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Abstract—Interest in memory systems’ security has increased
during the last decade due to their vulnerabilities to be exploited
by logical side channels attacks. A promising approach for
attack detection at run-time is to monitor the cache memory’s
behavior. However, designing an environment capable of detecting
and mitigating these attacks is very challenging. In current
monitoring systems, attack mitigation has been largely neglected.
To overcome these shortcomings, in this work, we present a secure
cache called SCAAT. SCAAT is equipped with an attack mitiga-
tion system to handle attacks by remapping where data is stored
in the cache to random locations. In addition, SCAAT uses an
attack monitor that identifies suspicious behavior that indicates
cache logical side-channel attacks. The effectiveness of SCAAT is
analyzed and evaluated for several cache configurations in terms
of area overhead and performance.

I. INTRODUCTION

Modern digital systems contain significant information that
requires high security. In recent years, a large variety of
attacks against ICs and memories have been reported. The
vulnerability of caches is caused by their characteristics in
resource sharing because cache states affect and are affected
by all processes. Therefore, one process can infer the cache
usage of another process through cache contention [1].

Today, software attacks can compromise cache security
through so-called Logical Side-Channel Attacks (LSCA). Ad-
versaries can use these attacks to understand the system‘s
secrets by simply observing its behavior. Several examples of
cache attacks, reported in recent years, [2–6] represent a se-
rious threat for the semiconductor industry. Patching defenses
in the field may be very costly, degrade the performance,
and sometimes even create new issues (e.g. reduced battery
lifetime of an IoT device) [7]. Therefore, there is a strong need
for attack monitoring and mitigating systems for the cache
memories.
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Fig. 1: Block diagram illustrating SCAAT system

Although cache monitoring has been widely studied in the
context of high-performance computing, its use for mitigating
cache attacks has been almost completely neglected. A limited

number of publications has performed offline and online cache
monitoring [8–14] for security purposes. However, none of
them proposes a solution to ease and handle the attacks after
the detection phase.

To this end, some works have proposed mechanisms to
obtain secure caches. For instance, [15] proposes a cache-
assisted secure execution system called CaSE that can protect
against both software attacks and physical memory disclosure
attacks on ARM-based devices. In [16], a methodology is
proposed to conceal the plain text data from the L2 cache
memory. It pursues to make the data unusable in the case an
attacker retrieves it, and to avoid the transfer of regular patterns
between CPU and cache.

On one hand, approaches in [17–19] use static partitioning
where the cache is physically divided into different partitions
eliminating cache interference among different applications.
However, these approaches cause performance degradation.
On the other hand, dynamically-partitioned caches determine
the partition size dynamically at run-time. However, dynamic
partitioning techniques are still vulnerable to some LSCAs.
Examples of dynamically-partitioned caches can be found in
[20–24].

Other approaches to gain secure caches are to randomize
the memory-to-cache mapping at run-time so that an attacker
cannot extract useful information from observing cache con-
tention. However, such cache is slow and power-hungry [1].
I addition, [25] presented a mitigation approach for access-
driven side-channel attacks. While the approach in [25] was
successful in mitigating access-driven attacks, the mitigation
strategy aimed at randomizing all accesses to the cache without
directly targeting attacks, which can lead to the cache being
exploited using other types of LSCAs.

All in all, in the current approaches, side-channel attacks’
monitoring is not coupled with an attack mitigation mechanism
and they are mainly limited to alarming the users about the
possibility of data leakages.

To overcome the above shortcomings, this work proposes an
innovative secure cache called the Secure Cache Alternative
Address Table (SCAAT). The SCAAT is a mitigation system
that is connected to a monitoring system to detect an attack and
mitigate it by remapping where data is stored in the cache to
random locations at run time. SCAAT mitigation strategy aims
to change the behavior patterns of the cache making it harder
to predict and to use these patterns to leak cache behavior-
related information.

The main contributions of this paper are as follows:

● Combine a monitoring system for cache memories to
detect cache LSCAs with a mitigation system to handle
the attacks.
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● Introducing a Secure Cache Alternative Address Table
memory called SCAAT that remaps cache addresses to
mitigate cache side-channel attacks.

● Analyzing the change of behavior of three benchmarks
when executed with SCAAT to observe the false positives
generated by the monitoring system and the effectiveness
of SCAAT mitigation strategy.

● Analyzing the performance and area of SCAAT compared
to a baseline cache.

The rest of this paper is organized as follows. Section II
provides the required preliminary information. Section III
presents the proposed methodology. Section IV shows the
experimental results. Finally, Section V concludes this paper.

II. PRELIMINARIES

For the purpose of testing the SCAAT, the open-source IP
core cache [26] was used. The reasoning behind this choice is
the parameterizable and generic set-associative nature of the
cache. Relevant parameters, their calculations, and constant
values used to configure the cache for this work are listed in
Table I. A more detailed documentation of the cache design
and operations is found in [27].

Furthermore, SCAAT uses the monitor proposed in [28].
When an attack is detected by the monitor, an attack signal
attk is sent to the SCAAT unit for attack mitigation. Once
the attack is mitigated, the SCAAT unit output is sent to the
cache as a new address.

TABLE I: Cache parameters and their definitions.

Parameter Definition
CACHE_LINES Number of cache lines.

ASSOCIATIVITY Number of ways per cache set.

CACHE_SETS Number of cache sets = CACHE_LINES/ASSOCIATIV ITY
CPU_ADDR_BITS Bit-width of the address sent to the cache from CPU side.

MEM_ADDR_BITS
Bit-width of the memory address sent to the main memory from

the cache.

CPU_DATA_BITS Bit-width of cache to processor (CPU) data interface.

MEM_DATA_BITS Bit-width of cache to the main memory data interface.

INDEX_BITS

Bit-width of index bits from the CPU address identifying

the cache set where tag with TAG_BITS is being accessed.

= log2(CACHE_SETS)

TAG_BITS

Bit-width of tag bits from the CPU address identifying

the cache block being accessed.

= CPU_ADDR_BITS − INDEX_BITS

OFFSET_BITS

Bit-width of offset bits from the CPU address identifying

which word within a cache line is being accessed.

=MEM_DATA_BITS/CPU_DATA_BITS

III. PROPOSED METHODOLOGY

In this section, we propose a methodology to develop the
SCAAT system: a secure cache coupled with a monitoring
system to detect the attacks and a mitigating system to ease the
attacks when they occur. First, a description of the function-
ality of the SCAAT system is provided. Second, we describe
the SCAAT mitigation strategy for the detected attacks. Third,
the SCAAT impact on the behavior of the cache is discussed.

A. Attack mitigation functionality
To mitigate the attacks detected by the monitoring system,

the proposed SCAAT is divided into two main subsystems. The
first subsystem is a direct-mapped cache or k-way associative
cache. The second, a SCAAT unit, which employs a special-
ized control logic, a specialized memory, and an LFSR. Fig. 1
shows the structure of the SCAAT when connected to a generic

direct-mapped or k-way associative cache. The SCAAT unit
requires four inputs: clk and rst signals for synchronizing
the SCAAT with the cache, the attk signal received from
the monitor to signal when an attack has occurred, and the
cpu_addr (cache address) being accessed by the CPU. The
SCAAT unit has one output: SCAAT_out that is directly
connected to the cache address port.

access to
cpu_addr

Check TAG_BITS in SCAAT

NoYes
found

Yes

No
attack?

Use location as INDEX_BITS

Update SCAAT_out

Send SCAAT_out to cache

Enable LFSR and memory
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SCAAT_out = cpu_addr
End

Fig. 2: SCAAT unit control logic transition diagram.

Inputs to the SCAAT unit are used to control and operate
two components connected to the control logic:

● The LFSR: used to generate pseudo-random bit-vectors
of length equal to the INDEX_BITS parameter.

● The SCAAT memory: a memory module with a sin-
gle write port and a single read port. It has a
data width equal to TAG_BITS and depth equal
to INDEX_BITS. The SCAAT memory stores the
TAG_BITS of cpu_addr at location LFSR_out. If
the input data matches any of the contents of SCAAT
memory, the location of the matching data is sent as
SCAAT_mem_out. An additional bit, added as the
most significant bit, indicates if the data is found (rep-
resented by a logical ’1’) or not found (represented by
a logical ’0’) in SCAAT memory. This bit is called
found_in_SCAAT and is used by the control logic.

Fig. 2 illustrates the control logic transition diagram of the
SCAAT unit. The cpu_addr must go through the SCAAT unit
regardless of the occurrence of an attack. This guarantees that
all communication between the CPU and the cache is being
checked by the SCAAT unit. If no attack is detected and
SCAAT memory does not contain TAG_BITS of cpu_addr,
the SCAAT unit is not activated and both the LFSR and the
SCAAT memory are not enabled. In this case, cpu_addr is
propagated through the SCAAT unit unchanged.

As shown in Fig. 2, both the LFSR and the SCAAT memory
are only enabled if an attack is detected by the monitor AND
the tag was not found in the SCAAT memory. When an attack
occurs on tag T (i.e. TAG_BITS of cpu_addr), control
logic checks if tag T has been found in SCAAT memory,
if it is, its location in memory is used as INDEX_BITS
of SCAAT_out. If tag T is not in the SCAAT memory,
the LFSR and the SCAAT memory are enabled. LFSR_out
is used as SCAAT memory location and Tag T is used as
memory input data. At the end of the current clock cycle, the
LFSR generates a new pseudo-random number to be used in
case of future attacks.
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Fig. 3: Timing waveform for (a) SCAAT unit when a block is accessed four times and (b) an example scenario demonstrating

change in cache access pattern.

B. Attack mitigation strategy
The timing waveform in Fig. 3a illustrates signals and

data transition and propagation through the SCAAT unit.
The scenario represented in Fig. 3a shows the four possible
access cases to the SCAAT. Cache is accessed using 3-bit
TAG_BITS (highlighted in blue), 3-bit OFFSET_BITS
(highlighted in red), and 2-bit INDEX_BITS (highlighted
in black). A block referenced by the tag 111 is accessed four
times. A single clock cycle is 1 unit of time u donated by
the function t(u). Accesses under attack are highlighted in
yellow. The generated output from SCAAT unit activation
is highlighted in green. This example assumes that a write
access takes 3 clock cycles (accesses CASE1, CASE2, and
CASE3), while a read access takes 2 clock cycles (access
CASE4).

CASE1 access to the block 111 is performed. No attacks
were detected and tag 111 is not found in SCAAT memory,
therefore cpu_addr is propagated through the SCAAT unit
unchanged.

CASE2 is the next access to block with tag 111. This
access was found to be under attack by the monitor. Since this
is the first ever attack on cpu_addr with tag 111, the LFSR and
SCAAT unit must be enabled. The current content of the LFSR
register is used as INDEX_BITS of SCAAT_out. This
guarantee that cpu_addr is updated without the need to wait
for tag 111 to be stored in SCAAT memory. The LFSR register
is updated with the new value and SCAAT memory stores tag
111 at location 101. At the beginning of t(6), SCAAT memory
is checked for tag 111, which was stored in the previous clock
cycle. At t(6), the MSB of SCAAT_mem_out indicates
that tag 111 is found in memory at location 101. Once tag
111 is found in memory, the signal found_in_SCAAT is
set to ’1’ and location 101 is used as INDEX_BITS of
SCAAT_out.
CASE3 access is performed next, but this access was not

under attack. Since tag 111 is stored in the SCAAT memory,
found_in_SCAAT is set to ’1’ and location 101, where tag
111 is stored, is used as INDEX_BITS of SCAAT_out.

Finally, CASE4 access is performed, but this access,
unlike the access made at CASE3, was under attack.
INDEX_BITS of SCAAT_out are changed to reflect the
location of tag 111 in SCAAT memory. However, for this

access, note that even though an attack was detected by the
monitor, the en signal is not set to ’1’ because the tag was
found in SCAAT memory. This prevents generating a new
pseudo-random number if an attack repeats on a tag stored in
the SCAAT memory.

C. SCAAT impact on cache behavior
Introducing the SCAAT unit to the cache system aims at

mitigating LSCAs. This is done by eliminating predictable
patterns of cache access. By changing where data is stored
in the cache for a given cache access, changes the access and
timing patterns of the cache behavior.

Fig. 3b, using the same coloring scheme and address length
as in Fig. 3a, shows the timing waveform of three consecutive
accesses within a period of 6 clock cycles t(0) to t(5) in
a given access pattern. Signal Pmiss indicates the predicted
miss pattern, signal Amiss indicates the actual miss pattern,
and signal cache[101] shows the tag of the block stored at
cache location 101. Assuming no attacks had ever occurred
and that the cache locations 010 and 101 are populated with
tags 111 and 100 respectively, all three accesses are predicted
to be cache hits. However, if an attack occurs on the second
access, at t(2), the SCAAT unit is activated. Tag 111 is now
mapped to location 101. This, of course, will cause a miss,
since location 101 is populated with tag 100. Furthermore,
since, after the remapping of tag 111 to location 101 occurred,
the third access to tag 100, at t(4), will now also cause a miss
since location 101 is populated with tag 111 as a result of the
previous access.

The scenario represented in Fig. 3b demonstrates the change
in access pattern to the cache by invoking cache misses for
accesses that are predicted to be cache hits and vise versa
changes the timing pattern of cache responses to access by
the CPU. Using the SCAAT unit can reduce the predictability
of the cache behavior. As a result, attackers can no longer
successfully correlate the information collected during an
attack to the actual behavior of the cache.

IV. EXPERIMENTAL RESULTS

The experimental results evaluate the proposed SCAAT
in mitigating LSCAs. For the baseline cache architecture,
as mentioned in Section II, the open-source IP core cache
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from [26] is selected. In comparison, the proposed SCAAT
will be comprised of the baseline cache with a SCAAT unit
fitted to the CPU-side interface of the baseline cache. Attack
detection is done using the monitor from [28]. Since the target
cache is parameterized, both the baseline cache and SCAAT
are evaluated using two types of cache architectures: direct-
mapped and 4-way associative caches.

TABLE II: Number of Attack Occurrences (AO), instances

of SCAAT activation (SA), and the number of tags stored in

SCAAT memory (ST) for each of the benchmarks.

Direct-Mapped 4-way Associative
AO SA ST AO SA ST

gcc 1556 28552 83 1544 28516 80

gzip 6 268 5 6 268 5

swim 1030 12611 33 1030 12610 33

A. Performance analysis
In order to evaluate and analyze the effect of the proposed

SCAAT on the performance of the cache system, three ap-
plications from SPEC2000 CPU Benchmark Suite [29] were
selected. For evaluating performance, 32-bit CPU data and
address busses are connected to the baseline cache and the
SCAAT. To achieve this, both a direct-mapped cache and a
4-way associative cache were configured to fit the required
cpu_addr length.

Table II shows the number of attack occurrences (AO),
which are occurrences of false positives generated by the
monitor and are treated as attacks to be mitigated by SCAAT.
The number of SCAAT activation (SA) instances includes both
the mitigation of the attack occurrences as well as any accesses
to the tags stored (ST) in the SCAAT memory for both cache
types. All applications experience a similar number of attack
occurrences for both cache types resulting in a similar number
of SCAAT activation instances. This shows that the SCAAT
was able to mitigate all attacks detected for both cache types.

The results for cache hit rates for the benchmarks are shown
in Fig. 4.
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Fig. 4: Hit rate comparison of benchmarks for direct mapped

(DM) and 4-way associative (4W) caches.

The results in Fig. 4 show that using the SCAAT does not
have a notable effect on the overall performance of the cache.
This means that using the SCAAT unit to mitigate attacks
comes at no additional cost to the performance of the cache.

B. Area and critical path delay overheads analysis
In order to evaluate and analyze the area overhead and the

critical path delay overhead of the proposed SCAAT in com-
parison to the baseline cache, several configurations of a 16-bit
CPU_ADDR_BITS were synthesized using the Synopsys
synthesis suite [30] and AMS 0.18μm CMOS technology
library [31]. Table III shows the most notable configuration
parameters used for area and critical path delay analysis. In
addition to the parameters in Table III, all configurations have
a 128-bit MEM_DATA_BITS, allowing up to 4 words per
block.

The results for area (2-input NAND (NAND2) gate area
equivalent) are shown in Fig. 5. Fig. 5 (a) shows area esti-
mation for direct-mapped baseline cache and direct-mapped
SCAAT with 64, 128, and 256 cache lines each. Fig. 5 (b)
shows area estimation for 4-way associative baseline cache
and 4-way associative SCAAT with 256, 512, and 1024 cache
lines each. Additionally, both Fig. 5 (a) and (b) include
the percentage of area increase between the baseline cache
and SCAAT at each respective number of cache lines. It is
important to note that the area reported only includes the
synthesized SCAAT unit and cache as shown in Fig 1.

TABLE III: Cache configuration for area estimation.

Cache Type
Parameter Direct-Mapped 4-way associative

Cache Lines 64 128 256 256 512 1024

Associativity 1 1 1 4 4 4

Cache (KB) 1 2 4 4 8 16

SCAAT memory (B) 64 112 192 64 112 192
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Fig. 5: Area estimations (NAND2 equivalent) by cache type.
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Fig. 5 (a) shows that an area increase between 12.77%
and 13.58% occurs when the SCAAT is implemented using a
direct-mapped cache architecture compared to a baseline cache
of the same architecture and size. However, the percentage of
area increase has been shown to decrease when the number
of cache lines doubles. This can be largely attributed to the
compact nature of the SCAAT memory as it only stores the
TAG_BITS of cpu_addr.

Fig. 5 (b) shows that, compared to the direct-mapped
caches, a much lower area increase of 3.40% to 3.96% occurs
when the SCAAT is implemented using a 4-way associative
cache architecture compared to a baseline cache of the same
architecture and size. In addition to the SCAAT memory’s
compactness mentioned before, another factor for the reduc-
tion of area increase is the associativity of the cache that allows
a much larger number of cache lines to be addressed using the
same number of INDEX_BITS. Since the size of SCAAT
memory is largely determined by the INDEX_BITS param-
eter, a smaller SCAAT memory is needed relative to the size
of the caches. This contributes to SCAAT memory taking a far
less area percentage of the SCAAT system area. Implementing
SCAAT with k-way associative cache architecture with high
associativity can lead to a further decrease in area overhead.

Fig. 5 shows the advantage of using SCAAT in terms of
area. While many of the current approaches require fixed
architecture to increase the security of the cache at high
area overhead, SCAAT can be constructed using any cache
architecture with introducing low area overhead. In addition,
the SCAAT does not require any change to the architecture of
the cache itself.

As for the critical path delay, a clock period of 10ns is
assumed for all the configurations. The evaluated path delay
from cpu_addr input going through the SCAAT unit to the
cache address input. On average, for each bit of cpu_addr,
the delay is 4.83ns i.e. 0.48 of a clock cycle. This delay is
caused by the sequential nature of the SCAAT memory i.e. half
a clock cycle is needed to write a TAG_BITS of cpu_addr
to the SCAAT memory. This delay, however, has no effect on
the operation time of the SCAAT. As mentioned in Section
III-A and demonstrated in Fig. 3a between t(5) and t(6),
LFSR_out is used as INDEX_BITS of SCAAT_out in
the duration of time needed to store TAG_BITS in SCAAT
memory. This eliminates any effect of delay caused by the
sequential nature of the SCAAT memory.

V. CONCLUSIONS

In this work, a Secure Cache Alternative Address Table
(SCAAT) is proposed. SCAAT, when connected to a monitor-
ing system, has been shown to mitigate Logical Side-Channel
Attacks (LSCA) by remapping address under attack to random
locations. This approach shows several advantages over current
approaches to cache security. On one hand, current approaches
to cache security suffer from performance degradation and
area overheads, however SCAAT was shown to have little
effect on the cache performance as well as introducing low
area overhead between 12.77% and 13.58% for direct-mapped
and between 3.40% to 3.96% for k-way associative caches.
On the other hand, while current approaches require special
modifications or fixed cache architecture to increase security,
SCAAT can be constructed using any direct-mapped or k-way
associative cache architectures with no special modifications.

This makes the SCAAT a feasible and scalable option for
increasing the security of the cache system.
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