
www.msp430.ubi.pt Copyright  2009 Texas Instruments, All Rights Reserved 7-1

Chapter 7

7. Timers

Correct system timing is a fundamental requirement for the proper
operation of a real-time application. The timing definition can dictate
how the data information processed during the execution of the
application program. The clock implementations vary between
devices in the MSP430 family. Each device provides different clock
sources, controls and uses. This chapter discusses the clock controls
included in the platforms used.

The MSP430 4xx family has two general-purpose 16-bit or 8-bit
counters and event timers, named Timer_A, Timer_B, and a Basic
Timer. The Basic Timer module is only implemented in ‘4xx devices.
The 2xx device family also has Timer_A and Timer_B, but the clock
signals are provided by the basic clock module+.

The timers may receive an internal or external clock. Timer_A and
Timer_B also include multiple independent capture and compare
blocks, with interrupt capabilities.

The capture and compare blocks are suited for applications such as
timed events and Pulse Width Modulator (PWM) respectively.

Topic Page

7.1 Timers Introduction...7-3

7.2 Basic Timer 1...7-4

7.2.1 Registers..7-5

7.3 Timer_A and Timer_B..7-6

7.3.1 Operating modes characteristics................................7-7

7.3.2 Timer reset ..7-8

7.3.3 Timer_A registers ..7-8

7.4 Capture/Compare blocks...7-9

7.4.1 Capture mode ..7-9

7.4.2 Compare mode...7-10

Timers

7-2 Copyright  2009 Texas Instruments, All Rights Reserved www.msp430.ubi.pt

7.4.3 Capture/Compare blocks registers 7-12

7.5 Timer_A Interrupts ... 7-13

7.6 Timer_B special features... 7-13

7.6.1 Timer_B registers .. 7-14

7.7 Laboratory 3: Timers use .. 7-16

7.7.1 Lab3A_1: Memory clock with Basic Timer1.............. 7-16

7.7.2 Lab3A_2: Real Time Clock with Basic Timer1........... 7-20

7.7.3 Lab3B: Memory Clock with Timer_A......................... 7-23

7.7.4 Lab3C: Buzzer tone generator.................................. 7-26

7.7.5 Lab3D: Frequency measurement 7-32

7.8 Quiz... 7-38

7.9 FAQs.. 7-39

Timers Introduction

www.msp430.ubi.pt Copyright  2009 Texas Instruments, All Rights Reserved 7-3

7.1 Timers Introduction

In Chapter 5 – Device Systems and Operating Modes described the
different system clocks sources that allow the CPU and peripherals
to operate, depending on the device in the MSP430 family. This
chapter will focus mainly on the configuration and operation of
timers and their different uses.

This chapter describes the basic clock module+ (BCS+) three byte-
addressable registers, all of which are fully software controllable.
These allow the clock sources to be configured by one or two
oscillators (depending on the device) or by external crystals or
resonators, as wells as by the internal digitally controlled oscillator
(DCO). The DCO allows a working frequency up to 16 MHz, lower
power consumption and lower internal oscillator start up time.

The system timing is fundamental to almost any embedded
application. The timers are used in applications to:

 Generate fixed-period time events;

 Allow a periodic wakeup from sleep mode;

 Count transitional signal edges;

 Replace delay loops with timer calls to allow the CPU to sleep,
consuming much less power.

The MSP430 devices contain several timer modules, each one
suitable for different types of tasks. Chapter 5 described the timer
modules as Basic Clock Module+ implemented in the MSP430x2xx
family and the Watchdog Timer present in all families of MSP430
devices. This chapter will focus on:

 Basic Timer 1 module (implemented only in the MSP430x4xx
family);

 Timer_A;

 Timer_B.

The clock signals of the MSP430x4xx family devices are controlled
by two sets of registers. The first set of registers configures the low-
frequency signals for use by peripheral modules. These registers,
namely Basic Timer Control Register (BTCTL), Basic Timer Counter 1
(BTCNT1) and Basic Timer Counter 1(BTCNT2) control the Basic
Timer 1 module.

The second set of registers is dedicated to the configuration of the
general-purpose clocks system. They comprise of the System Clock
Control (SCFQCTL), System Clock Frequency Integrator 0 (SCFI0),
System Clock Frequency Integrator 1 (SCFI1), and the two
Frequency Locked Loop control registers, FLL+CTL0 and FLL+CTL1.

Timers

7-4 Copyright  2009 Texas Instruments, All Rights Reserved www.msp430.ubi.pt

7.2 Basic Timer 1

The Basic Timer 1 module is formed by two independent 8-bit
timers: Basic Timer 1 Counter 1 (BTCNT1) and Basic Timer 1
Counter 2 (BTCNT2), which can be used in cascade to form a 16-bit
timer (software selectable by BTCTL register configuration).

The main characteristics of this module are:

 Clock for LCD module;

 Suitable for a RTC implementation;

 Basic interval timer;

 Simple interrupt capability.

These timers/counters have different applications:

 BTCNT1: Used to generate the frame frequency for the LCD
controller:

 Read/write 8-bit register;

 Clock source: ACLK;

 Frame frequency selectable by software (BTFRFQx bits on the
BTCTL register) based on the ACLK division (x);

 fLCD = ACLK/x.

 BTCNT2: Used as a programmable frequency divider with
interrupt capability, to provide periodic CPU interrupts and/or a Real
Time Clock system.

 Read/write 8-bit register;

 Three possible clock sources: ACLK or SMCLK, or ACLK/256
when cascaded with BTCNT1 (selected by the BTSSEL and
BTDIV bits on the BTCTL register);

 Sources the Basic Timer1 interrupt BTIFG, with an interval
selected by the BTIPx bits in the BTCTL register;

Figure 7-1. Basic Timer 1 block diagram.

Basic Timer 1

www.msp430.ubi.pt Copyright  2009 Texas Instruments, All Rights Reserved 7-5

7.2.1 Registers

BTCTL, Basic Timer 1 Control Register

7 6 5 4 3 2 1 0

BTSSEL BTHOLD BTDIV BTFRFQ1 BTFRFQ0 BTIP2 BTIP1 BTIP0

Bit Description
7 BTSSEL BTCNT2 clock select (together with the BTDIV bit)
6 BTHOLD Basic Timer 1 hold:

 BTHOLD = 0  BTCNT1 and BTCNT2 active
 BTHOLD = 1  BTCNT1 hold, if BTDIV = 1
 BTHOLD = 1  BTCNT1 and BTCNT2 hold

5 BTDIV Basic Timer 1 clock divider (together with the BTSSEL bit selects the
BTCNT2 clock signal):
 BTSSEL BTDIV = 0 0  ACLK
 BTSSEL BTDIV = 0 1  ACLK/256
 BTSSEL BTDIV = 1 0  SMCLK
 BTSSEL BTDIV = 1 1  ACLK/256

4-3 BTFRFQx LCD frame frequency:
 BTFRFQ1 BTFRFQ0 = 0 0  fACLK/32
 BTFRFQ1 BTFRFQ0 = 0 1  fACLK/64
 BTFRFQ1 BTFRFQ0 = 1 0  fACLK/128
 BTFRFQ1 BTFRFQ0 = 1 1  fACLK/256

2-0 BTIPX Basic Timer 1 interrupt interval:
 BTIP2 BTIP1 BTIP0 = 0 0 0  fCLK2 / 2
 BTIP2 BTIP1 BTIP0 = 0 0 1  fCLK2 / 4
 BTIP2 BTIP1 BTIP0 = 0 1 0  fCLK2 / 8
 BTIP2 BTIP1 BTIP0 = 0 1 1  fCLK2 / 16
 BTIP2 BTIP1 BTIP0 = 1 0 0  fCLK2 / 32
 BTIP2 BTIP1 BTIP0 = 1 0 1  fCLK2 / 64
 BTIP2 BTIP1 BTIP0 = 1 1 0  fCLK2 / 128
 BTIP2 BTIP1 BTIP0 = 1 1 1  fCLK2 / 256

IE2, Interrupt Enable Register 2

7 0

BTIE

Bit Description
7 BTIE Basic Timer 1 interrupt enable when BTIE = 1

IFG2, Interrupt Flag Register 2

7 0

BTIFG

Bit Description
7 BTIFG Basic Timer 1 interrupt flag BTIFG = 1 when interrupt pending

Timers

7-6 Copyright  2009 Texas Instruments, All Rights Reserved www.msp430.ubi.pt

7.3 Timer_A and Timer_B

Timer_A and Timer_B are two general-purpose 16-bit counters and
event timers. There are slight differences between the two timers
that will be explained in this section.

Both timers feature:

 Asynchronous 16-bit timer/counter with four operating modes:

 Timer_A length: 16 bits;

 Timer_B length: programmable to be 8, 10, 12, or 16 bits.

 The timer/counter register, TAR (Timer_A) or TBR (Timer_B)
-from now on described as TxR- increments or decrements
(depending on mode of operation) with each rising edge of
the clock signal;

 The timer can generate an interrupt when it overflows;

 Wide interrupt interval range: 1/MCLK to 32 seconds.

 Selectable and configurable clock source:

 ACLK, SMCLK, or externally via TxCLK or INCLK (selected
with the TASSELx bits);

 The selected clock source may additionally be divided by 2, 4,
or 8 (IDx bits configuration).

 Configurable capture/compare registers:

 Timer_A has three or five capture/compare registers;

 Timer_B has three or seven capture/compare registers;

 Timer_B capture/compare registers can be grouped.

 Configurable outputs and several internal connections to other
modules, allowing a faster response because no cycles are wasted
while the ISR loads/executes and avoids CPU wakeup, which in turn
saves power:

 Outputs with Pulse Width Modulation (PWM) capability;

 Comparator_A;

 Direct Memory Access;

 Digital-to-Analogue Converter (DAC12);

 Asynchronous input and output latching:

 Timer_A capture/compare registers are not buffered, being
updated immediately when written to;

 Timer_B capture/compare registers are double-buffered with
synchronized loading.

Timer_A and Timer_B

www.msp430.ubi.pt Copyright  2009 Texas Instruments, All Rights Reserved 7-7

 Interrupt vector register for fast decoding of all Timer_A and
Timer_B interrupts.

 TACCR0 (or TBCCR0) interrupt vector for TACCR0 (or
TBCCCR0) CCIFG;

 TAIV (or TBIV) interrupt vector for the remainder CCIFG flags
and TAIFG (or TBIFG).

The timer has four modes of operation as described in Table 7−1,
selected with the MCx bits in the Timer_A or Timer_B Control
Registers.

Table 7-1. Timer_A and Timer_B operating modes.

MCx Mode Description
0 0 Stop The timer is halted
0 1 Up Up counting repeatedly mode (from 0x0000 to the value in the

TACCR0 or TBCCR0 register)
1 0 Continuous Continuous counting repeatedly mode (from 0x0000 to 0xFFFF)
1 1 Up/down Up/down counting repeatedly mode (from 0x0000 to the value in

the TACCR0 or TBCCR0 register and back down to zero)

Because the main characteristics provided by the two timers are
similar, the following sections will only discuss the features of
Timer_A. To use these features with Timer_B, it is only necessary to
configure the appropriate registers. The register descriptions for
Timer_A are valid for Timer_B.

7.3.1 Operating modes characteristics

Up mode

The main characteristics of up mode are:

 TAR counts up with each clock pulse until it reaches the value in
the TACCR0 (or TBCCR0) register;

 The TACCR0 (or TBCCR0) interrupt flag, CCIFG, is set when the
timer counts to the TACCR0 (or TBCCR0) value;

 When it reaches this value, EQU0 = 1 (restarts TAR counting
from zero);

 The TAIFG (or TBIFG) interrupt flag is set when the timer counts
from TACCR0 (or TBCCR0) value to zero.

 Interrupt period: tINT = 1/[fCLK/Prescaler/(TxCCR0+1)];

o tINT: TxIFG interrupt period [sec];

o fCLK: Clock source frequency [Hz];

o Prescaler: Divider (IDx bits).

Timers

7-8 Copyright  2009 Texas Instruments, All Rights Reserved www.msp430.ubi.pt

Continuous mode

The main characteristics of continuous mode are:

 TxR counts up with each clock pulse till 0xFFFF (65536 counts);

 When it reaches this value, at the next clock pulse it will restart
the TxR counting from zero;

 The TxIFG (or TxIFG) interrupt flag is set when the timer counts
from 0xFFFF to zero.

 Interrupt period: tINT = 1/[fCLK/Prescaler/65536];

 (Correct only for TAR; for TBR 4 there are different end values.
See User’s Guide for additional details).

Up/down mode

The main characteristics of the up/down mode are:

 TxR counts up with each clock pulse until it reaches the value in
the TxCCR0 register;

 The TxCCR0 interrupt flag, CCIFG, is set when the timer counts
from TxCCR0 − 1 to TxCCR0;

 When it reaches this value, the counting is inverted, starting at
the next clock pulse to decrement till zero;

 The interrupt flag TxIFG is set when the timer completes
counting down from 0x0001 to 0x0000.

 Interrupt period: tINT = 1/[fCLK/Prescaler/(TxCCR02];

7.3.2 Timer reset

The timer can be reset using the following operations:

 Writing 0 at the TAR (or TBR) register;

 Writing 0 at the TACCR0 (or TBCCR0) register provided that the
timer is not in continuous mode;

 Setting the TACLR (or TBCLR) bit in the Timer Control Register
(TACTL or TBCTL).

7.3.3 Timer_A registers

The description of the following registers relates to Timer_A
registers. Timer_B registers have the same features, but the
Control Register has different bit names and provides additional
features. For more details, refer to MSP430x4xx User’s Guide
<slau056g.pdf> Chapter 16 – Timer_B to find the differences. The
special features of Timer_B are described in section 7.6.

Capture/Compare blocks

www.msp430.ubi.pt Copyright  2009 Texas Instruments, All Rights Reserved 7-9

TACTL, Timer_A Control Register

15 10 9 8

Unused TASSEL1 TASSEL0

7 6 5 4 3 2 1 0

ID1 ID0 MC1 MC0 Unused TACLR TAIE TAIFG

Bit Description
9-8 TASSELx Timer_A clock source:

 TASSEL1 TASSEL0 = 00  TACLK
 TASSEL1 TASSEL0 = 01  ACLK
 TASSEL1 TASSEL0 = 10  SMCLK
 TASSEL1 TASSEL0 = 11  INCLK

7-6 IDx Clock signal divider:
 ID1 ID0 = 00  / 1
 ID1 ID0 = 01  / 2
 ID1 ID0 = 10  / 4
 ID1 ID0 = 11  / 8

5-4 MCx Clock timer operating mode:
 MC1 MC0 = 00  Stop mode
 MC1 MC0 = 01  Up mode
 MC1 MC0 = 10  Continuous mode
 MC1 MC0 = 11  Up/down mode

2 TACLR Timer_A clear when TACLR = 1
1 TAIE Timer_A interrupt enable when TAIE = 1
0 TAIFG Timer_A interrupt pending when TAIFG = 1

7.4 Capture/Compare blocks

Both TIMER_A (and TIMER_B) contain independent capture and
compare blocks, TACCRX (or TBCCRX) that may be used to capture
the timer register contents, as they are at time of an event, or to
generate an event when the timer register contents correspond to
capture/compare register contents, e.g. to generate time intervals.

The mode is selected by the mode bit CAP in their individual
Capture/Compare Control register, TACCTLx (or TBCCTLx).

7.4.1 Capture mode

The capture mode is used to measure the period of timed events,
with minimal CPU intervention.

Capture mode configuration is achieved by carrying out the
following steps:

 Set CAP bit to select the capture mode;

 Set SCS bit to synchronize the capture with the next timer clock
(recommended to avoid race conditions);

Timers

7-10 Copyright  2009 Texas Instruments, All Rights Reserved www.msp430.ubi.pt

 The input signal is sampled by the CCIxA (or CCIxB) input,
selected by the CCISx bits in the Capture/Compare Control
Register, TACCTLx (or TBCCTLx);

 The capture edge of the input signal (rising, falling, or both) is
selected by the CMx bits;

 When the appropriate edge is detected on the selected input
line, the value in the Timer register is latched into the TACCRx (or
TBCCRx) register, providing a time mark for the event;

 The interrupt flag CCIFG is set;

 The bit COV (=1) controls an overflow event when a second
capture is performed before the value from the first capture is read.

7.4.2 Compare mode

The compare mode is used for pulse generation or interrupts at
specific time intervals. One of its common applications is to
generate Pulse Width Modulation (PWM) output signals.

Compare mode operation is configured as follows:

 Reset CAP bit to select compare mode;

 TxR counts to the value programmed in the TxCCRx register;

 When the timer value is equal to the value in the TxCCRx
register, an interrupt is generated:

 Interrupt flag CCIFG is set;

 Internal signal EQUx = 1 (x is the number of the CCR
channel).

 EQUx affects the output compare signal OUTx according to the
output mode (defined by the OUTMODx bits in the TxCCTLx register
– see Table 7-2).

 The input signal CCI is latched into SCCI.

The output unit is used to generate output signals (such as PWM
signals) based on the EQU0 and EQUx signals. There are eight
different operating modes numbered from 0 to 7. The OUTx signal
changes with the rising edge of the timer clock for all modes, except
mode 0.

The output operating modes are described in Table 7−2 and the
examples of the output signals for different timer modes are
presented in Figure 7-2.

Output operating modes uses:

 Modes 2, 3, 6 and 7: generation of PWM output signals:

 Mode 3: active PWM signal at low state;

 Mode 7: active PWM signal at high state;

Capture/Compare blocks

www.msp430.ubi.pt Copyright  2009 Texas Instruments, All Rights Reserved 7-11

 Modes 2 and 6: complementary PWM signals separated by a
deadband when both signals are reset (application example:
H-bridges for bi-directional motor drive).

 Modes 1 and 5: single event generation;

 Mode 4: signal with half the frequency of the timer signal.

Table 7-2. Output operating modes.

OUTMODx Mode Description
000 Output The output signal OUTx is defined by the bit OUTx
001 Set OUTx = 1  timer = TACCRx

OUTx = 0  timer = 0 or until another output mode is
selected and affects the output

010 Toggle/Reset OUTx = toggle  timer = TACCRx
OUTx = 0  timer = TACCR0

011 Set/Reset OUTx = 1  timer = TACCRx
OUTx = 0  timer = TACCR0

100 Toggle OUTx = toggle  timer = TACCRx
The output period is double the timer period

101 Reset OUTx = 0  timer = TACCRx
OUTx = 1  another output mode is selected and affects
the output

110 Toggle/Set OUTx = toggle  timer = TACCRx
OUTx = 1  timer = TACCR0

111 Reset/Set OUTx = 0  timer = TACCRx
OUTx = 1  timer = TACCR0

Figure 7-2. Output examples for different timer modes.
Timer Mode

Output mode Up mode Continuous mode Up/Down mode

1: Set

2: Toggle/Reset

3: Set/Reset

4: Toggle

5: Reset

6: Toggle/Set

7: Reset/Set

Timers

7-12 Copyright  2009 Texas Instruments, All Rights Reserved www.msp430.ubi.pt

7.4.3 Capture/Compare blocks registers

The description of the following registers relates to Timer_A
registers. Timer_B registers have the same features, but the
Capture/Compare Control Register have different bit names and
provide additional features. Refer to MSP430x4xx User’s Guide
<slau056g.pdf> Chapter 16 – Timer_B to find the differences. The
special features of Timer_B are described in section 7.6.

TACCTLx, Timer_A Capture/Compare Control Register

15 14 13 12 11 10 9 8

CM1 CM0 CCIS1 CCIS0 SCS SCCI Unused CAP

7 6 5 4 3 2 1 0

OUTMOD2 OUTMOD1 OUTMOD0 CCIE CCI OUT COV CCIFG

Bit Description
15-14 CMx Capture mode:

 CM1 CM0 = 00  No capture
 CM1 CM0 = 01  Capture on rising edge
 CM1 CM0 = 10  Capture on falling edge
 CM1 CM0 = 11  Capture on both edges

13-12 CCISx Capture/compare input select:
 CCIS1 CCIS0 = 00  CCIxA
 CCIS1 CCIS0 = 01  CCIxB
 CCIS1 CCIS0 = 10  GND
 CCIS1 CCIS0 = 11  Vcc

11 SCS Synchronize capture input signal with timer clock:
 SCS = 0  Asynchronous capture
 SCS = 1  Synchronous capture

10 SCCI Synchronized capture/compare input
8 CAP Mode:

Capture mode  CAP = 1
Compare mode  CAP = 0

7-5 OUTMODx Output mode:
 OUTMOD2 OUTMOD1 OUTMOD0 = 000  Bit OUT
 OUTMOD2 OUTMOD1 OUTMOD0 = 001  Set
 OUTMOD2 OUTMOD1 OUTMOD0 = 010  Toggle/Reset
 OUTMOD2 OUTMOD1 OUTMOD0 = 011  Set / Reset
 OUTMOD2 OUTMOD1 OUTMOD0 = 100  Toggle
 OUTMOD2 OUTMOD1 OUTMOD0 = 101  Reset
 OUTMOD2 OUTMOD1 OUTMOD0 = 110  Toggle / Set
 OUTMOD2 OUTMOD1 OUTMOD0 = 111  Reset / Set

4 CCIE Capture/compare interrupt enable when CCIE = 1.
3 CCI Capture/compare input
2 OUT Output state
1 COV Capture overflow when COV = 1
0 CCIFG Capture/compare interrupt flag CCIFG = 1 when interrupt pending

Timer_B special features

www.msp430.ubi.pt Copyright  2009 Texas Instruments, All Rights Reserved 7-13

7.5 Timer_A Interrupts

Interrupt characteristics:

 Capture mode:

 Any CCIFG flag is set when a timer value is captured in the
associated TACCRx register.

 Compare mode:

 Any CCIFG flag is set if TAR counts to the associated TACCRx
value.

 Software may also set or clear any CCIFG flag;

 All CCIFG flags request an interrupt when their corresponding
CCIE bit and the GIE bit are set.

There are two interrupt vectors associated with Timer_A:

 TACCR0 interrupt vector for TACCR0 CCIFG:

 TACCR0 CCIFG flag has the highest Timer_A interrupt
priority;

 The TACCR0 CCIFG flag is automatically reset when the
TACCR0 interrupt request is serviced.

 TAIV interrupt vector for TACCR1 CCIFG to TACCR4 CCIFG and
TAIFG:

 The flags are prioritized and combined to source a single
interrupt vector (decreasing priority);

 The interrupt vector register TAIV is used to determine which
flag requested an interrupt;

 Disabling Timer_A interrupts does not affect the TAIV value;

 Any access, read or write, of the TAIV register automatically
resets the highest pending interrupt flag;

 If another interrupt flag is set, another interrupt is
immediately generated after servicing the initial interrupt.

7.6 Timer_B special features

Timer_B presents some special features:

 Programmable length of the TBR register (equivalent to TAR in
Timer_A) to be 8, 10, 12, or 16 bits:

 Configurable through CNTLx bits selection in TBCTL
(equivalent to TACTL in Timer_A);

 The maximum count value, TBR(max), for the selectable
lengths is 0FFh, 03FFh, 0FFFh, and 0FFFFh, respectively;

Timers

7-14 Copyright  2009 Texas Instruments, All Rights Reserved www.msp430.ubi.pt

 Three or seven capture/compare blocks TBCCRx;

 Double-buffered compare latches with synchronized loading:

 In Timer_A, the signal generation in compare mode may
cause noise during compare period updates, because the
TACRRx value is used directly to compare with timer value;

 To avoid this condition, the compare latches, TBCLx, buffered
by TBCCRx, hold the data for the comparison to the timer
value in compare mode;

 The CLLDx bits in the TBCCTLx register configure the timing
of the transfer from TBCCRx to TBCLx.

 Grouping channels capability:

 Multiple compare latches may be grouped together for
simultaneous updates using the TBCLGRPx bits;

 Two conditions are required:

o All TBCCRx registers must be updated;

o The load event controlled by the CLLDx bits must
occur.

 All outputs can be put into a high-impedance state:

 TBOUTH = 1 put Timer_B outputs into a high-impedance
state, allowing higher security and lower delay time
answering to failures.

 The SCCI bit function is not implemented.

7.6.1 Timer_B registers

This section describes only the Timer_B bits of the registers TBCTL
and TBCCTL that differ from Timer_A features. Refer to Timer_A
registers description to determine the common function. The
different bits are highlighted in bold.

TBCTL, Timer_B Control Register

15 14 13 12 11 10 9 8

Unused TBCLGRP1 TBCLGRP0 CNTL1 CNTL0 Unused TBSSEL1 TBSSEL0

7 6 5 4 3 2 1 0

ID1 ID0 MC1 MC0 Unused TBCLR TBIE TBIFG

Laboratory 3: Timers use

www.msp430.ubi.pt Copyright  2009 Texas Instruments, All Rights Reserved 7-15

Bit Description
14-
13

TBCLGRPx TBCLx group:
 TBCLGRP1 TBCLGRP0 = 00
  Each TBCLx latch loads independently
 TBCLGRP1 TBCLGRP0 = 01
  TBCL1+TBCL2 (update control: TBCCR1 CLLDx)
  TBCL3+TBCL4 (update control: TBCCR3 CLLDx)
  TBCL5+TBCL6 (update control: TBCCR5 CLLDx)
  TBCL0 independent
 TBCLGRP1 TBCLGRP0 = 10
  TBCL1+TBCL2+TBCL3 (update control: TBCCR1 CLLDx)
  TBCL4+TBCL5+TBCL6 (update control: TBCCR4 CLLDx)
  TBCL0 independent
 TBCLGRP1 TBCLGRP0 = 11
  TBCL0+TBCL1+TBCL2+TBCL3+TBCL4+TBCL5+TBCL6
 (update control: TBCCR1 CLLDx)

12-
11

CNTLx Counter Length:
 CNTL1 CNTL0 = 00  16-bit, TBR(max) = 0FFFFh
 CNTL1 CNTL0 = 01  12-bit, TBR(max) = 0FFFh
 CNTL1 CNTL0 = 10  10-bit, TBR(max) = 03FFh
 CNTL1 CNTL0 = 11  8-bit, TBR(max) = 0FFh

TBCCTLx, Timer_B Capture/Compare Control Register

15 14 13 12 11 10 9 8

CM1 CM0 CCIS1 CCIS0 SCS CLLD1 CLLD0 CAP

7 6 5 4 3 2 1 0

OUTMOD2 OUTMOD1 OUTMOD0 CCIE CCI OUT COV CCIFG

Bit Description
10-9 CLLDx Compare latch load:

 CLLD1 CLLD0 = 00  TBCLx loads on write to TBCCRx
 CLLD1 CLLD0 = 01  TBCLx loads when TBR counts to 0
 CLLD1 CLLD0 = 10  TBCLx loads when TBR counts:
 - to 0 (up/continuous mode);
 - to TBCL0 or to 0 (up/down mode)
 CLLD1 CLLD0 = 11  TBCLx loads when TBR counts:
 - to TBCLx

Timers

7-16 Copyright  2009 Texas Instruments, All Rights Reserved www.msp430.ubi.pt

7.7 Laboratory 3: Timers use

This hands-on laboratory consists of configuring the LCD_A
controller of the MSP430FG4618 device of the Experimenter’s board
to put a message on the display. Like the previous exercise (Lab2),
this laboratory is composed of some sub tasks. This laboratory has
been developed only for the Code Composer Essentials version 3
software development tool.

7.7.1 Lab3A_1: Memory clock with Basic Timer1

Project files

 C source files: Chapter 7 > Lab3 > Lab3a_1_student.c

 Chapter 7 > Lab3 > LCD_defs.h

 Solution file: Chapter 7 > Lab3 > Lab3a_1_solution.c

Overview

This laboratory implements a memory clock using the features
provided by Timer1. The clock is updated once every second by the
Basic Timer1 interrupt service routine (ISR). This procedure also
performs switching of LED1. In order to evaluate the execution time
of the routine, LED2 is kept active during the execution of the ISR.
When the ISR has completed, the device goes into low power mode,
until the new interrupt wakes it up.

A. Resources

This application sets Basic Timer1 to generate an interrupt once
every second. The interrupt service routine generated by this
peripheral is required to update the clock stored in memory.
Moreover, it must refresh the content of the clock displayed on the
LCD.

Thus, the system resources used by this application are:

 Basic Timer1;

 I/O ports;

 LCD;

 Interrupts;

 Low power modes.

The default configuration of the FLL+ is used, so, all the clock
signals required for the operation of the components of the device
assume their default values.

Laboratory 3: Timers use

www.msp430.ubi.pt Copyright  2009 Texas Instruments, All Rights Reserved 7-17

B. Software application organization

The first task is to disable the Watchdog Timer. It should be stated
that this feature, when used correctly, makes the application more
robust.

The resources needed for the LCD are all configured. This code is
given, since its operation will be analysed in a later laboratory. Once
the LCD configured, it is cleared by the execution of the routine
LCD_all_off().

The memory clock consists of setting three global variables: hour,
min, and sec, all of the type unsigned char, used to store the hours,
minutes and seconds values elapsed respectively since the beginning
of the execution of the application. These variables are initialized
with zero values.

The LCD is refreshed at startup to show the initial clock value.

LED1 is used as an indicator of Basic Timer1 ISR execution. The
execution time can be determined through it. In addition, LED2 state
switches whenever the Basic Timer1 ISR is executed.

The Basic Timer1 is set to generate an interrupt once every second.

The routine main() ends with the interrupts global activation and
puts the device in low power mode, awaiting the next interrupt.

Basic Timer1 ISR begins by activating LED2, indicating the beginning
of the routine execution and then switches the state of LED1. The
counters are updated in cascade and their contents updated on the
LCD, through routines LCD_sec(), LCD_min() and LCD_hour().
The routine ends with switching the state of the clock separation
points. Finally, LED2 is turned off.

C. System configuration

 Disabling the Watchdog Timer

The Watchdog Timer is disabled with the objective of reducing
energy consumption, but giving up the protection afforded by it. This
peripheral is configured by the WDTCTL register. Its access is
protected by a password. What is the value to write to disable it?

WDTCTL = _______________;

 FLL+ configuration

A 32.768 kHz crystal is applied to the oscillator LFXT1. Since it is
possible to select the internal capacitors using software, what is the
value to write to the FLL_CTL0 configuration register to select the 8
pF capacitors?

Timers

7-18 Copyright  2009 Texas Instruments, All Rights Reserved www.msp430.ubi.pt

FLL_CTL0 |= ____________;

Taking into consideration the change mentioned earlier to the FLL+
module, what are the frequencies of each of the clock signals?

ACLK = _________________;

MCLK = _________________;

SMCLK = ________________;

 LED ports configuration

LED1 and LED2 are connected to ports P2.2 and P2.1 respectively.
How should they be configured so that just the bits related to these
ports have digital output functions?

P2DIR = _________________;

How should the P2OUT register be configured so that the application
starts with LED1 on and LED2 off?

P2OUT = _________________;

 Basic Timer1 configuration

Basic Timer1 should generate an interrupt once every second. It
uses two counters in series, so that the input of the BTCNT2 counter
is the output of the BTCNT1 counter divided by 256. The BTCNT1
counter input is the ACLK with a 32.768 kHz frequency. If the
selected output of the BTCNT2 counter is divided by 128, what is the
time period associated with the Basic Timer1 interrupt? _________

What are the values to write in the configuration registers?

BTCTL = ________________;

IE2 = __________________;

 Low power modes

The task simply updates the counters periodically and refreshes the
LCD contents. It is possible to configure the registers for an energy-
efficient operation.

Which low power mode should be used? _____________

Which system clocks are activated in the low power mode selected?

Laboratory 3: Timers use

www.msp430.ubi.pt Copyright  2009 Texas Instruments, All Rights Reserved 7-19

D. Analysis of operation

Knowing the values and configurations of each register, complete
the file LAB3a_1_student.c. The complete solution can be found in
the file LAB3a_1_solution.c. One of these files should be included
in the building of the project. Afterwards, compile and debug the
project.

 System clocks inspection

The MCLK, SMCLK and ACLK system clocks are available at ports
P1.1, P1.4 and P1.5 respectively. These ports are located on the
SW2, RESET_CC and VREG_EN lines, which are available on the H2
Header pins 2, 5 and 6. All these resources are available because
the Chipcon RF module is not installed and SW2 is not used.

Using the Registers view, set bits 1, 4 and 5 of P1SEL and P1DIR
registers, to choose the secondary function of these ports configured
as outputs. By connecting an oscilloscope to those lines, it is
possible to monitor the clock signals.

What are the values measured for each of the system clocks?

ACLK: ________________

SMCLK: _______________

MCLK: ________________

 ISR execution time

The Basic Timer1 ISR execution time is fundamental to energy
conservation, in order to extend the life of the system battery. The
routine execution time can be measured by connecting the
oscilloscope to port P2.1, which controls LED2. This output is
available on pin 2 of Header H4.

The execution time of this routine varies with the number of the
counter updates and respective updates to the LCD. What are the
times measured for each of these situations and what their
frequencies?

Seconds update: ______ with a time period of ______

Seconds and minutes update: ______ with a time period of ______

LCD fields update: ______ with a time period of ______

If the developer chooses to update all the LCD fields at each
interrupt, the time required is much greater than the solution
presented. Efficient programming contributes to a reduction in the
system power consumption.

 Measurement of electrical current drawn

The power consumption was discussed in the previous point. The
electrical power required by the system during operation is
measured by replacing the jumper on the Header PWR1 by an
ammeter, which indicates the electric current taken by device during
operation.

What is the value read? __________

Timers

7-20 Copyright  2009 Texas Instruments, All Rights Reserved www.msp430.ubi.pt

MSP-EXP430FG4618 SOLUTION

Implement a memory clock using the features supported by
Timer1.

 Disabling the Watchdog Timer:

WDTCTL = WDTPW | WDTHOLD; // Stop WDT

 FLL+ configuration:

FLL_CTL0 |= XCAP18PF; // Set load cap for 32k xtal

 LED ports configuration:

P2DIR |= 0x06; // P2.2 and P2.1 as output

P2OUT |= 0x04; // LED1 on and LED2 off

 Basic Timer1 configuration:

BTCTL = BTDIV | BT_fCLK2_DIV128; // (ACLK/256)/128

IE2 |= BTIE; // Enable Basic Timer1 interrupt

 Low power modes:

BIS_SR(LPM3_bits + GIE); // Enter LPM3 with interrupts
enabled

7.7.2 Lab3A_2: Real Time Clock with Basic Timer1

Project files

 C source files: Chapter 7 > Lab3 > Lab3a_2_student.c

 Chapter 7 > Lab3 > LCD_defs.h

 Solution file: Chapter 7 > Lab3 > Lab3a_2_solution.c

Overview

The Real Time Clock (RTC) has a 32-bit counter, to automatically
control the clock calendar. This peripheral is present on the
MSP430FG461x devices. The application developed in the previous
laboratory will now be modified to incorporate this module.

A. Resources

This application is based on the same resources used in the previous
laboratory. In addition, there is an additional RTC peripheral and two

Laboratory 3: Timers use

www.msp430.ubi.pt Copyright  2009 Texas Instruments, All Rights Reserved 7-21

push buttons, SW1 and SW2. The first module works in automatic
mode to manage the clock calendar, while the push buttons switch
the information displayed on the LCD between the clock and
calendar.

B. Software application organization

The organization of the software is identical to that of LAB3A_1
laboratory. The Basic Timer1, LCD and LEDs continue to perform the
same functions. They are configured similarly, but with the changes
described below.

In routine main(), the configurations for RTC and SW1/SW2 are
added.

The memory addresses corresponding to the clock calendar values
are initialized with the default values, that is zero hours, zero
minutes and zero seconds, on August 9, 2008. The RTC is then
activated in calendar mode, with the interrupt disabled. This mode
affects the Basic Timer1 operation.

The switches SW1 and SW2 are connected to the microcontroller
ports P1.0 and P1.1 respectively. Hence, these ports are configured
as inputs and their interrupts activated by a high-to-low transition at
the input.

C. System configuration

 Real Time Clock configuration

The RTC is configured in calendar mode and enabled. The counting
registers provide the values of seconds, minutes, hours, days, day of
the week, day of the month, month and year. The registers are
stored in BCD format to speed up the data writing process to the
LCD. The interrupt for this peripheral should be disabled (disabling
the Basic Timer1 interrupt). Given these objectives, what is the
configuration value of the following register?

RTCCTL = ____________________;

The RTC operation in calendar mode automatically configures some
of the Basic Timer1 features. The content of the bits BTSSEL,
BTHOLD and BTDIV of BTCNT register are ignored. Thus, the
BTCNT1 and BTCNT2 counters work in cascade. The clock source of
the BTCNT1 counter is the ACLK clock signal. The output of the
BTCNT1.Q7 counter is selected as the input of the BTCNT2 counter
(frequency: ACLK/256). The RTC uses the BTCNT2.Q6 output as
clock source (frequency: ACLK/32768).

Timers

7-22 Copyright  2009 Texas Instruments, All Rights Reserved www.msp430.ubi.pt

 Basic Timer1 configuration

This peripheral is automatically configured with the RTC in calendar
mode. To enable the interrupt once every 0.5 seconds, what is the
value to write to the following register:

BTCNT = ________________;

 Ports P1.0 and P1.1 configuration

The switches SW1 and SW2 are connected to ports P1.0 and P1.1
respectively. How should the following registers be configured in
order to set just the bits that affect the digital inputs, with high-to-
low transition interrupts?

P1SEL &= _______________;

P1DIR &= _______________;

P1IFG = _______________;

P1ES &= ________________;

P1IE |= ________________;

D. Analysis of the operation

Knowing what values and configurations to give each of the device’s
registers, complete the blank spaces in the file
LAB3a_2_student.c. The solution of the laboratory can be found in
the file LAB3a_2_solution.c. One of these files should be included
in the construction of the project. After compiling, debug the
project.

 ISR execution time

Performing similar procedures to those described in laboratory
Lab3A_1 measure the ISR execution time. What is the value
measured?

LCD refresh: ______

The LCD write routines were changed. Taking advantage of storing
the data in the BCD format, the division operation can be ignored,
resulting in the reduction of execution time of the Basic Timer1 ISR.
Is the processing time required to refresh the LCD constant? _____

 Measurement of electrical current drawn

Using the procedure similar to that described at the corresponding
point of Lab3A_1, measure of the value of current drawn by the
device.

What is the value measured? __________

Laboratory 3: Timers use

www.msp430.ubi.pt Copyright  2009 Texas Instruments, All Rights Reserved 7-23

MSP-EXP430FG4618 SOLUTION

Implement a Real Time Clock (RTC) using Basic Timer1.

 Real Time Clock configuration:

RTCCTL = RTCBCD | RTCHOLD | RTCMODE_3; // BCD mode,
RTC and BT disable

 Basic Timer1 configuration:

BTCTL = BT_fCLK2_DIV64; // (ACLK/256)/64

IE2 |= BTIE; // Enable BT interrupt with 0.5 period

 Ports P1.0 and P1.1 configuration:

P1SEL &= ~0x03; // P1.0 and P1.1 as inputs

P1DIR &= ~0x03; // P1.0 and P1.1 digital inputs

P1IFG = 0x00;

P1IES &= ~0x03; // high-to-low transition interrupts

P1IE |= 0x03; // enable port interrupts

7.7.3 Lab3B: Memory Clock with Timer_A

Project files

 C source files: Chapter 7 > Lab3 > Lab3b_student.c

 Chapter 7 > Lab3 > LCD_defs.h

 Solution file: Chapter 7 > Lab3 > Lab3b_solution.c

Overview

The objective of this laboratory is to build a memory clock similar to
the one that was developed using the Basic Timer1, in laboratory
Lab3A_1. Timer_A is configured to generate an interrupt once
every 100 msec. The ISR manages the memory clock. LED1 and
LED2 are used to monitor the operation of the system state.

A. Resources

This application makes use of Timer_A to generate an interrupt
when the value in the TACCR0 unit is reached. The ISR updates the
contents of the memory clock variables.

LED1 monitors the system operation, switching state whenever the
Timer_A ISR runs. LED2 can be used to monitor the ISR execution
time. The contents of the LCD is updated every interrupt. When the
ISR finishes, the device returns to low power mode.

Timers

7-24 Copyright  2009 Texas Instruments, All Rights Reserved www.msp430.ubi.pt

Hence, the system resources used by this application are:

 Timer_A;

 I/O ports;

 LCD;

 Interrupts;

 Low power modes.

The default configuration of the FLL+ is used, so all the clock signals
required for the operation of the device assume their default values.

B. Software application organization

The first task is to disable the Watchdog Timer. All the resources
needed for the LCD are then configured. The complete code is given,
because its operation will be analysed in a later laboratory. Once
configured, the LCD is cleared by the execution of the routine
LCD_all_off().

The memory clock consists of three global variables: min, sec, msec,
of the type unsigned char, to store the minutes, seconds and
milliseconds respectively of the values elapsed since the beginning
of the execution of the application. These variables are initialized
with zeros.

The LCD is refreshed at startup to display the initial clock value.

LED2 is used as an indicator of Timer_A ISR execution. The
execution time can be monitored using it. In addition, LED1 switches
state whenever Timer_A ISR is executed.

Timer_A is configured to generate an interrupt once every 100
milliseconds.

The routine main() ends with a global interrupt enable and puts the
device into a low power mode, where it waits for the next interrupt.

Timer_A ISR begins by activating LED2, indicating the beginning of
execution of the routine and then switches LED1 state. The counters
are updated in cascade and their contents are used to update the
LCD, through the routines LCD_msec(), LCD_sec() and
LCD_min(). The routine ends by switching the state of the clock
separation points. Finally, LED2 is turned off.

C. System configuration

 Disable the Watchdog Timer

The Watchdog Timer is configured as in the above examples.

Laboratory 3: Timers use

www.msp430.ubi.pt Copyright  2009 Texas Instruments, All Rights Reserved 7-25

 FLL+ configuration

FLL+ is configured as in the above examples.

 LED ports configuration

LED ports are configured as in the above examples.

 Timer_A configuration

The Timer_A is configured to count until it reaches the value written
in the TACCR0 unit. An interrupt is generated when it reaches that
value. Which is the interrupt vector to use? ____________

Timer_A clock signal is the ACLK without division. What is the value
to write in the configuration register?

TACTL = _____________;

The TACCR0 capture/compare unit determines the Timer_A counting
range. For a 100 msec response, what is the value to write in the
register?

TACCR0 = ____________;

The interrupt is configured in TACCR0 capture/compare unit. What is
the value to write to the following register?

TACCTL0 = _____________;

 Low power mode

The low power mode is configured as in the above examples.

D. Operation analysis

Knowing the values and configurations for each register, complete
the file LAB3b_student.c. The complete solution can be found in
the file LAB3b_solution.c. One of these files should be included in
building the project. After compiling, debug the project.

 ISR execution time

Using similar procedures to those described in laboratory Lab3A
measure the ISR execution time. What is the value measured?

LCD refresh: ______

Timers

7-26 Copyright  2009 Texas Instruments, All Rights Reserved www.msp430.ubi.pt

 Measurement of electrical current drawn

Using a procedure similar to that described at the corresponding
point of Lab3A_1, measure of the value of current drawn by the
device.

What is the value measured? __________

MSP-EXP430FG4618 SOLUTION

Implement a Memory Clock using Timer_A.

Timer_A configuration:

TACTL = TASSEL_1 | MC_1 | ID_0; // ACLK, up mode

TACCR0 = 3268; // this count corresponds to 100 msec

TACCTL0 = CCIE; // TACCR0 interrupt enabled

7.7.4 Lab3C: Buzzer tone generator

Project files

 C source files: Chapter 7 > Lab3 > Lab3c_student.c

 Solution file: Chapter 7 > Lab3 > Lab3c_solution.c

Overview

The purpose of this laboratory is to build a sound generator using
Timer_B. The PWM signal produced by this peripheral drives the
buzzer, producing a sequence of musical notes at regular time
intervals. At the same time, LED1 and LED2 switch state alternately.
The volume of sound produced by the buzzer can be controlled by
push buttons SW1 and SW2.

A. Resources

The implementation of this application requires the production of
specific frequency signals corresponding to musical notes. For each
frequency, the duty-cycle can be modified in order to control the
volume of sound produced. This task is carried out using Timer_B
and one of its compare units. The buzzer is operated by Port P3.5,
configured to work in its special function as TB4 compare unit
output. This output corresponds to the TBCCR4 output compare unit.

The push buttons SW1 and SW2 are connected to ports P1.0 and
P1.1 respectively. An interrupt is generated when either of these

Laboratory 3: Timers use

www.msp430.ubi.pt Copyright  2009 Texas Instruments, All Rights Reserved 7-27

buttons are pressed. The duty-cycle of the generated note is
modified in response.

Basic Timer1 is configured to generate an interrupt once every
second. The interrupt service routine updates the musical notes
produced by the buzzer, which are stored in an array.

LED1 and LED2 are driven from P2.2 and P2.1 respectively, and
their state is switched alternately once every second.

The module FLL+ is configured to a 7.995392 MHz frequency, for
the MCLK and SMCLK clock signals.

The resources used by the application are:

 Timer_B;

 Basic Timer1;

 I/O ports;

 FLL+;

 Interrupts.

B. Software application organization

The application consists of the routine main(), which is used to
configure all system resources, before entering into a standby mode,
waiting for one of two interrupts.

This routine starts by disabling the watchdog timer and starting the
module FLL+ to produce the desired clock signals of the correct
frequency for the SMCLK and MCLK. Then, the Basic Timer1 and
Timer_B are configured in order to perform the desired functions.

The ports connected to the LEDs, buttons and buzzer are then
initialized.

Finally, the interrupts are activated, and the application waits for the
execution of one of two interrupts.

The Basic Timer1 interrupt executes at a frequency of once every
second. When this interrupt is occurs, it begins by switching the
state of LED1 and LED2. Afterwards, it accesses the memory to
fetch the next musical note to be performed. The routine ends with
memory pointer management.

The Port 1 ISR begins by evaluating the source of the interrupt. The
sound volume is reduced if the button SW1 is pressed. The sound
volume is increased if button SW2 is pressed.

Timers

7-28 Copyright  2009 Texas Instruments, All Rights Reserved www.msp430.ubi.pt

C. System configuration

 Timer_B

It is the responsibility of Timer_B to produce the PWM signal that
activates the Buzzer. Timer_B counts until the value contained in the
TBCCR0 register is reached. It does not generate an interrupt, and
must be sourced by SMCLK clock signal.

What is the value to write to this configuration register?

TBCTL = _____________;

Each PWM signal produced by Timer_B corresponds to a musical
note. The relationship between the frequency and the musical note
is given in Table 7-3.

Table 7-3. Relationship table between the frequency and the musical note.

Note SI0 DO RE MI FA SOL LA SI DO2

Freq [Hz] 503 524 587 662 701 787 878 1004 1048

Timer_B has a frequency clock input equal to 7.995392 MHz.

What is the value to write in the TBCCR0 register in order to
generate the desired frequency?

Table 7-4. TBCCR0 value of the musical notes.

Note SI0 DO RE MI FA SOL LA SI DO2

TBCCR0 ____ ____ ____ ____ ____ ____ ____ ____ ____

The TBCCR4 compare unit is used to produce the PWM signal. The
set/reset compare mode is used.

What is the value to write to the configuration register?

TBCCTL4 = _______________;

The volume control consists of varying the PWM signal duty-cycle.
Initially its default value is 50%. What is the configuration value to
write to the register?

Laboratory 3: Timers use

www.msp430.ubi.pt Copyright  2009 Texas Instruments, All Rights Reserved 7-29

TBCCR4 = ________________;

 Basic Timer1

The Basic Timer1 generates an interrupt once every second. It uses
two counters in series, where the BTCNT2 counter input uses the
BTCNT1 counter output divided by 256. The BTCNT1 counter input is
the ACLK clock signal with a frequency of 32.768 kHz.

If BTCNT2 counter selected output is divided by 128, what is the
time period associated with the Basic Timer1 interrupt? _________

What are the values to write to the configuration registers?

BTCTL = __________________;

IE2 = ____________________;

 I/O Ports

Three ports are used by this application. In port P1, bits P1.0 and
P1.2 are used to activate the ISR whenever the buttons SW1 and
SW2 are activated.

How should just the bits related to these ports be configured in
order to have digital input functions, with high-to-low transition
interrupts?

P1SEL &= _________________;

P1DIR &= _________________;

P1IFG = __________________;

P1IES &= _________________;

P1IE |= __________________;

LED1 and LED2 are connected to ports P2.2 and P2.1 respectively.
How should just the bits related to these ports be configured in
order to have digital output functions?

P2DIR = ___________________;

Configure the P2OUT register in order to initialize the application
with the LED1 on and the LED2 off.

P2OUT = ____________________;

Configure the P3 register, with P3.5 connected to the buzzer.
Remember to configure it as special function output (Timer_B
compare output – TB4).

Timers

7-30 Copyright  2009 Texas Instruments, All Rights Reserved www.msp430.ubi.pt

P3SEL = ____________________;

P3DIR = ____________________;

 FLL+ configuration

This module uses the 32.768 kHz frequency crystal to produce a
7.995392 MHz frequency at the SMCLK and MCLK clock signals.
What are the values to write to the configuration registers?

FLL_CTL0 |= ________________;

SCFI0 |= ___________________;

SCFQCTL = __________________;

D. Analysis of operation

 System clocks inspection

The MCLK, SMCLK and ACLK system clocks are available at ports
P1.1, P1.4 and P1.5 respectively. These ports are located on the
SW2, RESET_CC and VREG_EN lines, which are available on the H2
Header pins 2, 5 and 6. All these resources are available because
the Chipcon RF module is not installed and SW2 is not used.

Using the Registers view, set bits 1, 4 and 5 of P1SEL and P1DIR
registers to choose the secondary function of their ports, that is,
configured as outputs. Connect an oscilloscope probe at these
positions to monitor the clock signals.

What are the values measured for each of the system clocks?

ACLK: _____________________

SMCLK: ____________________

MCLK: _____________________

 TBCCR4 unit output frequency

With the help of an oscilloscope, it is possible to evaluate the
operation of the application. Alternatively, it is possible to listen to
the sound produced. By removing jumper JP1 and connecting the
oscilloscope to this pin, it is possible to view the PWM signal
produced by the microcontroller. The duty-cycle can be reduced or
increased by pressing the push buttons SW1 and SW2.

 Port P1 interrupt source decoding

All Port P1 interrupt lines share the same interrupt vector. The
decoding is done through the P1IFG register.

Laboratory 3: Timers use

www.msp430.ubi.pt Copyright  2009 Texas Instruments, All Rights Reserved 7-31

This process can be observed by entering a breakpoint at the first
line of the ISR code.

Execute the application.

The application’s execution is suspended at the breakpoint by
pressing either button SW1 or SW2. From this point onwards, run
the lines of code step-by-step and observe changes in the register
values.

 Measurement of electrical current drawn

Using a procedure similar to that described at the corresponding
point of Lab3A_1, measure of the value of current drawn by the
device.

What is the value read? __________

MSP-EXP430FG4618 SOLUTION

Implement a Buzzer tone generator.

 Timer_B configuration:

// SMCLK, continuous mode

TBCTL = TBSSEL_2 | CNTL_0 | TBCLGRP_0 |MC_1 | ID_0;

// TBCCR0 value of the musical notes

#define SI0 15895

#define DO 15258

#define RE 13620

#define MI 12077

#define FA 11405

#define SOL 10159

#define LA 9106

#define SI 7963

#define DO2 7629

TBCCTL4 = OUTMOD_3; // CCR4 interrupt enabled

TBCCR4 = space[0]/2;

 Basic Timer1 configuration:

BTCTL = BTDIV | BT_fCLK2_DIV128; // (ACLK/256)/128

IE2 |= BTIE; // enable BT interrupt

 I/O Ports configuration:

// SW1 and SW2 configuration (Port1)

P1SEL &= 0x00; // P1.0 and P1.2 I/O

P1DIR &= 0x00; // P1.0 and P1.2 as inputs

P1IFG = 0x00;

Timers

7-32 Copyright  2009 Texas Instruments, All Rights Reserved www.msp430.ubi.pt

P1IES &= 0xFF // high-to-low transition interrupt

P1IE |= 0xFF; // enable port interrupts

// LED1 and LED2 configuration (Port2):

P2DIR |= 0x06; // P2.2 and P2.1 as outputs

P2OUT = 0x04; // LED1 on and LED2 off

// Buzzer port configuration (Port3)

P3SEL |= 0x20; // P3.5 as special function

P3DIR |= 0x20; // P3.5 as digital output

 FLL+ configuration:

FLL_CTL0 |= DCOPLUS + XCAP18PF; //DCO+ set,freq=xtal*D*N+1

SCFI0 |= FN_4; // x2 DCO freq, 8MHz nominal DCO

SCFQCTL = 121; // (121+1) x 32768 x 2 = 7.99 MHz

7.7.5 Lab3D: Frequency measurement

Project files

 C source files: Chapter 7 > Lab3 > Labd_student.c

Chapter 7 > Lab3 > LCD_defs.h

 Solution file: Chapter 7 > Lab3 > Labd_solution.c

Overview

This laboratory implements an application designed to measure a
PWM signal frequency. If a signal generator is not available, the
microcontroller generates a PWM signal based on the frequencies
stored in a file. The frequencies generated are read and updated
with a fixed time period using the features of CCE. The measured
value is shown on the LCD in Hz.

A. Resources

The module FLL+ is configured to a frequency of 7.995392 MHz for
the MCLK and SMCLK clock signals. This application performs the
two tasks simultaneously.

On the one hand, it generates a PWM signal with a frequency of 200
Hz and a duty cycle of 50%. Alternatively, the PWM signal frequency
can be read from a file using a breakpoint. This function is
performed by Timer_B, using the compare unit to generate the PWM
signal.

Laboratory 3: Timers use

www.msp430.ubi.pt Copyright  2009 Texas Instruments, All Rights Reserved 7-33

The time period between two consecutive PWM signals low-to-high
transitions is measured by Timer_A. The capture unit of this timer is
configured to collect the Timer_A counter register’s contents when a
PWM signal low-to-high transition is detected at its input.

The Basic Timer1 generates an interrupt once every second. The ISR
updates the PWM signal frequency generated by the Timer_B. If you
choose to use this feature, a breakpoint associated with this ISR
execution allows reading a file with the value of the frequency that
will be generated.

The microcontroller’s ports are configured in order that the PWM
signal generated by Timer_B through the TBCCR4 compare unit
available at Port P3.5/TB4 can be connected to the Port P1.2/TA1 of
the Timer_A TACCR1 capture unit. If you plan to use this feature,
these pins must be connected together. Port P3.5 pin is available on
Header 7 pin 6, while the Port P1.2 pin is available on Header H2
pin 3.

Ports P2.1 and P2.2 are used to monitor the state of the LED2 and
LED1, respectively.

The resources used by the application are:

 Timer_A;

 Timer_B;

 Basic Timer1;

 I/O ports;

 FLL+;

 Interrupts.

B. Software application organization

The software structure allows various tasks to be performed
simultaneously. The routine main() is responsible for configuring all
the resources used by the application. Once started, the application
enables all the interrupts and waits for an interrupt request.

There are two routines that separately service the two possible
interrupts. The routine TimerA1_ISR() services interrupts required
by the Timer_A overflow and by the TACCR1 capture unit. For every
interrupt caused by a TACCR1 capture, the value collected in the
TACCR1 register is stored in T1, if it is the first low-to-high
transition, or stored in T2 if it is the second low-to-high transition.
This sequence is controlled by the variable capture. The variable
flag is used to flag the measurement process. This process occurs
between the capture of the first low-to-high transition and the
second transition. The counting of clock pulses is done by Timer_A,
in the time interval between the T1 and T2 acquisition, assigned to
the variable T. The process is synchronized when Timer_A

Timers

7-34 Copyright  2009 Texas Instruments, All Rights Reserved www.msp430.ubi.pt

overflows, restarting the measurement process. The LCD is
refreshed once every 0.5 seconds with the latest measured
frequency value, using the control variable control tick that
corresponds to 0.5 seconds.

The routine basic_timer_ISR() services the interrupt produced by
Basic Timer1 once every second. This routine begins by switching
the state of LED1 and LED2. In addition, it updates the Timer_B
counting period. The variable read_data allows the counting period
to be changed.

C. System configuration

 Basic Timer1

Basic Timer1 generates an interrupt once every second. Use the two
counters in series, where the BTCNT2 counter input is selected as
the BTCNT1 counter output divided by 256. The BTCNT1 counter
input is the ACLK clock signal with a frequency of 32.768 kHz.

If BTCNT2 counter selected output is divided by 128, what is the
time period associated with the Basic Timer1 interrupt? _________

What are the values to write to the configuration registers?

BTCTL = ________________;

IE2 = __________________;

 Timer_B

The TBCCR4 compare unit is used to generate the PWM signal. The
set/reset compare mode is used.

What is the value to write to the configuration register?

TBCCTL4 = ______________;

The TB4 PWM output signal has a frequency X, with a 50% duty-
cycle. The SMCLK clock signal is used as input of Timer_B.

What are the values to write to the registers?

TBCCR0 = _______________;

TBCCR4 = _______________;

What the largest and lowest generated frequency?

Maximum frequency value: ____________

Minimum frequency value: _____________

Laboratory 3: Timers use

www.msp430.ubi.pt Copyright  2009 Texas Instruments, All Rights Reserved 7-35

 Timer_A

Timer_A is sourced by the SMCLK clock signal. It counts to the value
0xFFFF, in continuous mode. An interrupt is generated when the TAR
counter overflows. What is the value to write to its configuration
register?

TACTL = _________________;

The capture unit captures the TAR register value to the TACCR1
register when it detects a low-to-high transition at the TA1 input.
What is the value to write to the configuration register?

TACCTL1 = _______________;

Determine the maximum and minimum frequency values detected.
Note that these values do not take into account the execution time
of the application. The PWM signals should be applied at frequencies
well below the maximum value determined.

Maximum frequency value: ____________

Minimum frequency value: _____________

The TACCR1 capture unit is configured to generate an interrupt
when it detects a low-to-high transition. What is the value to write
to the configuration register?

TACCTL1 = _____________;

 Ports P3.5/TB4 and P1.2/TA1 configuration

These ports perform special functions. Thus, the Port P3.5 is
configured as an output, selected by the special function TB4, with
the values:

P3SEL = _______________;

P3DIR = _______________;

The Port P1.2 is configured as input, with the special function TA1,
using the values:

P1SEL = _______________;

P1DIR = _______________;

Timers

7-36 Copyright  2009 Texas Instruments, All Rights Reserved www.msp430.ubi.pt

 LED ports configuration

The LEDs should be configured as in Lab3C.

D. Analysis of operation

 Run the application using the frequency generator based
on Timer_B

Without a frequency generator, the Timer_B generates a PWM signal
at the TBCCR4 unit output that can be fed back to Timer_A TACCR1
capture unit input. These two pins must therefore be connected
together. By default, the PWM signal frequency is 200 Hz. Add a
breakpoint at the line of code 233 belonging to the Basic Timer1 ISR
to modify this value.

TBCCR0 = 7995392/read_data;

If the variable read_data has the value 200, it will generate a 200
Hz frequency. The value of this variable can be changed by
associating a breakpoint to that line of code. Before the line of code
is executed, the value of the data file is read and assigned to the
variable read_data. The signal will oscillate at the desired
frequency, loading the value in TBCCR0. The breakpoint
configuration is as follows:

 Action: read data from file

 File: address of the data file (example in freq.txt)

 Wrap Around: activate this option to restart reading at the
beginning

 Start address: &read_data

 Length: 1 in order to read a value from the file each time

Alternatively, the breakpoint can be imported from the file
Lab3d_breakpoint.bkpt to debug. The file has a format already
described in the chapter devoted to the CCE. Each line describes in
Hz the value of the PWM signal frequency.

 Run the application using a frequency generator

The operation of the application can be verified using a frequency
generator. The generator should generate a PWM signal with voltage
and frequency values compatible with the device’s input (2.5 to 3.3
volts).

 Observe the measured frequency

The PWM signal applied to the TA1 input can be viewed using an
oscilloscope, connected to pin 3 of Header 2. Perform this task and
confirm the values present at the LCD.

Laboratory 3: Timers use

www.msp430.ubi.pt Copyright  2009 Texas Instruments, All Rights Reserved 7-37

 Measurement of electrical current drawn

Carry out the procedure as described in previous laboratories for
measuring the device current.

What is the value read? __________

MSP-EXP430FG4618 SOLUTION

Perform a PWM signal frequency measurement.

 Basic Timer1 configuration:

BTCTL = BTDIV | BT_fCLK2_DIV128; // (ACLK/256)/128

IE2 |= BTIE; // Enable BT interrupt with 1 sec period

 Timer_B configuration:

TBCTL = TBSSEL_2 | CNTL_0 | TBCLGRP_0 |MC_1 | ID_0;

// SMCLK, continuous mode

TBCCTL4 = OUTMOD_3; // CCR4 output mode 3 (set/reset)

TBCCR0 = 39977;// Output 200 Hz signal with 50% duty cycle

TBCCR4 = TBCCR0/2;

 Timer_A configuration:

TACTL = TASSEL_2 |MC_2 | ID_0 | TAIE;

 // SMCLK, up mode to 0xFFFF

TACCTL1 = CM1 | CCIS_0 | CAP | CCIE;

 // Capture on rising edge, TACCR1
input signal selected, Capture mode, Capture/compare
interrupt enable.

 Ports P3.5/TB4 and P1.2/TA1 configuration:

// TB4 configuration (Port3)

P3SEL = 0x20; // P3.5 as special function (TB4)

P3DIR = 0x20; // P3.5 as output

// TA1 (TACCR1) configuration (Port1)

P1SEL = 0x04; // P1.2 as special function (TA1)

P1DIR = 0x00; // P1.2 as input

Timers

7-38 Copyright  2009 Texas Instruments, All Rights Reserved www.msp430.ubi.pt

7.8 Quiz

1. The timer/counter suitable for LCD controller frame frequency
generation in the MSP430FG4618 is:

(a) Timer_A;

(b) BTCNT2;

(c) Timer_B;

(d) BTCNT1.

2. To set Timer_A to repeatedly count from 0x000 to 0xFFFF, the
operating mode selected must be:

(a) Up/Down mode (MCx = 3);

(b) Up mode (MCx = 1);

(c) Continuous (MCx = 2);

(d) Stop (MCx = 0).

3. Timer_A configured in continuous operating mode is reset with:

(a) Write 0xFFFF to TAR register;

(b) Reset TACCR0;

(c) Set TACLR bit in the TACTL register;

(d) None of the above.

4. When TASSELx = 1, the timer (Timer_A or Timer_B) is sourced
by:

(a) ACLK;

(b) TACLK;

(c) INCLK;

(d) SMCLK.

5. To generate a PWM signal with active high state, it is necessary
to configure the output operating mode to:

(a) Mode 2;

(b) Mode 3;

(c) Mode 6;

(d) Mode 7.

FAQs

www.msp430.ubi.pt Copyright  2009 Texas Instruments, All Rights Reserved 7-39

6. With Timer_A sourced by the ACLK (32768 Hz) and is configured
in compare mode, the value in TACCR0 register to enable interrupts
once each second is:

(a) 32768;

(b) 32767;

(c) 16384;

(d) 65536;

7.9 FAQs

1. What are the Basic Timer1 registers initial condition?

None. They must be configured by user software before use.

2. What is the result of reading or writing to BTCNT1 and to BTCNT2
when CPU clock and counter clock are asynchronous:

Any read may be unpredictable. Any write take effect immediately.

3. Can Timer_A registers be modified during its operation?

Yes, if they are the TAIE, TAIFG or TACLR. For other configuration
types, it is recommended to stop the timer before modifying its
operation to avoid erroneous operating conditions.

4. Can the output mode be switched during the operation of a
timer?

It is recommended to the remaining bits of OUTMODx bits to 1s
during the transition between output modes, or otherwise to
configure mode 7 as transition state while switching between output
modes.

