
www.msp430.ubi.pt Copyright  2009 Texas Instruments, All Rights Reserved 12-1

Chapter 12

12. Hardware Multiplier

The MSP430 hardware multiplier is a peripheral device and does not
constitute part of the MSP430 CPU. It allows the multiplication of
both signed and unsigned numbers to be carried out. The multiply
and accumulate (MAC) operation is also supported, which is useful
for implementing digital signal processing (DSP) tasks such as Finite
Impulse Response (FIR) filters.

Topic Page

12.1 Introduction ..12-2

12.2 Hardware multiplier structure12-3

Interrupts..12-4

12.3 Signed and unsigned multiplication operation...............12-5

Unsigned Multiply (MPY) ...12-5

Signed Multiply (MPYS) ...12-5

Multiply-and-Accumulate (MAC)......................................12-5

12.4 Hardware multiplier registers..12-6

12.5 Laboratory 8: Multiplication operations analysis12-6

12.5.1 Lab8a: Multiplication without hardware multiplier
..12-6

12.5.2 Lab8b: Multiplication with hardware multiplier ...12-8

12.5.3 Lab8c: RMS and active power calculation12-11

12.6 Quiz ...12-14

12.7 FAQs ..12-15

Hardware Multiplier

12-2 Copyright  2009 Texas Instruments, All Rights Reserved www.msp430.ubi.pt

12.1 Introduction

The following devices in the MSP430 family contain a hardware
multiplier peripheral module:

 54xx;

 FG46xx;

 FE42x(A);

 F47xx;

 F44X;

 F42x(A);

 F261x;

 F24x(x);

 F16x(x).

The MSP430FG4618 device, as used on the Experimenter’s board,
supports multiply operations using the Hardware Multiplier, without
affecting the CPU activities.

By writing operands to two registers (each one with 8 or 16 bits),
the hardware multiplier supports:

 Unsigned multiply (MPY);

 Signed multiply (MPYS);

 Unsigned multiply and accumulate (MAC);

 Signed multiply and accumulate (MACS);

 Multiplications using 16×16 bits, 16×8 bits, 8×16 bits and 8×8
bits.

There are four different operand one registers (OP1), one for each
multiplication type and a universal second operand two register
(OP2).

The result of an operation can be accessed by reading two or three
registers:

 Result low 16-bit word (bits 15 .. 0) in register RESLO;

 Result high 16-bit word (bits 31 .. 16) in register RESHI;

 When used MAC or MACS: bit 32 in register SUMEXT.

The result is available three MCLK cycles after the operands have
been loaded into the peripheral registers.

TI have an Application Report (see Annex E) – The MSP430
Hardware Multiplier – Function and Applications <slaa042.pdf>,
which contains detailed information concerning this peripheral
module.

Hardware multiplier structure

www.msp430.ubi.pt Copyright  2009 Texas Instruments, All Rights Reserved 12-3

12.2 Hardware multiplier structure

The hardware multiplier structure contains (see Figure 12-1):

 Two 16-bit operand registers:

 The operand one register, OP1:

o Has four addresses, used to select the multiply mode
(see Table 12-1);

 The operand two register, OP2:

o Writing to it initiates the multiply operation.

 Three result registers, RESLO, RESHI, and SUMEXT:

 RESLO stores the low word of the result;

 RESHI stores the high word of the result:

o The contents depend on the multiply operation (see
Table 12-2).

 SUMEXT stores information about the result.

o The contents depend on the multiply operation (see
Table 12-3).

Figure 12-1. Hardware multiplier block diagram.

Hardware Multiplier

12-4 Copyright  2009 Texas Instruments, All Rights Reserved www.msp430.ubi.pt

Table 12-1. OP1 addresses.

Register name Multiplication operation OP1 Address

MPY Unsigned multiply 0130h

MPYS Signed multiply 0132h

MAC Unsigned multiply accumulate 0134h

MACS Signed multiply accumulate 0136h

Table 12-2. RESHI contents.

Multiplication operation RESHI content

Unsigned multiply (MPY) Upper 16 bits of the result

Signed multiply (MPYS)
Bit 15 (MSB): sign
Bits 14 - 0: upper 15 bits of the result
Data format: Two’s complement

Unsigned multiply accumulate (MAC) Upper 16 bits of the result

Signed multiply accumulate (MACS)
Upper 16 bits of the result
Data format: Two’s complement

Table 12-3. SUMEXT contents.

Multiplication operation SUMEXT content

Unsigned multiply (MPY) SUMEXT = 0000h

Signed multiply (MPYS)
Extended sign of the result:
SUMEXT = 00000h  Result was positive or zero
SUMEXT = 0FFFFh  Result was negative

Unsigned multiply accumulate (MAC)
Carry of the result:
SUMEXT = 0000h  No carry for result
SUMEXT = 0001h  Result has a carry

Signed multiply accumulate (MACS)
Extended sign of the result:
SUMEXT = 00000h  Result was positive or zero
SUMEXT = 0FFFFh  Result was negative

Interrupts

The hardware multiplier should not be used in an interrupt service
routine because the multiplier mode selection is lost and the results
are unpredictable.

Hardware multiplier registers

www.msp430.ubi.pt Copyright  2009 Texas Instruments, All Rights Reserved 12-5

12.3 Signed and unsigned multiplication operation

See Chapter 1 – Introductory Overview for additional details.

Unsigned Multiply (MPY)

The two operands written to operand registers 1 and 2 are treated
as unsigned numbers in the range 00000h (smallest number) to
0FFFFh (largest number).

The maximum possible result is obtained with input operands
0FFFFh and 0FFFFh:

0FFFFh x 0FFFFh = 0FFFE0001h

No carry is possible and the SUMEXT register always contains zero.

Signed Multiply (MPYS)

The two operands written to operand registers 1 and 2 are treated
as signed Two’s complement numbers, in the range 08000h (most
negative number, –32768 in decimal) to 07FFFh (most positive
number, +32767 in decimal).

The SUMEXT register contains the extended sign of the calculated
result:

SUMEXT = 00000h: the result is positive;

SUMEXT = 0FFFFh: the result is negative.

Multiply-and-Accumulate (MAC)

The two operands written to operand registers 1 and 2 are treated
as unsigned numbers (0h to 0FFFFh). The maximum possible result
is obtained with input operands 0FFFFh and 0FFFFh:

0FFFFh x 0FFFFh = 0FFFE0001h

This result is added to the previous contents of the two sum
registers (SUMLO and SUMHI). If a carry occurs during this
operation, the SUMEXT register contains 1, otherwise it is cleared.

SUMEXT = 00000h: no carry occurred during the accumulation

SUMEXT = 00001h: a carry occurred during the accumulation

Hardware Multiplier

12-6 Copyright  2009 Texas Instruments, All Rights Reserved www.msp430.ubi.pt

12.4 Hardware multiplier registers

The hardware multiplier registers are not intended to define the
type of multiplication operation. Instead, they contain the operands
and the data result. The registers used by the hardware multiplier
are listed in Table 12-4.

Table 12-4. Hardware multiplier registers.

Register name Description

MPY Operand 1 - Unsigned multiply

MPYS Operand 1 - Signed multiply

MAC Operand 1 - Unsigned multiply accumulate

MACS Operand 1 - Signed multiply accumulate

OP2 Operand 2

RESLO Result (low word)

RESHI Result (high word)

SUMEXT Sum extension register

12.5 Laboratory 8: Multiplication operations analysis

This laboratory explores the hardware multiplier peripheral. It is
composed of three different tasks, each of which evaluates a
different characteristic of the hardware multiplier peripheral:

 Multiplication operation execution time, with and without the
hardware multiplier.

 Differences between the use of the operator “*” and direct write
to the hardware multiplier registers.

 Task operational analysis, in which the active power and the
RMS value of an electrical system are calculated.

12.5.1 Lab8a: Multiplication without hardware multiplier

Project files

 C source files: Chapter 12 > Lab8 > Lab8a_student.c

Laboratory 8: Multiplication operations analysis

www.msp430.ubi.pt Copyright  2009 Texas Instruments, All Rights Reserved 12-7

Overview

This laboratory explores and analyses the MSP430’s performance
when it performs multiply operations without the hardware
multiplier. The execution time is measured using an oscilloscope.

A. Resources

This laboratory only uses Port P2.1 connected to LED2 in order to
measure the execution time of the multiply operation when it is
performed by a software routine.

The default configuration of the FLL+ is used. All the clock signals
required for the operation of the components of this device take
their default values.

B. Software application organization

 The application starts by stopping the Watchdog Timer;

 Port P2.1 is configured as an output with the pin at a low level;

 The variables a and b to be multiplied are initialized;

 The multiplication of the two variables is performed between
toggle P2.1 instructions;

 This application ends by putting the device into low power mode
LPM4.

C. System configuration

Go to Properties > TI Debug Settings and select the Target tab.
Uncheck the automatically step over functions without debug
information when source stepping in order to allow stepping into
the multiply routine;

Go to Properties > C/C++ Build > Linker MSP430 Linker v3.0
> General options and choose the option None at the Link in
hardware version of RTS mpy routine. With this linker option,
the application will be built without the hardware multiplier and all
multiplication operations will be performed by the software routine.

Rebuild the project and download it to the target.

D. Analysis of operation

 Software multiplication routine analysis

 Connect the oscilloscope probe to port P2.1 available on
Header 4 pin 2;

 Put the cursor at line of code 51 {c = a*b} and Run to line;

Hardware Multiplier

12-8 Copyright  2009 Texas Instruments, All Rights Reserved www.msp430.ubi.pt

 Go to Disassembly view and switch to mixed disassembly
view in order to show both C and Assembly code;

 Observe that the variables a and b are passed by registers
and the #__mpyi routine is called;

 Run the code step-by-step with the Disassembly view
active. This action will lead to the software multiply routine;

 As the software multiply routine source code is not available,
switch to Assembly view only;

 Run the application step-by-step until the RETA instruction;

 This multiplication is a time-consuming CPU operation.

 Measurement of the multiply operation execution time

 Restart the application. It will run from the beginning;

 Put the cursor on line of code 56 {_BIS_SR(LPM4)} and Run
to line;

 Measure the time pulse time width using the oscilloscope;

 This software multiply operation takes around 54 sec.

12.5.2 Lab8b: Multiplication with hardware multiplier

Project files

 C source files: Chapter 12 > Lab8 > Lab8b_student.c

Overview

This laboratory explores and analyses the MSP430’s performance
when it performs multiply operations using the hardware multiplier
peripheral. Two different variants are analysed:

 Using the “*” operator;

 Accessing the hardware multiplier registers directly.

The execution times are measured with an oscilloscope.

A. Resources

This laboratory only uses Port P2.1 connected to LED2 in order to
measure the execution time of the multiplication operation, when it
is performed by the hardware multiplier.

The default configuration of the FLL+ is used. All the clock signals
required for the operation of the components of the device take their
default values.

Laboratory 8: Multiplication operations analysis

www.msp430.ubi.pt Copyright  2009 Texas Instruments, All Rights Reserved 12-9

B. Software application organization

 The application begins by stopping the Watchdog Timer;

 Port P2.1 is configured as an output with the pin at a low
level;

 The code can be broken down into two parts:

o In the first part of the code, the multiplication is
performed with the “*” operator. This task is
performed between P2.1 toggles, in order to
determine the time required to perform this
operation;

o The remaining part of the code is separated by some
_NOP() operations. This coding allows analysis of the
execution time using an oscilloscope. Here, the
multiplication operation is performed by directly
accessing the hardware multiplier registers. The
multiplication of the variables is performed between
toggle P2.1 instructions;

 This application ends with the device entering low power
mode LPM4.

C. System configuration

Go to Properties > TI Debug Settings and select the Target tab.
Uncheck the automatically step over functions without debug
information when source stepping in order to allow stepping into
the multiply routine.

Go to Properties > C/C++ Build > Linker MSP430 Linker v3.0
> General options and choose the option 16 (default) at the Link
in hardware version of RTS mpy routine. With this linker option,
the application will be built with the 16-bit hardware multiplier
peripheral contained in the Experimenter’s board.

Rebuild the project and download to the target.

D. Analysis of operation

 Analysis of hardware multiply routine with the “*”
operator

 Connect the oscilloscope probe to port P2.1, which is
connected to Header 4 pin 2;

 Put the cursor at line of code 55 {c = a*b} and Run to line;

 Go to Disassembly view and switch to mixed disassembly
view in order to show both C and Assembly code;

 Observe that the variables a and b are passed to registers
and #__mpyi_hw routine is called;

 Run the code step-by-step with the Disassembly view
active. This action will lead to the multiply operation being
performed by the hardware multiplier;

Hardware Multiplier

12-10 Copyright  2009 Texas Instruments, All Rights Reserved www.msp430.ubi.pt

 As the hardware multiply routine source code is not available,
switch to Assembly view only;

 The routine starts by pushing the Status Register onto the
system stack (PUSH instruction) and disabling the interrupts
(this always occurs when using the hardware multiplier
peripheral);

 The next line of code exchanges data with the hardware
multiplier;

 Then the SR is popped (POP instruction) from the system
stack, restoring the system environment (data interrupt state
restored);

 The routine finishes with a RETA instruction.

 Analysis of hardware multiply operation with direct
registers access

 Switch to the C view;

 Put the cursor at line of code 72 {MPY = a} and Run to line;

 The routine call operation is avoided, as shown in the
Disassembly view. This exemplifies an energy saving
procedure because it shows how less CPU clock cycles can be
used.

 Measurement of execution time of the multiply operation

 Restart the application. It will run from the beginning;

 Put the cursor at line of code 77 {_BIS_SR(LPM4)} and Run
to line;

 Measure the pulse widths using the oscilloscope;

 The first time pulse corresponds to the hardware multiply
routine with the operator “*”, and has a width of 42 sec;

 The second time pulse corresponds to the hardware multiply
register operation and has a width of 19 sec;

 Comparing both time pulses and the time pulse obtained in
Lab8a, it can be seen that with the hardware multiplier there
is a significant reduction of the time required to perform a
multiply operation;

 The smaller time pulse corresponds to the hardware multiply
operation writing directly to the hardware multiplier registers.
This reduction in time means less power consumption, which
is very useful for the design of low-power applications.

Laboratory 8: Multiplication operations analysis

www.msp430.ubi.pt Copyright  2009 Texas Instruments, All Rights Reserved 12-11

12.5.3 Lab8c: RMS and active power calculation

Project files

 C source files: Chapter 12 > Lab8 > Lab8c_student.c

Overview

This laboratory explores and analyses the MSP430 performance
when it makes multiply operations using the hardware multiplier
peripheral. In this laboratory, the active power and the RMS value
of an electrical signal are calculated.

The execution times are measured using an oscilloscope.

A. Resources

This laboratory only uses Port P2.1 connected to LED2, in order to
measure the execution time of the multiply operation when it is
performed by the hardware multiplier.

The application uses the default configuration of the FLL+. All the
clock signals required for the operation of the components of the
device take their default values.

B. Software application organization

 The application starts by stopping the Watchdog Timer;

 Two _NOP() instructions are provided to associate
breakpoints, in order to read current and voltage samples
(N = 200) from files;

 Power is computed by applying the following formula:





N

k
kk iu

N
P

1

1

 A signed multiply operation is performed by writing the first
sample of current to MPYS and the first sample of voltage to
OP2;

 The result of the multiplication is stored in the RESHI and
RESLO registers;

 A loop is performed with a signed multiply and accumulate
(MACS) operation;

 The final result is transferred from the RESHI and RESLO
registers to the long variable result;

Hardware Multiplier

12-12 Copyright  2009 Texas Instruments, All Rights Reserved www.msp430.ubi.pt

 The power is computed by dividing the variable result by the
number of samples (N);

 Port P2.1 is active between MACS operations;

 The RMS current and voltage values are calculated from the
following expressions:





N

k
kkRMS ii

N
I

1

1





N

k
kkRMS uu

N
U

1

1

 The two procedures are similar, with the exception of the
square root (sqrt) operations;

 P2.1 is active during for all the RMS current calculation;

 The computation times of the sqrt and division operations
are determined when the RMS voltage value is calculated;

 This application ends by putting the device into low power
mode LPM4.

C. System configuration

Go to Properties > TI Debug Settings and select the Target tab.
Uncheck the automatically step over functions without debug
information when source stepping in order to allow stepping into
the multiply routine.

Go to Properties > C/C++ Build > Linker MSP430 Linker v3.0
> General options and choose the option 16 (default) at the Link
in hardware version of RTS mpy routine. With this linker option,
the application will be built with the 16-bit hardware multiplier
peripheral, contained in the Experimenter’s board.

Rebuild the project and download the code to the target.

D. Analysis of operation

 Loading samples from files

 Insert a breakpoint at line of code 61 (first _NOP()
operation);

 Edit Breakpoint Properties and choose the Read Data
from file action;

Laboratory 8: Multiplication operations analysis

www.msp430.ubi.pt Copyright  2009 Texas Instruments, All Rights Reserved 12-13

 Configure the following data fields:

o File: i.txt

o Wrap around: True

o Start address: &i

o Length: 200

 Include a breakpoint at line of code 63 (second _NOP()
operation);

 Edit Breakpoint Properties and choose the Read Data
from file action;

 Configure the following data fields:

o File: u.txt

o Wrap around: True

o Start address: &u

o Length: 200

 Alternatively, import a breakpoint file from the project source
code folder Lab8c_breakpoint.bkpt;

 Put the cursor at line of code 67 and Run to line;

 In the Variables view, add the global variables i and u;

 Check the data inside these arrays.

 Computing active power

 Connect the oscilloscope probe to port P2.1, which is
available at Header 4 pin 2;

 Put the cursor at the line of code 88 and Run to line;

 In the Variables view, add the global variable P and format
it to decimal;

 The active power is in the region of 1204 W;

 The pulse width, as viewed on the oscilloscope, corresponds
to the time to perform the 200 signed multiply and
accumulate operations and is 5.4 msec.

 Compute RMS current value

 Starting at the last step of the previous task, put the cursor
at line of code 105 {MPYS = u[0]} and Run to line;

 Add the global variable I (RMS voltage);

 Set the value to 10;

Hardware Multiplier

12-14 Copyright  2009 Texas Instruments, All Rights Reserved www.msp430.ubi.pt

 The pulse width, as viewed on the oscilloscope, corresponds
to the time required to perform the 200 signed multiply and
accumulate operations, 1 division operation and 1 square root
operation, and is 12.6 msec;

 Compute RMS voltage value

 Starting at the last step of the previous task, put the cursor
at line of code 121 {_BIS_SR(LPM4)} and Run to line;

 Add the global variable U (RMS voltage);

 Set the value to 240;

 The pulse width, as viewed on the oscilloscope, corresponds
to the time to perform the 200 signed multiply and
accumulate operations, and is 6.8 msec;

12.6 Quiz

1. The Hardware Multiplier peripheral module is implemented in the:

(a) eZ430-F2013 hardware development tool;

(b) eZ430-RF2500 hardware development tool;

(c) Experimenter’s board;

(d) None of above.

2. The Hardware Multiplier supports:

(a) Unsigned and signed multiply;

(b) Unsigned and signed multiply and accumulate;

(c) 16×16 bits, 16×8 bits, 8×16 bits, 8×8 bits;

(d) All of above.

3. The RESHI result register stores:

(a) The low word of the result;

(b) The high word of the result;

(c) The extended sign of the result;

(d) The carry of the result.

4. The MSB bit of RESHI register for the Signed multiply contains:

(a) The sign of the result;

(b) The MSB of the result;

(c) The carry of the result;

(d) None of above.

FAQs

www.msp430.ubi.pt Copyright  2009 Texas Instruments, All Rights Reserved 12-15

5. A SUMEXT = 0 in a MACS operation indicates that the result is:

(a) Positive;

(b) Zero;

(c) All of above;

(d) None of above.

6. The data format of the RESHI register for a signed multiplication
operation is:

(a) Straight binary;

(b) Two’s complement;

(c) One’s complement;

(d) None of above.

12.7 FAQs

1. Can I modify the operand registers during a multiplication
operation?

Yes, but the result will be invalid.

2. Can I modify the result registers during a multiplication
operation?

The actual result will not be valid if the result registers were
modified after writing the second operand and before the
multiplication operation is completed.

