
Combinational Logic Appendix

Half Adder Example
A simple 1-bit half adder circuit has two inputs and two outputs (Figure 1).

a

b

sum

carry

Figure 1: Half Adder Block Diagram

Table 1: Half Adder Truth Table

a b sum carry
0 0 0 0
0 1 1 0
1 0 1 0
1 1 0 1

The functionality of the half adder can be specified with the truth table (Table 1). It

provides enough information to write out the Boolean equations (1) and (2) for the outputs.

sum = (¬ a) · b + a · (¬ b)     (1)            carry =  a · b     (2)

VHDL code, which is based on the above specification, is provided in Listing 1. Code

consists of two main parts: entity and architecture. Entity represents the interface of the

circuit, while architecture describes either internal structure or behavior.

Listing 1: VHDL Description of a Half Adder

entity half_adder is
port (a, b: in std_logic;
         sum, carry: out std_logic);

end half_adder;

architecture half_adder_arch of half_adder is
begin
sum <= (not a and b) or (a and not b);
carry <= a and b;

end  half_adder_arch;



Entity represents the external view of the half adder, just like in the block diagram (Figure

1). Note, that inputs and outputs are of std_logic type, as it closely resembles the values a

signal may have in the actual circuit. There is no need to declare this type, as the skeleton

code generated by Vivado does so by default.

Architecture body consists of two concurrent signal assignment statements. These

assignments correspond to Boolean equations (1) and (2), and are used to compute the

output. However, and, or and not keywords in these statements are VHDL logic operators,

and do not represent actual gates. Physical implementation may be synthesized using

different logic gates or logic elements after undergoing optimization.

Alternatively, combinational logic can be described in a more abstract way using general

conditional VHDL statements. For example, consider a simple 2-bit two-to-one multiplexer

(Figure 2). I has two 2-bit data inputs a and b, control input sel and data output o. When sel

is equal to logic 1, data input a is propagated to the data output o. Similarly, when sel is

equal to logic 0, data input b is propagated to the data output o. Such behavior can be

described without devising neither the truth table, nor Boolean equations.

2

2

2
a

b
o

sel

1

0

Figure 2: 2-bit 2-to-1 Multiplexer Block Diagram

VHDL code, which is based on the above specification, is provided in Listing 2. In order to

describe a 2-bit two-to-one multiplexer in VHDL, “when .. else” conditional statement can

be used. Data inputs/output a, b and o are now of std_logic_vector type (from 1 downto 0),

since their size has been defined as being 2 bits wide. Note, that this description would

generally invoke an actual multiplexer during synthesis.



Listing 2: VHDL Description of a 2-bit 2-to-1 Multiplexer

entity mux is
port (a, b: in std_logic_vector(1 downto 0);

                     sel: in std_logic;
         o: out std_logic_vector(1 downto 0));

end mux;

architecture mux_arch of mux is
begin
   o <= a when (sel = ’1’) else b;
end  mux_arch;


