
Decision Diagram Synthesis from VHDL

by

Gert Jervan

A Master Thesis
Submitted to the Chair of Computer Engineering and Diagnostics of

the Department of Computer Engineering

In fulfillment of the requirements for the
Degree of Master of Science

Computer Engineering

Tallinn Technical University
Tallinn 1998



2

Acknowledgments

First of all, I would like to thank my supervisor Prof. Raimund Ubar, who has

supported and encouraged me during the whole period, when I was at Design &

Test Center. He has always been admirable generator of wonderful ideas and gave

me excellent guidance. A special thank should also go to some other members of

Design & Test Center: Jaan Raik, Priidu Paomets, Eero Ivask, Antti Markus,

Marek Mandre, Jüri Põldre. They have through the past few years grown to be

more than colleagues but good friends. Their support, encouragement and

wonderful working atmosphere at D&T Center was very important.

Many thanks also to the people at Department of Computer Engineering of Tallinn

Technical University and to the ESLAB group at Linköping University. Especially

Prof. Zebo Peng.

Also it is necessary to mention, that this work was partially funded by Estonian

Science Foundation grant 1850, German-Estonian project EST 008-96 funded by

BMFT Germany and The Johnson Foundation.

Gert Jervan

Linköping

May 1998



3

Table of Contents

ACKNOWLEDGMENTS...................................................................................................................2

INTRODUCTION ...........................................................................................................................6

HIERARCHICAL TEST GENERATION SYSTEM.......................................................................................6

HIGH-LEVEL SYNTHESIS.....................................................................................................................8

The CAMAD High-Level Synthesis System .................................................................................10

The SYNT High-Level Synthesis System......................................................................................10

THE VHDL HARDWARE DESCRIPTION LANGUAGE ..........................................................................11

VHDL SUBSET FOR TEST GENERATION .............................................................................14

Entity declaration .......................................................................................................................16

Architecture declaration .............................................................................................................16

DECISION DIAGRAMS...............................................................................................................19

GATE-LEVEL COMBINATIONAL CIRCUITS.........................................................................................20

DIGITAL SYSTEMS ON THE REGISTER TRANSFER LEVEL ...................................................................21

DIGITAL SYSTEMS ON THE BEHAVIORAL LEVEL ...............................................................................23

DECISION DIAGRAM SYNTHESIS FROM VHDL................................................................24

CONTROL PART DD MODEL GENERATION.........................................................................................24

DATAPATH DD-MODEL GENERATION................................................................................................26

Registers......................................................................................................................................27

Multiplexers ................................................................................................................................27

Arithmetic and Logic Blocks.......................................................................................................28

EXPERIMENTAL RESULTS......................................................................................................33

CONCLUSIONS AND FUTURE WORK ...................................................................................35

REFERENCES...............................................................................................................................36

APPENDIXES................................................................................................................................40

APPENDIX A: PACKAGE ETPN_MODELLING.....................................................................................40

APPENDIX B: LIBRARY FOR DESCRIBING DESIGN ENTITIES................................................................41

APPENDIX C: DESIGN EXAMPLE (RT-LEVEL VHDL)........................................................................42

APPENDIX D: DD MODEL FORMAT ..................................................................................................47

APPENDIX E: DD-MODEL EXAMPLE.................................................................................................55

APPENDIX F: LIST OF PUBLICATIONS ................................................................................................58



4

List of Figures

FIGURE 1  THE DESIGN CYCLE............................................................................................................7

FIGURE 2 HIERARCHICAL TEST GENERATION ENVIRONMENT.............................................................8

FIGURE 3 FULL-ADDER: ENTITY DECLARATION.................................................................................12

FIGURE 4 FULL ADDER: BEHAVIORAL DESCRIPTION..........................................................................12

FIGURE 5 PACKAGE DECLARATION EXAMPLE....................................................................................13

FIGURE 6  DESIGN FLOW FROM BEHAVIORAL TO STRUCTURAL REPRESENTATION.............................14

FIGURE 7  DATA-PATH EXAMPLE OF A DEVICE..................................................................................15

FIGURE 8 SSBDD FOR A COMBINATIONAL CIRCUIT .........................................................................20

FIGURE 9 DD REPRESENTATION OF THE DATAPATH .........................................................................22

FIGURE 10 DD REPRESENTATION OF  FSM.......................................................................................22

FIGURE 11 FSM STATE TABLE GENERATION FROM VHDL DESCRIPTION........................................25

FIGURE 12 DD GENERATION FROM FSM STATE TRANSITION TABLE ...............................................26

FIGURE 13 DD MODULE FOR REGISTER.............................................................................................27

FIGURE 14 TRUTH TABLE AND DD OF 3-INPUT MULTIPLEXER...........................................................27

FIGURE 15 ARITHMETIC BLOCK DD AND CORRESPONDING LINES IN DD-MODEL..............................28

FIGURE 16 DATAPATH FRAGMENT....................................................................................................29

FIGURE 17  DATAPATH DD-MODEL GENERATION FROM VHDL DESCRIPTION..................................29

FIGURE 18 DD-MODEL MINIMIZATION EXAMPLE ..............................................................................31

FIGURE 19 REPRESENTATION OF THE DATAPATH BY A SET OF DDS ..................................................32



5

List of Tables

TABLE A  TEST GENERATION RESULTS............................................................................................34

TABLE B COMPARATIVE RESULTS....................................................................................................34



6

Introduction

The development of the very large scale integrated circuit (VLSI) technology has

brought tremendous testing problems. Test development cost and testing cost have

become an important proportion of the total product costs. Studies on the

development of application specific integrated circuits (ASIC) show that testing

accounts for nearly a third of the ASIC development cycle [Lev92]. Classical gate

level test generation has become therefore impractical, and researchers have

devoted much effort to developing an alternative field of functional testing that

decreases test generation complexity [TA80, GA85, GMM89]. However,

estimation of the fault coverage at the functional level is difficult due to the fact

that the functional level fault model does not characterize physical faults as well

as gate-level models do, and due to a big diversity of different functional models

[TA80, LS85, Gho88, Sch92, CA94, MG96]. A solution of these shortcomings,

hierarchical test generation, appeared in the last decade [BH90, LP92]. It

incorporates the benefits of functional testing yet retains the accuracy of gate level

fault models. The system is considered at different levels, and tests are created on

these levels by separate tools.

Hierarchical Test Generation System

The hierarchical test generation environment [BJM+97a], [BJM+97b], [BJM+98],

[JKRU96], [JMRU97a], [JMRU97b], [JMRU98a], [JMRU98b] [Rai97] consists

of hierarchical test generator, high-level and low-level decision diagram (DD)

model generators but also tools for high-level synthesis (HLS) and logic-level

synthesis. The hierarchical Automatic Test Pattern Generator (ATPG) operates

with the Structurally Synthesized Binary Decision Diagrams (SSBDD) on the

lower level and with the high-level DDs on the higher abstraction level. Figure 1

presents the basic design flow and the place of the test generation there.

From behavioral level Very high speed integrated circuits Hardware Description

Language (VHDL) descriptions, HLS tool generates a register-transfer level (RTL)
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description of the circuit. The previous versions of hierarchical test generation

system (HTGS) employed example designs from SYNT HLS system as an input

of the whole system. In the new version of design flow HLS tool CAMAD will be

used.

Behavioral description
(VHDL)

High-level synthesis

RT-level description
(VHDL)

Logic-level synthesis
(SYNOPSYS)

Gate-level netlist
(EDIF)

                                                                                             

DD-based 
test generation 

system

Figure 1  The Design Cycle

In the RTL descriptions the design has been partitioned into a control part and a

datapath part containing a network of interconnected functional units (FU). From

RTL VHDL descriptions, high-level DD generator generates high-level DD

models, which will be applied as input for the hierarchical test generator.

To generate local, structural level tests for the FUs of the design SSBDDs will be

required. SSBDDs will be created from the gate-level netlist. Current system uses

for logic level synthesis Design Compiler [Syn96] from Synopsys Inc. As a result

of logic synthesis gate-level EDIF 2.0.0 netlist of the whole design and of each FU

separately will be written out. Subsequently, the netlist is converted into SSBDDs.

As an output the ATPG generates test patterns. However, the patterns do not offer

precise information about achieved fault coverage. In order to measure the actual

gate-level fault coverage of the generated tests, the test patterns have to be fault

simulated on the structural level description of the whole device.
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In Figure 2 general structure of the hierarchical test generation environment is

represented.

Figure 2 Hierarchical Test Generation Environment

Current thesis covers only small part of the whole hierarchical test generation

environment. It focuses mainly to the high level DD generator, but also overview

of theory of Decision Diagrams will be given and experimental results of the

whole system will be presented. More precise information about hierarchical test

generation algorithm can be found from [Rai97].

High-Level Synthesis

Due the rapid advances in technology, but also by the progress in the development

of design methodologies as well as tools to support the designer in applying them,
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the fabrication of more and more complex electronic systems has been made

possible in recent years. Those tools allow designers to move higher and higher

levels of abstraction. In order to manage complexity, the design process can be

decomposed according to [MLD92] into a series of subtasks, which deal with

different issues.

1. System-level synthesis: The specification of the system at the highest level of

abstraction is given by its functionality and a set of implementation constraints.

The task of this step is to decompose the system into several subsystems

(communicating processes) and to provide a behavioral description for each of

them.

2. High-level synthesis starts out with an algorithmic description which specifies

the computational solution of the problem, in terms of operations on inputs in

order to produce the desired outputs. Elements, which appear in descriptions

are similar to those of programming languages, including control structures and

variables with operations applied to them. Three major subtasks are:

• resource allocation (selection of appropriate FUs)

• scheduling (assignment of operations to time slots)

• resource assignment (mapping of operations to FUs).

3. RT-Level synthesis usually takes as input a description consisting of a data path

and controller, presented as abstract FSM. For data path, an improvement of

resource allocation and assignment can be done, while for the control path,

actual synthesis is performed by generating the appropriate controller

architecture from the input consisting of states and state transitions.

4. Logic-level synthesis receives as input technology independent description of

the system, specified by blocks of combinational logic and storage elements. It

deals with the optimization and logic minimization.

5. Technology mapping has the task of selecting appropriate library cells of a

given target technology for the network of abstract gates produced as a result of

logic synthesis, concluding thus the synthesis pipeline. Input of physical level
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synthesis is a technology independent multi-level logic structure, a basic cell

library, and a set of design constraints.

The HLS process can be divided into the three subtasks: resource allocation,

operation scheduling and resource assignment. Resource allocation determines the

types (for example, adder, multiplier or register) and the number of these types of

resources that should be included in the design. The operation scheduling assigns

each operation in the design to a time step in which it will be executed. Resource

binding determines which resources should be used to implement each specific

operation.

The output of a HLS system is a description at RT level, consisting of a data part

which performs operations on the input data in order to produce the required

output and a control part which controls the type and sequence of data

manipulations. Communication and synchronization between the two parts is

achieved via conditional flags and control signals. A typical data part consists of

FUs, storage and interconnected hardware, while the controller is specified as a

state-transition table used in later stages for controller synthesis.

The CAMAD High-Level Synthesis System

The CAMAD (Computer-Aided Modelling, Analysis and Design of digital

systems) is high-level synthesis system [PKL89], developed at the Linköping

University. The design methodology employed in the system is based on an

extended timed Petri Net representation uniformly used throughout the design

cycle. The input to CAMAD can be specified in Algorithmic Design Description

Language (ADDL) [Fje92] or in S’VHDL [EKPM92]. S’VHDL was defined as a

subset of the VHDL language with the purpose of using it as input for high-level

hardware synthesis. The S’VHDL compiler is described in detail in [Min93].

The SYNT High-Level Synthesis System

The SYNT HLS system was originally developed by SYNTHESIA AB

(Stockholm, Sweden). After merging with Cadence Design Systems, Inc. SYNT
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HLS system is enhanced and available nowadays as a Cadence Alta Group Visual

Architect™ system1.

The VHDL Hardware Description Language

The IEEE Standard VHDL hardware description language has its origin in the

United States Government’s Very High Speed Integrated Circuits (VHSIC)

program, initiated in 1980. The development of VHDL was sponsored by the US

Department of Defence during the 1980s. In 1987 the language was adopted by the

IEEE as a standard; this version of VHDL is known as the IEEE Std. 1076-1987

[IEEE87]. A new version of the language, VHDL’92 (IEEE Std. 1076-1993)

[IEEE93], resulted after revision of the initial standard in 1993. In most cases, the

language is upward compatible.

 VHDL is designed to fill a number of needs in the design process. It allows a

multi-level descriptions, providing support for both a behavioral and a structural

view of hardware models, their mixture in description being possible.

A digital electronic system can be described as a module with inputs and/or

outputs. This module is called, using VHDL terminology, design entity. Each

entity can be described as a set of design units. There are five different types of

design units:

1. Entity declaration

2. Architecture body

3. Package declaration

4. Package body

5. Configuration declaration

The entity declaration provides the interface of the component to the environment,

it includes a name associated with the entity and a list of ports, through which the

entity communicates with its external environment. As an example, the entity

                                                

1 http://www.cadence.com/alta/products/va_overview.html
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architecture  sequential_behavior of  full_adder is
begin
  process
    variable  s: bit;
  begin
    s := a xor  b;
    sum <= s xor  cin after  5 ns;
    cout <= (a and  b) or (s and  cin) after  10 ns;
    wait  on  a, b, cin;
  end process;
end  sequential_behavior;

declaration for an XOR gate with input ports X and Y, and output port Z is

presented in Figure 3 (adapted from [LSU89] and [Min93])2

entity  full_adder is
   port (a, b, cin: in  bit; -- input ports
        sum, cout: out  bit); -- output ports
end  full_adder;

Figure 3 Full-adder: entity declaration.

The architecture body describes how the entity is implemented. An architecture

body contains an optional declarative part and a statement part, consisting a

number of concurrent statements, which describe the internal details of the entity

using the behavioral or structural modeling style or a combination of the two. A

sample behavioral description for the adder is given in Figure 4.

Figure 4 Full adder: behavioral description

A package is collection of declarations such as subprograms, types, constants,

components, and possibly others, which are grouped in a way that allows different

design units to share them. The interface to the package, consisting of those

                                                

2 Reserved words are written in boldface.

a

b
cout

cin

sum
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declarations which are intended to be seen from the outside, is defined in the

package declaration. An example of package declaration is given in Figure 5. The

package body, on the other hand, contains the hidden details, which are not visible

from the outside (implementations of the functions etc.). Packages are a very

efficient way for creating a standard or vendor-specific VHDL environment. The

VHDL language standard includes two predefined packages: STANDARD and

TEXTIO. The package STD_LOGIC_1164, which is an IEEE standard, defines a

nine-value logic type with associated operators.

Figure 5 Package declaration example

Configuration declarations are an advanced facility for structural specification

and will not be discussed in this thesis.

The major modelling element for behavioral specifications in VHDL is the

process. A process is a sequential body of code which can be activated in response

to changes in state. Processes can be executed concurrently. The statement body of

a process consists of sequential statements which are: variable assignment, if

statement, case statement, loop statement, next statement, exit statement, assertion

statement, report statement, wait statement, signal assignment, procedure call,

return statement and null statement.

Additional information about VHDL language can be found from [IEEE93].

package  Logic is
  type  Three_level_logic is (´0´, ´1´, ´Z´);
  constant  Unknown_value : Three_level_logic:=´0´;
  function  Invert (Input : Three_level_logic)
    return  Three_level_logic;
end  Logic;
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VHDL Subset for Test Generation

As described earlier and depicted in Figure 6, for HTGS, HLS tool generates from

behavioral level VHDL descriptions a RT level description of the circuit. This RT-

level VHDL description will be used as input for high-level DD generator. In the

following, mainly the VHDL subset, which is generated by HLS system CAMAD

is described.

Figure 6  Design flow from behavioral to structural representation

The overall style of the design supported by the high-level DD-generator is an

module described as entity and one architecture, written in structural mode.

Design should be partitioned into the datapath and controller. Datapath is

represented by a netlist of interconnected blocks. The building blocks of the

datapath are registers, multiplexers and FUs, where functions can be arbitrary

arithmetic or logic operations. A full sample datapath example is depicted in

Figure 7. P_N1, P_N5 and P_N6 are primary inputs, P_N6 is primary output and

signals C3, C4, C5 and C6 are conditional signals.

Behavioral

VHDL

High-level Synthesis
System

RT-Level VHDL

CONTROLLE DATA PATH
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Figure 7  Data-path example of a Device

The control part of a device is described as a Finite State Machine (FSM) state

table, described in behavior.
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Entity declaration

The syntax3 for declaring an entity is:

entity_declaration ::=
  entity  identifier is
    entity_header
  end ;

entity_header ::= formal_port_clause
port_clause ::= port  (port_list);
port_list ::= port_interface_list

In port list all primary inputs and outputs should be described. Reset signal should

always carry the name ‘Reset’ and clock signal should be named ‘Clock.’ At the

moment only IN  and OUT ports are allowed. Allowed signal types are

std_logic, std_logic_vector, u_std_logic_vector,  and types

declared in ETPN_modelling package (see Appendix A: Package

ETPN_modelling). Vectors are allowed in both directions (downto  as well as

to )

Architecture declaration

Architecture should describe structure of the entity.

An architecture body can be described using following syntax:

architecture_body ::=
  architecture  identifier of  entity_name is
    architecture_declarative_part
  begin
    architecture_statement_part
  end ;

architecture_declarative_part ::= 
block_declarative_item

architecture_statement_part ::= concurrent_statement

block_declarative_item ::=
| signal_declaration

                                                

3 Throughout this thesis, the syntax of language features is presented in Backus-Naur Form (BNF)

[Bac59].
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| component_declaration
| configuration_specification
| type_declaration

concurrent_statement ::=
block_statement
| component_instantiation_statement

Signals are declared using the syntax:

signal_declaration ::=
  signal  identifier_list : subtype_indication ;

All components, which will be used must correspond to the entities described in

the special library (See Appendix B: Library for describing design entities).

Separately should be declared type State_type  and 2 special signals:

present_state and next_state. Example of FSM state declaration:

  -- FSM state declaration
  TYPE State_type IS (S1, S2, S3, S4, S5, S6, S7, S8,
     S9, S10, S11, S12, S13, S14, S15, S16, S17, S18);
  SIGNAL present_state : State_type;
  SIGNAL next_state : State_type;

Note, that states should carry names S1, S2, ..., Sn

Component instantiation part describes the dataflow of the design. Component

Instantiation has the following syntax:

component_instantiation_statement ::=
  instantiation_label :
    component_name

port_map_aspect ;

FSM of the design is described with 3 processes. All processes should carry

specific names: state_register, output_decode_logic and state_decode_logic.

State_register process should deal with reset handling and represent the relation

between clock and state changes. Output_decode_logic process represents

assignment of values to control signals depending of the value of present_state

signal and state_decode_logic process represents the next state logic.

Output_decode_logic and state_decode_logic processes are represented as single

CASE statements. Inside the CASE statement, only WHEN statements and signal



18

assignments are allowed as shown in the following example. WHEN OTHERS

part is optional.

CASE present_state IS
         WHEN S1 =>
            next_state <= S2 ;
         WHEN "001" =>
 ...

END CASE ;

Inside WHEN statement currently are also allowed IF statements and signal

assignments like in the following example:

WHEN S1 =>
     IF C5 = '1' THEN
        next_state <= S2 ;
     ELSE
        next_state <= S3 ;
     END IF ;
...

At the moment only structure IF-THEN-ELSE  is allowed (ELSIF  is forbidden).

In addition to the control signals, combinations of control signals are also allowed.

For example, the following statement is legal:

P3_P9_P12_P16 <= P3 OR P9 OR P12 OR P16

Note, that only OR operators are allowed at the moment.

All constants should be represented in decimal format.

Full example of the design is represented in Appendix C: Design example (RT-

Level VHDL).
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Decision Diagrams

Decision Diagrams (DD) (previously known as Alternative Graphs) [Uba76,

Uba96] may represent a set of digital (Boolean or integer) functions y=F(x) of

components or subcircuits in digital systems. Here, y is an output variable, and X

is a vector of input variables of the component or subcircuit.

Definition 1. In the general case, a DD that represents function y=F(X) is a

directed, noncyclic graph Gy = (M, Γ, X) with set of nodes M, single root node

m0∈M, and relation Γ in M, where Γ(m)⊂M denotes the set of successor nodes of

m. Nonterminal nodes m for Γ(m)≠∅ have variables xi∈X as labels. Terminal

nodes m for Γ(m)=∅ have variables xi, functional subexpressions of F(X), or

constants as labels. Let x(m) be the label of node m. In graph Gy, for all

nonterminal nodes m for which Γ(m)≠∅, a one-to-one correspondence exists

between the values of label variable x(m) and the successors, mk∈Γ(m) of m.

When using DDs to describe complex digital systems, we have, at the first step, to

represent the system by a suitable set of interconnected components

(combinational or sequential ones). At the second step, we have to describe these

components by their corresponding functions which can be represented by DDs.

DDs which describe digital systems at different levels may have special

interpretations, properties and characteristics, however, the same formalism and

the same algorithms for test and diagnosis purposes can be used, which is the main

advantage of using DDs. DDs were originally introduced and proposed for

diagnostic purposes by R. Ubar in 1976 [Uba76]. Binary Decision Diagrams

(BDD) that were presented later by S. B. Akers [Ake78] are in fact a special case

of DDs. The concept of DDs is more general than the concept of BDDs. In the

following some examples of digital system types and their representation by DDs

will be given.
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Gate-Level Combinational Circuits

Each output of the combinational circuit is defined by some Boolean function

which can be represented as a DD. The nodes of this type of DD are labelled by

Boolean variables and have consequently only two output branches. The terminal

nodes are labelled by logical constants 0 and l, or Boolean variables. This type of

DDs is called Structurally Synthesized Binary Decision Diagrams (SSBDD). As

an example, in Figure 8 representation of a combinational circuit by SSBDD is

given. For the sake of simplicity, the values of variables on branches are omitted.

By convention, the right-hand branch corresponds to 1 and the lower-hand branch

to 0. In addition, terminal nodes holding constants 0,1 are omitted. Exiting from

the SSBDD to the right corresponds to y =1, and exiting the SSBDD downwards

corresponds to y = 0.

In SSBDDs there exists an one-to-one relationship between nodes and signal paths

in the corresponding combinational circuit. This property of SSBDD is very

important because it allows us to generate tests for structural faults in circuits. The

original idea of SSBDDs was introduced into the test area in [Uba76].

Figure 8 SSBDD for a Combinational Circuit

Similar to superposition of functions, superposition of DDs has been defined.

Separate SSBDDs are to be created for maximal subcircuits that do not contain

reconvergencies. In this case, each node in a SSBDD will represent a signal path

in the tree-like fanout-free subcircuit. Thus, the number of the nodes in SSBDDs

will be equal to the number of different paths in the tree-like subcircuits.
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SSBDD models for combinational circuits can be synthesized by a simple

superposition procedure. Generation of SSBDD starts from circuit output. During

the generation, all gates will be recursively substituted by their respective

elementary BDDs until primary inputs are reached. In order to avoid repetitive

occurrences of subdiagrams in the model, the recursion can be terminated in

fanout branches and SSBDDs can be synthesized for each primary output and

fanout point separately. In that case the circuit will be described as a system where

for each fanout-free region an SSBDD corresponds.

Digital Systems on the Register Transfer Level

In Boolean DD descriptions the DD variables were Boolean (i.e. single bit) values,

whereas in register-transfer level DD descriptions, in general case, multi-bit

variables are used. Traditionally, on this level a digital system is decomposed into

two parts - datapath and control part. Datapath is represented by sets of

interconnected blocks (functional units), each of which can be regarded as a

combinational circuit, sequential circuit or a digital system on the instruction

interpretation or micro-operation level. In order to describe these blocks,

corresponding types of DDs can be used, as discussed above.

The datapath can be described as a set of DDs, in the form where for each register

and for each primary output an DD corresponds. Here, the non-terminal nodes

represent the control signals coming from the control part and terminal nodes

represent signals of the datapath, i.e. primary inputs, registers, operations,

constants. Figure 9 shows a datapath fragment and its corresponding DD model.
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REG1
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Figure 9 DD Representation of the Datapath

The control part FSM is described as a FSM state table. The state table can be

represented by single DD where non-terminal nodes represent current state and

inputs for the control part (i.e. logical conditions), and terminal nodes are for

representing the next state logic and control signals going to the datapath. Figure

10a shows an example of a fragment of FSM state table and Figure 10b shows the

corresponding DD representation. In the graph example, q denotes the next state

and q’ denotes current state value. The DD in Figure 10 describes the behavior of

the FSM at the current state being equal to s3.
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Figure 10 DD Representation of  FSM
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Digital Systems on the Behavioral Level

DDs describing digital systems on the behavioral level describe behavior instead

of structure of the system. In DD, the variables in nonterminal nodes can be either

Boolean (describing flags, logical conditions etc.) or integer (describing

instruction words, control fields, etc.)  The terminal nodes are labelled by

constants, variables (Boolean or integer) or by expressions for calculating integer

values. The number of DDs, used for describing a digital system, is equal to the

number of output and internal variables used in the instruction set description.

More details about using DDs to describe digital systems at the instruction

interpretation level can be found in [Uba83,Uba88].
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Decision Diagram synthesis from VHDL

DD synthesis from VHDL consists of several steps. In RT-Level design is

partitioned into datapath and control part. Both parts will be converted into DDs

separately. Additionally entity declaration, signal declarations and constants

should be converted into DD model format. After initial conversion datapath DDs

have usually some redundancy which should be removed. As a final step, DD-

model of the whole design will be written out.

To support different phases of test generation, special object-oriented library of

data structures has been developed. Those classes provide exhaustive way to

handle DDs and is based on special DD model file format (See Appendix D: DD

Model Format). As a result, development times of different testing related

software diminishes tremendously.

Control Part DD model generation

The control part is represented as a FSM state transition table behaviorally

described in VHDL, as was discussed in section ”VHDL Subset for Test

Generation.” DD model is generated in two steps. At the first step VHDL

description is converted into intermediate memory structures, which describe FSM

state table. At this step two VHDL processes (output_decode_logic  and

state_decode_logic ) is merged together. In Figure 11 the process of

creating a FSM state table from VHDL description is depicted. At the second step

intermediate memory structures is converted into DD memory structures. Used

VHDL constructs and description style were described in detail in section ”VHDL

Subset for Test Generation.”

FSM state transition table is described in VHDL as two separate processes. One of

those processes (output_decode_logic) describes output signal values in

relation with the current state value. Second one (state_decode_logic)

determines the next state value.
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output_decode_logic:
  PROCESS(...)
  BEGIN
    OUT1 <= '0';
    OUT2 <= '0';
    OUT3 <= '0';
    OUT4 <= '0';

  CASE present_state IS
  ...
  WHEN S1 =>
    OUT1 <= '1';
  WHEN S2 =>
    OUT3 <= '1';

  ...
  END CASE;
END PROCESS output_decode_logic;

state_decode_logic:
  PROCESS(...)
  BEGIN
    CASE present_state IS
    ...
    WHEN S1 =>
      next_state <= S2;
    WHEN S2 =>
      IF IN1 = '1' THEN
        next_state <= S8;
      ELSE
        next_state <= S9;
      END IF;
    ...
  END CASE;
END PROCESS state_decode_logic;

Figure 11 FSM State Table Generation from VHDL Description

In the output_decode_logic  process, after the process header, all output

signals should be initialized. This template is used on the following steps for

output vector creation. All values which are not covered by the new values inside

CASE statement stay the same as in the template vector (black cells in output

vector in Figure 11).

The state_decode_logic  process contains only one CASE statement. Inside

CASE statement there is, like in output_decode_logic  process, multiple

WHEN statements, which determine next state values corresponding to present

state values. The input vector is extracted by Boolean expression analysis in the

IF-ELSE  statement. In the present example we can see that two state transition

table lines were created from one WHEN construct analysis.

In Figure 12 is shown how DD-model is created from FSM state table description.

0 0 0 0

X S1 S2 1 0 0 0

1 S2 S8 0 0 1 0

0 S2 S9 0 0 1 0

output vector

present state
next state

input vector
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Figure 12 DD generation from FSM State Transition Table

In this example is shown the fragment of a DD for three lines of FSM state table

obtained in Figure 11. As was said previously for FSM only one DD will be

created. Here variable q’ represents the present state. Depending on its value, and

the value in nodes weighed by input variables, next state is determined, as well as

output values vector, which are given in the terminal nodes.

Datapath DD-model generation

The datapath DD-model is created from the device data-path specification in

VHDL, which example was represented in Figure 7 and in Appendix C: Design

example (RT-Level VHDL). As was already mentioned, data-path VHDL

description is based on the library of predefined modules (registers, multiplexers,

arithmetic and logic blocks, see Appendix B: Library for describing design

entities). Due to this fact, the datapath DD-model creation is based on the

predefined set of DD modules. For example, predefined DDs for registers and

multiplexers are defined. And the general DD-model creation is based on the

assembly of these small DD modules into one model.

In the following descriptions of different DD modules will be given.

q'q

IN1

...

S1

S2

S2 "1000"

S8 "0010"

S9 "0010"

1

0

X S1 S2 1 0 0 0

1 S2 S8 0 0 1 0

0 S2 S9 0 0 1 0

output vector

present state
next state

input vector
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Registers

The exact type, which kind of registers will be used is determined by the HLS

tool. In current version of design flow, registers without reset signal is assumed.

The corresponding DD is following:

Enable

OUTPUT'

INPUT
OUTPUT 1

0

Figure 13 DD module for register

Multiplexers

As registers type so the multiplexers type is also predefined by HLS. HLS tool

CAMAD defines following type of multiplexers: Input INi is selected when

control signal Ci is ”1” and all other control signals are ”0”. In Figure 14 truth

table and DD for multiplexer with 3 inputs is represented.

C1 C2 C3 OUT

1 0 0 IN1
0 1 0 IN2
0 0 1 IN3

All other combinations ”0”

C1

C2

C3 IN3 IN2

C3

C2

C3"0"

"0"

"0"

"0"

OUT 1

0

IN1

Figure 14 Truth table and DD of 3-input multiplexer
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Arithmetic and Logic Blocks

All arithmetic and logic blocks are represented as a single node graphs. As an

example, DD for arithmetic block adder is represented in Figure 15. All arithmetic

and logic blocks should be represented with their inputs and outputs as functions

in the final DD-model.

REGx + "16"
ADDER_OUTPUT

Figure 15 Arithmetic block DD and corresponding lines in DD-model

At the first step of datapath DD creation, for every FU (multiplexer, register,

arithmetic or logic block) corresponding DD will be created. At the second step

minimization of the DD-model will be done.

For example, in Figure 16 is depicted sample datapath fragment, which contains

one register, one multiplexer and one adder. This fragment may be initially

represented by three DDs - for register, multiplexer and adder. DDs will be created

as was described above and as shown in Figure 17.

When for every VHDL component instantiation statement in the datapath

description corresponding DD is created, obtained model should be minimized.

This process takes place as follows.

VAR#  5: (__c_______)    "N_A7" VAL = 16

...

VAR# 18: (____f_____)  "ADDER_OUTPUT" <7:0>
FUN   Add (A1<=60, A2<=5)

...

VAR#  60: (_____d____)  "REGx" <7:0>
GRP#3: BEG = 58 LEN = 3 -----
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Mul
32_2

N_A33

N_A13

N_A34

"1" N_A51 N_A13
Reg32

P6 P13
P6_P13

clock

N_A12
"0"

+

Figure 16 Datapath fragment

N_A34 N_A13 + "1"

N19 : Reg32
PORT MAP (N_A51, P6_P13, clock, N_A13);

N36 : Add32
PORT MAP (N_A13, N_A33, N_A34);
N51 : Mul32_2
PORT MAP (N_A12, N_A34, P6, P13, N_A51);

P6_P13

N19'

N19
N_A13

N_A51

Figure 17  Datapath DD-Model generation from VHDL description

Suppose that the number of variables in initial DD-model |X|=NX, the number of

DDs is |G|=Ng, and the number of nodes in DDs is |M|=Nm. For all Gk built for

variables xk ∈ { X data_out, Xm },

P6

P13

P13

"0"

"0""0"

"0"

N_A51

N_A34

...
N_A12 <= 0;
N_A33 <= 1;
...
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where

Xdata_out is a set of output variables from datapath (primary outputs);

Xm is a set of register variables

we analyze the terminal nodes mi which are weighted by a variable.

If mi is weighted by a variable, and the weight variable xi  ∉ {X data_in , Xctrl_in ,

Xm},

where

Xdata_in - is a set of input data variables (primary inputs);

Xctrl_in  - is a set of control input variables to both control and data-path

(primary inputs);

Xm - is a set of register variables

and ¬ [ ∃ mj| e(mj)=f(xi) ], i.e. no one terminal node is not weighted by variable xi.

(e(m) is a weight function for a node m). This means that we have found such a

node mi , and a variable xi , represented by DD Gi, which may be eliminated from

the model without the lost of information. This process is called superposition.

We replace the node mi  by graph Gi . And in such a way Nx:=Nx-1, Ng:=Ng-1

and Nm:=Nm-1, the numbers of variables, graphs and nodes in the model are

reduced by one. Example of such a minimization is given in Figure 18.

Initial DD-Model in Figure 18 consists of three graphs: the first one is for variable

N_A34, the second one for N_A51, and the third one for register N19. Two nodes

may be eliminated in the present case. They are shown by gray color. As a result

whole datapath fragment in Figure 16. may be represented by only one DD, as

depicted in Figure 18.

The full set of DDs describing datapath represented in Figure 7 can be found in

Figure 19

The full DD-model example is given in Appendix E: DD-Model example. File

format of the DD-model is given in Appendix D: DD Model Format
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Figure 18 DD-Model minimization example

P6

P13

P13

"0"

"0""0"

"0"

N_A51

N_A34

N_A34 N_A13 + "1"

P6_P13

N19'

N19
N_A13

N_A51

P6

P13 N19 + "1"

P13

"0"

"0""0"

"0"

P6_P13

N19'

N19
N_A13 N_A51

N_A34

0

1

I
II

III
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C4

C6C5

C3C3

P_N1 Eql "1" 

N19  LeE  "6" (N8 MOD "2")  Eql  "1"

(N8 MOD "2")  Eql  "1"

P_N6 P3_P9_P12_P16

P_N6

P3

P9

P12

P16

"0"

N7 Sub N9

P16

N7 Div "2"

"0"

P12

P16

N7 Add N9

"0"

"0"

"0"

N8 P4_P11

N8

P4

P11

"0"

N8 Div "2"

P11

P_N4 Add "0"

"0"

"0"

N19 P6_P13

N19

P6

P13

"0"

N19 Add "1"

Figure 19 Representation of the datapath by a set of DDs

N9 P_N5  Mlt  "128"
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Experimental Results

In the following, experimental results of the hierarchical test generation system is

presented. At the moment no explicit  information about DD synthesis is given.

The main reason is, that in all experiments, so far conducted, the DD synthesis

time was less than 0,5 seconds and had no importance compare with test

generation times. Please refer also to section future work for additional

information about experimental part of this work.

Experiments were carried out on two highly sequential circuits, a Greatest

Common Divisor (GCD), which belongs to the HLSynth92 benchmark suite, and

an 8-bit multiplier example. The synthesized RTL version of the GCD circuit

contains a datapath with 5 registers and an FSM with 12 states. The circuit was

chosen as it reveals a number of difficult test generation problems. It contains a

global data dependent loop and only one of the registers is directly observable.

The multiplier mult8x8 has a complex datapath containing several feedback loops.

Actual quality of the generated test sequences was measured by applying gate-

level fault simulation to the circuits and by neglecting a set of obviously

untestable faults (e.g. lines tied to constants). The achieved fault coverages for

datapath parts were 95.1 % for the GCD circuit and 95.9 % for mult8x8,

respectively. Although control part faults were not explicitly targeted, fault

coverages measured for control parts were high. Achieved test generation times

were short. Both of the circuits were tested in less than 20 seconds. The number of

test sequences was less than 100. Due to the fact that sequential circuits were

considered, each test sequence consisted of multiple clock cycles. Table A

presents the experimental results, which were run on a 233 MHz Pentium II

computer with 64 MB RAM under Windows 95 operating system.
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Circuit gcd mult8x8

Number of gate-level faults 1066 4432

Gate-level fault coverage DP (%) 95.1 95.9

Fault coverage CP (%) 89.4 92.1

Total gate-level fault coverage (%) 91.8 94.4

Test generation time (s) 14.6 17.7

Number of generated test sequences 53 93

Total test length (number of clock cycles) 627 2797

Table A  Test Generation Results

In Table B, comparative results with a gate-level sequential test pattern generator

HITEC [NP91], a genetic test pattern generator GATEST [RPGN94] and a novel

hierarchical test pattern generation approach published in [RVE+98] are given.

(Note that in [RVE+98], the high level test frames were generated manually). The

comparison is carried out on the example of the GCD circuit, which is the only

circuit common with the experiments in [RVE+98]. As we can see from the table,

the proposed DD-based technique outperforms the other test generation tools in all

categories. It achieves a higher fault coverage in a much shorter time and

generates less test sequences than [RVE+98]. The number of test sequences for

[NP91] and [RPGN94] is not known.

DECIDER Hier.
[RVE+98]

GATEST
[RPGN94]

HITEC
[NP91]

fault coverage, % 91.8 90.4 62.6 74.4

time, s 14.6 1068 636 49320

test sequences 53 60 N.A. N.A.

Table B Comparative Results
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Conclusions and Future Work

Current thesis presents software for synthesizing Decision Diagrams from RT-

Level VHDL descriptions. Additionally overview of hierarchical test generation

environment, based on using multiple abstraction levels of DD models and theory

of Decision Diagrams is given. Decision Diagrams serve as a mathematical basis

for solving a wide spectrum of test tasks. The DD synthesizer generates DDs from

RTL VHDL descriptions. Those descriptions are generated by HLS tool from

behavioral VHDL descriptions.

Previous version of DD synthesizer used, as an input, VHDL descriptions

generated by HLS system SYNT. The working prototype for the SYNT RT-Level

VHDL output was finished during September 1997. From March till May 1998 I

was as guest researcher at Linköping University. During this stay preparations for

the next version of DD synthesizer were carried out. New version will use HLS

tool CAMAD to promote further cooperation between Tallinn Technical

University and Linköping University. At the moment all theoretical work is done

and only actual programming work is left. According my plans, this software

should be ready and deliverable during August 1998.
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Appendixes

Appendix A: Package ETPN_modelling

package ETPN_modelling is
  -- Declarations for modelling ETPN designs

  -- signal types
  subtype Unsigned1 is bit;
  subtype Unsigned8 is integer range -120  to 127;
  subtype Unsigned16 is integer; -- range 0 to 65535;
  subtype Unsigned32 is integer range -2147483647 to 2147483647;
  subtype Unsigned64 is bit_vector ( 63 downto 0 ) ;

  attribute LayoutSize : positive;
end ETPN_modelling;
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Appendix B: Library for describing design entities

Note. Only elements with bit-width 4 are presented. Original library contains

elements with different bitwidths.

;;
;;         Module Library
;;     ==============
;;          (Version 3.0, 91-03-0)
;;
;; This version has the following new feature:
;; 1. Each module has a unique identifier.
;; 2. All possible operations of a module are given explicitly as a set of
;;    primitive operation identifiers.
;; 3. Different ports of a module can have different bit-widths.
;;
;; The units used for the different attributes:
;; 1. Cost : 1 000 * lamda square ( = height * bit_width(about 38) )
;; 2. Time : ns
;;
;;      Id   (Op_id Time)* Bits Cost Input_P  Output_P ;; Comments
;;

;; 4 bit modules

(Module Add4 (OP (Add 150) (Sub 150) Comp) 4 0 (IP (Ip1) (Ip2)) (OP (Op1)
(Op2))) ;;+, -
(Module Sub4 (OP (Sub 150) (Add 150) Comp) 4 0 (IP (Ip1) (Ip2)) (OP (Op1)
(Op2))) ;;-, +
(Module Exp4 (OP (Exp 150) Comp) 4 0 (IP (Ip1) (Ip2)) (OP (Op1) (Op2))) ;;
exponentiation
(Module Mlt4 (OP (Mlt 150) Comp) 4 0 (IP (Ip1) (Ip2)) (OP (Op1 Op2))) ;;
multiplikation
(Module Div4 (OP (Div 100) Comp) 4 0 (IP (Ip1) (Ip2)) (OP (Op1 Op2))) ;;
divide
(Module And4 (OP (And 30) Comp) 4 0 (IP (Ip1) (IP2)) (OP (Op1))) ;; mask,
Op1:=Ip1 And Ip2
(Module Nan4 (OP (Nan 10) Comp) 4 0 (IP (Ip1) (Ip2)) (OP (Op1))) ;; nand
(Module Or4 (OP (Or 40) Comp) 4 0 (IP (Ip1) (Ip2)) (OP (Op1))) ;; or
(Module Nor4 (OP (Nor 10) Comp) 4 0 (IP (Ip1) (Ip2)) (OP (Op1))) ;; nor
(Module Xor4 (OP (Xor 30) Comp) 4 0 (IP (Ip1) (Ip2)) (OP (Op1))) ;; xor
(Module Inv4 (OP (Not 15) Comp) 4 0 (IP (Ip1)) (OP (Op1)));; not
(Module Mod4 (OP (Mod 150) Comp) 4 0 (IP (Ip1) (Ip2)) (OP (Op1) (Op2))) ;;
modulus
(Module Rem4 (OP (Rem 150) Comp) 4 0 (IP (Ip1) (Ip2)) (OP (Op1) (Op2))) ;;
remainder
(Module Eql4 (OP (Eql 30) Comp) 4 0 (IP (Ip1) (Ip2)) (OP (Op1 1))) ;; compare,
=
(Module Les4 (OP (Les 30) Comp) 4 0 (IP (Ip1) (Ip2)) (OP (Op1 1))) ;; compare,
<
(Module Grt4 (OP (Grt 30) Comp) 4 0 (IP (Ip1) (Ip2)) (OP (Op1 1))) ;; compare,
>
(Module LeE4 (OP (LeE 30) Comp) 4 0 (IP (Ip1) (Ip2)) (OP (Op1 1))) ;; compare,
<=
(Module GrE4 (OP (GrE 30) Comp) 4 0 (IP (Ip1) (Ip2)) (OP (Op1 1))) ;; compare,
>=
(Module NEq4 (OP (NEq 30) Comp) 4 0 (IP (Ip1) (Ip2)) (OP (Op1 1))) ;; compare,
<>

(Module Reg4 (OP (Reg 45)) 4 0 (IP (Ip1)) (OP (Op1))) ;; register
(Module Alu4 (OP (Alu 120) (Add 150) (Sub 150) (Inc 160) Comp) 4 0
        (IP (Ip1) (Ip2) (Ip3 3)) (OP (Op1) (Op2 1))) ;; see notr (4)
(Module Con4 (OP (Con 0)) 4 0 (IP) (OP (Op1))) ;; constant
(Module Com4 (OP (Com 70) Comp) 4 0 (IP (Ip1) (Ip2)) (OP (Op1 1))) ;; compare,
< or =
(Module Cdt4 (OP (Cdt 0.01)) 4 0 (IP (Ip1)) (OP (Op1 1))) ;; condition signal
(Module Pad4 (OP (Pad 40)) 4 0 (IP (Ip1)) (OP (Op1))) ;; I/O pads
(Module Mul4 (OP (Mul 40) Meta) 4 0 0 (IP (Ipi)) (OP (Op1)))
  ;; multiplex i input 1 output  cost = (lambda (i) (* 1.67 (+ i 1)))
(Module Bus4 (OP (Bus 60) Meta) 4 0 0 (IP (Ipi)) (OP (Opj)))
  ;; bus i input j output cost = (lambda (i j) (* 1.67 (+ i j)))
(Module Mem4 (OP (Mem 200) Meta) 4 0 0 (IP (Ip1) (Ip2)) (OP (Op1)))
  ;; memory with i cells cost = (lambda (i) (+ 2.0 (* i 2.33)))
(Module Inc4 (OP (Inc 160) Comp) 4 0 (IP (Ip1)) (OP (Op1))) ;; inceament,
Op1:=Ip1+1
(Module Shl4 (OP (Shl 15) Comp) 4 0 (IP (Ip1)) (OP (Op1))) ;; shift left
(Module Shr4 (OP (Shr 15) Comp) 4 0 (IP (Ip1)) (OP (Op1))) ;; shift right
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Appendix C: Design example (RT-Level VHDL)

-- The VHDL code generated by CAMAD:

LIBRARY MGC_PORTABLE;
USE MGC_PORTABLE.QSIM_LOGIC.ALL;

USE Work.ETPN_modelling.ALL;

ENTITY /../MAGISTER/designs/mult8x8 IS
  PORT (
    P_N1, P_N4, P_N5 : IN BIT; -- input pads
    P_N6 : OUT UNSIGNED16; -- output pads
    Reset : IN BIT := '0'; -- reset signal
    Clock : IN BIT := '0' -- clock signal
  );
END;

ARCHITECTURE Structure OF /../MAGISTER/designs/mult8x8 IS
  -- signals for component connection points
  SIGNAL N_A5 : BIT;
  SIGNAL N_A6 : UNSIGNED8;
  SIGNAL N_A7 : BIT;
  SIGNAL N_A8 : UNSIGNED8;
  SIGNAL N_A9 : UNSIGNED8;
  SIGNAL N_A10 : UNSIGNED8;
  SIGNAL N_A11 : UNSIGNED8;
  SIGNAL N_A12 : BIT;
  SIGNAL N_A13 : UNSIGNED32;
  SIGNAL N_A14 : UNSIGNED3;
  SIGNAL N_A15 : BIT;
  SIGNAL N_A17 : UNSIGNED32;
  SIGNAL N_A18 : UNSIGNED2;
  SIGNAL N_A19 : UNSIGNED32;
  SIGNAL N_A20 : BIT;
  SIGNAL N_A21 : BIT;
  SIGNAL N_A23 : UNSIGNED32;
  SIGNAL N_A24 : UNSIGNED32;
  SIGNAL N_A25 : UNSIGNED32;
  SIGNAL N_A27 : UNSIGNED2;
  SIGNAL N_A28 : UNSIGNED32;
  SIGNAL N_A30 : UNSIGNED2;
  SIGNAL N_A31 : UNSIGNED32;
  SIGNAL N_A33 : UNSIGNED32;
  SIGNAL N_A34 : UNSIGNED32;
  SIGNAL N_A36 : UNSIGNED2;
  SIGNAL N_A37 : UNSIGNED32;
  SIGNAL N_A38 : BIT;
  SIGNAL N_A39 : BIT;
  SIGNAL N_A43 : UNSIGNED32;
  SIGNAL N_A45 : BIT;
  SIGNAL N_A46 : BIT;
  SIGNAL N_A47 : BIT;
  SIGNAL N_A49 : UNSIGNED32;
  SIGNAL N_A50 : UNSIGNED32;
  SIGNAL N_A51 : UNSIGNED32;
  SIGNAL Unconnected : UNSIGNED32;

  -- control signals from the control Petri net
  SIGNAL P0, P1, P2, P3, P4, P5, P6, P7, P8, P9,
    P10, P11, P12, P13, P14, P15, P16, P17, P18, P19,
    P20, P21, P3_P9_P12_P16, P4_P11, P6_P13 : BIT;

  -- condition signals from the data path
  SIGNAL C3, C4, C5, C6 : BIT;

  -- data path component types
  COMPONENT Pad1    PORT (
      Ip1 : IN BIT; -- input
      Op1 : OUT BIT -- output
    );
  END COMPONENT;

  COMPONENT Pad8    PORT (
      Ip1 : IN UNSIGNED8; -- input
      Op1 : OUT UNSIGNED8 -- output
    );
  END COMPONENT;

  COMPONENT Pad16    PORT (
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      Ip1 : IN UNSIGNED16; -- input
      Op1 : OUT UNSIGNED16 -- output
    );
  END COMPONENT;

  COMPONENT Reg32    PORT (
      Ip1 : IN UNSIGNED32; -- input
      Ic1 : IN BIT; -- load control
      clock : IN BIT; -- load control
      Op1 : OUT UNSIGNED32 -- output
    );
  END COMPONENT;

  COMPONENT Add8    PORT (
      Ip1, Ip2 : IN UNSIGNED8; -- input
      Op1 : OUT UNSIGNED8 -- output
    );
  END COMPONENT;

  COMPONENT Mlt8    PORT (
      Ip1, Ip2 : IN UNSIGNED8; -- input
      Op1 : OUT UNSIGNED8 -- output
    );
  END COMPONENT;

  COMPONENT LeE32    PORT (
      Ip1, Ip2 : IN UNSIGNED32; -- input
      Op1 : OUT BIT -- output
    );
  END COMPONENT;

  COMPONENT Eql32    PORT (
      Ip1, Ip2 : IN UNSIGNED32; -- input
      Op1 : OUT BIT -- output
    );
  END COMPONENT;

  COMPONENT Mod32    PORT (
      Ip1, Ip2 : IN UNSIGNED32; -- input
      Op1 : OUT UNSIGNED32 -- output
    );
  END COMPONENT;

  COMPONENT Add32    PORT (
      Ip1, Ip2 : IN UNSIGNED32; -- input
      Op1 : OUT UNSIGNED32 -- output
    );
  END COMPONENT;

  COMPONENT Div32    PORT (
      Ip1, Ip2 : IN UNSIGNED32; -- input
      Op1 : OUT UNSIGNED32 -- output
    );
  END COMPONENT;

  COMPONENT Sub32    PORT (
      Ip1, Ip2 : IN UNSIGNED32; -- input
      Op1 : OUT UNSIGNED32 -- output
    );
  END COMPONENT;

  COMPONENT Eql1    PORT (
      Ip1, Ip2 : IN BIT; -- input
      Op1 : OUT BIT -- output
    );
  END COMPONENT;

  COMPONENT Mul32_4    PORT (
      Ip1, Ip2, Ip3, Ip4 : IN UNSIGNED32; -- input
      Ic1, Ic2, Ic3, Ic4 : IN BIT; -- multiplex selection
      Op1 : OUT UNSIGNED32 -- output
    );
  END COMPONENT;

  COMPONENT Mul32_2    PORT (
      Ip1, Ip2 : IN UNSIGNED32; -- input
      Ic1, Ic2 : IN BIT; -- multiplex selection
      Op1 : OUT UNSIGNED32 -- output
    );
  END COMPONENT;

  -- data path component configuration
  FOR N1, N4, N5, N6 : Pad1 USE ENTITY Work.Pad1(behavior);
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  FOR N1, N4, N5, N6 : Pad8 USE ENTITY Work.Pad8(behavior);
  FOR N1, N4, N5, N6 : Pad16 USE ENTITY Work.Pad16(behavior);
  FOR N7, N8, N9, N19 : Reg32 USE ENTITY Work.Reg32(behavior);
  FOR N15 : Add8 USE ENTITY Work.Add8(behavior);
  FOR N17 : Mlt8 USE ENTITY Work.Mlt8(behavior);
  FOR N21 : LeE32 USE ENTITY Work.LeE32(behavior);
  FOR N25, N38 : Eql32 USE ENTITY Work.Eql32(behavior);
  FOR N26, N39 : Mod32 USE ENTITY Work.Mod32(behavior);
  FOR N31, N36 : Add32 USE ENTITY Work.Add32(behavior);
  FOR N32, N34 : Div32 USE ENTITY Work.Div32(behavior);
  FOR N44 : Sub32 USE ENTITY Work.Sub32(behavior);
  FOR N45 : Eql1 USE ENTITY Work.Eql1(behavior);
  FOR N49 : Mul32_4 USE ENTITY Work.Mul32_4(behavior);
  FOR N50, N51 : Mul32_2 USE ENTITY Work.Mul32_2(behavior);

  -- FSM state declaration
  TYPE State_type IS (S1, S2, S3, S4, S5, S6, S7, S8, S9, S10,
    S11, S12, S13, S14, S15, S16, S17, S18, S19, S20, S21);
  SIGNAL present_state : State_type;
  SIGNAL next_state : State_type;

  BEGIN
    -- component instantiation
    N1 : Pad1 PORT MAP (P_N1, N_A45);
    N4 : Pad8 PORT MAP (P_N4, N_A6);
    N5 : Pad8 PORT MAP (P_N5, N_A9);
    N6 : Pad16 PORT MAP (N_A23, P_N6);
    N7 : Reg32 PORT MAP (N_A49, P3_P9_P12_P16, clock, N_A23);
    N8 : Reg32 PORT MAP (N_A50, P4_P11, clock, N_A17);
    N9 : Reg32 PORT MAP (N_A11, P5, clock, N_A24);
    N15 : Add8 PORT MAP (N_A6, N_A7, N_A8);
    N17 : Mlt8 PORT MAP (N_A9, N_A10, N_A11);
    N19 : Reg32 PORT MAP (N_A51, P6_P13, clock, N_A13);
    N21 : LeE32 PORT MAP (N_A13, N_A14, C3);
    N25 : Eql32 PORT MAP (N_A19, N_A20, C4);
    N26 : Mod32 PORT MAP (N_A17, N_A18, N_A19);
    N31 : Add32 PORT MAP (N_A23, N_A24, N_A25);
    N32 : Div32 PORT MAP (N_A17, N_A27, N_A28);
    N34 : Div32 PORT MAP (N_A23, N_A30, N_A31);
    N36 : Add32 PORT MAP (N_A13, N_A33, N_A34);
    N38 : Eql32 PORT MAP (N_A37, N_A38, C5);
    N39 : Mod32 PORT MAP (N_A17, N_A36, N_A37);
    N44 : Sub32 PORT MAP (N_A23, N_A24, N_A43);
    N45 : Eql1 PORT MAP (N_A45, N_A46, C6);
    N49 : Mul32_4 PORT MAP (N_A5, N_A25, N_A31, N_A43, P3,
                            P9, P12, P16, N_A49);
    N50 : Mul32_2 PORT MAP (N_A8, N_A28, P4, P11, N_A50);
    N51 : Mul32_2 PORT MAP (N_A12, N_A34, P6, P13, N_A51);

    -- The FSM controller
    state_register:PROCESS( reset, clock )
    BEGIN
      IF ( reset = '0' ) THEN present_state <= S1;
      ELSIF ( clock = '1' AND clock'LAST_VALUE = '0'
              AND clock'EVENT ) THEN
          present_state <= next_state;
      END IF;
    END PROCESS state_register;

    output_decode_logic:PROCESS( clock, present_state )
    BEGIN
      P0 <= '0';
      P1 <= '0';
      P2 <= '0';
      P3 <= '0';
      P4 <= '0';
      P5 <= '0';
      P6 <= '0';
      P7 <= '0';
      P8 <= '0';
      P9 <= '0';
      P10 <= '0';
      P11 <= '0';
      P12 <= '0';
      P13 <= '0';
      P14 <= '0';
      P15 <= '0';
      P16 <= '0';
      P17 <= '0';
      P18 <= '0';
      P19 <= '0';
      P20 <= '0';
      P21 <= '0';
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      CASE present_state IS
        WHEN S1 =>
          P0 <= '1';
        WHEN S2 =>
          P2 <= '1';
        WHEN S3 =>
          P3 <= '1';
        WHEN S4 =>
          P4 <= '1';
        WHEN S5 =>
          P5 <= '1';
        WHEN S6 =>
          P6 <= '1';
        WHEN S7 =>
          P7 <= '1';
        WHEN S8 =>
          P8 <= '1';
        WHEN S9 =>
          P14 <= '1';
        WHEN S10 =>
          P9 <= '1';
        WHEN S11 =>
          P10 <= '1';
        WHEN S12 =>
          P15 <= '1';
        WHEN S13 =>
          P11 <= '1';
        WHEN S14 =>
          P16 <= '1';
        WHEN S15 =>
          P17 <= '1';
        WHEN S16 =>
          P12 <= '1';
        WHEN S17 =>
          P18 <= '1';
        WHEN S18 =>
          P13 <= '1';
        WHEN S19 =>
          P19 <= '1';
        WHEN S20 =>
          P20 <= '1';
        WHEN S21 =>
          P21 <= '1';
      END CASE;
    END PROCESS output_decode_logic;

    state_decode_logic : PROCESS( C3, C4, C5, C6,
                                  present_state )
    BEGIN
      CASE present_state IS
        WHEN S1 =>
          next_state <= S2;
        WHEN S2 =>
          next_state <= S3;
        WHEN S3 =>
          next_state <= S4;
        WHEN S4 =>
          next_state <= S5;
        WHEN S5 =>
          next_state <= S6;
        WHEN S6 =>
          next_state <= S7;
        WHEN S7 =>
          IF C3 = '1' THEN
            next_state <= S8;
          ELSE
            next_state <= S9;
          END IF;
        WHEN S8 =>
          IF C4 = '1' THEN
            next_state <= S10;
          ELSE
            next_state <= S11;
          END IF;
        WHEN S9 =>
          next_state <= S12;
        WHEN S10 =>
          next_state <= S11;
        WHEN S11 =>
          next_state <= S13;
        WHEN S12 =>
          IF C5 = '1' THEN
            next_state <= S14;
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          ELSE
            next_state <= S15;
          END IF;
        WHEN S13 =>
          next_state <= S16;
        WHEN S14 =>
          next_state <= S15;
        WHEN S15 =>
          next_state <= S17;
        WHEN S16 =>
          next_state <= S18;
        WHEN S17 =>
          next_state <= S19;
        WHEN S18 =>
          next_state <= S7;
        WHEN S19 =>
          next_state <= S20;
        WHEN S20 =>
          next_state <= S21;
        WHEN S21 =>
          IF C6 = '1' THEN
            next_state <= S2;
          ELSE
            next_state <= S19;
          END IF;
        WHEN OTHERS =>
          next_state <= S1;
      END CASE;
    END PROCESS state_decode_logic;

    -- Other control signals
    P3_P9_P12_P16 <= P3 OR P9 OR P12 OR P16;
    P4_P11 <= P4 OR P11;
    P6_P13 <= P6 OR P13;

    -- Constants
    N_A5 <= 0;
    N_A7 <= 0;
    N_A10 <= 128;
    N_A12 <= 0;
    N_A14 <= 6;
    N_A18 <= 2;
    N_A20 <= 1;
    N_A27 <= 2;
    N_A30 <= 2;
    N_A33 <= 1;
    N_A36 <= 2;
    N_A38 <= 1;
    N_A46 <= 1;
END;
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Appendix D: DD Model Format

DD model format is case sensitive. It is a line-based format where maximum line
length can be 256 characters. In the following the BNF syntax of DD model
format is presented. The meta-syntax used obeys the following rules:

I. Syntactic categories (nonterminals) are printed in italics; literal words,
characters and constants are enclosed to ‘quotes’.

II. If a construct is enclosed to [square brackets], it is optional.

III.  If a construct is enclosed to {curly brackets}, it may be repeated zero or
more times.

IV. A choice is indicated with a vertical bar |.

V. If a construct is enclosed in <chevrons>, it can occur at most once.

dd_model :=

statistics

mode

[control_signals]

dd_description

statistics :=

‘STAT#’ natural ‘Nods,’ natural ‘Vars,’ natural ‘Grps,’ natural ‘Inps,’ natural
‘Outs,’ natural ‘Cons’ [ ‘,’  natural ’Funs’] [ ‘,’  natural ’Mems’]  [ ‘,’  natural
‘C_outs’]

The natural values reflect the number of nodes, variables, graphs, inputs, outputs,
constants, functions, memory arrays and control part outputs, respectively. The
number of functions and memory arrays are meaningful in the high-level
descriptions. The number of control part outputs is used with the RTL descriptions
divided into a control part and a datapath only.

control_signals :=

‘COUT#’ natural {‘,’ natural}

Shows the variable indexes of control signal variables. Used in RTL descriptions
partitioned to datapath and control parts.
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mode :=

‘MODE#’ ‘STRUCTURAL’ | ‘RTL’ | ‘BEHAVIORAL’

Indicates whether a structural gate-level model, a RTL model, or a behavioral
model is being described.

dd_description :=

[{input_definition}]

[{memory_definition}]

[{constant_definition}]

[{function_definition}]

[{control_definition}]

{graph_variable_definition}

The definitions are ranged according to the order shown above. There are no
memory definitions or function definitions in SSBDD models. control_definitions
are used only in the RTL descriptions partitioned into control and datapath parts.

input_definition :=

‘VAR#’ var_index ‘:’ ‘(‘ variable_flags ’)’  var_name  var_range

Defines a primary input of the model.

memory_definition :=

‘VAR#’ var_index ‘:’ ‘(‘ variable_flags’)’  var_name var_range [row_range]
column_range

memory_row

{memory_row}

Defines a memory array. The optional row_range  is used with two-dimensional
arrays, and it determines the range of row addresses used in memory. In one-
dimensional arrays, row_range is omitted. In similar way, column_range
determines the range of column addresses used in the memory variable.

memory_row :=

‘{‘ integer {‘,’  integer} ‘}’

Defines the contents of a memory variable. The number of integers in
memory_row is determined by column_range.
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row_range := mem_range

Row_range  is used with two-dimensional arrays, and it determines the range of
row addresses used in memory. In one-dimensional arrays, row_range is omitted.

column_range := mem_range

Determines the range of column addresses used in the memory variable.

mem_range := ‘[‘ integer ‘ - ’  integer ‘]’

In mem_range the first integer must be less than the second one.

constant_definition :=

‘VAR#’ var_index ‘:’ ‘(‘ variable_flags’)’  var_name  var_range ‘VAL’ ‘=’
integer

Defines a constant. The integer value shows the value of the constant.

function_definition :=

‘VAR#’ var_index ‘:’ ‘(‘ variable_flags’)’  var_name  var_range

‘FUN#’  function_type  arguments_definition

Defines an operation or function.

function_type := identifier

Shows the type of the operation.

arguments_definition :=

‘(‘ [argument] {‘,’  argument} ’)’

Defines the arguments (if any) of an operation.

argument :=

‘A’ argument_index  ‘<=’ argument_variable  range
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The range shows the bit-slice of the variable argument_variable that is used as a
function argument.

argument_index := natural

Shows the index of the function argument.

argument_variable := natural

Shows the index of the variable used as the function argument.

control_definition :=

‘VAR#’ var_index ‘:’ ‘(‘ variable_flags ’)’  var_name  var_range

Defines a control signal. Used to define control part output signals of the RTL
designs partitioned into datapath and control parts.

graph_variable_definition :=

‘VAR#’ var_index ‘:’ ‘(‘ variable_flags’)’  var_name  var_range

graph_definition

Defines a variable for which a graph corresponds.

graph_definition :=

‘GRP#’ graph_index ‘:’ ‘BEG’ ‘=’ natural ‘,’ ‘LEN’ ‘=’ natural ‘�����’

node_definition | parallel_node_definition

{node_definition | parallel_node_definition}

Defines a graph in the DD model. The ‘BEG=’ construct shows the absolute index
of the first node in the graph. The ‘LEN=’ construct in turn shows the number of
nodes in the graph.

node_definition :=

nod_abs_index nod_index ‘: (‘ nod_flags’) (’ successors ‘) V =’ nod_var
nod_name nod_range

Defines an DD node. nod_abs_index and nod_index represent the absolute (inside
the model) and relative (inside the graph) indexes of the node. Construct
successors shows the successor nodes of current node which are chosen with
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different node values. Index of the variable labeling the node is determined with
nod_var.

parallel_node_definition :=

nod_abs_index nod_index ‘: (v___)’ ‘(‘ ‘0’ ‘0’ ‘)’ ‘VEC =’ nod_var_vector

Defines a terminal node of the FSM graph of RTL description. nod_abs_index and
nod_index represent the absolute (inside the model) and relative (inside the graph)
indexes of the node, respectively. Indexes of the variables labeling the node are
determined with nod_var_vector.

nod_var_vector :=

‘ ” ’ state_value {signal_value} ’ ” ’

state_value shows the value of the next state. The signal_value constructs show
the values of the control signals defined in the control_signals construct.

state_value := natural

Shows the value of the next state.

signal_value := ‘0’ | ‘ 1’ | ‘ X’

The signal_value constructs show the values of the control signals defined in the
control_signals construct.

nod_var := natural[ [ ‘[‘ ‘V’ ‘=’ row_index ’]’ ]  ‘[‘ ‘V’ ‘=’ column_index ’]’ ]

Shows the index of the variable labeling the node. Optional constructs row_index
and column_index are used with memory variables labeling the node. These
constructs determine the indexes of the variables used for addressing rows and
columns, respectively.

nod_name := string

Shows the name of the node.

nod_range := range

nod_range determines the bit-slice of the variable that labels the node. DD model
format allows slices of variables to be used for labeling a node.

row_index := natural
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Determine the indexes of the variables used for addressing rows of the memory
variable.

column_index := natural

Determines the index of the variable used for addressing columns of the memory
variable.

nod_abs_index := natural

Shows the absolute (inside the model) index of the node.

nod_index := natural

Shows the relative (inside the graph) index of the node inside the graph.

graph_index := natural

Shows the index of the graph.

variable_flags :=

< ‘i’ | ‘m’ | ‘c’ | ‘f’ | ‘o’ | ‘n’ | ’_’ | ‘F’  > {< ‘d’> | ‘_’ }

The variable flags have the following interpretation:

‘i’ - input variable

‘m’ - memory variable (RTL, behavioral)

‘c’ - constant variable

‘f’ - function variable (RTL, behavioral)

‘o’ - output variable

‘d’ - clock cycle delay, e.g. in registers, flipflops. (Gate-level, RTL)

The following flags are used with RTL descriptions only:

‘n’ - control part output signal

‘F’ - FSM graph variable

‘r’ - reset variable

‘s’ - state variable

nod_flags :=
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< ‘i’ | ’_’  > {  ‘n’ | ‘v’ | ‘_’ }

The node flags have the following interpretation:

‘i’ - inverted node (in gate-level descriptions only)

‘n’ - non-terminal node (RTL, behavioral)

‘v’ - control part terminal node (RTL)

successors :=

nonterminal_successors | terminal_successor | boolean_successors

Construct successors shows the successor nodes of current node which are chosen
with different node values.

nonterminal_successors :=

node_values  ‘=>’  successor_index  {node_values  ‘=>’  successor_index }

This construct shows the indexes of successor nodes which will be selected with
corresponding node values. (Used with RTL and behavioral models only).

terminal_successors := ‘0’ ‘ 0’

Terminal nodes are nodes which have no successor nodes.

boolean_successors:=

natural  natural

This type of construct can be used with Boolean DDs only. The first natural
number indicates the relative index of the successor node when the value of
current node is ‘0’, and the second number shows the relative index of the
successor node when current node is ‘1’, respectively. If the index of the successor
node is ‘0’, it shows that there is no successor nodes to current node with
corresponding value.

node_values :=  natural { ‘,’ | ‘�’   natural}

Determines the set of node values that activate the corresponding branch. The
comma ‘,’ character is used for separating the indexes; the minus sign ‘-‘ is used
for index ranges, e.g. ‘3-5’, which can be alternatively written as ‘3,4,5’.

successor_index :=

natural | ‘X’
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If successor_index is a natural number, it shows the index of the successor node.
Otherwise, if successor_index is ‘X’, it means that the successor is undetermined.

var_index := natural

Shows the index of the variable.

var_name := string

Shows the name of the variable.

var_range := range

Shows the bitwidth of the variable.

range := [ ‘<’ natural ‘:’  natural ‘>’ ]

Range is a construct for describing bit-vectors. The first natural shows the index
of the most significant bit and the latter is for the least significant bit, respectively.
If range is omitted, it will default to ‘<0:0>’.

string :=

‘ ” ’ {character} ‘ ” ’

Character can be any character, except newline and double quote ‘”’.

integer :=

[ ‘ - ’ ]natural

Any integer number.

natural

Natural can be any non-negative number.

identifier :=

alphabetic_character{alphabetic_character | digit | ‘_’ }

alphabetic_character :=  ‘A’| …| ’Z’  | ‘a’ | …| ‘z’

digit :=  ‘0’ | ‘1’ | …| ‘9’
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Appendix E: DD-Model example

;23/05/98

STAT#  70 Nods, 62 Vars, 5 Grps, 4 Inps, 1 Outs, 14 Const, 13 Funs, 23 C_outs
COUT# 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53

MODE# RTL

VAR# 0: (i_________)  "P_N1"
VAR# 1: (i_________)  "P_N4"
VAR# 2: (i_________)  "P_N5"
VAR# 3: (i_________)  "Reset"

VAR# 4: (__c_______)    "N_A5" VAL = 0
VAR# 5: (__c_______)    "N_A7" VAL = 0
VAR# 6: (__c_______)    "N_A10" <7:0> VAL = 128
VAR# 7: (__c_______)    "N_A12" VAL = 0
VAR# 8: (__c_______)    "N_A14" <2:0> VAL = 6
VAR# 9: (__c_______)    "N_A18" <1:0> VAL = 2
VAR# 10: (__c_______)    "N_A20" VAL = 1
VAR# 11: (__c_______)    "N_A27" <1:0> VAL = 2
VAR# 12: (__c_______)    "N_A30" <1:0> VAL = 2
VAR# 13: (__c_______)    "N_A33" VAL = 1
VAR# 14: (__c_______)    "N_A36" <1:0> VAL = 2
VAR# 15: (__c_______)    "N_A38" VAL = 1
VAR# 16: (__c_______)    "N_A46" VAL = 1
VAR# 17: (__c_______)    "MUX_CONST" VAL = 0

VAR# 18: (____f_____)  "N_A8" <7:0>
FUN   Add (A1<=1, A2<=5)

VAR# 19: (____f_____)  "N_A11" <7:0>
FUN   Mlt (A1<=2, A2<=6)

VAR# 20: (____f_____)  "C3"<31:0>
FUN   LeE (A1<=61, A2<=8)

VAR# 21: (____f_____)  "C4"<31:0>
FUN   Eql (A1<=22, A2<=10)

VAR# 22: (____f_____)  "N_A19" <31:0>
FUN   Mod (A1<=59, A2<=9)

VAR# 23: (____f_____)  "N_A25" <31:0>
FUN   Add (A1<=58, A2<=60)

VAR# 24: (____f_____)  "N_A28" <31:0>
FUN   Div (A1<=59, A2<=11)

VAR# 25: (____f_____)  "N_A31" <31:0>
FUN   Div (A1<=58, A2<=12)

VAR# 26: (____f_____)  "N_A34" <31:0>
FUN   Add (A1<=61, A2<=13)

VAR# 27: (____f_____)  "C5"<31:0>
FUN   Eql (A1<=28, A2<=15)

VAR# 28: (____f_____)  "N_A37" <31:0>
FUN   Mod (A1<=59, A2<=14)

VAR# 29: (____f_____)  "N_A43" <31:0>
FUN   Sub (A1<=58, A2<=60)

VAR# 30: (____f_____)  "C6"<31:0>
FUN   Eql (A1<=0, A2<=16)
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VAR# 31: (_____d_s__)  "pres_state" <4:0>
VAR# 32: (___n______)  "P0"
VAR# 33: (___n______)  "P1"
VAR# 34: (___n______)  "P2"
VAR# 35: (___n______)  "P3"
VAR# 36: (___n______)  "P4"
VAR# 37: (___n______)  "P5"
VAR# 38: (___n______)  "P6"
VAR# 39: (___n______)  "P7"
VAR# 40: (___n______)  "P8"
VAR# 41: (___n______)  "P9"
VAR# 42: (___n______)  "P10"
VAR# 43: (___n______)  "P11"
VAR# 44: (___n______)  "P12"
VAR# 45: (___n______)  "P13"
VAR# 46: (___n______)  "P14"
VAR# 47: (___n______)  "P15"
VAR# 48: (___n______)  "P16"
VAR# 49: (___n______)  "P17"
VAR# 50: (___n______)  "P18"
VAR# 51: (___n______)  "P19"
VAR# 52: (___n______)  "P20"
VAR# 53: (___n______)  "P21"
VAR# 54: (___n______)  "P3_P9_P12_P16"
VAR# 55: (___n______)  "P4_P11"
VAR# 56: (___n______)  "P6_P13"

VAR# 57: (________F_)  "CONTROL"
GRP# 0: BEG = 0 LEN = 32 -----
  0 0: (n___) (0=>1 1=>2) V = 0 "Reset"
  1 1: (__v_) (0 0) VEC = "S2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0"
  2 2: (n___) (S1=>3 S2=>4 S3=>5    S4=>6    S5=>7    S6=>8    S7=>9    S8=>12    S9=>15

S10=>16    S11=>17    S12=>18    S13=>21    S14=>22    S15=>23    S16=>24    S17=>25
S18=>26    S19=>27    S20=>28    S21=>29)    V = 31       "pres_state"

<4:0>
  3 3: (__v_) (0 0) VEC = "S2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0"
  4 4: (__v_) (0 0) VEC = "S3 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0"
  5 5: (__v_) (0 0) VEC = "S4 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0"
  6 6: (__v_) (0 0) VEC = "S5 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0"
  7 7: (__v_) (0 0) VEC = "S6 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0"
  8 8: (__v_) (0 0) VEC = "S7 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1"
  9 9: (n___) (1=>10 0=>11) V = 20 "C3"
  10 10: (__v_) (0 0) VEC = "S8 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0"
  11 11: (__v_) (0 0) VEC = "S9 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0"
  12 12: (n___) (1=>13 0=>14) V = 21 "C4"
  13 13: (__v_) (0 0) VEC = "S10 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0"
  14 14: (__v_) (0 0) VEC = "S11 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0"
  15 15: (__v_) (0 0) VEC = "S12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0"
  16 16: (__v_) (0 0) VEC = "S11 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0"
  17 17: (__v_) (0 0) VEC = "S13 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0"
  18 18: (n___) (1=>19 0=>20) V = 27 "C5"
  19 19: (__v_) (0 0) VEC = "S14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0"
  20 20: (__v_) (0 0) VEC = "S15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0"
  21 21: (__v_) (0 0) VEC = "S16 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0"
  22 22: (__v_) (0 0) VEC = "S15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0"
  23 23: (__v_) (0 0) VEC = "S17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0"
  24 24: (__v_) (0 0) VEC = "S19 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0"
  25 25: (__v_) (0 0) VEC = "S19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0"
  26 26: (__v_) (0 0) VEC = "S7 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1"
  27 27: (__v_) (0 0) VEC = "S20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0"
  28 28: (__v_) (0 0) VEC = "S21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0"
  29 29: (n___) (1=>30 0=>31) V = 30 "C6"
  30 30: (__v_) (0 0) VEC = "S2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0"
  31 31: (__v_) (0 0) VEC = "S19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0"

VAR#58: (_o___d____)  "P_N6" <31:0>
GRP# 1: BEG = 32 LEN = 17 -----
  32 0: (n___) (0=>16 1=>1) V = 54 "P3_P9_P12_P16"
  33 1: (n___) (0=>3 1=>2) V = 35 "P3"
  34 2: (____) (0 0) V = 17 "MUX_CONST"
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  35 3: (n___) (0=>9 1=>4) V = 41 "P9"
  36 4: (n___) (0=>6 1=>5) V = 44 "P12"
  37 5: (____) (0 0) V = 17 "MUX_CONST"
  38 6: (n___) (0=>7 1=>8) V = 48 "P16"
  39 7: (____) (0 0) V = 17 "MUX_CONST"
  40 8: (____) (0 0) V = 23 "N_A25" <31:0>
  41 9: (n___) (0=>13 1=>10) V = 44 "P12"
  42 10: (n___) (0=>12 1=>11) V = 48 "P16"
  43 11: (____) (0 0) V = 17 "MUX_CONST"
  44 12: (____) (0 0) V = 25 "N_A31" <31:0>
  45 13: (n___) (0=>15 1=>14) V = 48 "P16"
  46 14: (____) (0 0) V = 29 "N_A43" <31:0>
  47 15: (____) (0 0) V = 17 "MUX_CONST"
  48 16: (____) (0 0) V = 58 "P_N6" <31:0>

VAR#59: (_____d____)  "N8" <31:0>
GRP# 2: BEG = 49 LEN = 9 -----
  49 0: (n___) (0=>8 1=>1) V = 55 "P4_P11"
  50 1: (n___) (0=>5 1=>2) V = 36 "P4"
  51 2: (n___) (0=>4 1=>3) V = 43 "P11"
  52 3: (____) (0 0) V = 17 "MUX_CONST"
  53 4: (____) (0 0) V = 18 "N_A8" <7:0>
  54 5: (n___) (0=>7 1=>6) V = 43 "P11"
  55 6: (____) (0 0) V = 24 "N_A28" <31:0>
  56 7: (____) (0 0) V = 17 "MUX_CONST"
  57 8: (____) (0 0) V = 59 "N8"

VAR#60: (_____d____)  "N9" <31:0>
GRP# 3: BEG = 58 LEN = 3 -----
  58 0: (n___) (0=>2 1=>1) V = 37 "P5"
  59 1: (____) (0 0) V = 19 "N_A11" <7:0>
  60 2: (____) (0 0) V = 60 "N9"

VAR#61: (_____d____)  "N19" <31:0>
GRP# 4: BEG = 61 LEN = 9 -----
  61 0: (n___) (0=>8 1=>1) V = 56 "P6_P13"
  62 1: (n___) (0=>5 1=>2) V = 38 "P6"
  63 2: (n___) (0=>4 1=>3) V = 45 "P13"
  64 3: (____) (0 0) V = 17 "MUX_CONST"
  65 4: (____) (0 0) V = 7 "N_A12"
  66 5: (n___) (0=>7 1=>6) V = 45 "P13"
  67 6: (____) (0 0) V = 26 "N_A34" <31:0>
  68 7: (____) (0 0) V = 17 "MUX_CONST"
  69 8: (____) (0 0) V = 61 "N19"
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