
www.msp430.ubi.pt Copyright 2009 Texas Instruments, All Rights Reserved 15-1

Chapter 15

15. Advanced Laboratories

Now that all the functions and features of the MSP430 devices have
been described, this chapter presents several advanced laboratories
that bring together many of the subjects discussed.

The first advanced laboratory consists of a new approach to teaching
robotics, making use of the MSP430. It consists of the substitution
of RoboSapien (RS) control and regulation electronics by the
MSP430. The MSP430 replicates the RS operation, illustrating the
capabilities of this microcontroller and as a way to motivate
students.

The second advanced laboratory focuses on the MSP430
communications peripherals. It consists of developing an eZ430-
RF2500 communication application to show how these
communications peripherals are configured in a practical application.
The aim of this laboratory is to use some of these hardware
development tools to communicate together, activating their LEDs in
response to writing messages to the Code Composer Essentials
(CCE) console.

The third laboratory consists of a MSP430 assembly language
tutorial. It includes examples using the different addressing modes
and instructions format. It provides an overview of the fundamental
characteristics of the assembly language instructions. It finishes with
an assembly language project example: square root extraction with
the CCE.

Topic Page

15.1 Lab11a. RoboSapien powered by MSP43015-3

15.1.1 What is RoboSapien?..15-3

15.1.2 How RoboSapien works?15-7

15.1.3 MSP430 integration..15-19

15.1.4 MSP430 C code programming.............................15-25

15.1.5 Tests and development of new functionalities ...15-31

15.1.6 Acknowledgments..15-31

15.2 Lab11b. RF link with eZ430-RF250015-32

Advanced Laboratories

15-2 Copyright 2009 Texas Instruments, All Rights Reserved www.msp430.ubi.pt

15.2.1 Introduction... 15-32

15.2.2 The application .. 15-32

15.2.3 The hardware... 15-34

15.2.4 The software.. 15-35

15.2.5 New Challenges ... 15-41

15.3 Lab 11c. MSP430 assembly language tutorial.............. 15-42

15.3.1 Exploring the addressing modes of the MSP430
architecture .. 15-42

15.3.2 Exploring the addressing modes of the MSP430X CPU
architecture .. 15-62

15.3.3 Assembly programming characteristics 15-91

15.3.4 Creating an Assembly project with CCE............ 15-121

Lab11a. RoboSapien powered by MSP430

www.msp430.ubi.pt Copyright 2009 Texas Instruments, All Rights Reserved 15-3

15.1 Lab11a. RoboSapien powered by MSP430

Robotics is being increasingly used a vehicle for motivating students
to learn embedded systems, artificial intelligence, computer science,
and even general science and engineering. Typically, the laboratory
classes of robotics courses involve the construction and
programming of simple robots, usually composed of a
microcontroller, sensors, device for remote communication and DC
or stepper motors, mounted in all type of robot bodies.

Robotics involves both mechanical and electronic concepts, the latter
requiring both hardware and software development for a specific
application.

This advanced laboratory integrates together some multidisciplinary
topics from different knowledge areas:

 Control systems, for the different control approaches;

 Embedded systems based on the MSP430;

 Instrumentation and Measurements for the sensor signal
conditioning and data acquisition;

 C/C++ programming.

The objective of this advanced laboratory is to use a large number of
the peripherals included in the MSP430, to test their capabilities in
terms of memory and processing time and to perform a complex
application such as driving the RS.

15.1.1 What is RoboSapien?

The RoboSapien (see Figure 15-1) is a humanoid robot designed by
Mark W. Tilden, marketed by WowWee (www.wowwee.com/) for the
toy market. Nowadays they provide many more robot products such
as roboreptiles, roboraptors, robopets, among others. The
RoboSapien measures approximately 34 cm in height and its weight
is about 2.1 kg, including four mono (D) type batteries located in its
feet.

Some words from the Robot Tech Support, from WowWee Ltd.:

“The RoboSapien is designed for modification. Here is the short hint
list for the budding RS hacker.

First off, we must warn you that completely replacing the RS brain
should only be attempted by those with a lot of time, electronic
skills, and programming ego.

You don’t have to though — if you carefully remove the connectors
and lift the RS motherboard, on the back you will find all inputs and
outputs labeled, and right next to gold pads convenient for soldering
wires...”

in http://www.robosapien1.com/resources/official-mod-guide/

Advanced Laboratories

15-4 Copyright 2009 Texas Instruments, All Rights Reserved www.msp430.ubi.pt

Figure 15-1. RoboSapien.

The RoboSapien controller is equipped with a basic level of
programmability:

 Users can string together movement commands to form either
macros or mini-programs (instruction sets);

 Broadcast of an instruction-set to the RS by IR and save it on-
board memory for later execution;

 Sensor-keyed instruction set, performing a specific set of actions
in conjunction with a specific sensor system.

This biomorphic robot was designed to be easily modified or hacked,
because the electronics inside the RS are easily accessed and clearly
labelled. So, a growing community
(http://www.robocommunity.com/) has devoted themselves to
modify and add new functionalities to the robot.

Some features have been added with respect to the integration of
hardware in order to provide new features to the RS:

 Hand-beams, hand-LEDs, heartbeat, voice off, tunnel-beam and
blue eyes (http://www.robosapien1.com/mods/builders/);

 Wireless camera, wireless radio, frequency audio and pc control
(http://home.comcast.net/~robosapien/rfmod.htm and
http://home.comcast.net/~jsamans/robo/robocam.htm);

 Colour and motion tracking CMUCam
(http://www.aibohack.com/robosap/);

 Including an additional microcontroller
(http://homepages.strath.ac.uk/~lau01246/robot/myhackrs.shtml).

 Replacement of the head by a PDA to allow the recognition of its
environment using a camera. This last example of RS modification
had the objective of developing two teams of three RSs, to play the
1st worldwide soccer match of humanoid robots at the Robocup
German Open 2005 tournament.

Lab11a. RoboSapien powered by MSP430

www.msp430.ubi.pt Copyright 2009 Texas Instruments, All Rights Reserved 15-5

Search the Internet for additional information concerning
modifications to the RS.

However, none of the active modifications discussed above involve
substitution of the original controller.

This laboratory substitutes the RS’s ASIC with the MSP430, in order
to replicate its original functions.

This laboratory begins with a dissection of the RS. In order to
replace the original controller by the MSP430, it is fundamental to
analyse all the input and output signals of the original controller for
all the RS’s movements. This requires the use of an oscilloscope and
a logic analyzer.

See in Figure 15-2 the modification performed with this laboratory.

Figure 15-2. RoboSapien modifications.

This laboratory provides the steps required to accomplish a
RoboSapien controlled by the MSP430:

 Robot kinematics and dynamics analysis:

 RS movements analysis;

 RS remote control commands analysis.

 Actuators, sensors and signal conditioning analysis:

 Dismantling procedure;

 Identification of the original PCB connections:

o U2 controller connections to the motors;

o U2 controller position switches;

o U2 controller touch sensors;

Advanced Laboratories

15-6 Copyright 2009 Texas Instruments, All Rights Reserved www.msp430.ubi.pt

o U2 controller LEDs;

o U2 controller power and commands;

o U3 motor driver (H-bridge chip).

 List and analysis of the function of all components and
devices included in the original PCB;

 List and analysis of the mechanical and/or electrical
characteristics of the actuators, sensors and output devices;

 Digital ports signals (motors) acquisition (using an oscilloscope
and logic analyzer) and analysis:

 Single movements;

 Combined movements;

 Motors active/inactive timetables corresponding to each
movement.

 Digital port signals (LEDs) acquisition (using an oscilloscope and
logic analyzer) and analysis:

 Determination of the eye pattern for each movement;

 Active/inactive LEDs table corresponding to each movement.

 IR commands acquisition (logic analyzer) and analysis:

 Determination of the IR command digital value of each
movement command of the remote control.

 MSP430 integration:

 Fabrication and assembly of the components and devices on
the proposed MSP430 PCB;

 Original controller removal;

 Pin connections (soldering wires) from the MSP430 PCB to
the RoboSapien PCB.

 MSP430 C code programming (based on the data obtained from
the previous steps):

 Define the motors active/inactive timetables corresponding to
each movement (movement tables);

 Define the active/inactive LEDs output port pin values
corresponding to each movement;

 Define the IR digital input value of each movement command
of the remote control.

At the end of this laboratory, it will be possible to integrate new
features to the RoboSapien based on the resources provided by the
MSP430.

Lab11a. RoboSapien powered by MSP430

www.msp430.ubi.pt Copyright 2009 Texas Instruments, All Rights Reserved 15-7

15.1.2 How RoboSapien works?

The RS is commercially available. It can be found on the
manufacturer’s web page or at several retailers.

Step 1: Robot kinematics and dynamics analysis

The first task consists in the analysis of the robot kinematics and
dynamics (evaluation of the robot movements and its
characteristics). This task requires testing the RS movements.

 A. RS movements analysis

The evaluation of the RS dynamics has shown that due to its low
centre of mass, it is very stable.

It is driven by seven DC motors, with one motor per leg that moves
two joints in the hip and the knee, keeping the foot orthogonal to
the trunk. A trunk motor tilts the upper body laterally. These three
motors move the RS because it swings its upper body laterally to
achieve a periodic displacement of the centre of mass from one foot
to the other. The RS can walk backwards in a similar way, as well as
turn on the spot. It also possesses one motor in each shoulder to
raise and lower the arm and one motor in each elbow to twist the
lower arm and open its grip. This gripper hand has three fingers.
The location of the motors is shown in Figure 15-3.

Figure 15-3. RoboSapien motors location.

Advanced Laboratories

15-8 Copyright 2009 Texas Instruments, All Rights Reserved www.msp430.ubi.pt

The dynamic walking pattern of RS follows the following sequence:

 (1) The trunk motor tilts the upper body to the right. The centre
of mass shifts over the right foot. The left foot lifts from the
ground;

 (2) The hip motors move in opposite directions, resulting in a
forward motion of the robot. As the upper body swings back, the
left foot regains contact with the ground;

 (3) Symmetrical to (1). The trunk motor tilts the body to left;

 (4) Symmetrical to (2).

 B. RS’s remote control commands analysis

The RS’s remote control unit (see Figure 15-4) has 21 different
buttons. With the help of two shift buttons, 67 different robot-
executable commands are accessible (see Table 15-1 for a list of the
available commands).

Figure 15-4. RoboSapien IR remote control.

Lab11a. RoboSapien powered by MSP430

www.msp430.ubi.pt Copyright 2009 Texas Instruments, All Rights Reserved 15-9

Table 15-1. Movement commands.

Commands (no shift) GREEN shift commands ORANGE shift commands
turn right right turn step right hand strike 3

right arm up right hand thump right hand sweep
right arm out right hand throw Burp
tilt body right sleep right hand strike 2

right arm down right hand pickup high 5
right arm in lean backwards right hand strike 1

walk forwards forward step bulldozer
walk backwards backward step oops (fart)

turn left left turn step left hand strike 3
left arm up left hand thump left hand sweep
left arm out left hand throw Whistle
tilt body left listen left hand strike 2

left arm down left hand pick up talk back
left arm in lean forward left hand strike 1

stop reset Roar
 Execute (master command program) All Demo
 Wakeup Power Off
 Right (right sensor program) Demo 1 (Karate skits)
 Left (left sensor program) Demo 2 (Rude skits)
 Sonic (sonic sensor program) Dance

*There are also some secret undocumented codes.

Step 2: Actuators, sensors and signal conditioning analysis

The next task requires a dismantling procedure to be followed to
allow the detailed analysis of the actuators (motors) and regulation
electronics, sensors and respective signal conditioning, and of the
PCB included in the original robot.

See http://personal.strath.ac.uk/mark.craig/robot/robos.shtml for a
procedure to dismantle the RS in order to give it additional features.

As shown, the RS’s PCB (Controller U2 and Motor Driver U3) is easily
accessed and clearly labelled, indicating the:

 Motors (M);

 Input or output port (P);

 Raw battery voltage that fluctuates wildly (VDD);

 Regulated voltage (Vcc = 3.6V);

 Universal ground (Gnd).

This task requires the identification all the connections of the PCB
shown in Figure 15-5.

Advanced Laboratories

15-10 Copyright 2009 Texas Instruments, All Rights Reserved www.msp430.ubi.pt

Figure 15-5. Original PCB of the RoboSapien.

(a) Front view (U3 motor drive). (b) Rear view (U2 controller).

The original controller, certainly an ASIC (application-specific
integrated circuit) is an integrated circuit customised for this
particular purpose, which is covered with glue, preventing the
possibility of evaluating the control systems philosophy used in
developing the RS.

List all the components and devices included on the PCB and
investigate their functions;

Also list the actuators, sensors and output devices;

Determine the mechanical and/or electrical characteristics of the:

 Controller U2;

 Motor driver U3;

 Power switch;

 Motors: shoulder (2); elbow (2); hip (2) and trunk (1);

 Foot touch sensors (4);

 Finger touch sensors (2);

 End course position switches (shoulders and elbows);

 Sound sensor;

 Eight LEDs (fingers (2) and eyes (6));

 IR receiver;

 External IR remote control.

Lab11a. RoboSapien powered by MSP430

www.msp430.ubi.pt Copyright 2009 Texas Instruments, All Rights Reserved 15-11

 A. Motor controller (U2) connections

Analyse the connections to the motors of the U2 controller. You
should obtain the following data concerning the:

 Shoulder motors (Figure 15-6);

 Elbow motors (Figure 15-7);

 Hip and trunk motors (Figure 15-8).

Figure 15-6. Connections to shoulder motors.

Figure 15-7. Connections to elbow motors.

Advanced Laboratories

15-12 Copyright 2009 Texas Instruments, All Rights Reserved www.msp430.ubi.pt

Figure 15-8. Connections to hip and trunk motors.

 B. Position switches and touch sensors connections

Analyse the connections to position switches and touch sensors of
the U2 controller. You should obtain the following data concerning
the:

 Shoulder positions switches (Figure 15-9);

 Elbow positions switches (Figure 15-10);

 Finger touch sensors (Figure 15-11);

 Feet touch sensors (Figure 15-12).

Figure 15-9. Connections to shoulder position switches.

Lab11a. RoboSapien powered by MSP430

www.msp430.ubi.pt Copyright 2009 Texas Instruments, All Rights Reserved 15-13

Figure 15-10. Connections to elbow position switches.

Figure 15-11. Connections to finger touch sensors.

Figure 15-12. Connections to feet touch sensors.

Advanced Laboratories

15-14 Copyright 2009 Texas Instruments, All Rights Reserved www.msp430.ubi.pt

 C. Connections to LEDs

Analyse the LED connections of the U2 controller. You should obtain
the following data concerning the:

 Finger LEDs (Figure 15-13);

 Eye LEDs (Figure 15-14).

Figure 15-13. Connections to finger LEDs.

Figure 15-14. Connections to eye LEDs.

Lab11a. RoboSapien powered by MSP430

www.msp430.ubi.pt Copyright 2009 Texas Instruments, All Rights Reserved 15-15

 D. Command and power connections

Analyse the command and power connections of the U2 controller.
You should obtain the data shown in Figure 15-15.

Figure 15-15. Command and power connections.

 E. Digital ports signal acquisition and analysis

After obtaining the information with respect to the U2 controller
connections on the PCB, proceed with the analysis of the digital
signals acquired from the electronic board ports.

The aim of this task is to evaluate the original controller control
output ports when the robot performs a specific command function.
All the executable commands are available in the robot user’s guide
or on the web pages previously mentioned.

This task is required to evaluate the state of each of U2’s output
ports for control of the motors, in order to define the time sequence
of active/inactive motors for each specific movement.

The procedure consists of measuring the ports digital signals,
initially for a single motor movement, and then to command
functions that combine several movements at the same time, listing
the time that each motor is active and inactive.

Advanced Laboratories

15-16 Copyright 2009 Texas Instruments, All Rights Reserved www.msp430.ubi.pt

This task should be accomplished using an oscilloscope, to acquire
the single movement signals and a logic analyzer for the combined
movement signals. The oscilloscope and logic analyzer probes must
be connected to the output port pins. Figure 15-16 gives an example
of the output port signal acquisition for a combined movement.

Figure 15-16. Example of the output port signal acquisition for a combined movement.

Proceed with the analysis of each single motor signal, comparing the
output signal from the original controller and the signal that the
motor receives. Figure 15-17 gives two examples of the single
movement graphs obtained with the digital oscilloscope.

Figure 15-17. Example of the single movement digital signal.

(a) Output signal vs. motor input signal. (b) Left elbow movement from the inside

to outside and vice-versa.

Lab11a. RoboSapien powered by MSP430

www.msp430.ubi.pt Copyright 2009 Texas Instruments, All Rights Reserved 15-17

The analysis of the combined action signals requires the connection
of wires to the original controller ports to measure the combined
movements digital signals with a logic analyzer.

The acquisition of the graphical digital signals from the controller
motor ports must be performed for all the combined functions
defined in the remote control.

The graphical functions need only to be obtained for one side (left)
of the robot movements since other side (right) performs the same
movements, but the motors operate in opposite directions.

Example: Output port signals acquisition of a combined movement:
“Oops” (see Figure 15-18).

In this function, signal “M1+” (Left Elbow Out) is “high”, for 531
msec and the rest of the time (2125 msec) is “low” and signal
“M3+” (Right Elbow Out) has the same signal, since both elbows
execute the movement at the same time.

Figure 15-18. Example of the combined movement analysis: Output port signals
acquisition of a combined movement: Function “Oops”.

The file main.c contains the tables for each motor active/inactive
time periods for each RS movement.

 F. Eye patterns analysis

 Evaluate the eye patterns (6 LEDs – P2.0 to P2.5) depending
on the command that is executed;

 The RS original controller has 3 outputs for each eye,
presenting a distinct pattern for each condition;

 This output condition can be used as an effective digital-level
feedback source;

 Table 15-2 gives some eye patterns, depending on the
executed command.

Advanced Laboratories

15-18 Copyright 2009 Texas Instruments, All Rights Reserved www.msp430.ubi.pt

Table 15-2. RS eye patterns examples.

Commands Eye pattern Commands Eye pattern
Awake

Angry

Down right

Startled

Down left

Sleep

Look up

Off

Confused

Wink

Look down

Program mode

Up right

Program right reflex

Up left

Program left reflex

Listen

Program sonix reflex

Listen

 G. Analysis of the IR commands

Determine the IR command digital value (port IR-OUT) for each
movement command of the remote control using the logic
analyzer. The specifications of the serial communication are
provided below:

 For the 8-bit input commands, the direct serial input to the
IR-OUT pin (active low signals, 1200 bps) is used;

 The timing is based on 1/1200 second clock (~ 0.833 msec),
where the signal is normally high (idle, no IR);

 The space encoded signal depends on bit values, sending the
most significant data bit first, using a carrier of 39.2 kHz.

 The first bit (MSB) is always 1 and the valid codes range from
0x80 to 0xFF;

 Every IR command has a preamble in which the signal goes
low for 8/1200 sec;

 If the data bit is equal to 0, the signal goes high for 1/1200
sec, and low for 1/1200 sec;

 if the data bit is equal to 1, the signal goes high for 4/1200
sec, and low for 1/1200 sec;

 When completed, signal goes high again.

Lab11a. RoboSapien powered by MSP430

www.msp430.ubi.pt Copyright 2009 Texas Instruments, All Rights Reserved 15-19

The file main.c contains all the digital IR values for all the
commands.

Example: “Wake Up” IR command = 0xB1 (see Figure 15-19).
(Find the complete description of the IR commands digital
values on the web page:
http://www.aibohack.com/robosap/ir_codes.htm).

Figure 15-19. Example of an IR command digital value: Function: “Wake Up”: 0xB1.

15.1.3 MSP430 integration

To replicate the RS operation, the MSP430F149 is used, making use
of the following on-chip resources to control the RS:

 Ports (output): P1.0 – P1.7 and P2.0 – P2.5 to drive the motors;

 Ports (output): P5.0 – P5.7 to drive the LEDs;

 Port (input): P4.0 for the IR signal;

 Ports (input): P3.0 and P3.1 for the switches and touch sensors.

Figure 15-20 gives the PCB schematics that support the MSP430,
connections to the RS PCB and other devices.

The detailed file of the schematics can be found in
PCB_schematics.dxf.

Advanced Laboratories

15-20 Copyright 2009 Texas Instruments, All Rights Reserved www.msp430.ubi.pt

Figure 15-20. MSP430 PCB schematics developed to control the RoboSapien.

In this schematic, the connectors use the following port pin
connections to the RS controller, as shown in Figure 15-23:

Table 15-3. New MSP430 PCB Connector Motors_1 connections to the RS controller.

‘F149 pin Motors1 pin U2 controller RS location Action
P1.0 1 M1+ Left elbow Left arm out
P1.1 2 M1- Left elbow Left arm in
P1.2 3 M2+ Left shoulder Left arm up
P1.3 4 M2- Left shoulder Left arm down
P1.4 5 M3+ Right elbow Right arm out
P1.5 6 M3- Right elbow Right arm in
P1.6 7 M4+ Right shoulder Right arm up
P1.7 8 M4- Right shoulder Right arm down

Lab11a. RoboSapien powered by MSP430

www.msp430.ubi.pt Copyright 2009 Texas Instruments, All Rights Reserved 15-21

Table 15-4. New MSP430 PCB Connector Motors_2 connections to the RS controller.

‘F149 pin Motors2 pin U2 controller RS location Action
P2.0 1 M5+ Trunk Tilt upper body left
P2.1 2 M5- Trunk Tilt upper body right
P2.2 3 M6+ Left hip Left leg back
P2.3 4 M6- Left hip Left leg front
P2.4 5 M7+ Right hip Right leg back
P2.5 6 M7- Right hip Right leg front

Table 15-5. New MSP430 PCB Connector LED connections to the RS controller.

‘F149 pin LED connector pin U2 controller RS location LED position Schematic
P5.0 LED1 L1 Left eye Upper

P5.1 LED2 L2 Left eye Middle

P5.2 LED3 L3 Left eye Lower

P5.3 LED4 L4 Right eye Middle

P5.4 LED5 L5 Right eye Upper

P5.5 LED6 L6 Right eye Lower

P5.6 LED7 L7 Left

gripper

P5.7 LED8 L8 Right
gripper

Table 15-6. New MSP430 PCB Connector Switch connections to the RS controller.

‘F149 pin Switch connector pin U2 controller RS location
P3.0 1 LFT + LFG Left foot + Left finger
P3.1 2 RFT + RFG Right foot + Right finger

(*) N/A LEL Left elbow
(*) N/A LSH Left shoulder
(*) N/A REL Right elbow
(*) N/A RSH Right shoulder

P4.0 4 IR

(*) These connections are not made because the code takes into
account shoulder and elbow motors active period time to obtain the
end positions.

Table 15-7 contains lists all the devices and components required for
the MSP430 PCB.

Advanced Laboratories

15-22 Copyright 2009 Texas Instruments, All Rights Reserved www.msp430.ubi.pt

Table 15-7. Device and component list of the MSP430 PCB.

Description Designator Footprint LibRef Quant. Value
Ref. Farnell: 7568533 C1 CR2012-0805 Cap 1 12 pF

Ref. Farnell: 7568533 C2 CR2012-0805 Cap 1 12 pF

Capacitor 0.1uF Ref Farnell: 317676 C3 CR2012-0805 Cap Semi 1 100 nF
Capacitor, CASE A 10UF 6.3V
Ref. Farnell: 967014 C4 CC3216-1206 Cap Pol1 1 10 uF

Capacitor 0.1uF Ref. Farnell: 317676 C5 CR2012-0805 Cap Semi 1 100 nF
Capacitor, CASE A 10UF 6.3V
Ref. Farnell: 967014 C6 CC3216-1206 Cap Pol1 1 10 uF

Ref. Farnell: 9406352 C15 CR2012-0805 Cap Semi 1 10 nF

Typical BLUE SiC LED DS1 LED LED3 1

Header, 7-Pin, Dual row P1 HDR2X7 Header 7X2 1

Ref. Farnell: 889477 + 9733051 P2 1.25MM2P Header 2 1

Ref. Farnell: 1012261 + 9733078 P3 1.25MM6P Header 6 1

Ref. Farnell:1012262 + 1012258 P4 1.25MM8P Header 8 1

Ref. Farnell: 9733116 + 9733060 P5 1.25MM4P Header 4 1

Ref. Farnell:1012262 + 1012258 P6 1.25MM8P Header 8 1

NPN General-purpose Transistor Q1 SOT23 BC847 1

NPN General-purpose Transistor Q2 SOT23 BC847 1

NPN General-purpose Transistor Q3 SOT23 BC847 1

NPN General-purpose Transistor Q4 SOT23 BC847 1

NPN General-purpose Transistor Q5 SOT23 BC847 1

NPN General-purpose Transistor Q6 SOT23 BC847 1

NPN General-purpose Transistor Q7 SOT23 BC847 1

NPN General-purpose Transistor Q8 SOT23 BC847 1

Resistor Farnell:1099812 R1 CR2012-0805 Res2 1 1K
Resistor, 0805 330R
Ref. Farnell: 1099797 R2 CR2012-0805 Res1 1 330R

Resistor R3 CR2012-0805 Res2 1 4K7

Resistor R4 CR2012-0805 Res2 1 4K7

Resistor R5 CR2012-0805 Res2 1 4K7

Resistor R6 CR2012-0805 Res2 1 4K7

Resistor R7 CR2012-0805 Res2 1 4K7

Resistor R8 CR2012-0805 Res2 1 4K7

Resistor R9 CR2012-0805 Res2 1 4K7

Resistor R10 CR2012-0805 Res2 1 4K7

Microcontroller uP1 PQFP64 MSP430F149 1

Surface Mount Quartz Crystal Y1 85SMX 85SMX 1 32 kHz

Figure 15-21 presents the PCB mask to integrate the MSP430. The
detailed PCB mask (scale 1x1) can be found in file PCB_mask.dxf.

Lab11a. RoboSapien powered by MSP430

www.msp430.ubi.pt Copyright 2009 Texas Instruments, All Rights Reserved 15-23

Figure 15-21. MSP430 PCB mask.

This task requires the fabrication and assembly of the components
and devices on the proposed PCB.

After this, proceed with the removal of the original controller from
the RoboSapien PCB. It is recommended that if the connections that
were hidden below the U2 controller are checked.

Figure 15-22 shows a detailed figure of the original PCB, without the
ASIC.

Figure 15-22. RoboSapien PCB without U2 controller.

(a) RoboSapien PCB without controller. (b) Original ASIC.

The next task requires soldering wires to the RoboSapien PCB to
each pin location of the removed U2 controller. Figure 15-23 shows
the MSP430 pins connections (connections P3 to P5 of Figure 15-20)
to the original PCB.

Advanced Laboratories

15-24 Copyright 2009 Texas Instruments, All Rights Reserved www.msp430.ubi.pt

Figure 15-23. MSP430 PCB connections to the original PCB.

Figure 15-24 shows the MSP430 PCB mounted on the RoboSapien
back and the connections to the original PCB assembled in the RS.

Figure 15-24. MSP430 PCB developed to control the RoboSapien.

(a) Connections to the RoboSapien PCB. (b) New PCB with the MSP430.

RFT / RFG

LSH

LEL

LFT / LFG

IR

N/A

N/A

N/A

N/A

L8

M1+

M1-

Gnd

(N/A) SPK1

(N/A) SPK2

M2+

M2-

M3+

Lab11a. RoboSapien powered by MSP430

www.msp430.ubi.pt Copyright 2009 Texas Instruments, All Rights Reserved 15-25

15.1.4 MSP430 C code programming

The following task concerns the development of the C programming
code of the MSP430 microcontroller substituted for the original
ASIC.

Project files

 C source files: Chapter 15 > Lab11a > main.c

 Chapter 15 > Lab11a > Global.h

 Chapter 15 > Lab11a > Commands.h

 Chapter 15 > Lab11a > Commands.c

 Chapter 15 > Lab11a > Actions.h

 Chapter 15 > Lab11a > Actions.c

Overview

The C code allows the MSP430 to control the RS movements. The C
code developed allows the addition of new movements and to
provide new features for the RS, making use of the peripherals
included in the MSP430 devices.

Resources

TIMER_A is configured in compare mode providing an ISR each 1
msec.

Timer_B is configured in capture mode providing an ISR to
implement the receiver command task.

This application makes use of the following MSP430F149 resources:

Timer_A;

Timer_B;

I/O ports;

Interrupts;

Software application organization

The application starts by defining the MSP430 resources used, such
as I/O ports and timers (Timer_A and Timer_B) to implement the IR
command receiver task (Commands.h and Commands.c) and the
System task, to drive the motors and LEDs, in accordance with a
desired action, and monitors the switches (Actions.h and
Actions.c).

Advanced Laboratories

15-26 Copyright 2009 Texas Instruments, All Rights Reserved www.msp430.ubi.pt

The file main.c begins by reading the previous files and defining the
movement tables “action data tables”. These tables contain the
time to toggle each motor state (active/inactive), the LEDs patterns,
the initial active motors and the enabled motors to provide the
desired movement. The tables are constructed with the information
collected in Step2E and Step2F.

Then, it defines the decoder tables containing the digital values of
the IR commands (information collected in the Step2G).

The basic principles of the software are laid down in steps A to D:

 A. Organization of the information concerning the RS
actions

The information is organized as presented in Figure 15-25. The
table pointers ensure rapid access to the “access table”
information:

 This table contains all the structure addresses containing the
data for the RS movements;

 The movements are defined in the data structures “data
movements ()”;

 This structure contains the time and sequence data for the
operation of all motors, the initial state and the stop
command;

 Each motor starts at the initial state and toggles between
states On and Off when the timer decreases to 0 (see Figure
15-26);

 When counter reaches 0, the next timer is activated;

 The motor stops if the counter reaches 0 and the next count
contains zero.

Figure 15-25. Organization of the RoboSapien movement information.

Lab11a. RoboSapien powered by MSP430

www.msp430.ubi.pt Copyright 2009 Texas Instruments, All Rights Reserved 15-27

 B. Logic motors

For the RS motors, there are 3 defined states:

 Rotate clockwise;

 Rotate counter clockwise;

 Stop.

Each physical motor is implemented as two logical motors (see
Figure 15-26).

Example: The physical motor M1 is represented by two logical
motors M1+ and M1-, depending on the rotation direction.

If M1 = “state 0”, then M1+ = “High” and M1- = “Low”,
consequently the physical motor M1 runs counter clockwise.

(Note: M1+ and M1- cannot have the same high state because in
this case it will generate a short circuit).

Figure 15-26. Software operation principle.

Advanced Laboratories

15-28 Copyright 2009 Texas Instruments, All Rights Reserved www.msp430.ubi.pt

 C. Command coding

The IR commands are decoded and the resulting command will
cause a memory reload action, with the new data for the System
Task function.

 D. Motors activation function (System Task)

 When the RS receives a new decoded command, it causes a
memory load with the information for this new movement;

 The function will act on this data stored in RAM;

 The function counts the time, toggles the motors and LED
states, and loads the new times until the movement ends;

 This function is associated with a MSP430 counter and it is
executed once every 1 msec;

 This function also monitors the state of the emergency
interrupts;

The C code is composed of several routines, each of which is
dedicated to several tasks. In Figure 15-27 to Figure 15-29 are to be
found Background and System tasks block diagrams and the IR task
state machine.

Figure 15-27. Background task block diagram.

Lab11a. RoboSapien powered by MSP430

www.msp430.ubi.pt Copyright 2009 Texas Instruments, All Rights Reserved 15-29

Figure 15-28. System task block diagram.

Advanced Laboratories

15-30 Copyright 2009 Texas Instruments, All Rights Reserved www.msp430.ubi.pt

Figure 15-29. Command IR task state machine.

Figure 15-30 shows the block diagram of the software architecture.

Figure 15-30. Software architecture block diagram.

Lab11b. RF link with eZ430-RF2500

www.msp430.ubi.pt Copyright 2009 Texas Instruments, All Rights Reserved 15-31

15.1.5 Tests and development of new functionalities

The final task consists of performing tests to evaluate the robot
movements and tuning slight discrepancies;

During this task, it is proposed to develop new functionalities
because the substitution of the U2 controller by the MSP430 allows
the RoboSapien to have an evolutionary capability, providing it with
new features. Typical examples of these new features that you can
develop are:

 Substitution of the IR remote control commands by wireless
communications using the eZ430-RF2500;

 Expand computation capabilities using a powerful MSP430
device, in order to include features such as voice commands;

 Integrate sensors (optical, acoustics and others...) and a digital
camera to provide more autonomy to the RoboSapien.

Now, is up to you! Try to reach the next step of RoboSapien
evolution.

15.1.6 Acknowledgments

This laboratory was developed with the help of Filipe Martins and
Tiago Godinho, who developed this laboratory as the last year
project for the undergraduate course of Electromechanical
Engineering.

Advanced Laboratories

15-32 Copyright 2009 Texas Instruments, All Rights Reserved www.msp430.ubi.pt

15.2 Lab11b. RF link with eZ430-RF2500

15.2.1 Introduction

This laboratory demonstrates the operation of a small wireless
communication application. It is an integrated project using some
peripherals of the MSP430, in particular the USCIx communication
modules. Additionally, it uses the CC2500 radio transceiver as an
interface to external devices.

The application is characterized by its simplicity. However it is
extremely motivating to students because it uses the IO console to
allow easy interaction with the system. The implementation of this
laboratory concerns sending and receiving text messages, making
use of RF links between the central station (base station) and the
various peripheral units (remote stations).

This laboratory seeks to achieve the following objectives:

 Demonstrate the importance of the software organization as a
fundamental part of an embedded systems project, making use of
an initial approach to the problem in a top-down manner, with the
necessary functional abstraction leading to the organization of the
software by layers;

 Exemplify the management of a complex project by integrating
together more than one functional module.

 Develop a modular arrangement that in practice leads to the
coexistence of several functional modules in a single software
project;

 Exploit the wireless communications capability, demonstrating
its practical advantages;

 Consolidate knowledge acquired during the previous
laboratories, namely, during the MSP430 communication interface
laboratories, such as the SPI mode to access the CC2500
transceiver and the UART mode to interface to the IO console.

15.2.2 The application

The purpose of this laboratory is to establish communications
between various RF stations. The stations are identified by an
identifier (ID), that is, the address for presentation to the network.
When a station wants to communicate with another station, it must
give the address of the target station in the message.

The CC2500 has several ways to communicate, which affects the
size of the exchanged messages. In order to simplify this procedure,
it was decided to use the fixed size method for address + data
(message maximum size of 64 Bytes). This corresponds to the size
of CC2500 FIFO. Figure 15-31 below shows the format of the
messages being exchanged.

Lab11b. RF link with eZ430-RF2500

www.msp430.ubi.pt Copyright 2009 Texas Instruments, All Rights Reserved 15-33

Figure 15-31. CC2500 packages format.

This laboratory has two stations with distinct functional behaviour
and consequently differences in code. One assumes the base
function and has the task of receiving messages from all peripheral
stations, working as a radio beacon, sending acknowledge messages
to all remote stations. Figure 15-32 illustrates this procedure.

Figure 15-32. Application block diagram.

Advanced Laboratories

15-34 Copyright 2009 Texas Instruments, All Rights Reserved www.msp430.ubi.pt

15.2.3 The hardware

The application is ready to run on the eZ430-RF2500 hardware
development kit (see Chapter 3 for details). The devices used are
the:

 CC2500 radio transceiver;

 MSP430F2274;

 RS232 interface through the USB interface available for
development.

Figure 15-33. eZ430-RF2500 hardware development kit.

The CC2500 device is a radio frequency transceiver operating in the
widely accepted ISM/SRD (Industrial-Scientific-Medical/Short-
Range-Devices) of 2.4 GHz frequency band (see Figure 15-34). It is
a low-cost device, with low power consumption designed for
consumer electronics applications.

Figure 15-34. Electromagnetic Spectrum – Radio Spectrum.

Lab11b. RF link with eZ430-RF2500

www.msp430.ubi.pt Copyright 2009 Texas Instruments, All Rights Reserved 15-35

The almost total absence of formatting protocol leaves the user to
define their own communications protocol in software that best fits
their needs.

The CC2500 is a low pin-out device, because it integrates all radio
functions except the antenna (Figure 15-35). This device is not
sufficiently independent so that it can operate without the aid of a
microcontroller. When coupled to the MSP430, it makes the
connection between them through SPI for access to the internal
registers and uses two pins of GPIO to flag the operation status. In
the particular case of the eZ430:

 SPI interface belongs to the USCIB0 unit;

 Status pins are the GDO0 and GDO2, connected to the Port2
pins P2.6 and P2.7 respectively.

Figure 15-35. CC2500 RF transceiver.

15.2.4 The software

Internal structure

The software is structured in layers and follows the structure shown
in Figure 15-36:

 At the base of the structure is the hardware abstraction layer,
responsible for separating the higher layers software from the
hardware;

 The SPI layer is a middle layer that ensures the communication
functions for the proper operation the CC2500;

Advanced Laboratories

15-36 Copyright 2009 Texas Instruments, All Rights Reserved www.msp430.ubi.pt

 The UART layer contains the functions needed for the eZ430
connection with the PC via an RS232 connection;

 The CC2500 layer provides the access and control functions for
the CC2500, using the SPI and the GPIO interfaces for status
verification;

 The final layer concerns the application and makes use of the
features offered by lower level layers to implement the tasks
necessary for the proper operation of the application.

Figure 15-36. Software structure.

The software is composed of several layers as previously described.
Each of these sections has different functional responsibilities. The
following tables present the composition of the files and the main
functions performed by each layer.

Table 15-8. Hardware definition layer.

File Description
TI_CC_CC1100-CC2500.h Definitions specific to the CC1100/2500

devices (Chipcon’s/TI SmartRF Studio
software can assist in generating register

contents)
TI_CC_MSP430.h Definitions specific to the MSP430 device

TI_CC_hardware_board.h Definitions specific to the board
(connections between MSP430 and

CCxxxx)

Table 15-9. SPI layer.

File Description

TI_CC_spi.h Function declarations for hal_spi.c

TI_CC_spi.c Functions for accessing

CC1100/CC2500 registers via SPI

from MSP430

Lab11b. RF link with eZ430-RF2500

www.msp430.ubi.pt Copyright 2009 Texas Instruments, All Rights Reserved 15-37

Table 15-10. CC2500 layer.

File Description

cc1100-CC2500.c Initialization of messages, transmission
and reception functions.

TI_CC_CC1100-CC2500.h Function declarations for cc1100-CC2500.c

Table 15-11. UART layer.

File Description

hal_uart.c Initialization of messages and transmission
functions via RS232.

hal_uart.h Function declarations for hal_uart.c

Configuration

Before the stations become operational, it is necessary to correctly
start-up the multiple hardware modules, as well as the various
software modules. Figure 15-37 shows this procedure. It is
important to emphasize that the address of the stations need to be
changed during compilation, to allocate the different addresses.

Figure 15-37. Station initialization algorithm.

START

Initialize MS 430 Interface

Power-Up reset signal
sequence to CC2500

Write RF Settings to
CC2500

Configure MSP430 IO

Put CC2500 in RX state

Enter Sleep mode 3

Set device Adress

Advanced Laboratories

15-38 Copyright 2009 Texas Instruments, All Rights Reserved www.msp430.ubi.pt

The functional distinction between the base and remote stations is
achieved through the establishment of the BASE macro, which must
be defined in order to build base station code.

Base station code

The internal architecture of the base station is shown in Figure 15-
38. It is composed of two interrupt service routines (ISRs) and two
buffers:

 The Port2 ISR is enabled by GDO0, which undergoes a low-to-
high transition when it receives a valid Sync_Word. This represents
a high-to-low transition at the end of a message reception, i.e., the
interrupt occurs when the reception of a message ends. The
contents of the received messages are forwarded to the IO console
via the RS232 connection;

 The Timer_A service routine is used to send a message,
checking the reception and proper functioning of the remote
stations (maximum of 15);

 The two buffers are used to hold the messages. The
transmission buffer is used to build the message for later
transmission. The reception buffer is used to house the data read
from the CC2500 FIFO after receiving a message.

Figure 15-38. Internal architecture of the base station application.

UART
RS232

Timer A

CC2500

TX BufferRX Buffer

Timer A
ISR

Port2
ISR

TX

Lab11b. RF link with eZ430-RF2500

www.msp430.ubi.pt Copyright 2009 Texas Instruments, All Rights Reserved 15-39

Remote station code

The internal architecture of the base station is shown in Figure 15-
39. It is composed of two interrupt service routines (ISR) and two
buffers:

 The Port2 ISR is enabled by the GDO0, which undergoes a low-
to-high transition when it receives a valid Sync_Word. This
represents a high-to-low transition at the end of reception of a
message, i.e., the interrupt occurs when a message reception ends.
The contents of the received messages are forwarded to the IO
console via the RS232 connection.

 The Port1 service routine is used to meet the demand caused by
button pushes, sending the signal, which indicates the presence of
the remote station;

 The two buffers are used to hold the messages. The transmit
buffer is used to build the message for later transmission. The
receive buffer is used to house the data read from the CC2500 FIFO
after receiving a message.

Figure 15-39. Internal architecture of the remote station application.

UART
RS232

Keyboard
GPIO

CC2500

TX BufferRX Buffer

Port1
RSI

Port2
RSI

SwitchTX

Algorithms

The main algorithms of the application are the message receive and
transmit:

 The data transmission algorithm implemented by the Port1 ISR
is shown in Figure 15-40.

Advanced Laboratories

15-40 Copyright 2009 Texas Instruments, All Rights Reserved www.msp430.ubi.pt

Figure 15-40. Data transmission algorithm.

Switch pressed?

START ISR P1

Yes

Build a packet

Write data to TX buffer

Put CC2500 in TX state

Wait forGDO0 to finish

Clear flag

END

No Send
Packet

 The data reception is carried out by the Port2 ISR in both
stations, and its algorithm is given in Figure 15-41.

Figure 15-41. Data reception algorithm.

Rx Buffer have
data

START ISR P2

Yes

Read first byteof FIFO
(len byte)

Read len byte from FIFO

Read status byte

Clear flag

END

No

Read
packet

Lab 11c. MSP430 assembly language tutorial

www.msp430.ubi.pt Copyright 2009 Texas Instruments, All Rights Reserved 15-41

15.2.5 New Challenges

Having understood the importance of this laboratory for bringing
together the ideas and concepts taught in this CDROM, it is now the
starting point for other and more exciting new challenges.

Starting with the present laboratory as a knowledge and technology
base, develop an application to exchange written messages between
the various stations scattered inside a room, a kind of "wireless
messenger". The messages typed into the IO console and associated
with an address would be sent by a wireless device to reach the
console addressed. To achieve this objective, it is necessary to
define a small command set available to the user, such as:

 Address allocation to the local station;

 Address allocation to the remote station;

 Sending a message;

 Neighbourhood screening of possible talk partners;

 Among others…

Advanced Laboratories

15-42 Copyright 2009 Texas Instruments, All Rights Reserved www.msp430.ubi.pt

15.3 Lab 11c. MSP430 assembly language tutorial

15.3.1 Exploring the addressing modes of the MSP430 architecture

The MSP430 architecture

The MSP430 CPU incorporates features specifically designed to allow
the use of modern programming techniques such as the
computation of jump addresses, data processing in tables, and the
use of high-level languages such as C. The whole memory space can
be addressed by the MSP430 CPU using seven different addressing
modes, without the need for paging. The MSP430 CPU has a set of
27 instructions that can be used with any of the addressing modes.

Figure 15-42. MSP430 CPU block diagram.

Lab 11c. MSP430 assembly language tutorial

www.msp430.ubi.pt Copyright 2009 Texas Instruments, All Rights Reserved 15-43

The figure above shows the organization of the MSP430 CPU. Note
that the address bus (MAB) and data bus (MDB) are both 16-bits. In
addition, both the registers and the memory can be accessed either
in word format or in byte format. This architecture supports direct
transfer between data memory locations, without passing through
the registers.

All the registers have 16-bits and can be accessed directly through
the instructions, some of which run in a single clock cycle. Some of
the constants most used in programs can be obtained from the
constant generators.

The architecture has a 16-bit ALU, and when processing occurs, it
affects the state of the following flags:

 Zero (Z);

 Carry (C);

 Overflow (V);

 Negative (N).

The MCLK (Master) clock signal is used to drive the CPU.

The MSP430 CPU has 16 registers, some of which are dedicated to
special use:

 R0 (PC) - Program Counter

 This register always points to the next instruction to be
executed;

 Each instruction occupies an even number of bytes.
Therefore, the least significant bit (LSB) of this register is
always zero;

 After fetch of an instruction, this register is incremented so
that it points to the next instruction.

 R1 (SP) - Stack Pointer

 This register is used by the MSP430 CPU to store the return
address of routines or interrupts;

 At each access of the data stack, the pointer is incremented
or decremented automatically;

 The user should be careful to initialize this register with the
valid address of the data stack in RAM;

 Also, the LSB of this register is always zero.

 R2 (SR/CG1) and R3 (CG2) - Status Register and
Constant Generators

 The state of the MSP430 CPU is defined by a set of bits
belonging to register R2;

 This register can only be accessed through the register
addressing mode;

Advanced Laboratories

15-44 Copyright 2009 Texas Instruments, All Rights Reserved www.msp430.ubi.pt

 All other addressing modes are reserved to support the
constant generator;

 The organization of the bits of the R2 register is shown in the
figure below:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Reserved for CG1 V SCG1 SCG0 OSCOFF CPUOFF GIE N Z C

 The following table describes the status of each bit, as well as
its functionality.

Bit Description
8 V Overflow bit.

V = 1 Result of an arithmetic operation overflows the signed-variable range.
7 SCG1 System clock generator 1.

SCG1 = 1 DCO generator is turned off – if not used for MCLK or
SMCLK

6 SCG0 System clock generator 0.
SCG0 = 1 FLL+ loop control is turned off

5 OSCOFF Oscillator Off.
OSCOFF = 1 turns off LFXT1 when it is not used for MCLK or SMCLK

4 CPUOFF CPU off.
CPUOFF = 1 disable CPU core.

3 GIE General Interrupt Enable.
GIE = 1 enables maskable interrupts.

2 N Negative flag.
N = 1 result of a byte or word operation is negative.

1 Z Zero flag.
Z = 1 result of a byte or word operation is 0.

0 C Carry flag.
C = 1 result of a byte or word operation produced a carry.

 Six different constants commonly used in programming can
be generated using the registers R2 and R3, without the need
to add a 16-bit word of code to the instruction. The constants
are chosen based on the instruction bit (As) that selects the
addressing mode.

Table 15-12. Values of the constant generator registers.

Register As Constant Remarks
R2 00 - Register mode
R2 01 (0) Absolute mode
R2 10 00004h +4, bit processing
R2 11 00008h +8, bit processing
R3 00 00000h 0, word processing
R3 01 00001h +1
R3 10 00002h +2, bit processing
R3 11 0FFFFh -1, word processing

Lab 11c. MSP430 assembly language tutorial

www.msp430.ubi.pt Copyright 2009 Texas Instruments, All Rights Reserved 15-45

 Whenever the operand is one of the six constants, the
registers are selected automatically. Therefore, R2 and R3
cannot be addressed explicitly in constant mode, as they act
as source registers.

 R4-R15 - General-purpose registers

 The general purpose registers R4 to R15 can be used as data
registers, data pointers or index registers and can be
accessed either as a byte or as a word;

 These registers support operations on words or bytes;

 Let us look at a specific instruction using registers:

ADD.B R5,0(R6)

 For the first operation, the contents of the least significant
byte of register R5 (0x8F) are added to the contents of the
memory address pointed to by register R6 (0x12). The
contents of this memory address is updated with the result of
the operation (0xA1). The status flags of the CPU are updated
after the execution of the instruction.

Figure 15-43. Example: Register-Byte operation.

 Let us consider another example:

ADD.B @R6,R5

Advanced Laboratories

15-46 Copyright 2009 Texas Instruments, All Rights Reserved www.msp430.ubi.pt

The contents of the memory address pointed to by R6 (0x5F)
are added to the contents of the least significant byte of register
R5 (0x02). The result of this operation (0x61) is stored in the
least significant byte of register R5. Meanwhile, the most
significant byte of the register R5 is set to zero. The flags of the
system status register R2 are updated in accordance with the
result.

Figure 15-44. Example: Byte- Register operation.

Instructions format

In addition to the 27 instructions of the CPU there are 24 emulated
instructions. The CPU coding is unique. The emulated instructions
make it easier to read and write code, but do not have their own
op-codes. In practice, the emulated instructions are replaced
automatically by instructions from the CPU. There are no penalties
for using emulated instructions.

There are three formats used to encode the instructions of the CPU
core:

 Double operand;

 Single operand;

 Jumps.

The instructions for double and single operands, depending on the
suffix used, (.W) word or (.B) byte, allow word or byte data access,
respectively. If the suffix is ignored, the instruction processes word
data by default.

Lab 11c. MSP430 assembly language tutorial

www.msp430.ubi.pt Copyright 2009 Texas Instruments, All Rights Reserved 15-47

The source and destination of the data operated on by an instruction
are defined by the following fields:

 src: source operand addressing as defined in As and S-reg;

 dst: destination operand addressing as defined in Ad and D-reg;

 As: addressing bits used to define the addressing mode used by
the source operand;

 S-reg: register used by the source operand;

 Ad: addressing bits used to define the addressing mode used by
the destination operand;

 D-reg: register used by destination operand;

 B/W: word or byte accessing decision bit.

While all addresses within the address space are valid, it is the
responsibility of the user to check the type of access that is used:
for example, the contents of the flash memory can be used as a
source operand, but can only be written to under certain conditions.

 Instruction format I - double operand

The following figure shows the organization of instructions with two
operands:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Op-code S-Reg Ad B/W As D-Reg

The following table shows the instructions that use this format.

Table 15-13. Double operand instructions.

Mnemonic Operation Description
Arithmetic instructions
ADD(.B or .W) src,dst src+dstdst Add source to destination
ADDC(.B or .W) src,dst src+dst+Cdst Add source and carry to destination
DADD(.B or .W) src,dst src+dst+Cdst (dec) Decimal add source and carry to destination
SUB(.B or .W) src,dst dst+.not.src+1dst Subtract source from destination
SUBC(.B or .W) src,dst dst+.not.src+Cdst Subtract source and not carry from

destination
Logical and register control instructions
AND(.B or .W) src,dst src.and.dstdst AND source with destination
BIC(.B or .W) src,dst .not.src.and.dstdst Clear bits in destination
BIS(.B or .W) src,dst src.or.dstdst Set bits in destination
BIT(.B or .W) src,dst src.and.dst Test bits in destination
XOR(.B or .W) src,dst src.xor.dstdst Exclusive OR (XOR) source with destination
Data instructions
CMP(.B or .W) src,dst dst-src Compare source with destination
MOV(.B or .W) src,dst srcdst Move source to destination

The instructions CMP and SUB are identical, except for the way the
result is stored. The same goes for the BIT and AND instructions.

Advanced Laboratories

15-48 Copyright 2009 Texas Instruments, All Rights Reserved www.msp430.ubi.pt

Examples using double operand format

 Move the contents of register R5 to register R4:

 MOV R5,R4

Instruction code: 0x4504

Op-code S-reg Ad B/W As D-reg
0 1 0 0 0 1 0 1 0 0 0 0 0 1 0 0
MOV R5 Register 16-Bits Register R4

 This instruction uses 1 word;

 The instruction coding specifies that the CPU must perform a
16-bit data MOV instruction, with the source contents in
register R5 and the destination contents in register R4.

 Move the contents of register R5 to the address in memory
TONI:

 MOV R5,TONI

Instruction code: 0x4580

Op-code S-reg Ad B/W As D-reg
0 1 0 0 0 1 0 1 1 0 0 0 0 0 0 0
MOV R5 Symbolic 16 Bits Register PC

 This instruction uses 2 words;

 The instruction coding specifies that the CPU must perform a
16-bit data MOV instruction, with the source contents in
register R5 and the destination memory address pointed to by
X1 + PC;

 The word X1 is stored in the word following the instruction.

 Move the contents between the memory addresses EDEN and
TONI:

 MOV EDEN,TONI

Instruction code: 0x4090

Op-code S-reg Ad B/W As D-reg
0 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0
MOV PC Symbolic 16-Bits Symbolic PC

Lab 11c. MSP430 assembly language tutorial

www.msp430.ubi.pt Copyright 2009 Texas Instruments, All Rights Reserved 15-49

 This instruction uses 3 words;

 The instruction coding specifies that the CPU must perform a
16-bit data MOV instruction, with source contents of the EDEN
memory address pointed to by X1 + PC to the TONI memory
address pointed to by X2 + PC;

 The X1 word followed by the word X2 are stored in the 2
words after the instruction.

 Instruction format II - Single operand

The instructions with a single operand are coded using the structure
described in the following figure:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Op-code B/W Ad D/S-Reg

The set of instructions that use this coding method is shown in the
following table:

Table 15-14. Single operand instructions.

Mnemonic Operation Description
Logical and register control instructions
RRA(.B or .W) dst MSBMSB…LSBC Rotate destination right
RRC(.B or .W) dst CMSB…LSBC Rotate destination right through (from)

carry
SWPB(or .W) dst Swap bytes Swap bytes in destination
SXT dst bit 7bit 8…bit 15 Sign extend destination
PUSH(.B or .W) src SP-2SP, src@SP Push source on stack
Program flow control instructions
CALL(.B or .W) dst SP-2SP, PC+2@SP

dstPC
Subroutine call to destination

RETI TOSSR, SP+2SP
TOSPC, SP+2SP

Return from interrupt

The CALL instruction can be used with any addressing mode. The
word following the instruction contains the routine address when the
symbolic, immediate, absolute or indexed addressing modes are
used.

Examples using single operand format

 Rotate the contents of register R5 to the right with carry flag:

 RRC R5

Advanced Laboratories

15-50 Copyright 2009 Texas Instruments, All Rights Reserved www.msp430.ubi.pt

Instruction code: 0x1005

Op-code B/W Ad D-reg
0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1

RRC 16 bits Register R5

 This instruction uses 1 word;

 The instruction coding specifies that the CPU must perform a
16-bit data RRC instruction with the contents of the register
R5.

 Rotate the contents of memory location TONI to the right with
carry flag:

 RRC TONI

Instruction code: 0x1010

Op-code B/W Ad D-reg
0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0

RRC 16 bits Symbolic PC

 This instruction uses 2 words;

 The instruction coding specifies that the CPU must perform a
16-bit data RRC instruction using the value pointed to by X1 +
PC;

 The word X1 is stored in the word following the instruction.

 Jump instructions

These instructions are used to direct program flow to another part of
the program. The instruction format used to represent jumps is
shown in the following figure:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Op-code C 10 bit PC offset

The set of instructions that use this format is given in the following
table:

Lab 11c. MSP430 assembly language tutorial

www.msp430.ubi.pt Copyright 2009 Texas Instruments, All Rights Reserved 15-51

Table 15-15. Program flow control (jump) instructions.

Mnemonic Description
Program flow control instructions
JEQ/JZ label Jump to label if zero flag is set
JNE/JNZ label Jump to label if zero flag is reset
JC label Jump to label if carry flag is set
JNC label Jump to label if carry flag is reset
JN label Jump to label if negative flag is set
JGE label Jump to label if greater than or equal
JL label Jump to label if less than
JMP label Jump to label unconditionally

The op-code always takes the value 001b, indicating that it is a
jump instruction. The condition on which there is a jump depends on
the 3-bit C (condition) field and may take the following values:

 000b: jump if not equal;

 001b: jump if equal;

 010b: jump if carry flag equal to zero;

 011b: jump if carry flag equal to one;

 100b: jump if negative (N = 1);

 101b: jump if greater than or equal (N = V or (N OR V = 0));

 110b: jump if lower (N! = V or (V XOR N = 1));

 111b: unconditional jump.

The jumps are executed based on the program counter (PC)
contents, are controlled by the status bits, but do not affect the
status bits. The jump offset is represented by a signed 10-bit value,
as given in the following expression:

22 offsetoldnew PCPCPC

The range of the jump can be between -511 to 512 words in relation
to the PC position.

Examples using jump format

 Continue to execute code at the label main if carry flag is active:

 JC main

Instruction code: 0x2FE4

Op-code C 10-Bit PC offset
0 0 1 0 1 1 1 1 1 1 1 0 0 1 0 0

JC carry = 1 - 0x1C

Advanced Laboratories

15-52 Copyright 2009 Texas Instruments, All Rights Reserved www.msp430.ubi.pt

 The instruction uses 1 word;

 The instruction coding specifies that the PC must be loaded
with the value resulting from the offset - 0x1C being applied
to the previous expression.

 Continue execution unconditionally at the label main:

JMP main

Instruction code: 0x3FE3

Op-code C 10-Bit PC offset
0 0 1 1 1 1 1 1 1 1 1 0 0 0 1 1
JMP unconditional - 0x1D

 This instruction uses 1 word;

 The instruction coding specifies that the PC must be loaded
with the value resulting from the offset - 0x1D being applied
to the previous expression.

 Emulated instructions

In addition to the 27 CPU instructions, there are 24 emulated
instructions, which are listed in the following table:

Table 15-16. Emulated instructions.

Mnemonic Operation Emulation Description
Arithmetic instructions
ADC(.B or .W) dst dst+Cdst ADDC(.B or .W) #0,dst Add carry to

destination
DADC(.B or .W) dst dst+Cdst (decimally) DADD(.B or .W) #0,dst Decimal add carry to

destination
DEC(.B or .W) dst dst-1dst SUB(.B or .W) #1,dst Decrement

destination
DECD(.B or .W) dst dst-2dst SUB(.B or .W) #2,dst Decrement

destination twice
INC(.B or .W) dst

dst+1dst ADD(.B or .W) #1,dst Increment destination

INCD(.B or .W) dst dst+2dst ADD(.B or .W) #2,dst Increment destination
twice

SBC(.B or .W) dst dst+0FFFFh+Cdst
dst+0FFhdst

SUBC(.B or .W) #0,dst Subtract source and
borrow /.NOT. carry
from dest.

Logical and register control instructions
INV(.B or .W) dst .NOT.dstdst XOR(.B or .W) #0(FF)FFh,dst Invert bits in

destination
RLA(.B or .W) dst CMSBMSB-

1…LSB+1LSB0
ADD(.B or .W) dst,dst Rotate left

arithmetically
RLC(.B or .W) dst CMSBMSB-

1…LSB+1LSBC
ADDC(.B or .W) dst,dst Rotate left through

carry

Lab 11c. MSP430 assembly language tutorial

www.msp430.ubi.pt Copyright 2009 Texas Instruments, All Rights Reserved 15-53

Table 15-16. Emulated instructions (continued).

Mnemonic Operation Emulation Description
Data instructions
CLR(.B or .W) dst 0dst MOV(.B or .W) #0,dst Clear destination

CLRC 0C BIC #1,SR Clear carry flag

CLRN 0N BIC #4,SR Clear negative flag

CLRZ 0Z BIC #2,SR Clear zero flag

POP(.B or .W) dst @SPtemp

SP+2SP
tempdst

MOV(.B or .W) @SP+,dst Pop byte/word from
stack to destination

SETC 1C BIS #1,SR Set carry flag

SETN 1N BIS #4,SR Set negative flag

SETZ 1Z BIS #2,SR Set zero flag

TST(.B or .W) dst dst + 0FFFFh + 1
dst + 0FFh + 1

CMP(.B or .W) #0,dst Test destination

Program flow control
BR dst

dstPC MOV dst,PC Branch to destination

DINT 0GIE BIC #8,SR Disable (general)
interrupts

EINT 1GIE BIS #8,SR Enable (general)
interrupts

NOP None MOV R3,R3 No operation

RET @SPPC
SP+2SP

MOV @SP+,PC Return from
subroutine

Examples using emulated instructions

 Clear the contents of the register R5:

 CLR R5

Instruction code: 0x4305

Op-code S-reg Ad B/W As D-reg
0 1 0 0 0 0 1 1 0 0 0 0 0 1 0 1
MOV R3 Register 16 Bits Register R5

 This instruction is equivalent to using the instruction
MOV R3, R5 where R3 contains the value #0.

 Increment the content of the register R5:

 INC R5

Advanced Laboratories

15-54 Copyright 2009 Texas Instruments, All Rights Reserved www.msp430.ubi.pt

Instruction code: 0x5315

Op-code S-reg Ad B/W As D-reg
0 1 0 1 0 0 1 1 0 0 0 1 0 1 0 1
ADD R3 Register 16 Bits Indexed R5

 This instruction is equivalent to using the instruction
ADD 0(R3),R5 where R3 takes the value #1.

 Decrement the contents of the register R5:

 DEC R5

Instruction code: 0x8315

Op-code S-reg Ad B/W As D-reg
1 0 0 0 0 0 1 1 0 0 0 1 0 1 0 1

SUB R3 Register 16 Bits Indexed R5

 This instruction is equivalent to using the instruction
SUB 0(R3),R5 where R3 takes the value #1.

 Decrement by 2 the contents of the register R5:

 DECD R5

Instruction code: 0x8325

Op-code S-reg Ad B/W As D-reg
1 0 0 0 0 0 1 1 0 0 1 0 0 1 0 1

SUB R3 Register 16 Bits Indirect R5

 This instruction is equivalent to using the instruction
SUB @R3,R5 where R3 points to the value #2.

 Do not carry out any operation:

 NOP

Instruction code: 0x4303

Op-code S-reg Ad B/W As D-reg
0 1 0 0 0 0 1 1 0 0 0 0 0 0 1 1
MOV R3 Register 16 Bits Register R3

 This instruction is equivalent to using the instruction MOV
R3,R3 and therefore the contents of R3 is moved to itself.

Lab 11c. MSP430 assembly language tutorial

www.msp430.ubi.pt Copyright 2009 Texas Instruments, All Rights Reserved 15-55

 Add the carry flag to the register R5:

 ADC R5

Instruction code: 0x6305

Op-code S-reg Ad B/W As D-reg
0 1 1 0 0 0 1 1 0 0 0 0 0 1 0 1
ADDC R3 Register 16 Bits Register R5

 This instruction is equivalent to using the instruction
ADDC R3,R5 where register R3 takes the value #0.

Addressing modes

There are seven addressing modes to indicate the location of the
source operand and four addressing modes to indicate the location
of the destination operand. The operands can be located in any
memory space address, therefore it is up to the user to be aware of
the effects that the accesses may have. The addressing modes are
selected by the As and Ad fields that make up the data structure of
the instruction. The following table summarizes these addressing
modes:

Table 15-17. Source and destination operands of the different addressing modes.

Operands (single-operand instructions)
Source operands (double-operand

instructions)

Destination operands (double-operand

instructions)
Addressing mode As S-reg Addressing mode Ad D-reg
Register mode 0 0 0 0 0 0 to 1 1 1 1 Register mode 0 0 0 0 0 to 1 1 1 1
Indexed mode 0 1 0 0 0 1, 0 0 1 1 to

1 1 1 1
Indexed mode 1 0 0 0 1, 0 0 1 1 to

1 1 1 1
Symbolic mode 0 1 0 0 0 0 Symbolic mode 1 0 0 0 0
Absolute mode 0 1 0 0 1 0 Absolute mode 1 0 0 1 0
Indirect register

mode
1 0 0 0 0 0 to 1 1 1 1

Indirect auto
increment mode

1 1 0 0 0 1 to 1 1 1 1

Immediate mode 1 1 0 0 0 0

 Register mode

In register addressing mode, the contents of the register is used as
an operand. This type of addressing mode can be used both for the
source operand and the destination operand.

 Move the contents of the register R5 to the register R4:

 MOV R5,R4

Advanced Laboratories

15-56 Copyright 2009 Texas Instruments, All Rights Reserved www.msp430.ubi.pt

Instruction code: 0x4504

Op-code S-reg Ad B/W As D-reg
0 1 0 0 0 1 0 1 0 0 0 0 0 1 0 0
MOV R5 Register 16-bit Register R4

 The 16-bit contents (B/W = 0) of the register R5
(S-reg = 0101) is transferred to the register R4
(D-reg = 0100);

 After instruction fetch, the PC is incremented by 2 and points
to the next instruction;

 The addressing mode used for the source and destination
operands is specified by Ad = 0 (Register mode) and As = 00
(Register mode).

CPU Registers

Before After

0x3110PC 0x3112PC

0xXXXXR4 R4 0xA0FD

0xA0FDR5 0xA0FDR5

Address Space

0x4504 PC0x3110
0x3112

0x4504

PC

0x3110
0x3112

Before After
Code

 Indexed mode

In indexed mode, whether it is used to indicate the source address
or the destination address of the operands, the sum of the register
and the signed offset points to the operand in memory. The offset
value is stored in the word following the instruction. After
execution, the contents of the registers are not affected and the PC
is incremented to point to the next instruction to be executed. This
addressing mode is useful to access data stored in tables. Apart
from the registers PC and SR, all other registers can be used as an
index in indexed mode.

 Move the byte pointed to by (R5 + 4) to the byte pointed to by
(R4 + 1):

 MOV.B 4(R5),1(R4)

Instruction code: 0x45D4

Op-code S-reg Ad B/W As D-reg
0 1 0 0 0 1 0 1 1 1 0 1 0 1 0 0
MOV R5 Indexed 8-bit Indexed R4

 The instruction coding specifies that the byte (B/W = 1)
pointed to by the sum of the register R5 contents

Lab 11c. MSP430 assembly language tutorial

www.msp430.ubi.pt Copyright 2009 Texas Instruments, All Rights Reserved 15-57

(S-reg = 0101) and the word X1 should be moved to the
memory address pointed to by the sum of the register R4 (D-
reg = 0100) contents and the word X2;

 The words X1 and X2 are located in the memory addresses
following the instruction;

 The addressing mode used for the source and destination
operands is specified by the bits Ad = 1 (Indexed mode) and
As = 01 (Indexed mode), because D-reg = 0100 and S-reg
= 0101 respectively.

Data

CPU Registers

Before After

0x3110PC 0x3116PC

0x0200R4 R4 0x0200

0x0200R5 0x0200R5

Address Space

0x0200
0x0004
0x0204

0x9ABC
0x5678
0x1234

0x9ABC
0x5678
0x129A

4(R5)

0x0200
0x0202
0x0204
0x0206

0x0200
0x0202
0x0204
0x0206

4(R5)

0x0200
0x0001
0x0201

0x9ABC
0x5678
0x12340x0200

0x0202
0x0204
0x0206

0x9ABC
0x5678
0x129A0x0200

0x0202
0x0204
0x0206

1(R4) 1(R4)

0x0001
0x0004
0x45D4 PC0x3110

0x3112
0x3114
0x3116

0x0001
0x0004
0x45D4

PC

0x3110
0x3112
0x3114
0x3116

Before After
Code

X1
X2

X1
X2

Destination Address

Source Address

(R4)
(X2)

(R5)
(X1)

 Symbolic Mode

In symbolic addressing mode, for either source or destination
operands, the address is calculated by adding an offset to the
program counter (PC) register. The offset value is obtained by
determining the code position in the memory, then calculating the
difference between the offset address and the memory position that
should be achieved. The assembler determines the offset value and
puts it in the word following the instruction. After the execution of
the current instruction, the PC register is incremented to point to the
next instruction.

Although this mode of address is similar to register mode it request
more cycles, but now, the program counter (PC) is used to point to
the operand. This addressing mode can be used to specify the
source and the destination of the data.

 Move the word pointed to by EDEN to the word pointed to by
TONI:

 MOV EDEN,TONI

Advanced Laboratories

15-58 Copyright 2009 Texas Instruments, All Rights Reserved www.msp430.ubi.pt

Instruction code: 0x4090

Op-code S-reg Ad B/W As D-reg
0 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0
MOV PC Symbolic 16-bit Symbolic PC

 The instruction coding specifies that the value pointed to by

the sum of the PC register contents (S-reg = 0) and the
word X1 should be moved to the memory address pointed to
by the sum of the register PC contents (D-reg = 0) and the
word X2;

 The words X1 and X2 are stored in the memory addresses
following the instruction;

 The addressing mode used for the source and destination
operands is specified by the bits Ad = 1 (Symbolic mode) and
As = 01 (Symbolic mode), because D-reg = 0000 and S-reg
= 0000, respectively.

Data

CPU Registers

Before After

Address Space

0x9ABC
0x5678
0x1234

0x9ABC
0x1234
0x1234EDEN0x0200

0x0202
0x0204
0x0206

0x0200
0x0202
0x0204
0x0206

EDEN

0x9ABC
0x5678
0x12340x0200

0x0202
0x0204
0x0206

0x9ABC
0x1234
0x12340x0200

0x0202
0x0204
0x0206

TONI TONI

0xD0EE
0xD0EE
0x4090 PC0x3110

0x3112
0x3114
0x3116

0xD0EE
0xD0EE
0x4090

PC

0x3110
0x3112
0x3114
0x3116

Before After
Code

X1
X2

X1
X2

0x3110PC 0x3116PC

0x3112
0xD0EE
0x0200

0x3114
0xD0EE
0x0202

Destination Address

Source Address

(PC)
(X2)

(PC)
(X1)

 Absolute Mode

Another way of addressing the data is defined in absolute mode. The
numeric value of the data memory address is placed after the
instruction. The difference between this addressing mode and
indexed mode is that the register R2 is now used as an index, using
the constant generator to generate the value zero. This addressing
mode can be used to define both the data source address and the
data destination address.

 Move the word pointed to by EDEN to the word pointed to by
TONI:

 MOV &EDEN,&TONI

Lab 11c. MSP430 assembly language tutorial

www.msp430.ubi.pt Copyright 2009 Texas Instruments, All Rights Reserved 15-59

Instruction code: 0x4292

Op-code S-reg Ad B/W As D-reg
0 1 0 0 0 0 1 0 1 0 0 1 0 0 1 0
MOV R2/CG1 Absolute 16-bit Absolute R2/CG1

 From the instruction coding it can be seen that the register
R2/CG1 (S-reg = 0010) and (D-reg = 0010) is used as an
addresses index, in which the constant generator loads the
value zero;

 When the contents of this register is added to the offset value
X1 or X2 located in the two words following the instruction,
the source and destination addresses of the operands are
obtained;

 The addressing mode used for the source and destination
operands is specified by the bits Ad = 1 (Absolute mode) and
As = 01 (Absolute mode), because D-reg = 0010 and
S-reg = 0010, respectively.

Data

CPU Registers

Before After

Address Space

0x9ABC
0x5678
0x1234

0x9ABC
0x1234
0x1234EDEN0x0200

0x0202
0x0204
0x0206

0x0200
0x0202
0x0204
0x0206

EDEN

0x9ABC
0x5678
0x12340x0200

0x0202
0x0204
0x0206

0x9ABC
0x1234
0x12340x0200

0x0202
0x0204
0x0206

TONI TONI

0x0202
0x0200
0x4292 PC0x3110

0x3112
0x3114
0x3116

0x0202
0x0200
0x4292

PC

0x3110
0x3112
0x3114
0x3116

Before After
Code

X1
X2

X1
X2

0x3110PC 0x3116PC

0x0000
0x0200
0x0200

0x0000
0x0202
0x0202

Destination Address

Source Address

(R2)
(X2)

(R2)
(X1)

 Indirect register mode

In this addressing mode, any of the 16 CPU registers can be used. If
R2 or R3 are used then a constant value is used as an operand,
#0x04 for R2 and #0x2 for R3. A restriction arises from the fact that
this addressing mode can only be used to specify the source
operand address in dual-operand instructions. A way to avoid this
restriction is to use the indexed mode to indicate the destination
operand address, with a zero offset.

Advanced Laboratories

15-60 Copyright 2009 Texas Instruments, All Rights Reserved www.msp430.ubi.pt

 Move the word pointed to by R5 to the word pointed to by R4:

 MOV @R5,0(R4)

Instruction code: 0x45A4

Op-code S-reg Ad B/W As D-reg
0 1 0 0 0 1 0 1 1 0 1 0 0 1 0 0
MOV R5 Indexed 16-bit Indirect R4

 The instruction coding specifies that the register R5
(S-reg = 0101) has the source address (As = 10);

 The destination address is pointed to in indexed mode
(Ad = 1) by R4 (D-reg = 0100), using a zero value offset.

Data

CPU Registers

Before After

Address Space

0x9ABC
0x5678
0x1234

0x9ABC
0x1234
0x1234@R50x0200

0x0202
0x0204
0x0206

0x0200
0x0202
0x0204
0x0206

@R5

0x9ABC
0x5678
0x12340x0200

0x0202
0x0204
0x0206

0x9ABC
0x1234
0x12340x0200

0x0202
0x0204
0x0206

0(R4) 0(R4)

0x0000
0x45A4 PC0x3110

0x3112
0x3114

0x0000
0x45A4

PC

0x3110
0x3112
0x3114

Before After
Code

X1 X1

0x3110PC 0x3114PC

0x0202
0x0000
0x0202

Destination Address

Source Address

(R4)
(X1)

0x0202R4 R4 0x0202

0x0200R5 0x0200R5

 Indirect auto-increment mode

This addressing mode is similar to the previous one. The contents of
the source register are incremented according to the data type
processed. If the data value is of size byte, the source register is
incremented by 1. If the data value is of size word, the register is
incremented by 2. Note that this addressing mode can only be used
to define the source operand in dual-operand instructions.

 Move the word pointed to by R5 to the word pointed to by R4,
and increment the source pointer:

 MOV @R5+,0(R4)

Lab 11c. MSP430 assembly language tutorial

www.msp430.ubi.pt Copyright 2009 Texas Instruments, All Rights Reserved 15-61

Instruction code: 0x45B4

Op-code S-reg Ad B/W As D-reg
0 1 0 0 0 1 0 1 1 0 1 1 0 1 0 0
MOV R5 Indexed 16-bit Ind. aut. inc. R4

 The instruction coding specifies that the register R5 (S-reg =
0101) has the source address with As = 11;

 The destination address is pointed to in indexed mode by R4
(D-reg = 0100), using a zero value as offset;

 The execution of the instruction increments the contents of
the register R5 by 2.

Data

CPU Registers

Before After

Address Space

0x9ABC
0x5678
0x1234

0x9ABC
0x1234
0x1234@R50x0200

0x0202
0x0204
0x0206

0x0200
0x0202
0x0204
0x0206

@R5

0x9ABC
0x5678
0x12340x0200

0x0202
0x0204
0x0206

0x9ABC
0x1234
0x12340x0200

0x0202
0x0204
0x0206

0(R4) 0(R4)

0x0000
0x45A4 PC0x3110

0x3112
0x3114

0x0000
0x45A4

PC

0x3110
0x3112
0x3114

Before After
Code

X1 X1

0x3110PC 0x3114PC

0x0202
0x0000
0x0202

Destination Address

Source Address

(R4)
(X1)

0x0202R4 R4 0x0202

0x0200R5 0x0202R5

 Immediate mode

The immediate addressing mode allows loading values in registers or
memory addresses. It can only be used as a source operand.

 Move the value 0x0200 to R5:

 MOV #0x0200,R5

Instruction code: 0x4035

Op-code S-reg Ad B/W As D-reg
0 1 0 0 0 0 0 0 0 0 1 1 0 1 0 1
MOV PC Register 16-bit Immediate R5

Advanced Laboratories

15-62 Copyright 2009 Texas Instruments, All Rights Reserved www.msp430.ubi.pt

 The instruction coding specifies that the register PC
(S-reg = 0000) is used to define the location of the word in
memory that loads the register R5 (D-reg = 0101) with
Ad = 11.

 CPU Registers

Before After

Address Space

0x0200
0x4035 PC0x3110

0x3112
0x3114

0x0200
0x4035

PC

0x3110
0x3112
0x3114

Before After
Code

X1 X10x3110PC 0x3114PC

0xXXXXR5 0x0200R5

15.3.2 Exploring the addressing modes of the MSP430X CPU architecture

Main features of the MSP430X CPU architecture

The MSP430X CPU extends the addressing capabilities of the
MSP430 family beyond 64 kB to 1 MB. To achieve this, there are
some changes to the addressing modes and two new types of
instructions. One type of new instructions allows access to the entire
address space, and the other is designed for address calculations.

The MSP430X CPU address bus is 20 bits, but the data bus is still 16
bits. The CPU supports 8-bit, 16-bit and 20-bit memory accesses.
Despite these changes, the MSP430X CPU remains compatible with
the MSP430 CPU, having a similar number of registers. A block
diagram of the MSP430X CPU is shown in the figure below:

Lab 11c. MSP430 assembly language tutorial

www.msp430.ubi.pt Copyright 2009 Texas Instruments, All Rights Reserved 15-63

Figure 15-45. MSP430X CPU block diagram.

Although the MSP430X CPU structure is similar to that of the
MSP430 CPU, there are some differences that will now be discussed.

With the exception of the status register SR, all MSP430X registers
are 20 bits. The CPU can now process 20-bit or 16-bit data.

 R0 (PC) - Program Counter

Has the same function as the MSP430 CPU, although now it has 20
bits.

Advanced Laboratories

15-64 Copyright 2009 Texas Instruments, All Rights Reserved www.msp430.ubi.pt

 R1 (SP) - Stack Pointer

Has the same function as the MSP430 CPU, although now it has 20
bits.

 R2 (SR) - Status Register

Has the same function as the MSP430 CPU, but still only has 16 bits.

Table 15-18. Description of the SR bits.

 R2 (CG1) and R3 (CG2) - Constant Generators

The registers R2 and R3 can be used to generate six different
constants commonly used in programming, without the need to add
an extra 16-bit word of code to the instruction. The constants below
are chosen based on the bit (As) of the instruction that selects the
addressing mode.

Lab 11c. MSP430 assembly language tutorial

www.msp430.ubi.pt Copyright 2009 Texas Instruments, All Rights Reserved 15-65

Table 15-19. Values of constant generators.

Whenever the operand is one of these six constants, the registers
are selected automatically. Therefore, when used in constant mode,
registers R2 and R3 cannot be addressed explicitly by acting as
source registers.

 R4-R15 – General-purpose registers

These registers have the same function as the MSP430 CPU,
although they now have 20 bits. They can store 8-bit, 16-bit or
20-bit data. Any byte written to one of these registers clears bits
19:8. Any word written to one of these registers clears bits 19:16.
The exception to this rule is the instruction SXT, which extends the
sign value to fill the 20-bit register.

The following figures illustrate how the operations are conducted for
the exchange of information between memory and registers, for the
following formats: byte (8 bits), word (16 bits) and address (20
bits).

The following figure illustrates the handling of a byte (8 bits) using
the suffix .B.

Figure 15-46. Example: Register-Byte/Byte-Register operation.

Advanced Laboratories

15-66 Copyright 2009 Texas Instruments, All Rights Reserved www.msp430.ubi.pt

The following figure illustrates the handling of a word (16-bit) using
the suffix .W.

Figure 15-47. Example: Register-Word/Word-Register operation.

The following figure illustrates the manipulation of an address (20
bits) using the suffix .A.

Figure 15-48. Example: Register - Address-Word operation.

Lab 11c. MSP430 assembly language tutorial

www.msp430.ubi.pt Copyright 2009 Texas Instruments, All Rights Reserved 15-67

Figure 15-49. Example: Address-Word - Register operation.

Instructions format for the MSP430X CPU

There are three possibilities in the choice of instructions for use with
the MSP430X CPU:

 Use only the MSP430 CPU instructions taking care to adhere to
the following rules, with the exceptions of the instructions
CALLA/RETA, and BRA:

 Put all the data in memory below 64 kB and access it using
16-bit pointers;

 Place the routines in an address within the range PC32 kB;

 No 20-bit data.

 Use only the MSP430X CPU instructions, with the effect of
reduced application execution speed and an increase in the space
occupied by the program;

 Use an appropriate selection of the instruction types to use.

The MSP430X CPU supports all functions of the MSP430 CPU. It also
offers a set of instructions that provide full access to the 20-bit
addressing space. An additional op-code word is added to some of
the instructions. All addresses, indexes and immediate numbers
have 20 bits.

 Extension word for the register addressing mode

In register addressing mode, the extension word of an instruction of
format type I (two operands) or of format type II (single operand) is
given in the figure below:

Advanced Laboratories

15-68 Copyright 2009 Texas Instruments, All Rights Reserved www.msp430.ubi.pt

Figure 15-50. Extension word of an instruction format types I or II - Register mode.

The description of each field is given in the following table:

Table 15-20. Bit description of the extension word (instruction format types I or II -
Register mode).

The MSP430X CPU supports the repeated execution of the same
instruction, provided that the operands are of the type register. The
repetition is set by the repeat RPT instruction placed before the

Lab 11c. MSP430 assembly language tutorial

www.msp430.ubi.pt Copyright 2009 Texas Instruments, All Rights Reserved 15-69

instruction to be executed. The assembler incorporates information
in the extension word in the field # (bit 7) and the repetition counter
(bits 3:0). An example of this feature will be provided later.

 Extension word for the other addressing modes

The extension word of an instruction in a non-register addressing
mode, whether of format I (double operands) or of format II (single
operand), is shown in the figure below:

Figure 15-51. Extension word of an instruction format types I or II - other modes..

The description of each field is given in the following table:

Table 15-21. Bit description of the extension word (instruction format types I or II - other
mode).

 Extended format I -double operand- instructions

There are twelve extended instructions that use two operands, as
listed in the following table:

Advanced Laboratories

15-70 Copyright 2009 Texas Instruments, All Rights Reserved www.msp430.ubi.pt

Table 15-22. Double operand instructions.

Examples of coding in this format:

 Move the contents of the register R5 to the register R4:

 MOVX R5,R4

Instruction code: 0x1840 – 0x4504

0 0 0 1 1 0 0 ZC # A/L 0 0 n-1/Rn
0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0

Op-code S-reg Ad B/W As D-reg
0 1 0 0 0 1 0 1 0 0 0 0 0 10 0
MOVX R5 Register 16-bit Register R4

 This instruction uses 2 words;

 The instruction coding specifies that the CPU must perform
the 16-bit data function MOVX, with the contents of the source
register R5 to the destination register R4.

 Move the contents of the register R5 to the memory address
TONI:

 MOVX R5,TONI

Lab 11c. MSP430 assembly language tutorial

www.msp430.ubi.pt Copyright 2009 Texas Instruments, All Rights Reserved 15-71

Instruction code: 0x184F – 0x4580

0 0 0 1 1 src 19:16 A/L 0 0 dst 19:16
0 0 0 1 1 0 0 0 0 1 0 0 1 1 1 1

Op-code S-reg Ad B/W As D-reg
0 1 0 0 0 1 0 1 1 0 0 0 0 0 0 0
MOVX R5 Symbolic 16-bits Register PC

 This instruction uses 3 words;

 The instruction coding specifies that the CPU must perform
the 16-bit data function MOVX, the source being the contents
of register R5 and the destination being the memory address
pointed to by (dst 19:16: X1 + PC);

 The destination (dst bits 19:16) is stored in the extension
word and the word X1 is stored in the word following the
instruction.

 Move the contents of the memory address TONI to the register
R5:

 MOVX TONI,R5

Instruction code: 0x1FC0 – 0x4015

0 0 0 1 1 src 19:16 A/L 0 0 dst 19:16
0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0

Op-code S-reg Ad B/W As D-reg
0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 1
MOVX PC Register 16-bit Symbolic R5

 This instruction uses 3 words;

 The instruction coding specifies that the CPU must perform
the 16-bit data function MOVX, the source being the contents
of memory address pointed to by (src 19:16: X1 + PC) and
the destination being register R5;

 The destination (dst bits 19:16) are stored in the extension
word and the word X1 is stored in the word following the
instruction.

 Move the contents of the memory address TONI to the address
memory EDEN:

 MOVX TONI,EDEN

Advanced Laboratories

15-72 Copyright 2009 Texas Instruments, All Rights Reserved www.msp430.ubi.pt

Instruction code: 0x1FCF – 0x4090

0 0 0 1 1 src 19:16 A/L 0 0 dst 19:16
0 0 0 1 1 1 1 1 1 1 0 0 1 1 1 1

Op-code S-reg Ad B/W As D-reg
0 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0
MOVX PC Symbolic 16-Bit Symbolic PC

 This instruction uses 4 words;

 The instruction coding specifies that the CPU must perform
the 16-bit data function MOVX, the source being the contents
of memory address pointed to by (src 19:16: X1 + PC) and
the destination being the contents of the memory address
pointed to by (dst 19:16: X2 + PC);

 The source (src bits 19:16) and the destination (dst bits
19:16) are stored in the extension word. The words X1 and
X2 are stored after the instruction.

 Extended format II - single operand- instructions

The extended instructions of type format II are listed in the table
below:

Table 15-23. Single operand instructions.

Lab 11c. MSP430 assembly language tutorial

www.msp430.ubi.pt Copyright 2009 Texas Instruments, All Rights Reserved 15-73

The MSP430X CPU has some capabilities in additional to those of the
MSP430 CPU:

 The ability to place and remove several registers to/from the
stack using only a single instruction;

 The ability to perform several rotations on the contents of a
register.

Examples of coding in this format:

 Rotate right the 20-bit contents of the register R5 with the carry
flag:

 RRCX.A R5

Instruction code: 0x1800 – 0x1045

0 0 0 1 1 0 0 ZC # A/L 0 0 n-1/Rn
0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0

Op-code B/W Ad D/S-reg
0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 1

RRCX 20-bit Register R5

 This instruction uses 2 words;

 The instruction coding specifies that the CPU must perform
the function RRCX using 20-bit data as the contents of
register R5.

 Rotate right the 20-bit contents of the memory address TONI
with carry flag:

 RRCX.A TONI

Instruction code: 0x180F – 0x1050

0 0 0 1 1 Src 19:16 A/L 0 0 dst 19:16
0 0 0 1 1 0 0 0 0 0 0 0 1 1 1 1

Op-code B/W Ad D/S-reg
0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0

RRCX 20-bit Symbolic PC

 This instruction uses 3 words;

 The instruction coding specifies that the CPU must perform
the function RRCX using 20-bit data as the contents of the
memory address pointed to by (dst 19:16: X1 + PC);

 The destination bits (dst 19:16) are stored in the extension
word and the word X1 is stored in the word following the
instruction;

Advanced Laboratories

15-74 Copyright 2009 Texas Instruments, All Rights Reserved www.msp430.ubi.pt

As the instruction operand is located in memory, not in a CPU
register, two words are used to store the operand, in the format
given in the figure below:

Figure 15-52. Single operand format.

There are some exceptions to the representation of the extended
format II instructions of the MSP430X CPU. The following examples
illustrate these exceptions:

 Store the 20-bit registers R10, R9, R8 on the stack:

 PUSHM.A #3,R10

The instructions PUSHM and POPM are coded according to the figure
given below:

Figure 15-53. PUSHM and POPM coding format.

Instruction code: 0x142A

Op-code n - 1 D-reg
0 0 0 1 0 1 0 0 0 0 1 0 1 0 1 0

PUSHM.A #3 R10

 This instruction uses 1 word;

 The instruction coding specifies that the CPU must perform
the function PUSHM of the 20-bit registers starting at register
R10 and ending at register R8;

 For three registers 6 words (12 Bytes) of stack are used.

Lab 11c. MSP430 assembly language tutorial

www.msp430.ubi.pt Copyright 2009 Texas Instruments, All Rights Reserved 15-75

 Rotate right three times the contents of the 20-bit register R5
with the carry flag:

 RRCM.A #3,R5

The instructions RRCM, RRAM, RRUM and RLAM are coded according to
the figure below:

Figure 15-54. RRCM, RRAM, RLAM coding format.

Instruction code: 0x0845

C n-1 Op-code R-reg
0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 1

 #3 RRCM R5

 This instruction uses 1 word;

 The instruction coding specifies that the CPU must perform
the function RRCM using the 20-bit register R5, a total of 3
times.

 Perform a branch in the program flow:

 BRA R5

This type of instruction can be coded in three different formats, as
show in the figure below:

Figure 15-55. BRA coding format.

Advanced Laboratories

15-76 Copyright 2009 Texas Instruments, All Rights Reserved www.msp430.ubi.pt

Instruction code: 0x05C0

C R-reg Op-code 0(PC)
0 0 0 0 0 1 0 1 1 1 0 0 0 0 0 0

 R5 BRA PC

 This instruction uses 1 word;

 The instruction coding specifies that the CPU must load the
program counter (PC) with the value contained in register R5.

 Call a routine:

 CALLA R5

This type of instruction can be coded in three different formats, as
shown in the figure below:

Figure 15-56. CALL coding format.

Instruction code: 0x1345

Op-code D-reg
0 0 0 1 0 0 1 1 0 1 0 0 0 1 0 1

CALLA R5

 This instruction uses 1 word;

 The instruction coding specifies that the CPU must load the
PC with the value contained in register R5;

 The execution of this instruction saves the PC on the data
stack, so it can return at the end of the execution of the
routine.

Lab 11c. MSP430 assembly language tutorial

www.msp430.ubi.pt Copyright 2009 Texas Instruments, All Rights Reserved 15-77

 Extended emulated instructions

The constant generators offer a set of extended emulated
instructions, which are listed in the following table:

Table 15-24. Extended emulated instructions.

 MSP430X address instructions

The address instructions support 20-bit operands, but they have
restrictions on the addressing modes that can be used. A list of
extended address instructions, with their supported addressing
modes, is given in the following table:

Advanced Laboratories

15-78 Copyright 2009 Texas Instruments, All Rights Reserved www.msp430.ubi.pt

Table 15-25. MSP430X address instructions.

MSP430X CPU addressing modes

As the MSP430 CPU, the MSP430X CPU supports seven addressing
modes for the source operand and four addressing modes for the
destination operand. Both the instructions of the MSP430 CPU as the
MSP430X CPU can be used throughout the 1 MB address space.

In the next sections we will explore the different addressing modes
available in the MSP430X CPU.

 Register mode

This addressing mode is identical to that of the MSP430 CPU. There
are three different types of access to the contents of registers: 8-bit
(Byte operation), 16-bit (Word operation) and 20-bit (Address-
word). The instruction SXT is the only exception, as the sign of the
value is extended to all the other bits of the register.

 Move the 20-bit contents of register R5 to register R4:

 MOVX.A R5,R4

Lab 11c. MSP430 assembly language tutorial

www.msp430.ubi.pt Copyright 2009 Texas Instruments, All Rights Reserved 15-79

Instruction code: 0x1800 – 0x4544

0 0 0 1 1 0 0 ZC # A/L 0 0 n-1/Rn
0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0

Op-code S-reg Ad B/W As D-reg
0 1 0 0 0 1 0 1 0 1 0 0 0 1 0 0
MOVX R5 Register 20-bit Register R4

 This instruction uses 2 words.

 The 20-bit contents (B/W = 1 and A/L = 0) of register R5
(S-reg = 0101) is transferred to register R4 (D-reg =
0100);

 After the execution of the instruction, the PC is incremented
by 4 and points to the next instruction;

 The addressing mode used for the source and destination
operands is specified by Ad = 0 (Register mode) and As = 00
(Register mode).

 CPU Registers

Before After

0x03110PC 0x03114PC

0xXXXXXR4 R4 0x12345

0x12345R5 0x12345R5

Address Space

0x4544
0x1800 PC0x03110

0x03112
0x03114

0x4544
0x4504

PC

0x03110
0x03112
0x03114

Before After
Code

 Indexed mode

The indexed mode can be used in three different situations:

 Indexed mode in the memory address space below 64
kB:

If the CPU register Rn points to a memory address located below 64
kB, the address resulting from the sum of the index and the register
Rn has the value zero in bits 19:16, thus ensuring that the address
is always located in memory below 64 kB.

 Move the word pointed to by (R5 - 0x30) to the word pointed to
by (R4 + 2):

 MOV 0XFFD0(R5),2(R4)

Advanced Laboratories

15-80 Copyright 2009 Texas Instruments, All Rights Reserved www.msp430.ubi.pt

Instruction code: 0x4594

Op-code S-reg Ad B/W As D-reg
0 1 0 0 0 1 0 1 1 0 0 1 0 1 0 0
MOV R5 Indexed 16-bit Indexed R4

 This instruction uses 3 words;

 The instruction coding specifies that the word (B/W = 0)
pointed to by the sum of register R5 contents
(S-reg = 0101) with the word X1 should be moved to the
memory address pointed to by the sum of register R4
contents (D-reg = 0100) and the word X2;

 The words X1 and X2 are located in memory addresses
following the instruction;

 The addressing mode used for the source and destination
operands is specified by the bits Ad = 1 (Indexed mode) and
As = 01 (Indexed mode), because D-reg = 0100 and S-reg
= 0101 respectively;

 In this example, the bits 19:16 are set to zero when the
operand addresses have been calculated.

Data

CPU Registers

Before After

0x03110PC 0x03116PC

0x00200R4 R4 0x00200

0x00200R5 0x00200R5

Address Space

0x00200
0xFFFD0
0x001D0

0x1234 0x1234X1(R5)0x001D0 0x001D0 X1(R5)

0x00200
0x00002
0x00202 0xXXXX0x00202 0x12340x00202X2(R4) X2(R4)

0x0002
0xFFD0
0x4594 PC0x03110

0x03112
0x03114
0x03116

0x0002
0xFFD0
0x4594

PC

Before After
Code

X1
X2

X1
X2

Destination Address

Source Address

(R4)
(X2)

(R5)
(X1)

0x03110
0x03112
0x03114
0x03116

 Indexed mode in the memory address space above 64
kB

If the CPU register Rn points to a memory address above 64 kB,
bits 19:16 are used to calculate the operand address. A prerequisite
is that the operand must be located in the range Rn 32 kB,
because the index is a signed 16-bit value. In this case, the operand
address can overflow or underflow in memory address space below
64 kB.

Lab 11c. MSP430 assembly language tutorial

www.msp430.ubi.pt Copyright 2009 Texas Instruments, All Rights Reserved 15-81

If a register now points to a memory address space above the 64
kB, the bits 19:16 are used to determine the operand address.

Data

CPU Registers

Before After

0x03110PC 0x03116PC

0x00200R4 R4 0x00200

0x101D0R5 0x101D0R5

Address Space

0x101D0
0xFFFD0
0x101A0

0x1234 0x1234X1(R5)0x101A0 0x101A0 X1(R5)

0x00200
0x00002
0x00202 0xXXXX0x00202 0x12340x00202X2(R4) X2(R4)

0x0002
0xFFD0
0x4594 PC0x03110

0x03112
0x03114
0x03116

0x0002
0xFFD0
0x4594

PC

Before After
Code

X1
X2

X1
X2

Destination Address

Source Address

(R4)
(X2)

(R5)
(X1)

0x03110
0x03112
0x03114
0x03116

 Indexed mode using a MSP430X CPU instruction

When a MSP430X CPU instruction is used in indexed mode, the
operand can reside anywhere in the address range Rn 19 bits. The
operand address is determined from the sum of the 20-bit contents
of the register Rn and the 20-bit signed index.

 Move the word pointed to by (R5 – 0x30) to the word pointed to
by (R4 + 2):

 MOVX 0xFFD0(R5),2(R4)

Instruction code: 0x1FC0 – 0x4594

0 0 0 1 1 src 19:16 A/L 0 0 dst 19:16
0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0

Op-code S-reg Ad B/W As D-reg
1 0 0 0 0 1 0 1 1 0 0 1 0 1 0 0
MOVX R5 Indexed 16-bit Indexed R4

 This instruction uses 4 words;

 The instruction coding specifies that the word (B/W = 0 and
A/L = 1) pointed to by the sum of register R5 contents
(S-reg = 0101) and the word X1 should be moved to the
memory address pointed to by the sum the register R4
contents (D-reg = 0100) and the word X2;

Advanced Laboratories

15-82 Copyright 2009 Texas Instruments, All Rights Reserved www.msp430.ubi.pt

 The four MSBs of the indices are placed in the extension word
of the instruction and the other 16 bits are placed in the
words following the instruction;

 The addressing mode used for the source and destination
operands is specified by the bits Ad = 1 (Indexed mode) and
As = 01 (Indexed mode) because D-reg = 0100 and S-reg
= 0101 respectively.

Data

CPU Registers

Before After

0x03110PC 0x03118PC

0x00200R4 R4 0x00200

0x101D0R5 0x101D0R5

Address Space

0x101D0
0xFFFD0
0x101A0

0x1234 0x1234X1(R5)0x101A0 0x101A0 X1(R5)

0x00200
0x00002
0x00202 0xXXXX0x00202 0x12340x00202X2(R4) X2(R4)

0xFFD0
0x4594
0x1FC0 PC

0xDDF0
0x4594
0x1FC0

PCBefore After
Code

X1
X2

X1
X2

Destination Address

Source Address

(R4)
(X2)

(R5)
(X1)

0x0002 0x0002

0x03110
0x03112
0x03114
0x03116
0x03118

0x03110
0x03112
0x03114
0x03116
0x03118

 Symbolic Mode

The symbolic addressing mode uses the program counter register
(PC) to determine the location of the operand based on an index.
Like the previous addressing mode, there are three different ways to
use symbolic mode with the MSP30X CPU.

 Symbolic mode in the memory address space below 64
kB:

As in the indexed addressing mode, if the program counter register
(PC) points to a memory address below 64 kB, the bits 19:16 of the
address resulting from the sum of the register PC and the signed 16-
bit index are set to zero.

 Move the address EDEN contents located in 0x00200 to the
address TONI located in 0x00202:

 MOV EDEN,TONI

Lab 11c. MSP430 assembly language tutorial

www.msp430.ubi.pt Copyright 2009 Texas Instruments, All Rights Reserved 15-83

Instruction code: 0x4090

Op-code S-reg Ad B/W As D-reg
0 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0
MOV PC Symbolic 16-bit Symbolic PC

 This instruction uses 3 words;

 The instruction coding specifies that the word (B/W = 0)
pointed to by the sum of the register PC contents (S-reg =
0000) and the word X1 should be moved to the memory
address pointed to by the sum of the register PC contents (D-
reg = 0000) and the word X2;

 The words X1 and X2 are in the memory addresses following
the instruction;

 The addressing mode used for the source and destination
operands is specified by the bits Ad = 1 (Symbolic mode) and
As = 01 (Symbolic mode), because D-reg = 0000 and S-reg
= 0000, respectively.

PC

Data

CPU Registers

Before After

0x03110 0x03116PC

Address Space

0x03112
0xD0EE
0x0200

0x1234 0x1234EDEN0x00200 0x00200 EDEN

0x03114
0xD0EE
0x0202 0xXXXX0x00202 0x12340x00202TONI TONI

0xD0EE
0xD0EE
0x4090 PC0x03110

0x03112
0x03114
0x03116

0xD0EE
0xD0EE
0x4090

PC

0x03110
0x03112
0x03114
0x03116

Before After
Code

X1
X2

X1
X2

Destination Address

Source Address

(PC)
(X2)

(PC)
(X1)

 Symbolic mode in the memory address space above 64
kB

If the program counter register (PC) points to a memory address
above 64 kB, bits 19:16 are used to calculate the operand address.
The operand must be located in the memory range PC 32 kB,
because the index is a signed 16-bit value. Otherwise there may be
overflow or underflow in the address space, corresponding to
memory below 64 kB.

Advanced Laboratories

15-84 Copyright 2009 Texas Instruments, All Rights Reserved www.msp430.ubi.pt

 Move the address EDEN contents located in 0x10200 to the
register R5:

MOV EDEN,R5

Instruction code: 0x4015

Op-code S-reg Ad B/W As D-reg
0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 1
MOV PC Register 16-bit Symbolic R5

 This instruction uses 2 words;

 The instruction coding specifies that the word (B/W = 0)
pointed to by the sum of the contents of the program counter
register (PC) (S-reg = 0000) and the word X1 should be
moved to the register R5 (D-reg = 0101);

 The word X1 is in the memory address following the
instruction;

 The addressing modes used for the source and destination
operands are specified by the bits Ad = 0 (Register mode)
and As = 01 (Symbolic mode), because D-reg = 0101 and
S-reg = 0000, respectively.

R5

Data

CPU Registers

Before After

0xXXXXX 0x01234R5

Address Space

0x1001A
0x001E6
0x10200

0x1234 0x1234EDEN0x10200 0x10200 EDEN

0x01E6
0x4015 PC0x10018

0x1001A
0x1001C

0x01E6
0x4015

PC

Before After
Code

X1 X1

Destination Address

Source Address
(PC)
(X1)

0x10018
0x1001A
0x1001C

PC 0x10018 0x1001CPC

 Symbolic mode using a MSP430X CPU instruction

When a MSP430X CPU instruction is used in symbolic mode, the
operand can be located anywhere in the address space PC 19 bits.
The operand address is derived from the sum of the 20-bit contents
of the program counter register (PC) and the signed 20-bit index.

Lab 11c. MSP430 assembly language tutorial

www.msp430.ubi.pt Copyright 2009 Texas Instruments, All Rights Reserved 15-85

 Move the address EDEN contents located in 0x00200 to the
register R5:

MOVX EDEN,R5

Instruction code: 0x1FC0 – 0x4015

0 0 0 1 1 src 19:16 A/L 0 0 dst 19:16
0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0

Op-code S-reg Ad B/W As D-reg
0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 1
MOVX PC Register 16-bit Symbolic R5

 This instruction uses 3 words;

 The instruction coding specifies that the CPU must perform
the function MOVX of 16-bit data (B/W = 0 and A/L = 1), from
the contents of the memory address pointed to by (src
19:16:X1 + PC) to the register R5;

 The bits src 19:16 are stored in the extension word and the
word X1 is stored after the instruction;

 The addressing modes used for the source and destination
operands are specified by the bits Ad = 0 (Register mode)
and As = 01 (Symbolic mode), because D-reg = 0000 and
S-reg = 0101, respectively.

R5

Data

CPU Registers

Before After

0xXXXXX 0x01234R5

Address Space

0x03114
0xFD0EC
0x00200

0x1234 0x1234EDEN0x00200 0x00200 EDEN

0xD0EC
0x4015
0x1FC0 PC0x03110

0x03112
0x03114
0x03116

0xD0EC
0x4015
0x1FC0

PC

0x03110
0x03112
0x03114
0x03116

Before After
Code

X1 X1

Destination Address

Source Address
(PC)
(X1)

PC 0x03110 0x03116PC

 Absolute Mode

Absolute mode uses the word contents following the instruction as
the operand address. There are two different ways to use absolute
mode with the MSP30X CPU.

Advanced Laboratories

15-86 Copyright 2009 Texas Instruments, All Rights Reserved www.msp430.ubi.pt

 Absolute mode in the memory address space below 64
kB:

This addressing mode in memory below 64 kB operates in the same
was as the MSP430 CPU.

 Absolute mode using a MSP430X CPU instruction

If a MSP430X CPU instruction is used with an address in absolute
mode, the 20-bit absolute address of the operand is used with an
index of zero (generated by the constant generator) to point to the
operand. The four MSB of the indices are placed in the extension
word of the instruction and the other 16 bits are placed in the words
following the instruction.

 Move the address EDEN contents located in 0x00200 to the
address TONI located in 0x00202:

 MOVX &EDEN,&TONI

Instruction code: 0x1840 – 0x4292

0 0 0 1 1 src 19:16 A/L 0 0 dst 19:16
0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0

Op-code S-reg Ad B/W As D-reg
0 1 0 0 0 0 1 0 1 0 0 1 0 0 1 0
MOVX SR/CG1 Absolute 16-bit Absolute SR/CG1

 This instruction uses 4 words;

 The instruction coding specifies that the CPU must perform
the function MOVX of 16-bit data (B/W = 0 and A/L = 1), from
the memory address contents pointed to by (src 19:16:X1)
to the memory address contents pointed to by
(dst 19:16:X2);

 The bits src 19:16 and dst 19:16 are stored in the
extension word;

 The words X1 and X2 are stored in the memory locations
following the instruction;

 The addressing modes used for the source and destination
operands are specified by the bits Ad = 1 (Absolute mode)
and As = 01 (Absolute mode), because D-reg = 0010 and
S-reg = 0010, respectively.

Lab 11c. MSP430 assembly language tutorial

www.msp430.ubi.pt Copyright 2009 Texas Instruments, All Rights Reserved 15-87

Data

CPU Registers

Before After

0x03110PC 0x03118PC

Address Space

0x1234 0x1234EDEN0x00200 0x00200 EDEN

0xXXXX0x00202 0x12340x00202TONI TONI

0x0200
0x4292
0x1840 PC

PCBefore After
Code

X1
X2

X1
X2

Destination Address

Source Address

0x0202

0x03110
0x03112
0x03114
0x03116
0x03118

0x03110
0x03112
0x03114
0x03116
0x03118

0x0200
0x4292
0x1840

0x0202

 Indirect register mode

This addressing mode uses the contents of register Rn to point to
the 20-bit operand. It can only be used to point to the source
operand.

 Move the operand pointed to by the contents of register R5 to
the memory address TONI located at 0x00202:

 MOVX @R5,&TONI

Instruction code: 0x1840 – 0x45A2

0 0 0 1 1 src 19:16 A/L 0 0 dst 19:16
0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0

Op-code S-reg Ad B/W As D-reg
0 1 0 0 0 1 0 1 1 0 1 0 0 0 1 0
MOVX R5 Absolute 16-bit Indirect SR/CG1

 This instruction uses 3 words;

 The instruction coding specifies that the CPU must perform
the function MOVX of 16-bit data (B/W = 0 and A/L = 1), from
the memory address contents pointed to by register R5 to the
memory address contents pointed to by (dst 19:16:X1);

 The bits dst 19:16 are stored in the extension word;

 The words X1 is stored in the memory location following the
instruction;

Advanced Laboratories

15-88 Copyright 2009 Texas Instruments, All Rights Reserved www.msp430.ubi.pt

 The addressing modes used for the source and destination
operands are specified by the bits Ad = 1 (Absolute mode)
and As = 10 (Indirect mode), because D-reg = 0010 and S-
reg = 0101, respectively.

Data

CPU Registers

Before After

0x00200R5 0x00200R5

Address Space

0x1234 0x1234EDEN0x00200 0x00200 EDEN

0xXXXX0x00202 0x12340x00202TONI TONI

0x0202
0x45A2
0x1840 PC

PC

Before After
Code

X1 X1

Destination Address

Source Address

0x03110
0x03112
0x03114
0x03116

0x03110
0x03112
0x03114
0x03116

0x0202
0x45A2
0x1840

0x03110PC 0x03116PC

 Indirect auto-increment mode

This addressing mode uses the register Rn contents to point to the
20-bit source operand. The register Rn is automatically incremented
by 1 for a byte operand, by 2 for a word operand and by 4 for an
address operand.

 Move the word pointed to by register R5 to the memory address
TONI located at 0x00202:

 MOVX @R5+,&TONI

Instruction code: 0x1840 – 0x45B2

0 0 0 1 1 src 19:16 A/L 0 0 dst 19:16
0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0

Op-code S-reg Ad B/W As D-reg
0 1 0 0 0 1 0 1 1 0 1 1 0 0 1 0
MOVX R5 Absolute 16-bit Ind. aut. inc. SR/CG1

 This instruction uses 3 words;

 The instruction coding specifies that the CPU must perform
the function MOVX of 16-bit data (B/W = 0 and A/L = 1), from

Lab 11c. MSP430 assembly language tutorial

www.msp430.ubi.pt Copyright 2009 Texas Instruments, All Rights Reserved 15-89

the memory address contents pointed to by register R5 to the
memory address contents pointed to by (dst 19:16:X1);

 The bits dst 19:16 are stored in the extension word;

 The word X1 is stored in the memory location following the
instruction;

 The addressing modes used for the source and destination
operands are specified by the bits Ad = 1 (Absolute mode)
and As = 11 (Indirect auto-increment mode), because D-reg
= 0010 and S-reg = 0101, respectively.

Data

CPU Registers

Before After

0x00200R5 0x00202R5

Address Space

0x1234 0x1234EDEN0x00200 0x00200 EDEN

0xXXXX0x00202 0x12340x00202TONI TONI

0x0202
0x45B2
0x1840 PC

PC

Before After
Code

X1 X1

Destination Address

Source Address

0x03110
0x03112
0x03114
0x03116

0x03110
0x03112
0x03114
0x03116

0x0202
0x45B2
0x1840

0x03110PC 0x03116PC

 Immediate mode

The immediate addressing mode allows constants to be placed after
the instruction to use as source operands. There are two ways to
use the immediate addressing mode:

 A 8-bit or 16-bit constant with a MSP430 CPU
instruction

The operation in this situation is similar to that of the MSP430 CPU.

 A 20-bit constant with a MSP430X CPU instruction

If a MSP430X CPU instruction is used in immediate addressing
mode, the constant takes a 20-bit value. Bits 19:16 are stored in
the extension word and the remaining bits are stored in the location
following the instruction.

 Move the constant #0x12345 to the register R5:

 MOVX.A #0x12345,R5

Advanced Laboratories

15-90 Copyright 2009 Texas Instruments, All Rights Reserved www.msp430.ubi.pt

Instruction code: 0x1880 – 0x4075

0 0 0 1 1 src 19:16 A/L 0 0 dst 19:16
0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0

Op-code S-reg Ad B/W As D-reg
0 1 0 0 0 0 0 0 0 1 1 1 0 1 0 1
MOVX PC Register 20-bit Immediate R5

 This instruction uses 3 words;

 The instruction coding specifies that the CPU must perform
the function MOVX of 20-bit data (B/W = 1 and A/L = 0), from
the value (src 19:16:X1) to register R5;

 The bits (src 19:16) are stored in the extension word;

 The word X1 is stored in the memory location following the
instruction;

 The addressing modes used for the source and destination
operands are specified by the bits Ad = 0 (Register mode)
and As = 11 (Immediate mode), because D-reg = 0101 and
S-reg = 0000, respectively.

 CPU Registers

Before After

0xXXXXXR5 0x12345R5

Address Space

0x2345
0x4075
0x1880 PC

PC

Before After
Code

X1 X1

0x03110
0x03112
0x03114
0x03116

0x03110
0x03112
0x03114
0x03116

0x2345
0x4075
0x1880

0x03110PC 0x03116PC

Lab 11c. MSP430 assembly language tutorial

www.msp430.ubi.pt Copyright 2009 Texas Instruments, All Rights Reserved 15-91

15.3.3 Assembly language programming characteristics

The following section introduces some fundamentals of assembly
language programming using the MSP430 family of microcontrollers.
Rather than make an exhaustive study of programming
methodologies and techniques, the intention is to focus on the
aspects of assembly language programming relevant to the MSP430
family.

The examples are based on the MSP430 CPU, although they can also
be applied to the MSP430X CPU. Where appropriate, differences
between the MSP430 CPU and MSP430X CPU are highlighted.

Status system flags

 Bit modification

The state of one or more bits of a value can be changed by the bit
clear (BIC) and bit set (BIS) instructions, as described below.

The BIC instruction clears one or more bits of the destination
operand. This is carried out by inverting the source value then
performing a logical & (AND) operation with the destination.
Therefore, if any bit of the source is one, then the corresponding bit
of the destination will be cleared to zero.

BIC source,destination or BIC.W source,destination

BIC.B source,destination

Consider the instruction:

 BIC #0x000C,R5

This clears bits 2 and 3 of register R5 to zero, leaving the remaining
bits unchanged.

There is also the bit set (BIS) instruction:

BIS source,destination or BIS.W source,destination

BIS.B source,destination

This sets one or more bits of the destination using a similar
procedure to the previous instruction. The instruction performs a
logical | (OR) between the contents of the source and the
destination.

Advanced Laboratories

15-92 Copyright 2009 Texas Instruments, All Rights Reserved www.msp430.ubi.pt

For example, the instruction:

 BIS #0x000C,R5

Sets bits 2 and 3 of register R5, leaving the remaining bits
unchanged.

It is recommended that whenever it is necessary to create control
flags, that these are located in the least significant nibble of a word.
In this case, the CPU constant generators can generate the
constants necessary (1, 2, 4, 8) for bit operations. The code
produced is more compact and therefore the execution will be
faster.

 CPU status bits modification

The CPU contains a set of flags in the Status Register (SR) that
reflect the status of the CPU operation, for example that the
previous instruction has produced a carry (C) or an overflow (V).

It is also possible to change the status of these flags directly
through the execution of emulated instructions, which use the BIC
and BIS instructions described above.

 Directly changing the CPU status flags

The following instructions clear the CPU status flags (C, N and Z):

CLRC; clears carry flag (C). Emulated by BIC #1,SR

CLRN; clears negative flag (N). Emulated by BIC #4,SR

CLRZ; clears the zero flag (Z). Emulated by BIC #2,SR

The following instructions set the CPU status flags (C, N and Z):

SETC; set the carry flag (C). Emulated by BIS #1,SR

SETN; set the negative flag (N). Emulated by BIS #4,SR

SETZ; set the zero flag (Z). Emulated by BIS #2,SR

Lab 11c. MSP430 assembly language tutorial

www.msp430.ubi.pt Copyright 2009 Texas Instruments, All Rights Reserved 15-93

 Enable/disable interrupts

Two other instructions allow the flag that enables or disables the
interrupts to be changed. The global interrupt enable GIE flag of the
register SR may be set to disable interrupts:

DINT; Disable interrupts. (emulated by BIC #8,SR)

or it may be cleared to enable interrupts:

EINT; Enable interrupts. (emulated by BIS #8,SR)

Arithmetic and logic operations

 Addition and Subtraction

The MSP430 CPU has instructions that perform addition and
subtraction operations, with and without the carry flag (C). It is also
possible to perform addition operations of values represented in
binary coded decimal (BCD) format.

 Addition operations

There are three different instructions to carry out addition
operations. The addition of two values is performed by the
instruction:

ADD source,destination or ADD.W source,destination

ADD.B source,destination

The addition of two values, also taking into consideration the state
of the carry bit (C), is performed by the instruction:

ADDC source,destination or ADDC.W source,destination

ADDC.B source,destination

The carry bit (C) itself can be added to a value using the instruction:

ADC destination or ADC.W destination

ADC.B destination

Advanced Laboratories

15-94 Copyright 2009 Texas Instruments, All Rights Reserved www.msp430.ubi.pt

The CPU status flags are updated to reflect the result of an
operation.

For example, two 32-bit values are represented by the combination
of registers R5:R4 and R7:R6, where the format is most significant
word: least significant word.

The addition operation must propagate the carry from the addition
of the least significant register words (R4 and R6) to the addition of
the most significant words (R5 and R7).

 MOV #0x1234,R5 ; operand 1 most significant word

 MOV #0xABCD,R4 ; operand 1 least significant word

 MOV #0x1234,R7 ; operand 2 most significant word

 MOV #0xABCD,R6 ; operand 2 least significant word

 ADD R4,R6 ; add least significant words

 ADDC R5,R7 ; add most significant words with carry

The code begins by loading the values into the registers to be
added, 0x1234ABCD in R5:R4 and 0x1234ABCD in R7:R6.

The operation continues by adding the two least significant words
0xABCD and 0xABCD in registers R4 and R6. The addition may change
the carry bit (C), and this must be taken into account during the
addition of the two most significant words. The result is placed in the
structure formed by the registers R7:R6.

 Subtraction operations

There are three instructions to perform subtraction operations. The
subtraction of two values is performed by the instruction:

SUB source,destination or SUB.W source,destination

SUB.B source,destination

The subtraction of two values, taking into consideration the carry bit
(C), is performed by the instruction:

SUBC source,destination or SUBC.W source,destination

SUBC.B source,destination

Lab 11c. MSP430 assembly language tutorial

www.msp430.ubi.pt Copyright 2009 Texas Instruments, All Rights Reserved 15-95

The subtraction of destination taking into consideration the carry bit
(C) is provided by the instruction:

SBC destination or SBC.W destination

SBC.B destination

The CPU status flags are updated to reflect the result of the
operation.

The borrow is treated as a .NOT. carry: The carry is set to 1 if NO
borrow, and reset if borrow.

For example, two 32-bit values are represented by the combination
of registers R5:R4 and R7:R6, where the format is most significant
word:least significant word.

The subtraction operation of these values must propagate the carry
(C) from the subtraction of the least significant words (R4 and R6)
to the most significant words (R5 to R7).

Two 32-bit values are subtracted in the example presented below:

 MOV #0xABCD,R5 ; load operand 1 in R5:R4

 MOV #0x1234,R4

 MOV #0x0000,R7 ; load operand 2 in R7:R6

 MOV #0x1234,R6

 SUB R4,R6 ; subtract least significant words

 SUBC R5,R7 ; subtract most significant words

 ; with carry

The code begins by loading the values in the registers to be
subtracted, 0xABCD1234 into R5:R4 and 0x00001234 into R7:R6.
The next operation is to subtract the two least significant words. The
result of the subtraction affects the carry bit (C), which must be
taken into account during the subtraction of the two most significant
words.

Advanced Laboratories

15-96 Copyright 2009 Texas Instruments, All Rights Reserved www.msp430.ubi.pt

 BCD format addition

The CPU supports addition operations for values represented in
binary coded decimal (BCD) format. There are two instructions to
perform addition operations in this format:

DADD source,destination or DADD.W source,destination

DADD.B source,destination

The addition of the carry bit (C) to a BCD value is provided by
instruction:

DADC destination or DADC.W destination

DADC.B destination

The CPU status flags are updated to reflect the result of the
operation.

For example, two 32-bit BCD values are represented by the
combination of registers R5:R4 and R7:R6, where the format is most
significant word:least significant word. The addition of these values
must propagate the carry from the addition of the least significant
words (R4 and R6) to the addition of the most significant words (R5
and R7).

Two 32-bit BCD values are added in the example below:

 MOV #0x1234,R5 ; operand 1 most significant word

 MOV #0x5678,R4 ; operand 1 least significant word

 MOV #0x1234,R7 ; operand 2 most significant word

 MOV #0x5678,R6 ; operand 2 least significant word

 CLRC ; clear carry flag, C

 DADD R4,R6 ; add least significant words

 DADD R5,R7 ; add most significant words

The code begins by loading the BCD values into the registers to be
added. The carry flag (C) is cleared. Next, the least significant words
are added together. The result of the addition generates a carry,
which must be added together with the two most significant words.

Lab 11c. MSP430 assembly language tutorial

www.msp430.ubi.pt Copyright 2009 Texas Instruments, All Rights Reserved 15-97

 Sign extension

The CPU supports 8-bit and 16-bit operations. Therefore, the CPU
needs to be able to extend the sign of a 8-bit value to a 16-bit
format.

The extension of the sign bit is produced by the instruction:

SXT destination

For example, the sign extension of the value contained in R5 is:

MOV.B #0xFC,R5 ; place the value 0xFC in R5

SXT R5 ; sign extend word. R5 = 0xFFFC

 Increment and decrement operations

There are several operations that need to increment or decrement a
value, e.g. control of the number of code iterations (for or while
loops), access to memory blocks using pointers etc. Therefore, there
are four emulated instructions based on the ADD instruction, which
facilitate the implementation of these operations.

To increment a value by one:

INC destination or INC.W destination

INC.B destination

Similarly, to decrement a value by one:

DEC destination or DEC.W destination

DEC.B destination

In the following example, the value placed in R5 is initially
incremented and then decremented:

 MOV.B #0x00,R5 ; move 0x00 to register R5

 INC R5 ; increment R5 by one. R5 = 0x0001

 DEC R5 ; decrement R5 by one. R5 = 0x0000

Advanced Laboratories

15-98 Copyright 2009 Texas Instruments, All Rights Reserved www.msp430.ubi.pt

The ability of the CPU to address 16-bit values requires the ability to
increment or decrement the address pointer by two. The following
instruction is used to increment a value by two:

INCD destination or INCD.W destination

INCD.B destination

Similarly, to decrement a value by two, the following instruction is
used:

DECD destination or DECD.W destination

DECD.B destination

The CPU status flags are updated to reflect the result of the operation.

In the following example, the value stored in register R5 is initially
incremented by two and then decremented by two:

 MOV.B #0x00,R5 ; move 0x00 to the register R5

 INCD R5 ; Increment R5 by two. R5 = 0x0002

 DECD R5 ; Decrement R5 by two. R5 = 0x0000

 Logical operations

 Logic instructions

The CPU performs a set of logical operations through the operations
AND (logical and), XOR (exclusive OR) and INV (invert). The CPU
status flags are updated to reflect the result of the operation.

The AND logical operation between two operands is performed by the
instruction:

AND source,destination or AND.W source,destination

AND.B source,destination

In the following example, the value 0xFF is moved to the register
R4, and the value 0x0C is moved to the register R5. A logical AND
logic operation is performed between these two registers, putting
the result in register R5:

Lab 11c. MSP430 assembly language tutorial

www.msp430.ubi.pt Copyright 2009 Texas Instruments, All Rights Reserved 15-99

 MOV.B #0xFF,R4 ; load operand 1 into R4

 MOV.B #0x0C,R5 ; load operand 2 into R5

 AND.B R4,R5 ; result of AND located in R5

The code begins by loading the operands into registers R4 and R5.
The result of the logical operation between the two registers is
placed in register R5. For the MSP430X the bits 19:8 of the result
register take the value zero.

The XOR logical operation between two operands is performed by the
instruction:

XOR source,destination or XOR.W source,destination

XOR.B source,destination

In the following example, the value 0xFF is moved to the register
R4, and the value 0x0C is moved to the register R5. The logical XOR
operation is performed between the two registers, putting the result
in register R5:

 MOV.B #0x00FF,R4 ; load operand 1 into R4

 MOV.B #0x000C,R5 ; load operand 1 into R5

 XOR.B R4,R5 ; XOR result located in R5

The NOT logical operation between two operands is performed by the
INV (invert) instruction:

INV destination or INV.W destination

INV.B destination

The XOR logic operation between two operands was performed in
the previous example. The following example demonstrates a way to
implement a logical OR. The code begins by loading the operands
into registers R4 and R5. The contents of the registers are inverted,
then the logical & (AND) operation is performed between them.

 MOV #0x1100,R4 ; load operand 1 into R4

 MOV #0x1010,R5 ; load operand 2 into R5

Advanced Laboratories

15-100 Copyright 2009 Texas Instruments, All Rights Reserved www.msp430.ubi.pt

 INV R4 ; invert R4 bits

 INV R5 ; invert R5 bits

 AND R4,R5 ; AND operation between R4 and R5

 INV R5 ; invert R5 bits

The operation OR can also be performed with the BIS instruction.

 Displacement and rotation with carry

The multiplication and division operations on a value by multiples of
2 are achieved using the arithmetic shift left (multiplication) or the
shift right (division) operations.

The arithmetic shift left is performed by the instruction:

RLA destination or RLA.W destination

RLA.B destination

The RLA instruction produces an arithmetic shift left of the
destination by inserting a zero in the least significant bit, while the
most significant bit is moved out to the carry flag (C).

Figure 15-57. Arithmetic shift left - RLA instruction.

As an example, the registers R5 and R4 are loaded with 0x00A5 and
0xA5A5, respectively, forming a 32-bit value in the structure R5:R4.
A shift left performs a multiplication by 2:

 MOV #0x00A5,R5 ; load the value 0x00A5 into R5

 MOV #0xA5A5,R4 ; load the value 0xA5A5 into R4

 RLA R5 ; shift most significant word left R5

 RLA R4 ; shift least significant word left R4

 ADC R5 ; add the carry bit of R4 in R5

Lab 11c. MSP430 assembly language tutorial

www.msp430.ubi.pt Copyright 2009 Texas Instruments, All Rights Reserved 15-101

The arithmetic shift right is made by the instruction:

RRA destination or RRA.W destination

RRA.B destination

The RRA operation produces an arithmetic shift right of the
destination, preserving the state of the most significant bit MSB,
while the least significant bit is copied into the carry flag (C).

Figure 15-58. Arithmetic shift right - RRA instruction.

The CPU status flags are updated to reflect the result of the
operation.

The rotation of a value can be performed using the carry flag. This
allows selection of the bit to be rotated into the value. A left shift
with carry flag can be performed by the instruction:

RLC destination or RLC.W destination

RLC.B destination

Figure 15-59. Arithmetic shift right with carry - RLC instruction.

The RLC operation shifts the destination left, moving the carry flag
(C) into the LSB, while the MSB is moved into the carry flag (C).

Advanced Laboratories

15-102 Copyright 2009 Texas Instruments, All Rights Reserved www.msp430.ubi.pt

The RRC operation shifts the destination right, moving the carry flag
(C) into the MSB, and the LSB is moved to the carry flag (C).

RRC destination or RRC.W destination

RRC.B destination

Figure 15-60. Rotate right through carry destination word - RRC instruction.

In the following example, the register pair R4:R5 are loaded with
0x0000 and 0xA5A5, respectively, forming a 32-bit value. A shift left
of R4:R5 multiplies the value by 2. This example is similar to the
previous one, but requires one less instruction:

 MOV #0x0000,R4 ; load R4 with #0x0000

 MOV #0xA5A5,R5 ; load R5 with #0xA5A5

 RLA R5 ; Rotate least significant word left

 RLC R4 ; Rotate most significant word left

 Byte exchange

To swap the destination bytes contents of a 16-bit register, the
following instruction is used:

SWPB destination

The operation has no effect on the state of the CPU flags;

In the following example, the bytes of register R5 are exchanged:

MOV #0x1234,R5 ; move the value 0x1234 to R5

SWPB R5 ; exchange the LSB with the MSB. R5 = 0x3412

The above instruction sequence starts by loading the value 0x1234
into the register R5, followed by exchanging the contents of the LSB
and the MSB of register R5.

Lab 11c. MSP430 assembly language tutorial

www.msp430.ubi.pt Copyright 2009 Texas Instruments, All Rights Reserved 15-103

 Special operations with MSP430X CPU

In addition to MSP430 CPU instructions, the MPS430 CPU has a
20-bit memory address space and an instruction set that can
optimize the performance of certain operations. We shall look at
some of them now.

 Repetition of an instruction

An MP430X CPU instruction, provided that it is used in Register
addressing mode, can be repeated a preset number of times, up to a
maximum of 15 times. It uses the instruction:

 RPT #n ; repeat n times

 RPT Rn ; repeat Rn.3:0 times

In the following example, the instruction sequence starts by loading
the value 0x05AD into register R5. The CPU is informed that it must
repeat the arithmetic shift left instruction 3 times. The resulting
value in register R5 is the original value multiplied by 8.

 MOV #0x05AD,R5

 RPT #3

 RLAX R5

 Successive arithmetic shifts and shifts with carry flag
(C)

The MSP430X CPU has an instruction set that allows a number of
arithmetic shifts or shifts with carry to be carried out. Up to a
maximum of 4 shifts can be performed on a 16-bit or 20-bit value.

To perform #n shifts right of a register with the carry flag, the
following instruction is used:

RRCM #n,Rdst or RRCM.W #n,Rdst

RRCM.A #n,Rdst

Advanced Laboratories

15-104 Copyright 2009 Texas Instruments, All Rights Reserved www.msp430.ubi.pt

Figure 15-61. Sucessive arithmetic shift right with carry - RRCM instruction.

If this is a 16-bit operation, bits 19:16 of the register are reset to
zero. The Carry (C) flag contents are placed in the MSB, while the
LSB is copied into the carry flag.

To perform an unsigned #n shifts right of a register, the following
instruction is used:

RRUM #n,Rdst or RRUM.W #n,Rdst

RRUM.A #n,Rdst

Figure 15-62. Successive arithmetic unsigned shift right with carry - RRUM instruction.

If this is a 16-bit operation, then bits 19:16 of the register are reset
to zero. The MSB of the register is cleared to zero and the LSB is
copied to the carry (C) flag.

To perform a #n arithmetic shift right using a register, the following
instruction is used:

RRAM #n,Rdst or RRAM.W #n,Rdst

RRAM.A #n,Rdst

Lab 11c. MSP430 assembly language tutorial

www.msp430.ubi.pt Copyright 2009 Texas Instruments, All Rights Reserved 15-105

Figure 15-63. Successive arithmetic shift right using a register - RRAM instruction.

If this is a 16-bit operation, then bits 19:16 of the register are
cleared to zero. The operation allows the division of the register
contents by 2, 4, 8 or 16, depending on the parameter #n. During
the arithmetic shift right of the register contents, the MSB is
maintained, while the LSB is copied to the carry flag.

To perform a #n arithmetic shift left using a register, the following
instruction is used:

RLAM #n,Rdst or RLAM.W #n,Rdst

RLAM.A #n,Rdst

Figure 15-64. Successive arithmetic shift left using a register - RLAM instruction.

If this is a 16-bit operation, then bits 19:16 of the register are reset
to zero. The operation allows multiplication of the register contents
by 2, 4, 8 or 16, depending on the parameter #n. The MSB is copied
into the carry flag, while the LSB is cleared to zero.

All the previous rotate operations modify the CPU status flags.

Advanced Laboratories

15-106 Copyright 2009 Texas Instruments, All Rights Reserved www.msp430.ubi.pt

In the following example, the value 0x1234 is multiplied by 1.25:

 MOV #0x1234,R4 ;load 0x1234 in R4

 MOV R4,R5 ;store R4 in R5

 RRAM #2,R4 ; R4 = 0.25*R4

 ADD R4,R5 ; R5 = 1.25*R4

 20-bit addressing instructions

The addressing instructions can use the 20-bit addresses. There is
the limitation that with the exception of the instruction MOVA, only
Register and Immediate addressing modes can be used.

A 20-bit address can be manipulated using operations: addition
(ADDA), subtraction (SUBA), double-increment (INCDA) and double-
decrement (DECDA). There are other instructions of this type, which
will be examined later. The contents of a register can be cleared by
the instruction (CLRA). Finally, a 20-bit operand can be moved using
the instruction (MOVA).

Program flow control

 MSP430 CPU testing

 Bit testing

Bit testing can be used to control program flow. Hence, the CPU
provides an instruction to test the state of individual or multiple bits.
The operation performs a logical & (AND) logical operation between
the source and destination operands. The result is ignored and none
of the operands are changed. This task is performed by the following
instruction:

BIT source,destination or BIT.W source,destination

BIT.B source,destination

As a result of the operation, the CPU state flags are updated:

V: reset;

N: set if the MSB of the result is 1, otherwise reset;

Z: set if the result is zero, otherwise reset;

C: set if the result is not zero, otherwise reset.

Lab 11c. MSP430 assembly language tutorial

www.msp430.ubi.pt Copyright 2009 Texas Instruments, All Rights Reserved 15-107

For example, to test if bit R5.7 is set:

 MOV #0x00CC,R5 ; load the value #0x00CC to R5

 BIT #0x0080,R5 ; test R5.7

The result of the logical AND operation with 0x0080, the bit R5.7 is
tested. Reasoning this case, the result modifies the flags (V = 0,
N = 0, Z = 0, C = 1).

 Comparison with zero

Another operation typically used in a program is the comparison of a
value with zero, to determine if the value has reached zero. This
operation is performed using the following emulated instruction:

TST source,destination or TST.W source,destination

TST.B source,destination

As a result of the operation, the CPU state flags are updated:

V: reset;

N: set if the MSB of the result is 1, otherwise reset;

Z: set if the result is zero, otherwise reset;

C: set.

For example, to test if register R5 is zero:

 MOV #0x00CC,R5 ; move the value #0x00CC to R5

 TST R5 ; test R5

The comparison of the register R5 with #0x0000 modifies the flags
(V = 0, N = 0, Z = 0, C = 1).

 Value comparison

Two operands can be compared using the instruction:

CMP source,destination or CMP.W source,destination

CMP.B source,destination

Advanced Laboratories

15-108 Copyright 2009 Texas Instruments, All Rights Reserved www.msp430.ubi.pt

The comparison result modifies the CPU status flags:

V: set if an overflow occurs;

N: set if the result is negative, otherwise reset (source >=
destination);

Z: set if the result is zero, otherwise reset (source = destination);

C: set if there is a carry, otherwise reset (source <= destination).

In the following example, the contents of register R5 are compared
with the contents of register R4:

 MOV #0x0012,R5 ; move the value 0x0012 to R5

 MOV #0x0014,R4 ; move the value 0x0014 to R4

 CMP R4,R5

The register comparison modifies the CPU status flags (V = 0,
N = 1, Z = 0, C = 0).

 Program flow branch

A branch in program flow without any constraint is performed by the
instruction:

BR destination

This instruction execution is only able to reach addresses in the
address space below 64 kB. For addresses above this address space,
the MSP430X CPU provides the instruction:

BRA destination

Each of the addressing modes can be used. For example:

 BR #EXEC ;Branch to label EXEC or direct branch

 ;(e.g. #0A4h)

 ; Core instruction MOV @PC+,PC

 BR EXEC ; Branch to the address contained in

 ; EXEC

 ; Core instruction MOV X(PC),PC

 ; Indirect address

 BR &EXEC ; Branch to the address contained in

Lab 11c. MSP430 assembly language tutorial

www.msp430.ubi.pt Copyright 2009 Texas Instruments, All Rights Reserved 15-109

 ; absolute address EXEC

 ; Core instruction MOV X(0),PC

 ; Indirect address

 BR R5 ; Branch to the address contained in R5

 ; Core instruction MOV R5,PC

 ; Indirect R5

 BR @R5 ; Branch to the address contained in

 ; the word pointed to by R5.

 ; Core instruction MOV @R5,PC

 ; Indirect, indirect R5

 BR @R5+ ; Branch to the address contained in

 ; the word pointed to by R5 and

 ; increment pointer in R5 afterwards.

 ; The next time—S/W flow uses R5

 ; pointer—it can alter program

 ; execution by access the next

 ; address in the table pointed to by R5

 ; Core instruction MOV @R5,PC

 ; Indirect, indirect R5 with

 ; autoincrement

 BR X(R5) ; Branch to the address contained in

 ; the address pointed to by R5 + X

 ; (e.g. table with address starting at

 ; X). X can be an address or a label

 ; Core instruction MOV X(R5),PC

 ; Indirect, indirect R5 + X

In addition to the previous instructions it is possible to jump to a
destination in the range +512 to -511 words using the instruction:

JMP destination

 Conditional jump

Action can be taken depending on the values of the CPU status flags.
Using the result of a previous operation, it is possible to produce
jumps in the program flow execution. The new memory address
must be in the range +512 to -511 words.

The following instructions are available for conditional jumps:

Advanced Laboratories

15-110 Copyright 2009 Texas Instruments, All Rights Reserved www.msp430.ubi.pt

Jump if equal (Z = 1):

JEQ destination or JZ destination

label1:

 MOV 0x0100,R5

 MOV 0x0100,R4

 CMP R4,R5

 JEQ label1

The above example compares the register R4 and R5 contents. As
they are equal, the flag Z is set, and therefore, the jump to position
label1 is executed.

Jump if different (Z = 0):

JNE destination or JNZ destination

label2:

 MOV #0x0100,R5

 MOV #0x0100,R4

 CMP R4,R5

 JNZ label2

The above example compares the contents of registers R4 and R5.
As they are equal, the flag Z is set, and therefore, the jump to
position label2 is not executed.

Jump if higher or equal (C = 1) – without sign:

JC destination or JHS destination

label3:

 MOV #0x0100,R5

 BIT #0x0100,R5

 JC label3

The above example tests the state of bit R5.8. As this bit is set, the
flag C is set, and therefore, the jump to position label3 is executed.

Lab 11c. MSP430 assembly language tutorial

www.msp430.ubi.pt Copyright 2009 Texas Instruments, All Rights Reserved 15-111

Jump if lower (C = 0) – without sign:

JNC destination or JLO destination

label4:

 MOV #0x0100,R5

 BIT #0x0100,R5

 JNC label4

The above example tests the state of bit R5.8. As it is set, the flag C
is set, and therefore, the jump to position label4 is not executed.

Jump if higher or equal (N = 0 and V = 0) or (N = 1 and V = 1)
– with sign:

JGE destination

label5:

 MOV #0x0100,R5

 CMP #0x0100,R5

 JGE label5

The above example compares the contents of register R5 with the
constant #0x0100. As they are equal, both flags N and V are reset,
and therefore, the jump to the address label5 is executed.

Jump if lower (N = 1 and V = 0) or (N = 0 and V = 1) – with
sign:

JL destination

label6:

 MOV #0x0100,R5

 CMP #0x0100,R5

 JL label6

The above example compares the contents of register R5 with the
constant #0x0100. As they are equal, both flags N and V are reset,
and therefore, the jump to the address label6 is not executed.

Advanced Laboratories

15-112 Copyright 2009 Texas Instruments, All Rights Reserved www.msp430.ubi.pt

To perform a jump if the flag (N = 1) is set use the instruction
(Jump if negative):

JN destination

label7:

 MOV #0x0100,R5

 SUB #0x0100,R5

 JN label7

The above example subtracts #0x0100 from the contents of register
R5. As they are equal, the flag N is reset, and therefore, the jump to
address label7 is not executed.

Stack pointer management

The register SP is used by the CPU to store the return address of
routines and interrupts. For interrupts, the status register is also
saved. An automatic method to increment and decrement of the SP
is used for each stack access. The pointer should be initialized by
the user to point to a valid RAM address, and aligned on an even
memory address. The following figures show the stack pointer for
the MSP430 CPU and for MSP430X CPU.

Figure 15-65. Stack pointer - MSP430 CPU.

Figure 15-66. Stack pointer - MSP430X CPU.

 Stack access functions

The data are placed on the stack using the instruction:

PUSH source or PUSH source

PUSH.B source

The contents of the register SP are decremented by two and the
contents of the source operand are then placed at the address

Lab 11c. MSP430 assembly language tutorial

www.msp430.ubi.pt Copyright 2009 Texas Instruments, All Rights Reserved 15-113

pointed to by the register SP. In the case of the instruction PUSH.B,
only the LSB address on the stack is used to place the source
operand, while the MSB address pointed to by the register SP+1
remains unchanged.

In the following example, a byte from register R5 is placed on the
stack, followed by a word from register R4.

 CPU Registers

Before After

Address Space

0xXX SP

Before After

Data

0x0206
0x0207

0xXX
0xXX
0xXX0x0208

0x0209
0x020A

0xXX
0x020ASP 0x0206SP

0x1234R4 0x1234R4

0xXX

SP0x0206
0x0207

0x34
0x12
0x780x0208

0x0209
0x020A

0xXX

0x5678R5 0x5678R4

The code that performs this task is:

 PUSH.B R5 ; move the register R5 LSB to the stack

 PUSH R4 ; move R4 to the stack

The first instruction decrements the register SP by two, pointing to
address 0x0208. The LSB of register R5 is then placed in memory.
The following instruction decrements the register SP by two and
moves the contents of register R4 contents to the stack. The register
SP points to the last element that was placed on the stack.

The data values are removed from the stack using the instruction:

POP destination or POP destination

POP.B destination

The contents of the memory address pointed to by the register SP
are moved to the destination operand. Then, the contents of the
register SP is incremented by two. In the case of the instruction
POP.B, only the LSB address is moved. If the destination is a
register, then the other bits are zeroed.

Advanced Laboratories

15-114 Copyright 2009 Texas Instruments, All Rights Reserved www.msp430.ubi.pt

 CPU Registers

Before After

Address Space

0xXX

SP

Before After

Data

0x0206
0x0207

0x34
0x12
0x780x0208

0x0209
0x020A

0xXX
0x0206SP 0x020ASP

0xXXXXR4 0x1234R4

0xXX SP

0x0206
0x0207

0x34
0x12
0x780x0208

0x0209
0x020A

0xXX

0xXXXXR5 0x0078R4

The code that performs this task is:

 POP R4 ; extract a word from the stack

 POP.B R5 ; extract a byte from the stack

The instruction POP R4 extracts the word pointed to by the register
SP and places it in register R4. Then, the stack pointer is
incremented by two, to point to the memory address 0x0208. The
instruction POP.B R5 moves the byte pointed to by the register SP to
register R5. The stack pointer is then incremented by two, to point
to the memory address 0x020A. The register SP points to the last
element that was placed on the stack, but not yet retrieved.

In addition to 8-bit or 16-bit values, the MSP430X CPU provides
instructions with the ability to handle 20-bit data in memory. This
usually requires two words to be placed on the stack.

The placing of 20-bit data on the stack is performed by the
instruction:

PUSHX.A source

The register SP is decremented by 4 and the source address
operand is placed on the stack. The following figure shows the use of
this instruction:

Lab 11c. MSP430 assembly language tutorial

www.msp430.ubi.pt Copyright 2009 Texas Instruments, All Rights Reserved 15-115

 CPU Registers

Before After

Address Space

0xXX

0xXX

SP

Before After

Data

0x00205
0x00206
0x00207

0xXX
0xXX
0xXX0x00208

0x00209
0x0020A

0xXX
0x0020ASP 0x00206SP

0x12345R4 0x12345R4

0xXX

0xXX
SP

0x00205
0x00206
0x00207

0x45
0x23
0x010x00208

0x00209
0x0020A

0xXX

The code that performs this task is:

 PUSHX.A R4 ; place the 20-bits address of

 ; register R4 on the stack

The MSP430X CPU has the following instruction available for
removing a 20-bit data value from the stack:

POPX.A destination

This instruction moves the 20-bit value pointed to by the register SP
from the stack to the destination register. Then, the register SP is
incremented by 4. The following figure shows the use of this
instruction:

 CPU Registers

Before After

Address Space
Data

0x0020ASP 0x00206SP

0xXXXXXR4 0x12345R4

Before

0xXX

0xXX
SP

0x00205
0x00206
0x00207

0x45
0x23
0x010x00208

0x00209
0x0020A

0xXX
SP

After

0x00205
0x00206
0x00207
0x00208
0x00209
0x0020A 0xXX

0xXX
0x45
0x23
0x01
0xXX

The code that performs this task is:

 POPX.A R4 ; extract the 20-bits address from stack

 ; to the register R4

Advanced Laboratories

15-116 Copyright 2009 Texas Instruments, All Rights Reserved www.msp430.ubi.pt

 Data access on stack with the SP in indexed mode

The stack contents can be accessed using the register SP in indexed
mode. Using this method, it is possible to place and remove data
from the stack without changing the contents of the register SP.
Consider the stack structure shown in the following figure:

 CPU Registers

Before After

Address Space

0x0B

0x06

0x01

SP

Before After

Data

0x00204
0x00205
0x00206
0x00207

0x00200
0x00201
0x00202
0x00203

0x02
0x03
0x04
0x05

0x07
0x08
0x090x00208

0x00209
0x0020A

0x0A
0x0020ASP 0x0020ASP

0xXXXXXR4 0x0000BR4

0xXXXXXR5 0x00A09R5

0xXXXXXR6 0x70605R6

0x0B

0x06

0x01

SP

0x00204
0x00205
0x00206
0x00207

0x00200
0x00201
0x00202
0x00203

0x02
0x03
0x04
0x05

0x07
0x08
0x090x00208

0x00209
0x0020A

0x0A

The code below moves the information to the registers without
modifying the register SP:

 MOV.B 0(SP),R4 ; byte stack access

 MOV -2(SP),R5 ; word stack access

 MOVX.A -6(SP),R6 ; address stack access

The MSP430 places the data in the memory space in Little Endian
format. Therefore, the most significant byte is always at the highest
memory address. The first line of code places the value pointed to
by the register SP in register R4, i.e., the contents of the memory
address 0x0020A are moved to register R4. The second line of code
moves the word located at SP - 2 = 0x00208 to register R5. Finally,
the third line of code moves the contents of the address
SP - 6 = 0x00204 to register R6. The entire procedure is performed
without modifying the value of the register SP.

Routines

During the development of an application, repeated tasks can be
identified and separated out into routines. This piece of code can
then be executed whenever necessary. It can substantially reduce
the code size.

Furthermore, the use of routines allows structuring the application.
It also helps code debugging and facilitates understanding of the
operation.

Lab 11c. MSP430 assembly language tutorial

www.msp430.ubi.pt Copyright 2009 Texas Instruments, All Rights Reserved 15-117

 Invoking a routine

A routine is identified by a label in assembly language. A routine
call is made at the point in the program where execution must be
changed to perform a task. When the task is complete, it is
necessary to return to the point just after where the routine call was
called.

Two different instructions are available to perform the routine call,
namely CALL and CALLA.

The following instruction can be used if the routine is located in the
address below 64 kB:

CALL destination

This instruction decrements the register SP by two, to store the
return address. The register PC is then loaded with the routine
address and the routine executed. The CALL instruction can be used
with any of the addressing modes. The return is performed by the
instruction RET.

In MSP430X CPU is also available the instruction:

CALLA destination

This instruction decrements the register SP by four to store the
return address. The register PC is then loaded with the routine
address. The return is performed by the instruction RETA.

 Routine return

The routine execution return depends on the call type that was
used. If the routine is called using a instruction CALL, the following
instruction must be used to return:

RET

This instruction extracts the value pointed to by the register SP and
places it in the PC.

If the routine call was made with the instruction CALLA, then the
following instruction should be used to return:

RETA

Advanced Laboratories

15-118 Copyright 2009 Texas Instruments, All Rights Reserved www.msp430.ubi.pt

 Passing parameters to the routine

There are two different ways to move data to a routine.

The first makes use of a register. The data values needed for the
routine execution are placed in pre-defined registers before the
routine call. The return from the routine execution can use a similar
method.

The second method makes use of the stack. The parameters
necessary to execute the routine are placed on the stack using the
PUSH or PUSHX instructions.

The routine can use any of the methods already discussed to access
the information.

To return from the routine, the stack can again be used to pass the
parameters, using a POP instruction.

Care is needed in the use of this method to avoid stack overflow
problems. Generally, the stack pointer must set back to the value
just before pushing parameters after execution of the routine.

 Routine examples

The following examples bring together the concepts mentioned in
this section.

In the first example, the routine is in the address space below 64
kB. Therefore, the instruction CALL is used to call the routine. The
parameters are passed to the routine through registers:

;--------------------

; Routine

;--------------------

adder:

 ADD R4,R5

 RET ; return from routine

;--------------------

; Main

;--------------------

 MOV &var1,R4 ; parameter var1 in R4

 MOV &var2,R5 ; parameter var2 in R5

 CALL #adder ; call routine adder

 MOV R5,&var3 ; result R5 in var3

Lab 11c. MSP430 assembly language tutorial

www.msp430.ubi.pt Copyright 2009 Texas Instruments, All Rights Reserved 15-119

In the second example, the routine is the address space above 64
kB. Therefore, the instruction CALLA is used to call the routine. The
parameters are passed to the routine by placing values on the stack.

;--------------------

; Routine

;--------------------

adder:

 MOV 4(SP),R4 ; get var2 from stack

 MOV 6(SP),R5 ; get var1 from stack

 ADD R4,R5

 MOV R5,6(SP) ; place the result on stack

 RETA ; return from stack

;--------------------

; Main

;--------------------

PUSH.W &var1 ; place var1 on stack

 PUSH.W &var2 ; place var2 on stack

 CALLA #adder ; call routine adder

 ADD #2,SP ; point SP

 POP &var3 ; extract result to var3

Interrupts

 Stack management during an interrupt

During an interrupt, the PC and SR registers are automatically
placed on the stack as in the figures shown below. The following
figures show the interrupt processing for the MSP430 CPU and
MSP430X CPU.

Advanced Laboratories

15-120 Copyright 2009 Texas Instruments, All Rights Reserved www.msp430.ubi.pt

Figure 15-67. Interrupt processing - MSP430 CPU.

Figure 15-68. Interrupt processing - MSP430X CPU.

When the instruction RETI is executed, the PC and SR registers are
restored thus enabling the return to the program execution point
before the interrupt occurred.

An important aspect consists of modifying the low power mode in
which the device was before the interrupt. As the register SR is
restored at the end of the interrupt, its contents stored on the stack
can be modified prior to execution of the RETI instruction. Thus, an
new operation mode will be used. For example, executing the
instruction:

 BIC #00F0,0(SP) ; clear bits CPUOFF, OSCOFF, SCG0 and

 ; SCG1

The register SR is loaded in order to keep the device active after
completing the interrupt.

Lab 11c. MSP430 assembly language tutorial

www.msp430.ubi.pt Copyright 2009 Texas Instruments, All Rights Reserved 15-121

15.3.4 Creating an Assembly project with Code Composer Essentials (CCE)

Introduction

The creation of an Assembly project follows a sequence of steps very
similar to those of a C/C++ project. Thus, the sequence of tasks to
be performed is as follows:

 In File> New Project choose Managed Make C/ASM Project
(Recommended);

 Assign a name to the project in Project Name, e.g., SQRT;

 Choose Project Type: MSP430 Executable;

 In Additional Project Setting do not choose any connection
with other projects;

 In Device Selection page select the target device:
MSP430FG4618. Do not forget to select the configuration option:
Assembly only Project.

 At the end of this operation sequence, a project named SQRT is
opened in the work environment;

 Assign a new source code file to the project. In the option Menu
> File > Source File and create a new file called SQRT.asm;

 In the project properties menu, set the entry point identified by
the label BEGIN. This option is found in Build C/C++ build >
MSP430 Linker V3.0 > Symbol Management > Specify the
program entry point for the output model (- entry point).

Key assembly directives

The MSP430 assembly translates the source code into machine
language. The source files may have the following elements:

 Assembly directives;

 Macro directives;

 Assembly language instructions.

More detailed information on each element can be found in the
MSP430 Assembly Language Tools User’s Guide (slau131b.pdf).

Some of the most relevant aspects of assembly language for the
MSP430 will now be introduced.

The assembly programming tool processes the source code
producing an object file and a descriptive listing of the entire
process.

This process is completely controlled by macros, allowing conditional
execution. A list of options can be found in slau131b.pdf.

Advanced Laboratories

15-122 Copyright 2009 Texas Instruments, All Rights Reserved www.msp430.ubi.pt

The MPS430 source code programs are a sequence of statements
that have:

 Assembly directives;

 Assembly instructions;

 Macros, and;

 Comments.

A line can have four fields (label, mnemonic, operand list, and
comment). The general syntax is:

[label[:]] mnemonic [operand list] [;comment]

Some line examples are:

 .sect ".sysmem" ; Data Space

var1 .word 2 ; variable var1 declaration

 .text ; Program Space

Label1: MOV.W R4,R5 ; move R4 contents to R5

The general guidelines for writing the code are:

 All statements must begin with a label, a blank, an asterisk, or a
semicolon;

 Labels are optional and if used, they must begin in column 1;

 One or more blanks must separate each field. Tab and space
characters are blanks. You must separate the operand list from the
preceding field with a blank;

 Comments are optional. Comments that begin in column 1 can
begin with an asterisk or a semicolon (* or ;), but comments that
begin in any other column must begin with a semicolon;

 A mnemonic cannot begin in column 1, as it will be interpreted
as a label.

The assembler supports several types of constants:

 Binary integer: 1111 0000b 0xF8

 Octal integer: 226 0x96

 Decimal integer: 25 0x19

 Hexadecimal integer 0x78

 Character ‘a’

 Assembly time value1 .set 3

Lab 11c. MSP430 assembly language tutorial

www.msp430.ubi.pt Copyright 2009 Texas Instruments, All Rights Reserved 15-123

Symbols are used as labels, constants, and substitution symbols. A
symbol name is a string of up to 200 alphanumeric characters (A-Z,
a-z, 0-9, $, and _). The first character in a symbol cannot be a
number, and symbols cannot contain embedded blanks. The
symbols you define are case sensitive.

Symbols used as labels become symbolic addresses that are
associated with locations in the program.

Labels used locally within a file must be unique. Local labels are
special labels whose scope and effect are temporary. A local label
can be defined in two ways:

 $n, where n is a decimal digit in the range 0-9. For example, $4
and $1 are valid local labels;

 name?, where name is any legal symbol name as described
above. The assembler replaces the question mark with a period
followed by a unique number. When the source code is expanded,
you will not see the unique number in the listing file.

Normal labels must be unique. Local labels, however, can be
undefined and redefined again.

The smallest unit of an object file is called a section. A section is a
block of code or data that occupies contiguous space in the memory
map, with other sections. Each section of an object file is separate
and distinct. Object files usually contain three default sections:

 text section usually contains executable code;

 data section usually contains initialized data;

 bss section usually reserves space for uninitialized variables.

There are two basic types of sections:

 Initialized sections: contain data or code. The .text and .data
sections are initialized. Named sections created with the .sect
assembler directive are also initialized;

 Uninitialized sections: reserve space in the memory map for
uninitialized data. The .bss section is uninitialized. Named sections
created with the .usect assembler directive are also uninitialized.

A line in a listing file has four fields:

 Field 1: contains the source code line counter;

 Field 2: contains the section program counter;

 Field 3: contains the object code;

 Field 4: contains the original source statement.

Figure 15-69 shows how the section program counters are modified
during assembly.

Advanced Laboratories

15-124 Copyright 2009 Texas Instruments, All Rights Reserved www.msp430.ubi.pt

Figure 15-69. Example: Using sections directives.

Lab 11c. MSP430 assembly language tutorial

www.msp430.ubi.pt Copyright 2009 Texas Instruments, All Rights Reserved 15-125

Figure 15-70 shows the process of linking two files together.

Figure 15-70. Combining input sections to form an executable object module.

Assembler directives supply data to the program and control the
assembly process. Assembler directives enable you to do the
following:

 Assemble code and data into specified sections;

 Reserve space in memory for uninitialized variables;

 Control the appearance of listings;

 Initialize memory;

 Assemble conditional blocks;

 Define global variables;

 Specify libraries from which the assembler can obtain macros;

 Examine symbolic debugging information.

The following tables summarize the assembler directives.

Advanced Laboratories

15-126 Copyright 2009 Texas Instruments, All Rights Reserved www.msp430.ubi.pt

Table 15-26. Directives that define sections.

Table 15-27. Directives that initialize constants (Data and Memory).

Table 15-28. Directives that perform alignment and reserve space.

Lab 11c. MSP430 assembly language tutorial

www.msp430.ubi.pt Copyright 2009 Texas Instruments, All Rights Reserved 15-127

Table 15-29. Directives that format the output listing.

Table 15-30. Directives that reference other files.

Table 15-31. Directives that enable conditional assembly.

Advanced Laboratories

15-128 Copyright 2009 Texas Instruments, All Rights Reserved www.msp430.ubi.pt

Table 15-32. Directives that define structures.

Table 15-33. Directives that define symbols at assembly time.

Table 15-34. Directives that perform miscellaneous functions.

Lab 11c. MSP430 assembly language tutorial

www.msp430.ubi.pt Copyright 2009 Texas Instruments, All Rights Reserved 15-129

A project example: square root extraction

 Algorithm presentation

The routine to perform the calculation of a square root should
provide the result in a speedy manner and without needing a
starting point, as in Newton's iterative method.

The first step in the manual method of calculating the square root of
a number is to partition the number into bit pairs, starting with the
least significant bit;

Begin with the most significant pair, subtract 01 and proceed as
follows:

 If the subtraction result is positive, enter a bit with value 1 in
the square root result;

 If the subtraction result is negative, enter a bit with value 0
in the square root result.

The second step consists of adding to the subtraction result the
following bit pair of the number.

The next operation to execute is now selected as follows:

 If the entered bit value in the square root result was 1, add
01 to the square root result and subtract this value;

 If the entered bit value in the square root result was 0, add
11 to the square root result and add this value;

 Proceed until the end of the calculation.

Example: Calculate the square root of 01 01 11 11 00b = 380d:

The result is equal to 10011b = 19d which is the integer part of the
square root of 380.

If instead of using 01 01 11 11 00b, the following fractional value had
been used: 01 01 11 11 00, 00 00 00b, the result would be:

Advanced Laboratories

15-130 Copyright 2009 Texas Instruments, All Rights Reserved www.msp430.ubi.pt

The process is identical to the previous one. The value of the square
root with n fractional elements can be calculated by adding to the
binary number with 2*n fractional elements.

 Code implementation and analysis

The algorithm described above is used to build the SQRT_FUNCTION
routine. The project for the CCE v3.0 can be found in
Chapt15 > Lab11c.

 The program body starts by loading the file msp430xG46x.h,
providing the C/C++ mnemonics;

 The addressing space ".sysmem" is reserved space for the
variable number (type word) (UQ16), initialized with the
value 50;

 The square root extraction procedure places the result in the
variable sqrt (type word) (UQ8.8);

 The number of cycles to determine the solution is given by
the variable count (type byte) initialized to 0x15, allowing 8
fractional part bits.

;***;
;**
 .cdecls C,LIST, "msp430xG46x.h" ; load C file Headers
;--
 .sect ".sysmem" ; Data Space
;--
number .word 50 ; reserve space for one word

sqrt .word 0 ; reserve space for one word

count .char 0x0F ; reserve space for one byte

Lab 11c. MSP430 assembly language tutorial

www.msp430.ubi.pt Copyright 2009 Texas Instruments, All Rights Reserved 15-131

 The program code is placed in the section ".text";

 After setting the entry point BEGIN, start to write the code;

 The first task of the code is to initialize the stack pointer and
to stop the watchdog timer;

 Next comes loading the data necessary to execute the routine
on the stack using the PUSH instruction;

 The routine is then called. Note that it uses the CALL
instruction, so the routine must reside in the address space
below 64 kB. Therefore, only bits 15:0 of the register PC are
placed on the stack;

 After running the routine, add the value 6 to register SP
(corresponding to the space occupied by the routine input
data) to restore the stack pointer.

;--
 .text ; Program Space
;--
 .global BEGIN ; entry point
BEGIN:
 mov.w #0A00h,SP ; initialize stackpointer
 mov.w #WDTPW+WDTHOLD,&WDTCTL ; stop WDT

 push.w #number ; push data in to stak
 push.w #sqrt
 push.w count

 call #SQRT_FUNCTION ; call function

 ADD #0x6,SP ; restore SP

 ret ; exit

 At the beginning of the routine, the machine context is saved.
Therefore, all the registers used by the routine are placed on
the stack;

 Also reserved on the stack is space for two temporary
variables: temp1 and temp2, initialized to the values 0x00
and 0x01, respectively;

 The following figure shows the stack organization:

Advanced Laboratories

15-132 Copyright 2009 Texas Instruments, All Rights Reserved www.msp430.ubi.pt

Figure 15-71. Example: Square root extraction - stack organization.

 Address Space
DATA

0x0000

0xXXXX

temp2

R4
R5
R6

0x009EC
0x0001

SR

number
sqrt

count
PC

0x009EE
0x009F0
0x009F2
0x009F4

0x009F06
0x009F8
0x009FA
0x009FC
0x009FE
0x00A00

temp1
SP

;--
; Square root function
;--
SQRT_FUNCTION:
 push.w SR ; save context
 push.w R4
 push.w R5
 push.w R6

 push.w #00 ; define temp1
 push.w #01 ; define temp2

 mov.w 18(SP),R4 ; R4 point to number
 mov.w 16(SP),R5 ; R5 point to sqrt
 mov.w #0x0000,0(R5) ; reset sqrt

 The square root calculation starts at the label SQRT_LOOP1
and executes 16 times;

 The process begins by removing the 2 most significant bits of
the variable number, pointed by R4, and placing them in the
least significant part of the variable temp1.

SQRT_LOOP1:
 mov.w @R4,R6 ; take 1º MSB from number
 rla.w R6
 mov.w R6,0(R4)

 mov.w 2(SP),R6 ; put it in temp1
 rlc.w R6
 mov.w R6,2(SP)

 mov.w @R4,R6 ; take 2º MSB from number
 rla.w R6
 mov.w R6,0(R4)

 mov.w 2(SP),R6 ; put it in temp1
 rlc.w R6

Lab 11c. MSP430 assembly language tutorial

www.msp430.ubi.pt Copyright 2009 Texas Instruments, All Rights Reserved 15-133

 The value of the variable temp1 is then compared with zero;

 If the result is negative, then execution continues at the label
SQRT_ADD;

 Otherwise, the variable temp1 is subtracted from the value
of the variable temp2;

 After this procedure, program execution continues at the
label SQRT_S1.

 cmp #00,R6
 jn SQRT_ADD ; if temp1 < 0 go SQRT_ADD

SQRT_SUB: ; temp1 = temp1 - temp2
 sub.w 0(SP),R6
 jmp SQRT_S1

SQRT_ADD: ; temp1 = temp1 + temp2
 add.w 0(SP),R6
 mov.w R6,2(SP)

 At this point, depending on the result of the previous
operation, a bit of value 0 or 1 is entered in the sqrt result;

 If a (1) one (SQRT_PRE_SUB) was entered in the result, the
bit pair 01 is added to variable temp2.

 If a (0) zero (SQRT_PRE_ADD) was entered in the result, the
bit pair 11 is added to the variable temp2;

 In both cases, the number of cycles is tested.

 If the cycle value is less than zero, the execution continues at
the label SQRT_END, otherwise it restarts the procedure at
label SQRT_LOOP1.

SQRT_S1:
 cmp #00,R6
 jn SQRT_PRE_ADD

SQRT_PRE_SUB:
 mov.w R6,2(SP) ; save temp1 on stack

 mov.w @R5,R6 ; insert 1 in sqrt
 setc
 rlc R6
 mov R6,0(R5) ; save sqrt
 rla.w R6
 rla.w R6
 add #1,R6 ; append 01b
 mov.w R6,0(SP) ; save temp2

 mov 14(SP),R6 ; test count
 dec R6
 mov R6,14(SP)
 cmp #00,R6
 jge SQRT_LOOP1
 jmp SQRT_END

Advanced Laboratories

15-134 Copyright 2009 Texas Instruments, All Rights Reserved www.msp430.ubi.pt

SQRT_PRE_ADD:
 mov.w R6,2(SP) ; save temp1 on stack

 mov.w @R5,R6 ; insert 0 in sqrt
 clrc
 rlc R6
 mov R6,0(R5) ; save sqrt
 rla.w R6
 rla.w R6
 add #3,R6 ; append 11b
 mov.w R6,0(SP) ; save temp2

 mov 14(SP),R6 ; test count
 dec R6
 mov R6,14(SP)
 cmp #00,R6
 jge SQRT_LOOP1

 Before ending the execution of the routine, it is necessary to
restore the system state;

 The data values are removed from the stack;

 The execution of the routine ends with the instruction RET.

SQRT_END:
 pop R6 ; restore context
 pop R6
 pop R6
 pop R5
 pop R4
 pop SR
 ret ; exit

 Testing the project

 After the project is built and configured, it is possible to start
the debugging process;

 In the memory panel, enter the addresses of the variables
number, sqrt and count;

 Make a note of the SP value. Run the program and verify the
result;

 It should be noted that after using the routine, the stack
returns to the same state. The square root of the value (50)
is 0x712, which is the value 7.07 in the format UQ8.8.

This assembly language programming example only intends to
provide an overview how a project can be created with the CCE.

