
www.msp430.ubi.pt Copyright  2009 Texas Instruments, All Rights Reserved 13-1

Chapter 13

13. Flash Programming

To use the MSP430 in a stand-alone embedded application, the
application code needs to be stored in flash memory. The MSP430
flash memory module is bit-, byte-, and word-addressable and
programmable, using a controller that supervises the programming
and erase operations.

The controller has three (or four) registers, a timing generator, and
a voltage generator to supply program and erase voltages. This
chapter covers flash memory module operation and segmentation,
and finishes with a laboratory exercise.

Topic Page

13.1 Introduction ..13-2

13.2 Flash memory operation and segmentation...................13-4

Flash memory write/erase modes......................................13-6

13.3 Registers ...13-12

13.4 Laboratory 9: Flash write/read operations13-14

13.4.1 Lab9a. Flash memory programming with the CPU
executing the code from flash memory13-14

13.4.2 Lab9b. Flash memory programming with the CPU
executing the code in RAM ...13-17

13.5 Quiz ...13-21

13.6 FAQs ..13-23

Flash Programming

13-2 Copyright  2009 Texas Instruments, All Rights Reserved www.msp430.ubi.pt

13.1 Introduction

Memory, in general, is broadly classified as read-only memory
(ROM) or random-access memory (RAM). Flash memory is a hybrid
of ROM and RAM.

Flash memory is:

 Low cost;

 Electrically programmable;

 Fast to read from;

 High density;

 Reliable;

 Does not lose its configuration when the power is removed.

For these reasons, flash memory is one of the most popular
technologies for storing program code and constant data values.
Devices in the MSP430 family of microcontrollers have flash memory
integrated onto them.

The MSP430Fxxx(x) devices handle the flash memory structure as a
series of segments, allowing bit-, byte-, and word-addressing and
programming. However, the flash memory must be erased in
segments.

The flash memory module has an integrated controller that:

 Controls programming and erase operations;

 Has three or four registers (see the device-specific data sheet);

 Has a timing generator (see Figure 13-1):

 Can be sourced from ACLK, SMCLK, or MCLK;

 Flash timing generator operating frequency:
~ 257 kHz < f(FTG) < ~ 476 kHz (see device-specific data
sheet);

 The selected clock source should be divided using the FNx
bits, to meet the frequency requirements for f(FTG).

 Has a voltage generator, to supply program and erase voltages
(must be stable).

Figure 13-1. Flash memory timing generator block diagram.

Introduction

www.msp430.ubi.pt Copyright  2009 Texas Instruments, All Rights Reserved 13-3

An MSP430 flash device can be programmed via:

 JTAG interface (requires four signals, ground and optionally VCC
and RST/NMI);

 Bootstrap Loader (using a UART serial interface);

 Custom solution (using one of the interfaces available and
through user developed software).

For more information, browse the TI web pages to find some
Application Reports on the flash memory physics, recommendations
for correct handling and user applications. Amongst these, it is
important to highlight the contents of the following reports that are
included in Annex E:

 MSP430 flash memory characteristics <slaa334a.pdf>

 Explanation of the physics behind MSP430 data-sheet
specifications and recommendations for correct MSP430 flash
handling.

 Understanding MSP430 flash data retention <slaa392.pdf>

 Discusses in detail the data retention for the MSP430 flash.
Presents the effects of high temperatures on flash data
retention.

 Features of the MSP430 bootstrap loader <slaa089d.pdf>

 Presents the features of the bootstrap loader (BSL), the
specific command sequence applied to specific device pins,
followed by an added sequence of commands to initiate the
bootstrap loader function. The BSL is an external interface,
similar to the JTAG, which may be used to program flash
memory. Its main features are:

o The BSL code is stored in a special section of ROM
(cannot be overwritten by other applications);

o It is triggered by toggling the TCK pin on the JTAG
port;

o It uses the UART communication protocol (9600
baud);

o Performs essentially the same functions as the JTAG
interface, with the exception of the security fuse
programming.

Flash Programming

13-4 Copyright  2009 Texas Instruments, All Rights Reserved www.msp430.ubi.pt

 Application of the bootstrap loader in MSP430 with flash
hardware and software proposal <slaa096.pdf>

 Describes a simple and low-cost hardware and software (C
code) solutions to access the bootstrap loader functions of
the MSP430 flash devices via the serial port (RS-232) of a PC.

 Solid state voice recorder using flash MSP430 <slaa123.pdf>

 The development of a solid state voice recorder (analogue
voice pattern conversion to digital data) and storing it real-
time in the MSP430 flash memory, allowing playback. It
demonstrates the flexibility of the in-system programmable
flash memory.

 Programming a flash-based MSP430 using the JTAG interface
<slaa149d.pdf>

 Details the functions required to erase, program, and verify
the MSP430’s flash memory module using the JTAG
communication port, as well as how to program the JTAG
access security fuse. The security fuse is a one-time only
burn, i.e., once it has been programmed, further flash
memory writes and erasures are impossible. It not only
restricts flash programming, but also prohibits further JTAG
access.

 A Flash monitor for the MSP430 <slaa341.pdf>

 Development of a flash monitor program to evaluate the
device memory and update the flash contents with new
application code via a universal synchronous / asynchronous
receive/transmit (USART) peripheral interface.

13.2 Flash memory operation and segmentation

MSP430 flash memory block diagram is shown in Figure 13-2. The
MSP430FG4618 device present on the Experimenter’s board has two
flash memory arrays.

All flash memory is partitioned into segments:

 Write: single bits, bytes, or words;

 Erase: by segment.

Flash memory operation and segmentation

www.msp430.ubi.pt Copyright  2009 Texas Instruments, All Rights Reserved 13-5

Figure 13-2. Flash memory block diagram.

The flash memory is partitioned into (see the device-specific data
sheet):

 Main memory section (two or more 512-byte segments);

 Information memory section (two 128-byte segments), located
at lower memory addresses immediately following the RAM address
space.

The operation is the same in these memory sections and code or
data can be located in either section.

The flash memory segmentation into main and information
segments and then into blocks is shown in Figure 13-3.

Flash Programming

13-6 Copyright  2009 Texas Instruments, All Rights Reserved www.msp430.ubi.pt

Figure 13-3. 4 KB Flash memory segmentation: 8 main segments and 2 information
segments.

The SegmentA (information A) of the 2xx family devices (used by
the eZ430-F2013 and eZ430-RF2500) of the information memory is
locked separately from all other segments with the LOCKA bit
(toggle state):

 LOCKA = 1:

 SegmentA cannot be written or erased;

 All information memory is protected from erasure during a
mass erase or production programming.

 LOCKA = 0:

 SegmentA can be erased and written;

 All information memory is erased during a mass erase or
production programming.

Flash memory write/erase modes

The default mode is the read mode. In this mode, Flash memory
operates identically to ROM:

 Flash memory is not erased or written;

 Flash timing generator is off;

 Voltage generator is off.

Flash memory operation and segmentation

www.msp430.ubi.pt Copyright  2009 Texas Instruments, All Rights Reserved 13-7

The Flash memory write/erase modes are selected by the BLKWRT,
WRT, GMERAS, MERAS, and ERASE bits.

To stop any write or erase operation before its normal completion,
set the EMEX bit. When EMEX = 1:

 All flash operations cease;

 The flash returns to read mode;

 All bits in the FCTL1 register are reset.

 Erase modes

Any erase cycle can be initiated from within flash memory or from
RAM.

 Initiated from within flash memory:

 All timing is controlled by the flash controller;

 CPU is held while the erase cycle completes (dummy write);

 CPU resumes code execution after the erase cycle finishes.

 Initiated from RAM:

 CPU is not held and (can continue to execute code from
RAM);

 CPU can access any flash address again when BUSY = 0 (end
of the erase cycle).

The erase modes are shown in Table 13-1.

Table 13-1. Erase modes.

Bits Mode description

GMERAS1 LOCKA2 MERAS ERASE MSP430FG461x MSP430F2xxx

X - 0 1 Segment erase Segment erase

0 - 1 0
Mass erase (main
memory segments-
selected array)

Mass erase (all main
memory segments)

0 0 1 1

Erase all flash memory
(main and information
segments – selected
array)

Erase main and
information flash
memory

1 - 1 0

Global mass erase (all
main memory
segments – both
arrays)

Mass erase (all main
memory segments)

1 1 1 1
Erase main memory
and information
segments- both arrays

Erase main flash
memory

1 This bit is only present in the MSP430FG461x devices
2 This bit is only present in the MSP430F2xxx devices

Flash Programming

13-8 Copyright  2009 Texas Instruments, All Rights Reserved www.msp430.ubi.pt

The erase mode procedure for both segment and mass erase are
shown in Figure 13-4. The procedure for each one is as follows:

 Segment Erase:

 Check BUSY = 0 (FCTL3 register);

 LOCK = 0 (FCTL3 register);

 ERASE = 1 (FCTL1 register);

 Perform a dummy write to the segment to be erased (Any
write, erase, or logical operation);

 A segment erase requires approximately 5000 cycles of the
timing generator (during this period BUSY = 1);

 Wait for BUSY = 0 (FCTL3 register).

 LOCK = 1 (FCTL3 register) to prevent accidental writes.

 Mass Erase (all main memory segments):

 Similar to Segment erase;

 Requires setting MERAS bit instead of ERASE bit in the FCTL1
register.

 All Erase (all segments):

 Requires setting (GMERAS), MERAS and ERASE bits in the
FCTL1 register.

Figure 13-4. Segment and mass erase modes procedure.

Flash memory operation and segmentation

www.msp430.ubi.pt Copyright  2009 Texas Instruments, All Rights Reserved 13-9

 Write modes

A byte/word write cycle can be initiated from within flash memory or
from RAM. However, a block write cycle cannot be initiated from
within flash memory. The block write must be initiated from RAM.

For the byte/word write cycle, the characteristics of the cycle are
identical to the erase cycle, configuring the required bits and instead
of writing a dummy word, it writes the byte or word required.

The block write can be used to accelerate the flash write process
(twice as fast as byte/word mode) when many sequential bytes or
words need to be programmed.

The write modes are shown in Table 13-2 (for MSP430FG461x and
F2xxx devices).

Table 13-2. Write modes.

Bits Mode description

BLKWRT WRT MSP430FG461x and MSP430F2xxx

0 1 Byte/word write

1 1 Block write

The write mode procedure for byte/word write is shown in Figure
13-5. The procedure for this mode is as follows:

 Byte/word write:

 Check BUSY = 0 (FCTL3 register);

 LOCK = 0 (FCTL3 register);

 WRT = 1 (FCTL1 register);

 Write the element to the appropriate address (starts the
timing generator);

 A element write requires 33 cycles of the timing generator
(during this period BUSY = 1);

 Wait for BUSY = 0 (FCTL3 register).

 LOCK = 1 (FCTL3 register) to prevent accidental writes.

Flash Programming

13-10 Copyright  2009 Texas Instruments, All Rights Reserved www.msp430.ubi.pt

Figure 13-5. Byte/word write mode procedure.

The write mode procedure for block write is shown in Figure 13-6.
The procedure for this mode is as follows:

 Block (64-byte blocks) write:

 Similar to a successive element write;

 Check BUSY = 0 (FCTL3 register);

 LOCK = 0 (FCTL3 register);

 WRT = 1 and BLKWRT = 1 (FCTL1 register);

 Write the byte or word in the block to the appropriate
address (starts the timing generator);

 Loop until WAIT = 1 (FCTL3 register).

 Repeat write next byte or word of the block to the
appropriate address until all elements of the current block
have been written;

 Set WRT = 0 and BLKWRT = 0 (FCTL1 register);

 A block write requires 20 cycles of the Timing Generator per
element, plus overhead of about 15 more cycles (during this
period BUSY = 1);

 Wait for BUSY = 0 (FCTL3 register).

 LOCK = 1 (FCTL3 register) to prevent accidental writes.

Flash memory operation and segmentation

www.msp430.ubi.pt Copyright  2009 Texas Instruments, All Rights Reserved 13-11

Figure 13-6. Block write mode procedure.

 Flash memory access during write or erase

While BUSY = 1, any write or any erase operation initiated from RAM
or from within flash memory, triggers the conditions shown in Table
13-3.

Table 13-3. Flash access conditions.

Flash operation Flash access Wait Result

Read 0
ACCVIFG = 0
Value read: 03FFFh

Write 0
ACCVIFG = 0
Write ignored

Any erase
Byte/word write

Instruction fetch 0
ACCVIFG = 0
CPU fetch: 03FFFh

Any 0
ACCVIFG = 1
LOCK = 1

Read 1
ACCVIFG = 0
Value read: 03FFFh

Write 1
ACCVIFG = 0
Flash written

Block write

Instruction fetch 1
ACCVIFG = 1
LOCK = 1

Flash Programming

13-12 Copyright  2009 Texas Instruments, All Rights Reserved www.msp430.ubi.pt

 Flash Memory Controller Interrupts

The flash controller has two interrupt sources:

 KEYV = 1 (key violation flag):

 Flash control registers are written with an incorrect password.

 ACCVIFG = 1(access violation flag):

 When ACCVIE = 1 it generates an interrupt request;

 Must be reset by software.

13.3 Registers

The flash memory control registers are shown below for the
MSP430FG4618:

FCTL1, Flash Memory Control Register 1

15 14 13 12 11 10 9 8

(FCTLx password)
Read: FRKEY = 096h

Write (must be): FWKEY = 0A5h

7 6 5 4 3 2 1 0

BLKWRT WRT Reserved EEIEX(1) EEI(1)
GMERAS(2)

MERAS ERASE Reserved

(1) MSP430F2xx(x) family devices. Not present on MSP430F2013.
(2) MSP430FG461x devices.

Bit Description
7 BLKWRT Block write mode when BLKWRT = 1 (WRT must also be set)
6 WRT Write when WRT = 1
4 EEIEX(1) Enable Emergency Interrupt Exit when EEIEX = 1 and GIE = 1
3 EEI(1)

GMERAS(2)

(1) Enable segment Erase to be interrupted by an interrupt
request when EEI = 1
(2) Global mass erase (see Table 13-1)

2 MERAS Mass erase (see Table 13-1)
1 ERASE Erase (see Table 13-1)

Laboratory 9: Flash write/read operations

www.msp430.ubi.pt Copyright  2009 Texas Instruments, All Rights Reserved 13-13

FCTL2, Flash Memory Control Register 2

15 14 13 12 11 10 9 8

(FCTLx password)
Read: FRKEY = 096h

Write (must be): FWKEY = 0A5h

7 6 5 4 3 2 1 0

FSSELX FNx

Bit Description
7-6 FSSELx Flash controller clock source:

FSSEL1 FSSEL0 = 00  ACLK
FSSEL1 FSSEL0 = 01  MCLK
FSSEL1 FSSEL0 = 10  SMCLK
FSSEL1 FSSEL0 = 11  SMCLK

5-0 FNx Flash controller clock divider
FNx=00h  /1
…
FNx=03Fh  /64

FCTL3, Flash Memory Control Register 3

15 14 13 12 11 10 9 8

(FCTLx password)
Read: FRKEY = 096h

Write (must be): FWKEY = 0A5h

7 6 5 4 3 2 1 0

FAIL(1) LOCKA(1) EMEX LOCK WAIT ACCVIFG KEYV BUSY
(1) MSP430F2xx(x) family devices.

Bit Description
7 FAIL Operation failure of the clock source, f(FTG), or a flash operation is

aborted from an interrupt when EEIEX = 1 when FAIL = 1
6 LOCKA(1) Segment A locked and all information memory is protected from

erasure during a mass erase when LOCKA = 1
5 EMEX Emergency exit when EMEX = 1
4 LOCK Locks the flash memory for writing or erasing when LOCK = 1
3 WAIT WAIT = 0  while flash memory is being written to

WAIT = 1  when flash memory is ready for the next byte/word
write

2 ACCVIFG Access violation interrupt flag ACCVIFG = 1 when interrupt is pending
1 KEYV Flash security key violation KEYV = 1 when FCTLx password was

written incorrectly (not 0A5h)
0 BUSY Flash timing generator is busy when BUSY = 1

Flash Programming

13-14 Copyright  2009 Texas Instruments, All Rights Reserved www.msp430.ubi.pt

13.4 Laboratory 9: Flash write/read operations

Overview

The TI MSP430 has an internal flash memory that can be used for
data storage. Two different methods of writing to the flash memory
are studied in this laboratory. The first method requires the CPU
execution of the code resident in flash memory. The consequences
of this procedure are discussed. In the second part of the laboratory,
the flash write and erase operations are conducted with the CPU
executing the code resident in RAM. The important details are
highlighted.

13.4.1 Lab9a. Flash memory programming with the CPU executing the code from
flash memory

Project files

 C source files: Chapter 13 > Lab9 > Lab9a_student.c

Chapter 13 > Lab9 > Lab9_a.c

Chapter 13 > Lab9 > lnk_msp430fg4618.cmd

 Solution file: Chapter 13 > Lab9 > Lab9a_solution.c

A. Resources

This laboratory uses the flash memory controller. The operation of
this device is monitored using a digital output port (P2.1).

The project must be compiled using the files Lab9_a.c and the
command file lnk_msp430fg4618.cmd.

The code is resident in the flash memory, so whenever a flash write
or erase operation occurs, the CPU access to this memory is
automatically inhibited.

B. Software application organization

The software begins by disabling the Watchdog Timer. Then, port
P2.1 is set as an output with a logic low level.

The flash memory controller is configured with the clock MCLK
divided by 3. Thus the fFTG operating frequency lies within the
specified limits of 257 kHz to 476 kHz.

A set of routines are provided to erase, write and copy the contents
of a segment. The main tasks related to the flash memory handling
are presented using this set of routines.

The information Segments A and B are erased first. Then, bytes are
written to SegmentA and words are written to SegmentB. The
contents of the information memory SegmentA are copied to the
information SegmentB, overwriting the previous contents.

Laboratory 9: Flash write/read operations

www.msp430.ubi.pt Copyright  2009 Texas Instruments, All Rights Reserved 13-15

C. System configuration

 Flash memory controller configuration

Configure the register FCTL2 to use clock MCLK divided by 3. Do not
forget to enter the password to access the register.

FCTL2 = ______________________;

 Segment erase routine

Configure the registers FCTL1 and FCTL3 in order to initiate the flash
segment erase process by writing an address belonging to the
segment to be erased. Be sure to include the password to access the
register.

FCTL1 = ______________________;

FCTL3 = ______________________;

Block flash write and erase operations are carried out after erasing
the segment:

FCTL3 = ______________________;

 Flash write routine

Configure the registers in order to start writing to the flash memory.
Be sure to include the password to access the register.

FCTL1 = ______________________;

FCTL3 = ______________________;

Configure flash block write and erase operations and disable the
write bit:

FCTL1 = ______________________;

FCTL3 = ______________________;

Flash Programming

13-16 Copyright  2009 Texas Instruments, All Rights Reserved www.msp430.ubi.pt

D. Analysis of the operation

 Execution time for the information segments erase
operation

Put the cursor at line of code 124, located just after the second port
P2.1 switching state. Execute the software until the cursor position
is reached. The erase operation timing can be seen on an
oscilloscope with the probe connected to pin 2 of the Header 4.

 Bytes write in the information memory A

The routine write_char_flash allows writing a byte to flash
memory. It receives the memory address where the byte should be
stored.

Open the memory window, and add the address of the information
memory A. The content of this address becomes visible after
ordering its rendering. As we are writing a byte to flash, we must
change the presentation of the memory contents. Choose the option
Column Size 1, from the context menu of the memory window,
through the option Format.

Now, during the execution of the for loop, the flash contents is
written sequentially.

 Bytes written in the information B memory

This routine is similar to the previous one. Note that now the flash
write address is increased by two because a word occupies two
bytes of memory.

The information is more readily observed when the memory
contents display mode is restored to its initial state. Reset the
default conditions in the option Format of the context menu.

 Copy the contents of the information A memory to
information B memory

The output port P2.1 is enabled before the copy process begins. The
copy routine receives the start address of the source information
segment and the start address of the destination information
segment. The information is then successively read and written from
one segment to another.

Port P2.1 is disabled at the end of the copy process. Thus, the task
execution time can be measured using an oscilloscope.

Laboratory 9: Flash write/read operations

www.msp430.ubi.pt Copyright  2009 Texas Instruments, All Rights Reserved 13-17

MSP-EXP430FG4618 SOLUTION

Using the MSP-EXP430FG4618 Development Tool, implement flash
memory programming with the CPU executing the code from flash
memory.

 Flash memory controller configuration:

FCTL2 = FWKEY | FSSEL0 | FN1;

// MCLK/3 for Flash Timing Generator

 Segment erase routine:

FCTL1 = FWKEY | ERASE; // Set Erase bit

FCTL3 = FWKEY; // Clear Lock bit

//Flash block write and erase operations after erasing the
segment:

FCTL3 = FWKEY | LOCK; // Set LOCK bit

 Flash write routine:

FCTL1 = FWKEY | ERASE; // Set Erase bit

FCTL3 = FWKEY; // Clear Lock bit

// Flash block write and erase operations and disable the
write bit after the writing process to the segment:

FCTL3 = FWKEY | LOCK; // Set LOCK bit

13.4.2 Lab9b. Flash memory programming with the CPU executing the code in
RAM

Project files

 C source files: Chapter 13 > Lab9 > Lab9b_student.c

 Chapter 13 > Lab9 > Lab9_b.c

Chapter 13 > Lab9 >
lnk_msp430fg4618_RAM.cmd

 Solution file: Chapter 13 > Lab9 > Lab9b_solution.c

Flash Programming

13-18 Copyright  2009 Texas Instruments, All Rights Reserved www.msp430.ubi.pt

A. Resources

The tasks developed in the previous laboratory are executed again
during this laboratory. The difference this time is that the software
runs from RAM.

This process requires special procedures. The routines to run from
RAM must be identified. The application must begin by copying the
routines from flash to RAM.

The directive MEMORY determines the device's memory
configuration. The memory can be organized in accordance with the
system needs. This directive identifies the memory ranges that are
physically present on the device. Each of these ranges has a set of
features, such as:

 Name;

 Initial address;

 Length;

 Optional attributes set;

 Optional filling specifications.

The directive Memory is organized as described below.

MEMORY
{
name 1 [(attr)] : origin = constant, length = constant [, fill = constant]
.
.
name n [(attr)] : origin = constant, length = constant [, fill = constant]
}

The directive SECTIONS controls how the sections are built and
reserved. The directive performs the following:

 Describes how the input sections are related to the output
sections;

 Defines the output sections in the executable program;

 Defines where the output sections are placed in memory;

 Allows changing the name of the output sections;

The directive SECTIONS is organized as described below.

SECTIONS
{
name : [property [, property] [, property] . . .]
name : [property [, property] [, property] . . .]
name : [property [, property] [, property] . . .]
}

Laboratory 9: Flash write/read operations

www.msp430.ubi.pt Copyright  2009 Texas Instruments, All Rights Reserved 13-19

The following directives are possible:

Reserve memory space to load the section:

Syntax: load = allocation or
Allocation or

> allocation

Define the memory space where the code belonging to the section
will run:

Syntax: run = allocation or
 run > allocation

In this project, we intend to write the code to the flash memory, but
we want it to be executed from RAM. The Linker offers a very simple
way to accomplish this task. A memory space where the code is
stored is associated with another memory space where it will run.
The application transfers the code to the memory space, where it
will be executed.

The memory spaces needed to store the routines are defined in the
lnk_msp430fg4618_RAM.cmd file.

 RAM_MEM : origin = 0x1100, length = 0x0200

 FLASH_MEM : origin = 0x3100, length = 0x0200

The following sections are also defined:

 .FLASHCODE : load = FLASH_MEM, run = RAM_MEM

 .RAMCODE : load = FLASH_MEM

Flash Programming

13-20 Copyright  2009 Texas Instruments, All Rights Reserved www.msp430.ubi.pt

B. Software application organization

The software for this laboratory has the same structure as the
previous one.

The directive #pragma CODE_SECTION (symbol, "section
name") reserves space for the "symbol" in a section called
"section name". Thus, the routines are stored in the section
".FLASHCODE".

The routine copy_flash_to_RAM runs from the beginning of the
program. It is responsible for transferring the flash contents to RAM.

The files Lab9_b.c and lnk_msp430fg4618_RAM.cmd must be
included during the compilation.

Now, the code is executed from RAM. Check, whenever appropriate,
the Wait bit state of the register FCTL3.

C. System configuration

 Flash storage management routines

To store the flash management routines in the section
".FLASHCODE" complete the empty spaces:

#pragma CODE_SECTION(______________,____________)

void erase_segment(int address)

#pragma CODE_SECTION(______________,____________)

void write_char_flash(int address, char value)

#pragma CODE_SECTION(______________,____________)

void write_int_flash(int address, int value)

#pragma CODE_SECTION(______________,____________)

void copy_seg_flash(int address_source, int
address_destination)

 Check the flag wait

At software key points, and whenever writing or erasing the flash
memory, perform a delay before proceeding with the data writes.
Complete the following line of code in order to suspend the program
flow while the busy flag is not active.

while(_____________);

Quiz

www.msp430.ubi.pt Copyright  2009 Texas Instruments, All Rights Reserved 13-21

D. Analysis of operation

Analyse the differences between the different versions of the
routines. Note that successive delays are placed in the versions to
be executed from RAM.

MSP-EXP430FG4618 SOLUTION

Using the MSP-EXP430FG4618 Development Tool, implement flash
memory programming with the CPU executing the code from RAM.

 Flash management routines storage:

#pragma CODE_SECTION(erase_segment,".FLASHCODE")

void erase_segment(int address)

#pragma CODE_SECTION(write_char_flash,".FLASHCODE")

void write_char_flash(int address, char value)

#pragma CODE_SECTION(write_int_flash,".FLASHCODE")

void write_int_flash(int address, int value)

#pragma CODE_SECTION(copy_seg_flash,".FLASHCODE")

void copy_seg_flash(int address_source, int
address_destination)

 Check the busy flag:

while(FCTL3&BUSY); // Check BUSY flag

13.5 Quiz

1. The features of flash memory are:

(a) Low cost;

(b) Fast to read from;

(c) Non-volatile;

(d) All of above.

2. The timing generator of the MSP430 flash memory can be
sourced by:

(a) ACLK;

(b) SMCLK;

(c) MCLK;

(d) All of above.

Flash Programming

13-22 Copyright  2009 Texas Instruments, All Rights Reserved www.msp430.ubi.pt

3. A MSP430 flash device can be programmed via:

(a) JTAG interface;

(b) Bootstrap loader;

(c) Custom software solution;

(d) All of above.

4. Flash memory is partitioned into:

(a) Two sections;

(b) Three sections;

(c) Four sections;

(d) None of above.

5. When LOCKA is set:

(a) SegmentA can be written and erased;

(b) SegmentA cannot be written or erased;

(c) All information memory is protected from erasure during a mass
erase or production programming;

(d) All information memory is erased during a mass erase or
production programming.

6. When EMEX is set:

(a) Write operation begins;

(b) Erase operation begins;

(c) All flash operations cease;

(d) None of above.

7. An erase cycle can be initiated from:

(a) Within flash memory;

(b) From RAM;

(c) Within flash memory or from RAM;

(d) Simultaneously within flash memory and from RAM.

8. For the MSP430FG4618 when GMERAS and MERAS bits are set:

(a) A segment is erased;

(b) All main memory is erased – selected array;

(c) All information memory is erased – selected array;

(d) All flash memory is erased – both arrays.

FAQs

www.msp430.ubi.pt Copyright  2009 Texas Instruments, All Rights Reserved 13-23

9. When BLKWRT and WRT are set:

(a) A byte/word write cycle is initiated within flash memory;

(b) A block write cycle is initiated from RAM;

(c) A block write cycle is initiated within flash memory;

(d) A byte/word write cycle is initiated from RAM.

10. When reading within flash memory while BUSY = 1:

(a) ACCVIFG = 1 and the value read is 03FFFh;

(b) ACCVIFG = 0 and the value read is 03FFFh;

(c) ACCVIFG = 1 and LOCK = 1;

(d) None of above.

11. The 16 bits of the FCTL1 flash memory controller control
register must have:

(a) All its high-byte bits set to 0;

(b) A 0x096h password in the high-byte to read from flash memory
and a 0x0A5h password must be written in the high byte to write to
the flash memory;

(c) A 0x05Ah password in the high-byte to read and write to the
flash memory;

(d) All its high-byte bits set to 1.

12. When the FAIL bit of the control register is set:

(a) The clock source has failed;

(b) The flash operation was aborted;

(c) An access violation occurred;

(d) The flash security key was incorrect.

13.6 FAQs

1. What must be the minimum voltage during a flash write or erase
operation?

The minimum VCC voltage is between 2.2 V and 2.7 V to avoid
unpredictable results.

