
UNDERSTANDING NTF COMPONENTS FROM THE FIELD
Scott Davidson

Sun Microsystems, Inc. Sunnyvale, CA

Abstract
No Trouble Found (NTF) parts are the bane of the test
engineer's existence, since it is difficult to determine the
cause of a fail for a part that won’t. A companion paper
[1] discusses parts that are NTF after failing in the board
or system factory. This paper discusses the issue of parts
that fail in the field. We classify field NTFs, describe a
method of determining the defect coverage of a
component under board and system test, and describe
how data mining techniques can be used to assist in
explaining the causes of field NTFs.

1. Introduction
No Trouble Found components (NTFs) are the bane of
the test engineer’s existence. When a component is
returned from the field or from a system customer as
having failed, we wish to determine the cause of the
problem, so we can improve our test program or our
processes to ensure that the failure does not happen again.
This is difficult to do if the part refuses to fail on retest.
This problem is compounded by very high NTF rates,
commonly above 50%. Thus, we have the situation
where many parts fail for no apparent reason.

Field Replaceable Units (FRUs,) such as boards, are
retested after being returned, and can be NTF. When a
component of a FRU such as a microprocessor is indicted
as being the cause of a failure, it is often returned to the
vendor or system manufacturer and retested. In this paper
we are concerned only with IC NTFs.

ICs can be indicted when FRUs fail during board or
system manufacturing (in-line failures) or when FRUs
fail at a customer site (field failures.) A companion paper
[1] analyzed the in-line failure case. This paper
concentrates on the issue of failures in the field.

Why should we care about NTFs? First, NTFs represent
an opportunity to improve test coverage. A test written
that causes a formerly NTF part to fail can be
incorporated in the original manufacturing test, reducing
test escapes and increasing quality. Second, NTFs offer
an opportunity to improve field repair and diagnosis
processes. As will be seen below, some percentage of
NTF parts are actually good. If we can keep from
indicting and returning good parts, we will reduce the

number of spares needed and, more importantly, correctly
diagnose the real cause of a problem faster.

Third, NTF rates can be used as a measure of product
quality. [1] describes how NTF rates can be used as an
early indicator of component reliability problems.
Comparing measured NTF rates against expected rates
can tell us if something in our test and repair processes is
amiss. Finally, many engineers have preconceived ideas
of what the NTF rate should be. If these ideas are not
realistic, a poor allocation of resources might be made to
deal with NTFs, and some warning signs of more
important problems might be missed.

The goal of this paper is to examine the causes of field
NTFs, quantify field NTF rates, use these rates to
measure the quality of board and system test with regard
to components, and recommend actions to take when
certain situations arise. The context of this work is Sun
Microsystems Sparc™ microprocessors.

Very little if anything has been written about NTFs in the
literature. A search on the IEEE Electronic Library on
NTF revealed only a panel statement by the author of this
paper. A search through 25 years of ITC proceedings
yielded nothing more. In-line NTFs are associated with
test escapes and thus test coverage (see [2] for a good
overview) but little has been written about NTFs
themselves.

The structure of the rest of this paper is as follows.
Section two defines NTFs and reviews our testing and
return processes, both for field and in-line fails. Section
three briefly summarizes findings on in-line fails from
[1]. Section four analyzes the types of field NTFs we see,
and provides causes for each. It also provides techniques
to determine the root cause of each type of NTF, and
recommends countermeasures where appropriate. Section
four also shows how NTF rates can be used to measure
component test coverage at the board and system level.
Section five describes how this model can be used as a
process monitor, and shows how data mining of product
data can be used to help determine the cause of a failure.
Section six concludes and offers suggestions for future
work.

Paper 14.1 INTERNATIONAL TEST CONFERENCE 1
0-7803-9039-3/$20.00 © 2005 IEEE

2. NTF Background

2.1 Definitions
A no trouble found (NTF) component has the following
characteristics:

• It has passed a certain test step in the component
lifecycle.

• It has failed a subsequent test, or has been indicted as
the cause of failure of a higher level part of which it is
a component.

• It passes the first test step again

One example of an NTF is a microprocessor which
passes all levels of IC test, is indicted as causing a failure
during system test, and upon return to the supplier, passes
the IC test again. Another is a field replaceable unit
(FRU) which passes board test and is shipped to the
field, and is later diagnosed as being faulty, but which
passes board and system test at a repair depot.

We can further split IC NTFs depending on the level of
retest performed. A Tester NTF (TNTF) passes when
retested on an IC tester. It is often useful to try to
reproduce the failure as seen by the customer by placing
the indicted component in a system platform and
rerunning a system test. A System NTF (SNTF) part is
one which does not fail this verification step. It is
possible for a component to be any of the four
combinations of TNTF, SNTF, verified fail (the
complement of SNTF) and a retest fail (the complement
of TNTF).

2.2 The Sun Component Return Process
Different processes are used for the return of processors
from manufacturing and the field. Figure 1 shows our
flow for in-line (system manufacturing) and field returns.
Processors diagnosed as having failed in-line are sent to
our silicon vendor where they are retested. Parts that fail
are held there, and parts that pass the retest are shipped to
us, and are inserted into a system in our lab, and
system tests run. Parts that pass are SNTFs, and parts that
fail are TNTFs.

Parts that are indicted as causing a field fail are sent
directly to us, where they are retested on our ATE. Parts
passing are retested in a system (called reverification). If
they fail, the parts are TNTF, and if they pass they are
SNTF.

Information about the returned parts, including origin
system, fail symptoms, lot codes, date codes, wafer
locations, etc., are kept in a database. In addition, we can
query Sun databases that give additional information
about the FRU's history in the field. We have built tools
to combine this information to give us a complete picture

of the history of a failing part and the environment in
which it failed.

All returned parts are kept, and we try to write additional
tests to improve coverage and cause the NTF part to fail.
The more information we can provide about failure
symptoms, the more successful this process is. We will
discuss ways of providing clues to the root cause of a
failure below.

3. In-line NTFs
In this section we summarize results from [1].
Components that are indicted as causing failures during
board and system manufacturing are sent back and
retested. We have found that a large majority of
confirmed failures are NTF. This should be expected.
Parts that retest NTF represent test escapes, which
naturally do not fail when tested with the same test
program that passed them a short time before. Of more
concern are parts that do fail retest. These must have
failed between shipment from the fab and test on a board.
Some will fail due to damage, but this should be a small
percentage of returns. The rest fail due to early life
reliability issues. If the NTF rate on in-line fails goes
down, this indicates that the reliability failure rate is
going up, which can mean a serious process problem that
will result in an elevated rate of field failures. This is true
even if the overall DPM rate as measured in the system
factory remains unchanged. We observed just this
behavior when we experienced a process quality problem.
Thus, contrary to the intuition of many test engineers, it is
better to see 100% NTFs for a given DPM rate than 100%
retest failures. Reducing DPM rates by improving test
coverage is always advantageous, but for an acceptable
DPM level a high NTF rate is nothing to be concerned
about. We are now tracking NTF percentages for in-line
returns as a process quality monitor.

There has been much work done on predicting DPM rates
given yields and defect coverage [2, 3, 4]. A major
problem with these techniques is the need to measure
defect coverage. Fault coverage as reported by ATPG
tools is not accurate as a defect coverage measure even
for circuits which are logic only, and the addition of
memories, I/O and mixed signal blocks makes the
problem worse. In [1] we showed that given a measured
DPM rate, and using only NTFs, not retest fails, we can
run the Seth-Agrawal formula backwards to get the defect
coverage for a device with a given yield. This defect
coverage is often much higher than stuck-at fault
coverage, which should not be surprising since it includes
the contribution of delay tests, functional tests, and
memory tests which provide high defect coverage for a
large part of the silicon.

Paper 14.1 INTERNATIONAL TEST CONFERENCE 2

Given a coverage baseline, we can use this method to
compute the coverage improvement for new tests, or to
detect yield fluctuations for incoming parts. It can also
detect shifts in defect distributions, which might lead to a
higher proportion of defects migrating to regions of low
test coverage.

We also presented data in [1] showing that during a
period in which devices are failing in the field due to
process issues, there is a higher rate of retest fails than
normal, and a nearly unchanged number of NTFs.

In-line failure is the easiest case, since the environment in
which the part fails is well known, good record-keeping is
done, and the short interval between fab and failure
means that there should be relatively few reliability and
thus retest fails. Field failures are more uncertain. We
will investigate them in the next section.

4. Field Return NTFs
When a field failure has been diagnosed as having been
caused by a hardware problem, a set of diagnostic
programs can be run, under Solaris, to pinpoint the cause
of the failure. One or more FRUs are removed and
returned to a repair vendor. There, the failure is
diagnosed to a component, the FRU repaired, and the
FRU returned to the field.

Because of the number of microprocessors, ASICs, and
memories on our boards, it is understood that not all
diagnoses are correct. In most cases if a microprocessor is
indicted as being the cause, the processor is moved to
another location on the board and the test rerun to see if
the failure follows the component.

Failing processors are shipped back to us, along with
information on failure symptoms, the FRU and system it
came from, and pointers to information on the field
repairs made. With this information we can access several
databases giving the history of the FRU, when it was
manufactured, its test history, and its field history.
Information on the processor itself gives us further
information about when and where it was fabbed. This
wealth of data has been very useful in finding subtle
problems at the FRU and component levels.

As mentioned above, there are three results from retesting
a component returned from a repair vendor:

• the component fails retest.

• the component passes retest, but when inserted into a
system causes the system to fail.

• the component passes retest, and a system with the
component inserted passes also.

The first of these cases we call a component fail, the
second a TNTF, and the third an SNTF. We will analyze
these in more detail.

4.1. Component Fails
This is the simplest case. if the retest was done using the
same test program as the part was originally tested with,
we can be sure that the part failed either because damage
or reliability issues. Standard failure analysis techniques
can be used to find the cause of the failure; these are
outside the scope of this paper. However we need to do
some further analysis, by collecting and analyzing all our
retest fails.

First, are the parts failing as we would expect?
Microprocessors today are memory rich. The memories
are dense and thus more prone to failure than logic.
Therefore we would expect to see relatively more fails
during memory test than logic test. If this is not
happening, it might point to a specific reliability problem
in a part of the design.

Second, we should collect and report on how long it took
parts to fail. A large number of early life failures would
indicate that insufficient stress is being applied to the
part, or that there is an issue with the treatment of the part
during board and system manufacturing, installation, or in
the customer environment. A rise in failures during a
certain interval might indicate a failure mechanism being
activated after so many hours of use. We also track by
board manufacturing dates and by fab lot codes, to see if
certain manufacturing intervals produced more failures.

4.2. TNTFs from the Field
One might think that TNTFs represent test escapes:
defective ICs that passed both IC and board/system test,
but then failed in the field. However, by their definition,
they fail a subsequent system retest. We can identify four
causes for this.

1. The system test used for the retest is different from
that used for the original factory test. If this is so,
it is possible that the new test is a better screen.
This can be confirmed by rerunning the part on a
system using the old test. Another, similar,
possibility is that the system on which the part is
retested is different in some way from the system
in which the part was originally inserted, and that
this difference is enough to cause the defective
part to fail.

2. The defect occurred in the field, but is not covered
by the IC test, only the system test. This is
possible but not likely, especially if the IC test has
high defect coverage.

Paper 14.1 INTERNATIONAL TEST CONFERENCE 3

3. The returned part is tested under different
conditions when it is being reverified and retested.
The system retest and the ATE retest should be
run under the same frequency, voltage and
temperature conditions. For example, if a 2 Ghz
part must pass a 2080 Mhz test when being tested
on a device ATE, but in system test the margin is
not four percent but six, it might be failing at 2090
Mhz in system but passing on the device tester.

4. The defect is mechanical, or in the interface
between IC and system. If the package is warped,
it might be the case that failures will occur in
system at certain temperatures. These package
issues are unlikely to be picked up by device test.
The electrical and thermal environment of the
system might also sensitize a weakness not found
during device test. In certain cases shmooing the
part might detect the issue, but this is too time
consuming to do on any but critical returns. This
just touches on potential causes of this situation;
the main point is that silicon might not be the
place to look for the problem.

4.3. SNTFs from the Field
This is by far the most complex of the cases to resolve.
There are three possibilities:

1. The defect escaped both IC and board test, but was
detected by a customer application.

2. The part does not have a hard defect, but is
marginal, working correctly under test conditions
but not in the field environment. This is usually
not the result of single event upsets (SEUs) in our
case. Though these happen, they are handled by
the system, and it is unlikly an SEU would recur at
just the right time during diagnosis to cause a
processor to be indicted.

3. The IC is not defective at all, but was
misdiagnosed.

If the first case is true, we have a major problem: two test
holes that let defective parts out into the field. It is
imperative that we find the root cause of the failure,
improve coverage for IC test, board/system test, or both,
and assess the risk of this defect affecting more
customers.

The second case also represents a critical problem. The
part is not robust enough to be sufficiently reliable. While
this is often a design issue, it means that we must modify
the test program to test to more stringent conditions to
ensure quality.

Figure 1 Sun Processor Return Process

In the third case, our effort in diagnosing the IC would be
wasted, and would divert us from finding the real source
of error. Much time and many resources might be spent in
this wild goose chase.

Here is a case where traditional testing falters against the
NTF problem. Testing a good chip does not provide the
necessary answers.

Distinguishing among these possibilities is essential in
improving quality. Assuming that all SNTF parts are
good, and have been returned due to misdiagnosis can
result in missing a serious test hole. Assuming that all are
actually bad, and that test generation effort needs to be
devoted to make them fail can cost a lot in test writing
resources and in occupying expensive systems for long
test cycles. We need a method to at least roughly
distinguish parts likely to be bad from those likely to be
good. How to distinguish among these cases is discussed
in the next section.

4.4.Resolving SNTFs
When faced with an SNTF, the usual approach is to go
into debug mode. This involves shmooing the suspect
device, searching for potential test holes by examining
coverage near the internal functional unit of the IC related
to the system fail, and writing additional diagnostic
system tests which, it is hoped, will cause the system to
fail. Sometimes a similar strategy is employed for
TNTFs, especially when the time to fail on the system is
very long.

All of this requires a lot of resources, highly skilled
diagnostic engineers, takes a lot of time, and might never
find the cause of the problem. While the traditional
approach should not be abandoned, we have found that a
parallel approach, involving the examination of the

Paper 14.1 INTERNATIONAL TEST CONFERENCE 4

FAB

Bd/Sys
Mfg

Customer

Repair
Depot

System
Reverify

IC
Retest

In-line
 Fail

Field Fail

Indicted Proc.
Returned

TNTF

Pass

Pass

SNTF
TNTF

Fail

TNTF

Fail

history of the failing part and system, and similar parts
and systems, to be highly useful.

The first and simplest technique is to collect the history of
a part. A part whose replacement led to a successful
repair is more likely to be faulty than a part which was
one of several indicted components. One should check for
repair policies which might lead to the return of good
parts, such as removing all parts of the same type for an
upgrade. At times a particular component may be on the
top of the repair vendor's suspicion list, if there has been a
history of the part causing problems. Even if the problem
has been solved, the part might be removed first when no
other cause of the failure is known. If this is noted on the
repair record we can provisionally class these parts as
good, and give them a lower priority for root cause
analysis.

A second and more complex method is to find similarities
between SNTF parts forming sub-populations of the
installed base of parts. For instance, some repair vendors
might return parts with much higher NTF rates than
others. Certain parts might have higher failure and
SNTF rates when used in one product versus another.
Some parts may fail only when on a board with another
part from a certain vendor.

These steps will not resolve all SNTFs, but will mark
some part of the SNTF population as being less likely to
be defective. Once this is done we can estimate expected
SNTF rates.

Figure 2. Sources of Field Failures

Figure 2 reviews the sources of field failures. After IC
test in the fab, we can identify three classes of
components: good, bad, and escape. (We group false
positives with the bad for this discussion.) Bad parts are
discarded, and the good and escape parts are shipped to
the the board/system factory. Here, board and system
tests are applied, which test the component also. Some
percentage of escaped parts fail these tests; it is clear that
the yield of a component at board/system test should be
very much higher than the yield at the fab. Here yield is
expressed as components shipped in products over
components assembled into products.

Some good parts will fail due to reliability issues.
Escapes from board and system test will, if and when they
fail in the field, be SNTFs. We would be able to predict
the contribution of escapes to the SNTF rate if we knew
the defect coverage of the board/system test as applied to
the processor by using one of the escape rate calculation
techniques, such as [4]. We do not have this information,
and obtaining it through fault simulation is impractical,
due to the lack of a good defect model, the length of
board and system tests, and the lack of an effective
functional level fault simulator, or a fault simulator able
to handle tens of millions of gates that does not assume
combinational or near combinational designs. We can,
however, guess some bounds for the defect coverage of a
processor under a system test. The coverage is unlikely to
be very low, below 50%, since much of the logic and
memory of the processor is being exercised. We also do
not expect it to be very high, since a system test does not
target specific defects in the processor. Can this
knowledge give us a clue about the escape rate?

Consider the following example.

Example: Consider a population of 1,000,000
components shipped from a fab. 2,000 of these parts fail
in the board and system factory. The effective yield is
thus 99.8%.

Over the life of the system, 1,000 components are
indicted as being the cause of failures. When retested, 500
are SNTF, and another 500 are verified failures. Of the
500 verified failures, 450 fail retest, and 50 are TNTFs.

Assuming that we have determined the IC test to have
99% defect coverage using the techniques described in
[1], we can expect that 5 of the 50 TNTFs are reliability
fails, which escaped the retest (about 1% of the retest
fails). That leaves 45 TNTFs probably caused by factors
described in section 4.2. We know that these are not
systems test escapes, since they have failed a systems test.

Paper 14.1 INTERNATIONAL TEST CONFERENCE 5

Bd/Sys
Factory - test

FAB - test Fails

Good Parts Escapes

Pass

 Field Fails

Reliability
Fails

SNTF

This leaves 500 SNTFs, which have possibly escaped
both IC and systems test. The escape rate ranges from
500 (if all the parts are actually bad) down to zero, if all
the parts are actually good. Neither of these extremes is
likely. However, we can use these as bounds to compute
potential defect coverages of the systems test.

We will use the Seth-Agrawal equation (equation 1) run
backwards to compute these coverages. As shown in [1],
we can use a mathematics package such as Mathematica
[5] to solve for f1 given the yield Y, the number of
defects per failing part n0, and the reject rate RR.

RR�
�1�Y ��1� f

1
�e

��n0�1� f
1

Y��1� f
1
��1�Y �e

��n0�1� f
1

(1)

In the first case, Y = .998 and RR = 0.0005. Since the
parts failing system test have gone through an extensive
IC test, we can assume that each failing part has only one
defect, so n0=1. Substituting these values, and running
the equation backwards, we get a defect coverage of
74.99%.

If RR = 0, then f1 is 100%, which is extremely unlikely.
If half the SNTF parts are bad, then RR = 0.000250, and
f1 is 87.5%. Note that n0 being one makes RR linear in f1
given that all other parameters are held constant.

What the right value of f1 is cannot be precisely
determined from this exercise, but system test writers can
provide some idea of its effectiveness based of historical
field return rates, effort put into the development of this
part of the test, and its effectiveness in detecting IC test
escapes. Since some percentage of SNTF components can
be determined to be good by the studies described above,
the predictions of this technique can be evaluated against
the upper bound of bad SNTFs so determined.

While this information is interesting, it is unlikely to
drive many changes in a systems test. Most of a systems
test is and should be focused on testing system
components that have never worked together before, not
on retesting microprocessors and ASICs that have been
previously tested. Therefore most system test writing
effort goes into other areas. If an escape problem is found
for an IC, it should be corrected at the fab, through a
process improvement, more effective stress testing,
and/or more effective manufacturing tests. The coverage
of a processor or ASIC at system test can be used as a
process monitor, though, which will be described in the
next section.

5. Improving Quality by NTF Monitoring
Though the quantity and characteristics of field returns,
especially NTF field returns, may seem chaotic, we have
found that fluctuations in these are indicators of particular
problems usually caused by a single issue. This assumes
that the manufacturing and repair processes are under
control: if not several problems may be encountered at
once. In this section we describe several parameters that
we monitor, and how changes in these indicate particular
problems.

5.1 Time to Fail (TTF)
There seems to be a tendency to consider all field failures
the same. As shown above, this is not true. Measuring
time to failure is an important way of differentiating
failure types.

Time to fail is measured from initial power on in a
customer environment to the first indication of a failure
that results in a processor or other component being
indicted. If reliability wear-out were the only cause of
component failure in the field, we could expect to see a
smooth curve (figure 3a) of fails over time until we reach
the end of product life. This indicates that we in the flat
part of the reliability bathtub curve, and that our failure
acceleration techniques, such as burn-in, are working.

Figure 3a Fails over time (best case)

Figure 3b Fails over time, early life fail case.

Paper 14.1 INTERNATIONAL TEST CONFERENCE 6

Period 1 Period 2 Period 3 Period 4 Period 5

F
ie

ld
 F

ai
lu

re
s

Period 1 Period 2 Period 3 Period 4 Period 5 Period 6

F
ai

ls

More frequently we see a curve like that in figure 3b,
with a relatively large number of early life failures. This
would seem to indicate that our failure acceleration
techniques are not working. This could lead to the
addition of more, expensive, burn-in on parts.

Let us split the curve into NTF and non-NTF parts (figure
3c, based on real data). We show only the percentage fails
during a period in each category. We include both TNTF
and SNTF parts in the NTF category here. We see that the
percentage of NTFs falls from about 50% to under 20%
with increasing TTF. The cause for this behavior should
be clear. The failures are either a result of test escapes, or
of a peculiarity of the user environment not reproduced in
the system reverification environment. Unless additional
stress testing causes defects that escape the test to become
gross enough to be detectable, additional stress will not
improve quality.

Figure 3c. Detected fails vs. NTF fails

If, on the other hand, a situation like that in figure 3d
arises, there is a problem. Here the number of early life
fails that are not NTF is high. In this case there is likely a
reliability issue which should be immediately addressed.
Often this situation should be detected before shipment to
customers by monitoring in-line NTF rates, but if not, at
least it can be detected before suspect parts are in the
field for very long.

Figure 3d Hypothetical fails over time for reliability issue

5.2 NTF rates by Manufacture Date
Figure 4 shows data on NTF and non-NTF fails by
manufacture date. (The data has been smoothed and the
scale removed.) Here we see a background of NTFs, and
a spike in retest fails. This was the result of a process
issue. Plotting data this way can show problems by time
even when the failures are spread over weeks or even
months. This information can be used, if the problem is
bad enough, for “surgical” purges, of only the material
that is at risk. Besides the obvious cost advantage of a
limited purge, there is a quality advantage. As Figure 3c
indicates, new components are more at risk of failure than
older ones, due to test escapes. A policy of removing
components that are mature enough to be relatively stable
from will increase the number of customer visible
failures, and decrease quality instead of increasing it.

Figure 4 also supports our contention that most reliability
failures will be detected by a high quality IC test. The
number of NTF components during the time of the
process issue hardly budged. Components that fail for
reliability reasons fail retest.

5.3 NTF Sub-populations
Examining time to fail and manufacturing date
information may be useful if the processor or ASIC is the
source of the quality problem. If it is not, other techniques
must be used to track down the actual culprit. The most
useful we have found is to use data mining techniques to
create sub-populations of failing parts.

Example: A microprocessor is used in a variety of
products on several boards. The processor is being
returned at a higher than expected rate. The vast majority
of processor returns are SNTFs.

How can we determine the true cause of this problem?
We might start by computing the returns per million rate
for each product. To do this we must not only take into
account the number of processors shipped in each product
but their introduction dates, since a reliability issue with a
long time to fail may not have shown up in a recently
introduced part. If this does not provide us with a product
that looks suspicious, we can move on to an analysis by
board type and by board manufacturer. If a particular
manufacturer is showing a higher rate of failures, their
processes can be examined to ensure that they are still
within agreed upon specifications.

Say none of these analyses show an obvious cause of the
problem. At this point, if we have recorded system
configuration information, we can do an analysis of fails
by equipment location and neighboring components.

We might discover that a large portion of the fails occur
when an ASIC within a certain serial number range is

Paper 14.1 INTERNATIONAL TEST CONFERENCE 7

Period 1 Period 2 Period 3 Period 4 Period 5 Period 5

NTF
Detected Fail

Period 1 Period 2 Period 3 Period 4 Period 5

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

NTF

DF

Figure 4. NTF (blue) vs. Fails (Red)

also on the board. At this point a large amount of further
testing is required to root cause the problem. The ASIC
might be at fault, the architecture of the board might be at
fault, the processor I/O might not be quite fast enough, or
the problem can be in the interaction of the processor and
ASIC. These techniques will not provide us with the
answer to the quality problem, but just a good place to
look.

Traditional debug methods might never find this problem.
Unless we are lucky enough to test the returned parts with
an ASIC of the proper vintage in the proper location, the
circumstances causing the failure might never be
repeated.

In this example, the processor was indicted correctly. The
board will likely fail on retest, and since all the ASICs are
likely to be of a similar vintage, the failure should follow
the processor when it is placed in another location. When
the component is removed, the environment of the failure
is lost, and unless it is fortuitously reproduced on the
system used for reverification, the part will be SNTF.

Data mining techniques are not needed when the returned
component is fails retest. They can also be used for non-
component related failures, such as attempting to
understand the causes of FRU NTFs.

5.4 Requirements for NTF Resolution
Not every product can make use of the techniques
described in the last section. The requirements for such a
capability are:

 • Fab-to-field data gathering and data storage. Data
must be recorded for items such as installation dates,
failure causes, repair actions and system
configuration. Data quality is important, because if a
portion of data is missing the results of data mining
might be incorrect or misleading. In addition we need

a vertical slice through the system, including
information on components, FRUs and systems.

• High percentage of failures are diagnosed and
repaired. This implies that the systems for which this
analysis is to be done are both mission critical
(requiring high levels of availability) and expensive,
making repairing instead of scrapping the FRUs cost
effective. In a low cost system, independent repair
vendors are likely to find it cheaper to replace and
scrap a failing FRU. In this case board or system
manufacturers will only be able to see gross failure
information (from warranty requests or replacement
part purchases) and will be less likely to make a
correct diagnosis of a problem.

• Customer requirements justify cost. The expense of
the diagnosis and data storage described in the last
subsection will not make sense for inexpensive
systems without stringent availability requirements. In
addition, there must be enough volume for the startup
costs of the databases and data acquisition processes
needed to be amortized over a large number of
systems.

• The data collection, storage, and access infrastructure
exists. We have just touched on the data that needs to
be stored for an effective information-based
diagnostic system. Terabytes of data must be stored, a
large number of accesses should be possible in a
reasonable amount of time, and access to the system
should be possible through an effective interface for
those who are not database experts.

The beginnings of such a system already exists at Sun,
and it has been used to find a problem that had resisted
traditional debug and test writing.

Paper 14.1 INTERNATIONAL TEST CONFERENCE 8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

Fail
TNTF

Manuf Week

F
ai

ls

6. Benefits and Conclusions
NTFs have been traditionally analyzed by examining the
symptoms of failure at the next higher level and
attempting to write tests to reproduce the conditions
under which the component failed. This method is labor
and equipment intensive, and often does not produce
results. Therefore most of the high percentage of returns
that are NTF never get resolved.

We showed in [1] that in-line NTFs represent escapes
from IC test, and that if the quantities are within the range
expected from our less than perfect tests they are less
worrisome than returns which fail retest. We have shown
here that the situation for field NTFs is not so sanguine.
First, the cost of a field failure, and the urgency of
determining the cause of the failure, are much greater
than for a manufacturing fail. Second, while some SNTFs
or TNTFs may be escapes from both IC and board test,
some may be indicative of hard to reproduce but
significant quality issues. Third, being able to partition
field SNTFs into escapes and other issues would allow us
to estimate the IC coverage of our system test, which
would tell us if it needed to be improved. Even with the
uncertainty we face today, however, we can still
determine some bounds on coverage.

We provided some new methods of pinpointing the
causes of SNTFs. Statistical diagnosis is not new, the
ILIAD [6] system recommended repair actions based on
the repairs that successfully corrected similar problems in
the past. Determining if a part is actually bad based on
sub-populations and the performance of like parts is
somewhat similar to the Statistical Post-Processing
method described in [7]. Collecting information across a
customer base is far more challenging than collecting it in
a fab, though.

Components that fail retest are treated as before, but those
that pass retest should not be automatically classed as
reliability problems without further study.

The benefits of an NTF-based field return approach are:

• preventing an unnecessary increase in stress testing
due to field returns that are either escapes or not
component reliability issues.

• faster debug time through a parallel data mining
effort that can often tell debug engineers where to
look for the cause of the problem.

• better information on NTFs by analysis along several
dimensions. Process issues can be detected, and
variations across vendors that result in high NTF
rates can be found.

• splitting fail populations into NTFs and non-NTFs and
separately analyzing them can eliminate noise that

hinders the analysis of a true reliability problem, and
can prevent a recall that can actually hurt quality of
parts in the field instead of helping it.

Though our work on NTFs has allowed us to put in
inexpensive early screens for reliability problems, and has
helped partition SNTFs, this work is still preliminary.
Analysis of SNTFs is ad hoc, and getting data on the
history of large numbers of parts is still difficult. Analysis
is still manual, and not understood well enough yet for a
tool to be developed. Our analysis of system test coverage
is still preliminary, and has been applied only to
microprocessors, not ASICs.

Finally, the problem of FRU or board NTFs is greater
than that of IC NTFs. It should be possible to apply some
of these techniques to FRUs. There are many problems to
be addressed before this can be done. For instance, the
concept of yield is unclear for components that are
repaired. Can the yield for a FRU be considered a
function of yields at each assembly step? Certainly we
would expect a board that passed all tests the first time to
be more reliable than one which has been repaired several
times before shipment, but how much more reliable it is
needs to be quantified. While we are still far from a
science of component NTFs, we are still further from a
science of board NTFs.

6. Acknowledgments
Thanks to a number of people at Sun, including Dorthe
Clarke, Kanti Bhabuthmal, Aaron Hale, Sheri Lloyd and
Ivy Chan, who have collected data that I rummaged
through, and Sridhar Vajapey who asked difficult
questions that started me thinking about NTFs.

7. References

[1] S. Davidson, “Towards an Understanding of No
Trouble Found Devices,” 2005 VLSI Test
Symposium, pp. 147-152, May 2005.

[2] P. Maxwell and R. Aitken, “All Fault Coverages are
Not Created Equal”, IEEE Design & Test of
Computers, Mar. 1993, pp. 42-51.

[3] T. W. Williams and N. C. Brown, “Defect Level as a
Function of Fault Coverage,” IEEE Trans.
Computers, Vol. C-30, No. 12, Dec. 1981, pp. 987-
988.

[4] V. D. Agrawal, S. C. Seth, and P. Agrawal, “Fault
Coverage Requirements in Production Testing of
LSI Circuits,” IEEE J. Solid State Circuits, Vol. SC-
17, No. 1, Feb. 1982, pp. 57-61.

Paper 14.1 INTERNATIONAL TEST CONFERENCE 9

[5] Wolfram, S., The Mathematica Book Online,
http://documents.wolfram.com/mathematica/

[6] Yau, C. W. “ILIAD: A Computer-Aided Diagnosis
and Repair System,” Proc. 1987 International Test
Conference, Sept. 1987, pp. 890-898.

[7] Madge, R., M. Rehani, K. Cota, W. R. Daasch,
“Statistical Post-Processing at Wafer Sort – An
Alternative to Burn-in and a Manufacturable
Solution to Test Limit Setting for Sub-micron
Technologies,” VLSI Test Symposium, pp. 69-74,
April 2002.

Paper 14.1 INTERNATIONAL TEST CONFERENCE 10

