer 32 words between the source vector
Sin_tab and the DAC12_0DAT data destination register:

DMA0SA = ______________________;

DMA0DA = ______________________;

DMA0SZ = ______________________;

Configure the register DMACTL0 to provide a data transfer
whenever the DAC12IFG flag is set:

DMACTL0 = _____________________;

Configure the register DMA0CTL to carry out a repeated simple data
transfer, increasing the data source address:

DMA0CTL = _____________________;

 Setup DAC12:

The DAC12 will update its output whenever there is the activation of
the signal TA1. The DAC full-scale should be 1x reference voltage.
Choose a medium relationship between the DAC’s current and
average conversion speed:

DAC12_0CTL = __________________;

 Timer_A configuration:

Timer_A is responsible for synchronizing data transfers between
memory and the DAC12. The Timer_A input receives as the SMCLK
signal (1.048576 MHz) and must have a 30 msec counting period.

Direct Memory Access (DMA)

11-16 Copyright 2009 Texas Instruments, All Rights Reserved www.msp430.ubi.pt

What value needs to be written to TACCR0, in order to achieve this
counting period:

TACCR0 = _______________________;

TACTL =_________________________;

The capture/compare unit TACCR1 should generate a PWM signal in
set/reset mode. Configure the unit appropriately:

TACCTL1 = ______________________;

TACCR1 = _______________________;

D. Analysis of operation

The verification of this laboratory is achieved by using an
oscilloscope probe to monitor the output of the DAC12 Channel 0,
available on header 8 pin 6.

MSP-EXP430FG4618 SOLUTION

Using the DMA controller, which is included in the MSP-
EXP430FG4618 Development Tool, transfer a sinusoidal waveform
to the DAC.

 DMA Controller configuration:

// Source block address:

DMA0SA = (void (*)())&Sin_tab;

// Destination single address:

DMA0DA = (void (*)())&DAC12_0DAT;

// Block size:

DMA0SZ = 0x20;

// DMA control register 0:

DMACTL0 = DMA0TSEL_5; // DAC12IFG trigger

DMA0CTL = DMADT_4 + DMASRCINCR_3 + DMAEN;

// Repeated single transfer,

// DMA source address increment,

// since DMASRCBYTE = 0, the source address increments by

// two (word-word)

Quiz

www.msp430.ubi.pt Copyright 2009 Texas Instruments, All Rights Reserved 11-17

 Setup DAC12:

DAC12_0CTL = DAC12LSEL_2 + DAC12IR + DAC12AMP_5 +
DAC12IFG + DAC12ENC;

// Rising edge of Timer_A.OUT1 (TA1),

// DAC12 full-scale output: 1x reference voltage,

// Input and output buffers: Medium freq./current,

// Enable DAC12

 Timer_A configuration:

TACCR0 = 32-1; // Clock period of TACCR0

TACTL = TASSEL_2 + MC_1; // SMCLK, contmode

TACCTL1 = OUTMOD_3; // TACCR1 set/reset

TACCR1 = 20; // TACCR1 PWM Duty Cycle

11.5 Quiz

1. The DMA controller allows:

(a) Movement of data from one location to another without CPU
intervention;

(b) An increase in throughput of peripheral modules;

(c) A reduction of system power consumption (CPU in low power
mode);

(d) All of above.

2. The upper byte of a byte-to-word transfer:

(a) Retains the previous value;

(b) Is cleared;

(c) Is loaded with the same value as the lower byte;

(d) None of above.

3. When the DMA transfer mode DMAxTSELx = 1 is selected:

(a) Each transfer requires a trigger;

(b) A complete block is transferred with one trigger;

(c) CPU activity is interleaved with a block transfer;

(d) None of above.

4. NMI interrupts can interrupt the DMA controller when:

(a) GIE bit is set;

(b) DMAIE is set;

(c) ENNMI bit is set;

(d) DMAEN is set.

Direct Memory Access (DMA)

11-18 Copyright 2009 Texas Instruments, All Rights Reserved www.msp430.ubi.pt

5. The DMA destination address when the DMADSTBYTE = 1 and
DMADSTINCRx = 3:

(a) Remains unchanged;

(b) Increments by two;

(c) Decrements by two;

(d) Increments by one.

6. Starting with the default DMA channel priority (DMA0 − DMA1 −
DMA2), if ROUNDROBIN is cleared after transferring DMA0, the next
priority is:

(a) DMA2 − DMA0 − DMA1;

(b) DMA1 − DMA2 − DMA0;

(c) DMA0 − DMA1 − DMA2;

(d) DMA1 − DMA0 − DMA2.

11.6 FAQs

1. Why is the program flow not correct when the DMA is used to
write to flash memory?

A probable reason could be that the CPU is halted immediately while
executing instructions and the transfer begins when a trigger is
received. This condition occurs because DMAONFETCH = 0. Setting
DMAONFETCH ensures that the CPU finishes the currently executing
instruction, before being halted by the DMA controller.

