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Abstract - The paper proposes a novel method for PSL language 
assertions conversion to a system representation model called 
High-Level Decision Diagrams (HLDD). Previous works have 
shown that HLDDs are an efficient model for simulation and 
convenient for diagnosis and debug. We present a technique, 
where checking of PSL assertions is integrated into fast HLDD-
based simulation. There are three main contributions in the 
paper. The first one is a methodology for direct conversion of 
PSL properties to HLDD. The second one is a temporal extension 
for the existing HLDD model. The third one is HLDD-based 
simulator modification to support the new type of HLDDs and 
assertions checking. 

 Index Terms - dynamic verification, assertions, property 
specification language (PSL), high-level decision diagrams 

 

1. INTRODUCTION AND MOTIVATION 

Verification has become a very important phase in the 
state-of-the-art digital systems development process. As it was 
estimated in International Technology Roadmap for 
Semiconductors report [1], verification takes roughly 70% of 
design time, and consequently demands lots of costly 
resources such as man-hours or CPU-hours making this part 
of complete system development often the most expensive 
phase. According to [1], the problem is caused by a pair of 
recent processes: firstly, rapid design complexity increase and 
secondly, the historically greater emphasis on other aspects of 
the design process what has produced enormous progress 
(automated tools for logic synthesis, place-and-route, and test 
pattern generation, etc.), leaving verification as the bottleneck.  

Among the recently proposed solutions the Assertion-based 
Verification (ABV) is one of the most promising. Verification 
assertions can be used in both dynamic and static verification. 
This paper considers only the first case, when assertions play 
role of monitors for particular system behaviour during the 
simulation. Property Specification Language (PSL) is a 
recently accepted IEEE standard language [14] that is 
commonly used to express the assertions. 

The research on topic of conversion of PSL assertions to 
design representation such as HDL is gaining its popularity. 
There are several approaches published in recent time [2, 3, 4, 
19]. The most widely known tool for this task is FoCs by IBM 
[5].  

Our first attempt [18] of PSL properties translation to 
HLDD was implying the generation of VHDL checkers by 
IBM’s FoCs as an intermediate step. However this experience 
has revealed particular limitations and inefficiency for HLDD-
based assertions creation. Moreover,  checkers synthesis from 
PSL properties are efficient mainly for the case where 
checkers are to be used in hardware emulation. The 
application of the same checker constructs for simulation in 
software may lack efficiency due to target language 
concurrency and poor means for temporal expressions.  
Synthesis of checkers hardware for emulation is out of the 
scope of current paper. 

In this paper, we present an approach to checking PSL 
assertions using High-Level Decision Diagrams (HLDD). 
Here, the assertions are translated to HLDD graphs and 
integrated into fast HLDD-based simulation. The structure of 
HLDD design representation with the temporal extension 
proposed in this paper allows straightforward and lossless 
translation of PSL properties. HLDDs are a convenient model 
for diagnosis and debug since they provide for easy 
identification of cause-effect relationships. 

High-Level Decision Diagrams have been proposed and 
further developed by the authors in Tallinn University of 
Technology (TUT) [17]. For more than a decade this model of 
digital design representation has been successfully applied for 
design simulation and test generation research areas. 
Participation of TUT in recently launched European 
Commission research project VERTIGO [16] has encouraged 
HLDD usage also in verification.  
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Figure 1. HLDD-based verification tools flowchart. 



The topic of the VERTIGO project is embedded systems 
verification and validation. It is also aimed to bridge the gap 
between system level modelling and verification performed at 
the transaction level and the traditional RTL (register transfer 
level) description. Tallinn University of Technology as a 
partner of the project contributes by developing HLDD based 
verification tools and making research in cooperation with the 
other partners in the areas of static (formal), dynamic 
(simulation-based) and mixed static-dynamic verification. 

The HLDD-based verification flow proposed by TUT is 
shown in Figure 1. The main emphasis of this paper is put on 
assertion checking in simulation-based verification (this part is 
highlighted by grey colour). However, several other tools 
working with HLDD are under development, including 
dynamic verification code coverage analysis, formal methods 
of stimuli generation and model checking. The latter are 
relying on the engine of HLDD based ATPG known as 
DECIDER [8].  
 The paper is organized as follows. Assertion-based 
verification and PSL are discussed in Section 2. Section 3 
defines the existing HLDD graph model and introduces the 
temporal extension to it. Section 4 presents the methodology 
for HLDD graphs creation from PSL specifications. The 
discussion of the existing HLDD-based simulator 
modification to support the temporal extension of HLDDs and 
assertion checking in simulation is provided in Section 5. 
Finally, Section 6 concludes the paper. 
 

2. ASSERTION-BASED VERIFICATION AND PSL 

Assertion-based Verification can be classified as Design-
for-Verifiability (DFV) technique. The goal is to assist both 
formal methods and simulation-based verification and allow 
discovering Design under Verification (DUV) misbehaviour 
(causing an assertion violation) earlier and more effective. 
Another important advantage of ABV is its aid to debug 
process.  

In case of dynamic verification assertions provide better 
observability on the design what allows detecting bugs earlier 
and closer to their origin. At the same time in case of static 
verification with model checking, the assertions increase the 
controllability of the design and direct verification to the area 
of interest. Each assertion violation discovered by model 
checking is reported as a counter-example. 

The question of the origin of assertions can be formulated 
as a separate topic for research itself. An important aspect here 
is the problem of completeness. Usually assertions do not 
describe all the possible properties of design what would mean 
translation of a complete design specification to a formal 
assertion description language such as PSL (Property 
Specification Language) or SVA (System Verilog Assertions). 
Instead of this only design areas of concern, sometimes 
referred as verification hot spots, are targeted. In practice they 
are often provided by design engineer and require deep 
knowledge of the DUV behaviour.  

Assertion-based verification popularity has encouraged a 
common Property Specification Language development by 

the Functional Verification Technical Committee of Accellera. 
After a process in which donations from a number of sources 
were evaluated, the Sugar language from IBM was chosen as 
the basis for PSL. The latest Language Reference Manual for 
PSL version 1.1 was released in 2004 [13].  The language 
became an IEEE 1850 Standard in 2005 [14].  

 
An example PSL property reqack structure is shown in 

Figure 2. Its Timing diagram is also illustrated by Figure 3a. It 
states that ack must become high next after req being high. A 
system behaviour that activates reqack property however 
obviously violating it is demonstrated in Figure 3b. Figure 3c 
shows the case when the property was not activated.  

For the convenience of verification engineers PSL is a multi-
flavoured language, which means that it supports common 
constructs of VHDL, Verilog, IBM’s GDL, SystemVerilog 
and SystemC [15]. PSL is also a multi-layered language [13]. 
The layers include: 
• Boolean layer – the lowest one, consists of boolean 

expressions in HLD (e.g. a &&(b || c)) 
• Temporal later – sequences of boolean expressions over 

multiple clock cycles, also supports Sequential Extended 
Regular Expressions (SERE) (e.g. {A[*3];B} |-> {C}) 

• Verification layer - it provides directives that tell a 
verification tool what to do with specified sequences and 
properties. 

• Modelling layer - additional helper code to model 
auxiliary combinational signals, state machines etc. that 
are not part of the actual design but are required to 
express the property. 

 The temporal layer of PSL language has two constituents:  
 Foundation Language (FL), that is Linear Temporal 

Logic (LTL) with embedded SERE 
 Optional Branching Extension (OBE), that is 

Computational Tree Logic (CTL) 
The second one considers multiple execution paths and 

models design behaviour as execution trees. CTL can only be 
used in formal verification. Therefore this part of PSL is left 

Figure 3. Timing diagrams for the property “reqack” 

req
ack

a) 
req
ack

b)

req 
ack 

c)

Figure 2. PSL property “reqack” 

reqack: assert always (req -> next ack); 

Label

Verification 
directive 

When it 
should hold 

Property to be 
checked 



for future work related to HLDD-based model checking 
implementation (the dashed arrow in Figure 1). This paper we 
will consider only FL part of PSL. However, a subset of FL is 
applicable for translation to HLDD assertions.  

Our initial goal, and also the VERTIGO project 
requirement, is to support FL subset known as PSL Simple 
Subset. This subset is gaining its popularity and is supported 
by many verification and simulation tools. It is explicitly 
defined in [13] and loosely speaking it has two requirements 
for time: to advance monotonically and be finite and 
restrictions on types of operands for several operators. 

 
3. HIGH-LEVEL DECISION DIAGRAMS   

Decision Diagrams (DD) have been used in verification for 
about two decades. Reduced Ordered Binary Decision 
Diagrams (BDD) [9] as canonical forms of Boolean functions 
have their application in equivalence checking and in 
symbolic model checking. Recently, a higher abstraction level 
DD representation, called Assignment Decision Diagrams 
(ADD) [10], have been successfully applied to, both, register-
transfer level (RTL) verification and test [11, 12].  

The main issue with the BDDs and assignment decision 
diagrams is the fact that they allow logic or RTL modeling, 
respectively. In this paper we consider a different decision 
diagram representation, High-Level Decision Diagrams 
(HLDD) that, unlike ADDs can be viewed as a generalization 
of BDD. HLDDs can be used for representing different 
abstraction levels from RTL to TLM (Transaction Level 
Modeling) and behavioral. HLDDs have proven to be an 
efficient model for simulation and diagnosis since they 
provide for a fast evaluation by graph traversal and for easy 
identification of cause-effect relationships [6, 7]. 

3.1. HLDD data structure 
 Definition: A HLDD representing a discrete function 

y=f(x) is a directed non-cyclic labeled graph that can be 
defined as a quadruple G=(M,E,X,D), where M is a finite set 
of vertices (referred to as nodes), E is a finite set of edges, X 
is a function which defines the variables labeling the nodes 
and the variable domains, and D is a function on E. The 
function X(mi) returns a pair (xi,Xi), where xi is the variable 
letter, which is labeling node mi  and Xi is the domain of xi. 
Each node of a HLDD is labeled by a variable. In special 

cases, nodes can be labeled by constants or algebraic 
expressions. An edge e∈E of a HLDD is an ordered pair 
e=(m1,m2)∈E2, where E2 is the set of all the possible ordered 
pairs in set E. D is a function on E representing the activating 
conditions of the edges for the simulating procedures. The 
value of D(e) is a subset of Xi, where e=(mi,mj) and 
X(mi)=(xi,Xi). It is required that Pmi={D(e) | e=(mi,mj)∈E } is 
a partition of the set Xi. HLDD has only one starting node 
(root node), for which there are no preceding nodes. The 
nodes, for which successor nodes are missing, are referred to 
as terminal nodes.  

Figure 4 presents an example of a graphical interpretation 
of a HLDD. 

IF reset = 1 THEN state:=s0;  
ELSE 
 CASE state  
 WHEN s0: 
  a:=in1; b:=in2; ready:=0; 
  state:=s1;  
 WHEN s1: 
  IF a≠b THEN state:=s2; 
  ELSE state:=s5; ENDIF; 
 WHEN s2:  
  IF a>b THEN state:=s3; 
  ELSE state:=s4; ENDIF; 
 WHEN s3: 
  a:=a-b; state:=s1; 
 WHEN s4: 
  b:=b-a; state:=s1; 
 WHEN s5: 
  ready:=1;  
  state:=s5; 
 END CASE 
END IF 

 
Figure 5. a) RTL VHDL and b) the corresponding HLDD 

 

3.2. HLDDs  for digital systems 
HLDD models can be used for representing digital systems. 

In such models, the non-terminal nodes correspond to 
conditions or to control signals, and the terminal nodes 
represent data operations (functional units). Register transfers 

Gy=(M,E,X,D),  
M={m1, m2, m3, m4, m5};  
E={e1, e2, e3, e4, e5}, e1=(m1, m2), e2=(m1, m4),  
e3=(m1, m5), e4=(m2, m3),  e5=(m2, m4);  
X(m1)=X(m5)=(x2,{0,1,2,…,7}), X(m2)=(x3,{0,1,2,3}),  
X(m3)=(x4,…), X(m4)=(x1,…); 
D(e1)={0}, D(e2)={1,2,3}, D(e3)={4,5,6,7},  
D(e4)={2}, D(e5)={0,1,3}. 
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Figure 4. A HLDD for a function y=f(x1,x2,x3,x4) 
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and constant assignments are treated as special cases of 
operations. When representing systems by decision diagram 
models, in general case, a network of HLDDs rather than a 
single HLDD is required. During the simulation in HLDD 
systems, the values of some variables labeling the nodes of a 
HLDD are calculated by other HLDDs of the system.  

Fig. 5b presents the HLDD system for the RTL VHDL 
code shown in Fig. 5a implementing the greatest common 
divisor algorithm. In the Figure, T and F stand for true and 
false, respectively. The ε character denotes default edges. 

4. T-HLDD ASSERTIONS CONSTRUCTION 

The idea of the proposed method relies on the principle of 
‘divide and conquer’. The method is based on partitioning 
PSL properties into elementary entities containing only one 
operator. There are two main stages in the approach. The first 
one is preparatory and consists of Primitive Property Graphs 
Library creation for elementary operators. The second stage is 
recursive hierarchical construction of the Temporally 
extended HLDD (T-HLDD) for a complex property using the 
PPG Library elements.  

4.1. PPG Library creation 
Prior to the T-HLDD construction procedure a Primitive 

Property Graph (PPG) should be created for every PSL 
operator supported by the proposed approach. All the created 
PPGs are combined into one PPG Library. The library is 
extensible and should be created only once. It implicitly 
determines the supported PSL subset. The method currently 
supports only weak versions of PSL operators. However, by 
means of the supported operators a large set of properties 
expressed in PSL can be derived. 

Primitive Property Graph is a special type of HLDD graph. 
Compared to the basic HLDD model used for representing the 
design (defined in Section 3), these graphs have two 
distinctions. The first distinction is the requirement for all the 
PPGs to have a standard interface. The second distinction is 
usage of the HLDD model with a temporal extension. In the 
following the distinctions will be discussed in detail. 

 
The standard interface for all PPGs was introduced in 

order to support the hierarchy in a recursive complex property 
construction described in the next subsection. PPG has one 
root node and exactly 3 terminal nodes (CHECKING, FAIL 
and PASS, respectively), as opposed to an arbitrary number of 
terminal nodes in usual HLDD graph. The standard PPG 
interface is shown in Figure 6.  

The terminal nodes in PPG have the following meaning: 
• FAIL – assertion P has been simulated and does not hold; 

• PASS – the assertion has been simulated and holds; 
• CHECKING – P has been simulated and it does not fail, 
nor does it pass non-vacuously  

In this paper we support only weak operators. In order to 
extend the subset to support strong operators a third output 
PENDING would be needed. Its addition would influence the 
proposed modification of the Simulator explained in Section 
5. Example PPGs created for 3 PSL operators are shown in 
Figure 7. Note, that the logic implication operator ‘->’ in Fig. 
7b exits to the terminal node ‘CHECKING’ when the 
precondition Pa fails. This is due to the fact that in assertion 
checking the designer is not interested in non-vacuous passes 
of the property. Also, consider the PPG for operator ‘until’ 
shown in Fig. 7c. It is the SERE and ‘until’ operators that 
create cyclic THLDDs. The proposed assertion checking 
procedure is capable of handling such cycles.   

 
One of the main motivations for PSL introduction was poor 

ability of standard HDL languages to express temporal 
relations between expressions in assertions. The main 
instruments for this purpose used in PSL are repetition 
operators of its own and of Sequentially Extended Regular 
Expressions (SERE). A powerful part of the repetition 
operators are their auxiliary suffixes (e.g for next* family they 
are next_a, next_e!, next_event etc). In current paper we 
propose a temporal extension for HLDD model that supports 
the following 3 PSL constructs (See Table 1).  
TABLE 1. TEMPORAL EXTENSION FOR HLDD 

PSL 
construct Explanation Equivalent HLDD 

extension for a Variable 

next[n] property holds at  time 
step n Variable’[n] 

next_a[j:k]
property holds at all 

time steps within j to k 
range  

Variable’[j..k]_a 

next_e[j:k]
property holds at  least 
once within  j to k time 
steps range  

Variable’[j..k]_e 

a) invariant always          b) logic implication -> 

c) temporal operator until 
Figure 7. PPGs for a set of PSL operators 
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Additionally we introduce the notion of END as a special 
case of value of k in the expression Variable’[j..k]_sfx (where 
_sfx is one of _a or _e). The maximum bound of the time steps 
sequence may take value END if it is not explicitly 
determined. The time point END occurs at the end of 
simulation and implicitly determined by: 

• Number of test vectors 
• The amount of time provided for simulation 
• Simulation interruption  

The main purpose of the proposed temporal extension is 
transferring additional information and directives to the 
HLDD Simulator that will check assertions.  Let us refer to 
the HLDD graphs with the described extension as Temporally 
Extended HLDDs (T-HLDD).  

4.2. Recursive hierarchical construction of properties 
 Complex properties are hierarchically constructed from 
elementary graphs in PPGs Library in the following way. At 
first, the property should be parsed. During the parsing phase 
the PSL property is partitioned into entities containing one 
operator only. The hierarchy of operators is determined by the 
PSL operators precedence specified by IEEE1850 Standard. 
Hierarchical construction is performed in the top-down 
manner. It starts for the operators with lowest precedence 
where the sub-operations are then recursively substituted with 
the operators having higher precedence. For example, always 
and never operators have the lowest level of precedence and 
consequently their corresponding PPGs have the highest level 
in the hierarchy. The sub-properties (operands) are step-by-
step substituted by lower level PPGs until the lowest level 
where sub-properties are pure signals or HLD operations.   

Let us consider an example PSL property for GCD 
implementation given in Figure 5.  
P1: assert always( (! ready) and (a=b) ->next_e[1:3]( ready) ) 

The resulting T-HLDD graph describing this property is 
shown in Figure 8. 

 
5. HLDD-BASED SIMULATOR EXTENSION 

The basis for assertion coverage analysis in this paper is a 
simulator engine relying on HLDD models. In our earlier 
works [7], we have implemented an algorithm supporting, 
both, Register-Transfer Level (RTL) and behavioral design 
abstraction levels. This algorithm is briefly explained below 
and it will be used for simulating the system model. 

In the RTL style, the algorithm takes the previous time step 
value of variable xj labeling a node mi if xj represents a 
clocked variable in the corresponding HDL. Otherwise, the 
present value of xj will be used. In the case of behavioral HDL 

coding style HLDDs are generated and ranked in a specific 
order to ensure causality. For variables xj labeling HLDD 
nodes the previous time step value is used if the HLDD 
diagram calculating xj is ranked after current decision 
diagram. Otherwise, the present time step value will be used. 

Algorithm 1 presents the HLDD based simulation engine 
for RTL, behavioral and mixed HDL description styles. (Refer 
to Section 3.1 for HLDD data structure definition). 

Algorithm 1. RTL/behavioral simulation on HLDDs 
 
For each diagram G in the model 

 mCurrent = m0 
 Let xCurrent be the variable labeling mCurrent  
 While mCurrent is not a terminal node 
   If  is xCurrent clocked or its DD is ranked after G then 
  Value = previous time-step value of xCurrent 
 Else 
  Value = present time-step value of xCurrent 
 End if 
 If Value ∈ D(eactive), eactive =( mCurrent, mNext) then 
  mCurrent = mNext 
 End if 
 End while 
 Assign xCurrent to the DD variable xG  

End for 
In order to understand assertion checking on T-HLDDs 

consider the PSL assertion example P1 provided in Figure 8. 
The assertion represents a property to be checked against the 
GCD implementation given in Figure 5. It states that always 
when ready is low and a is equal to b then after 1 to 3 time-
steps (clock cycles) ready will be asserted. 

Let us introduce the concept of time-window of an 
assertion. We say that a time window is the maximum number 
of time steps from current step to the end step when assertion 
has to be evaluated.  Assertion’s time-window is denoted by 
wmax. For example, the assertion shown in Fig. 8 has  a time 
window of wmax = 4 because its evaluation starts at current  
time moment and ends 3 time-steps later. 

The procedure of assertion checking should be preceeded 
by executing Algorithm 1 which calculates the simulation 
trace that is a starting point for assertion checking. The 
procedure is an extension of HLDD simulation as it takes into 
account temporal information at the nodes and has an exit 
condition in order to avoid eternal loops that are due to the 
cyclic nature of the general case of THLDDs. The main task 
of the procedure is assertions diagrams traversal till terminal 
nodes with strict consideration of time windows which gives 
the evaluation result. 

However, event-driven evaluation of assertions to speed up 
the checking process has not been considered in current work 
and there lies the focus of our future research. While there 
already exists commercial assertion checking tools taking 
advantage of events the core benefits of developing an event-
driven HLDD based solution lies in fast evaluation by graph 
traversal and for easy identification of cause-effect 
relationships provided by the model that is especially useful in 
debug and diagnosis. 

0 a=b 
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ready ready’[1..3]_e 

PASS FAIL 
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Fig. 8. T-HLDD for property P1 



TABLE 2. DD AND HDL-BASED SIMULATION COMPARISON 
 

Circuit 
Simulation time [s] Ratio 

HLDD  
simulation 

HDL  
cycle-based 

HDL/HLDD 

gcd 0.20 0.51  2.55 
mult8x8 0.32 1.00  3.13 
diffeq 0.25 1.26  5.04 

huff_enc 0.34 1.40  4.12 
circ1 0.14 2.05  14.64 

Currently the T-HLDD based assertion checking is not yet 
implemented. However, we have compared HLDD model 
simulation (Algorithm 1) to a state-of-the-art HDL simulator. 
Table 2 presents run-times of the HLDD models and 
corresponding VHDL models simulation. The simulators 
compared include the HLDD-based simulator [7] and an 
efficient commercial cycle-based HDL simulation tool 
Cyclone (Synopsys). The experiment was run on a 366 MHz 
SUN UltraSPARC 60 workstation with 512 MB RAM under 
Solaris 2.5.1 operating system. During the experiments, real 
test stimuli generated by test generator DECIDER [8] were 
used in order to activate all possible states of the circuit 
behavior (in contrast to random simulation vectors, which in 
reality do not allow to simulate all possible behaviors). In 
order to achieve a better timing resolution all the test sets were 
multiplied by ten. For optimal performance, Synopsys tools 
cylab and cysim were run with -perf and -2state options. The 
decision diagram event-driven cycle-based simulation tool 
implementation offers the gain in simulation time between 2.5 
and more than 14 times in comparison to the cycle-based HDL 
simulator. 
 

6. CONCLUSIONS 

The paper proposed a novel method for Property 
Specification Language (PSL) assertions simulation-based 
checking. The method uses a digital design representation 
called Temporally extended High-Level Decision Diagrams 
(T-HLDDs). Previous works have shown that HLDDs are an 
efficient model for simulation and diagnosis since they 
provide for a fast evaluation by graph traversal and for easy 
identification of cause-effect relationships. In this paper, the 
model was extended to support temporal operations inherent 
in PSL properties and also to directly support assertion 
checking. We presented a hierarchical approach to generate T-
HLDDs based on a library of Primitive Property Graphs 
(PPG). Basic algorithms for T-HLDD based assertion 
checking were discussed.  

As a future work we see development of event-driven 
assertion checking methods on T-HLDDs and their integration 
to design error diagnosis and debug solutions. 
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