
PSL Assertion Checking with Temporally Extended
High-Level Decision Diagrams

Maksim Jenihhin, Jaan Raik, Anton Chepurov, Raimund Ubar

Department of Computer Engineering, Tallinn University of Technology
E-mail: { maksim|jaan|raiub }@pld.ttu.ee, anton.chepurov@gmail.com

Abstract - The paper proposes a novel method for PSL language
assertions conversion to a system representation model called
High-Level Decision Diagrams (HLDD). Previous works have
shown that HLDDs are an efficient model for simulation and
convenient for diagnosis and debug. We present a technique,
where checking of PSL assertions is integrated into fast HLDD-
based simulation. There are three main contributions in the
paper. The first one is a methodology for direct conversion of
PSL properties to HLDD. The second one is a temporal extension
for the existing HLDD model. The third one is HLDD-based
simulator modification to support the new type of HLDDs and
assertions checking.

 Index Terms - dynamic verification, assertions, property
specification language (PSL), high-level decision diagrams

1. INTRODUCTION AND MOTIVATION

Verification has become a very important phase in the
state-of-the-art digital systems development process. As it was
estimated in International Technology Roadmap for
Semiconductors report [1], verification takes roughly 70% of
design time, and consequently demands lots of costly
resources such as man-hours or CPU-hours making this part
of complete system development often the most expensive
phase. According to [1], the problem is caused by a pair of
recent processes: firstly, rapid design complexity increase and
secondly, the historically greater emphasis on other aspects of
the design process what has produced enormous progress
(automated tools for logic synthesis, place-and-route, and test
pattern generation, etc.), leaving verification as the bottleneck.

Among the recently proposed solutions the Assertion-based
Verification (ABV) is one of the most promising. Verification
assertions can be used in both dynamic and static verification.
This paper considers only the first case, when assertions play
role of monitors for particular system behaviour during the
simulation. Property Specification Language (PSL) is a
recently accepted IEEE standard language [14] that is
commonly used to express the assertions.

The research on topic of conversion of PSL assertions to
design representation such as HDL is gaining its popularity.
There are several approaches published in recent time [2, 3, 4,
19]. The most widely known tool for this task is FoCs by IBM
[5].

Our first attempt [18] of PSL properties translation to
HLDD was implying the generation of VHDL checkers by
IBM’s FoCs as an intermediate step. However this experience
has revealed particular limitations and inefficiency for HLDD-
based assertions creation. Moreover, checkers synthesis from
PSL properties are efficient mainly for the case where
checkers are to be used in hardware emulation. The
application of the same checker constructs for simulation in
software may lack efficiency due to target language
concurrency and poor means for temporal expressions.
Synthesis of checkers hardware for emulation is out of the
scope of current paper.

In this paper, we present an approach to checking PSL
assertions using High-Level Decision Diagrams (HLDD).
Here, the assertions are translated to HLDD graphs and
integrated into fast HLDD-based simulation. The structure of
HLDD design representation with the temporal extension
proposed in this paper allows straightforward and lossless
translation of PSL properties. HLDDs are a convenient model
for diagnosis and debug since they provide for easy
identification of cause-effect relationships.

High-Level Decision Diagrams have been proposed and
further developed by the authors in Tallinn University of
Technology (TUT) [17]. For more than a decade this model of
digital design representation has been successfully applied for
design simulation and test generation research areas.
Participation of TUT in recently launched European
Commission research project VERTIGO [16] has encouraged
HLDD usage also in verification.

TLM (SystemC)
RTL (VHDL)

PSL Interface

Validation patterns

Stimuli &
Testbench
(VHDL)

Design model

Properties, assertions

PSL
(simple subset)

HLDD Interface

System
representation

HLDD
Model

Properties,
assertions

HLDD Simulation

Code Coverage
Analysis & Test
Generation

Dynamic Verification:
Assertion Coverage

Property Checker
HLDD
Properties

Figure 1. HLDD-based verification tools flowchart.

The topic of the VERTIGO project is embedded systems
verification and validation. It is also aimed to bridge the gap
between system level modelling and verification performed at
the transaction level and the traditional RTL (register transfer
level) description. Tallinn University of Technology as a
partner of the project contributes by developing HLDD based
verification tools and making research in cooperation with the
other partners in the areas of static (formal), dynamic
(simulation-based) and mixed static-dynamic verification.

The HLDD-based verification flow proposed by TUT is
shown in Figure 1. The main emphasis of this paper is put on
assertion checking in simulation-based verification (this part is
highlighted by grey colour). However, several other tools
working with HLDD are under development, including
dynamic verification code coverage analysis, formal methods
of stimuli generation and model checking. The latter are
relying on the engine of HLDD based ATPG known as
DECIDER [8].
 The paper is organized as follows. Assertion-based
verification and PSL are discussed in Section 2. Section 3
defines the existing HLDD graph model and introduces the
temporal extension to it. Section 4 presents the methodology
for HLDD graphs creation from PSL specifications. The
discussion of the existing HLDD-based simulator
modification to support the temporal extension of HLDDs and
assertion checking in simulation is provided in Section 5.
Finally, Section 6 concludes the paper.

2. ASSERTION-BASED VERIFICATION AND PSL

Assertion-based Verification can be classified as Design-
for-Verifiability (DFV) technique. The goal is to assist both
formal methods and simulation-based verification and allow
discovering Design under Verification (DUV) misbehaviour
(causing an assertion violation) earlier and more effective.
Another important advantage of ABV is its aid to debug
process.

In case of dynamic verification assertions provide better
observability on the design what allows detecting bugs earlier
and closer to their origin. At the same time in case of static
verification with model checking, the assertions increase the
controllability of the design and direct verification to the area
of interest. Each assertion violation discovered by model
checking is reported as a counter-example.

The question of the origin of assertions can be formulated
as a separate topic for research itself. An important aspect here
is the problem of completeness. Usually assertions do not
describe all the possible properties of design what would mean
translation of a complete design specification to a formal
assertion description language such as PSL (Property
Specification Language) or SVA (System Verilog Assertions).
Instead of this only design areas of concern, sometimes
referred as verification hot spots, are targeted. In practice they
are often provided by design engineer and require deep
knowledge of the DUV behaviour.

Assertion-based verification popularity has encouraged a
common Property Specification Language development by

the Functional Verification Technical Committee of Accellera.
After a process in which donations from a number of sources
were evaluated, the Sugar language from IBM was chosen as
the basis for PSL. The latest Language Reference Manual for
PSL version 1.1 was released in 2004 [13]. The language
became an IEEE 1850 Standard in 2005 [14].

An example PSL property reqack structure is shown in

Figure 2. Its Timing diagram is also illustrated by Figure 3a. It
states that ack must become high next after req being high. A
system behaviour that activates reqack property however
obviously violating it is demonstrated in Figure 3b. Figure 3c
shows the case when the property was not activated.

For the convenience of verification engineers PSL is a multi-
flavoured language, which means that it supports common
constructs of VHDL, Verilog, IBM’s GDL, SystemVerilog
and SystemC [15]. PSL is also a multi-layered language [13].
The layers include:
• Boolean layer – the lowest one, consists of boolean

expressions in HLD (e.g. a &&(b || c))
• Temporal later – sequences of boolean expressions over

multiple clock cycles, also supports Sequential Extended
Regular Expressions (SERE) (e.g. {A[*3];B} |-> {C})

• Verification layer - it provides directives that tell a
verification tool what to do with specified sequences and
properties.

• Modelling layer - additional helper code to model
auxiliary combinational signals, state machines etc. that
are not part of the actual design but are required to
express the property.

 The temporal layer of PSL language has two constituents:
 Foundation Language (FL), that is Linear Temporal

Logic (LTL) with embedded SERE
 Optional Branching Extension (OBE), that is

Computational Tree Logic (CTL)
The second one considers multiple execution paths and

models design behaviour as execution trees. CTL can only be
used in formal verification. Therefore this part of PSL is left

Figure 3. Timing diagrams for the property “reqack”

req
ack

a)
req
ack

b)

req
ack

c)

Figure 2. PSL property “reqack”

reqack: assert always (req -> next ack);

Label

Verification
directive

When it
should hold

Property to be
checked

for future work related to HLDD-based model checking
implementation (the dashed arrow in Figure 1). This paper we
will consider only FL part of PSL. However, a subset of FL is
applicable for translation to HLDD assertions.

Our initial goal, and also the VERTIGO project
requirement, is to support FL subset known as PSL Simple
Subset. This subset is gaining its popularity and is supported
by many verification and simulation tools. It is explicitly
defined in [13] and loosely speaking it has two requirements
for time: to advance monotonically and be finite and
restrictions on types of operands for several operators.

3. HIGH-LEVEL DECISION DIAGRAMS

Decision Diagrams (DD) have been used in verification for
about two decades. Reduced Ordered Binary Decision
Diagrams (BDD) [9] as canonical forms of Boolean functions
have their application in equivalence checking and in
symbolic model checking. Recently, a higher abstraction level
DD representation, called Assignment Decision Diagrams
(ADD) [10], have been successfully applied to, both, register-
transfer level (RTL) verification and test [11, 12].

The main issue with the BDDs and assignment decision
diagrams is the fact that they allow logic or RTL modeling,
respectively. In this paper we consider a different decision
diagram representation, High-Level Decision Diagrams
(HLDD) that, unlike ADDs can be viewed as a generalization
of BDD. HLDDs can be used for representing different
abstraction levels from RTL to TLM (Transaction Level
Modeling) and behavioral. HLDDs have proven to be an
efficient model for simulation and diagnosis since they
provide for a fast evaluation by graph traversal and for easy
identification of cause-effect relationships [6, 7].

3.1. HLDD data structure
 Definition: A HLDD representing a discrete function

y=f(x) is a directed non-cyclic labeled graph that can be
defined as a quadruple G=(M,E,X,D), where M is a finite set
of vertices (referred to as nodes), E is a finite set of edges, X
is a function which defines the variables labeling the nodes
and the variable domains, and D is a function on E. The
function X(mi) returns a pair (xi,Xi), where xi is the variable
letter, which is labeling node mi and Xi is the domain of xi.
Each node of a HLDD is labeled by a variable. In special

cases, nodes can be labeled by constants or algebraic
expressions. An edge e∈E of a HLDD is an ordered pair
e=(m1,m2)∈E2, where E2 is the set of all the possible ordered
pairs in set E. D is a function on E representing the activating
conditions of the edges for the simulating procedures. The
value of D(e) is a subset of Xi, where e=(mi,mj) and
X(mi)=(xi,Xi). It is required that Pmi={D(e) | e=(mi,mj)∈E } is
a partition of the set Xi. HLDD has only one starting node
(root node), for which there are no preceding nodes. The
nodes, for which successor nodes are missing, are referred to
as terminal nodes.

Figure 4 presents an example of a graphical interpretation
of a HLDD.

IF reset = 1 THEN state:=s0;
ELSE
 CASE state
 WHEN s0:
 a:=in1; b:=in2; ready:=0;
 state:=s1;
 WHEN s1:
 IF a≠b THEN state:=s2;
 ELSE state:=s5; ENDIF;
 WHEN s2:
 IF a>b THEN state:=s3;
 ELSE state:=s4; ENDIF;
 WHEN s3:
 a:=a-b; state:=s1;
 WHEN s4:
 b:=b-a; state:=s1;
 WHEN s5:
 ready:=1;
 state:=s5;
 END CASE
END IF

Figure 5. a) RTL VHDL and b) the corresponding HLDD

3.2. HLDDs for digital systems
HLDD models can be used for representing digital systems.

In such models, the non-terminal nodes correspond to
conditions or to control signals, and the terminal nodes
represent data operations (functional units). Register transfers

Gy=(M,E,X,D),
M={m1, m2, m3, m4, m5};
E={e1, e2, e3, e4, e5}, e1=(m1, m2), e2=(m1, m4),
e3=(m1, m5), e4=(m2, m3), e5=(m2, m4);
X(m1)=X(m5)=(x2,{0,1,2,…,7}), X(m2)=(x3,{0,1,2,3}),
X(m3)=(x4,…), X(m4)=(x1,…);
D(e1)={0}, D(e2)={1,2,3}, D(e3)={4,5,6,7},
D(e4)={2}, D(e5)={0,1,3}.

0,1,3

2 x2

x2

x1

x4 x3
m1 m2 m3

m4

m5

y 0

1-3

4-7

Figure 4. A HLDD for a function y=f(x1,x2,x3,x4)

T

res state

a=b

a>b

s0

s1

s2

s3
s4

s5

state s0,s3,s40

1
s1

s5

F
T

s2
F

ε

s
state

ready

0

1

ready

s5

s3

ε

s
state

a-b

in1

a

a
s4

ε

s
state

b-a

in2

b

b

and constant assignments are treated as special cases of
operations. When representing systems by decision diagram
models, in general case, a network of HLDDs rather than a
single HLDD is required. During the simulation in HLDD
systems, the values of some variables labeling the nodes of a
HLDD are calculated by other HLDDs of the system.

Fig. 5b presents the HLDD system for the RTL VHDL
code shown in Fig. 5a implementing the greatest common
divisor algorithm. In the Figure, T and F stand for true and
false, respectively. The ε character denotes default edges.

4. T-HLDD ASSERTIONS CONSTRUCTION

The idea of the proposed method relies on the principle of
‘divide and conquer’. The method is based on partitioning
PSL properties into elementary entities containing only one
operator. There are two main stages in the approach. The first
one is preparatory and consists of Primitive Property Graphs
Library creation for elementary operators. The second stage is
recursive hierarchical construction of the Temporally
extended HLDD (T-HLDD) for a complex property using the
PPG Library elements.

4.1. PPG Library creation
Prior to the T-HLDD construction procedure a Primitive

Property Graph (PPG) should be created for every PSL
operator supported by the proposed approach. All the created
PPGs are combined into one PPG Library. The library is
extensible and should be created only once. It implicitly
determines the supported PSL subset. The method currently
supports only weak versions of PSL operators. However, by
means of the supported operators a large set of properties
expressed in PSL can be derived.

Primitive Property Graph is a special type of HLDD graph.
Compared to the basic HLDD model used for representing the
design (defined in Section 3), these graphs have two
distinctions. The first distinction is the requirement for all the
PPGs to have a standard interface. The second distinction is
usage of the HLDD model with a temporal extension. In the
following the distinctions will be discussed in detail.

The standard interface for all PPGs was introduced in

order to support the hierarchy in a recursive complex property
construction described in the next subsection. PPG has one
root node and exactly 3 terminal nodes (CHECKING, FAIL
and PASS, respectively), as opposed to an arbitrary number of
terminal nodes in usual HLDD graph. The standard PPG
interface is shown in Figure 6.

The terminal nodes in PPG have the following meaning:
• FAIL – assertion P has been simulated and does not hold;

• PASS – the assertion has been simulated and holds;
• CHECKING – P has been simulated and it does not fail,
nor does it pass non-vacuously

In this paper we support only weak operators. In order to
extend the subset to support strong operators a third output
PENDING would be needed. Its addition would influence the
proposed modification of the Simulator explained in Section
5. Example PPGs created for 3 PSL operators are shown in
Figure 7. Note, that the logic implication operator ‘->’ in Fig.
7b exits to the terminal node ‘CHECKING’ when the
precondition Pa fails. This is due to the fact that in assertion
checking the designer is not interested in non-vacuous passes
of the property. Also, consider the PPG for operator ‘until’
shown in Fig. 7c. It is the SERE and ‘until’ operators that
create cyclic THLDDs. The proposed assertion checking
procedure is capable of handling such cycles.

One of the main motivations for PSL introduction was poor

ability of standard HDL languages to express temporal
relations between expressions in assertions. The main
instruments for this purpose used in PSL are repetition
operators of its own and of Sequentially Extended Regular
Expressions (SERE). A powerful part of the repetition
operators are their auxiliary suffixes (e.g for next* family they
are next_a, next_e!, next_event etc). In current paper we
propose a temporal extension for HLDD model that supports
the following 3 PSL constructs (See Table 1).
TABLE 1. TEMPORAL EXTENSION FOR HLDD

PSL
construct Explanation Equivalent HLDD

extension for a Variable

next[n] property holds at time
step n Variable’[n]

next_a[j:k]
property holds at all

time steps within j to k
range

Variable’[j..k]_a

next_e[j:k]
property holds at least
once within j to k time
steps range

Variable’[j..k]_e

a) invariant always b) logic implication ->

c) temporal operator until
Figure 7. PPGs for a set of PSL operators

Pa

P

FAIL PASSCHK.

"always Pa"

Pa

P

FAIL PASSCHK.

"Pa -> Pb"

Pb

Pa

P

FAIL PASS CHK.

"Pa until Pb"

Pb ’[1]

Property

P

FAIL PASS CHK.

Figure 6. Standard PPG interface

Additionally we introduce the notion of END as a special
case of value of k in the expression Variable’[j..k]_sfx (where
_sfx is one of _a or _e). The maximum bound of the time steps
sequence may take value END if it is not explicitly
determined. The time point END occurs at the end of
simulation and implicitly determined by:

• Number of test vectors
• The amount of time provided for simulation
• Simulation interruption

The main purpose of the proposed temporal extension is
transferring additional information and directives to the
HLDD Simulator that will check assertions. Let us refer to
the HLDD graphs with the described extension as Temporally
Extended HLDDs (T-HLDD).

4.2. Recursive hierarchical construction of properties
 Complex properties are hierarchically constructed from
elementary graphs in PPGs Library in the following way. At
first, the property should be parsed. During the parsing phase
the PSL property is partitioned into entities containing one
operator only. The hierarchy of operators is determined by the
PSL operators precedence specified by IEEE1850 Standard.
Hierarchical construction is performed in the top-down
manner. It starts for the operators with lowest precedence
where the sub-operations are then recursively substituted with
the operators having higher precedence. For example, always
and never operators have the lowest level of precedence and
consequently their corresponding PPGs have the highest level
in the hierarchy. The sub-properties (operands) are step-by-
step substituted by lower level PPGs until the lowest level
where sub-properties are pure signals or HLD operations.

Let us consider an example PSL property for GCD
implementation given in Figure 5.
P1: assert always((! ready) and (a=b) ->next_e[1:3](ready))

The resulting T-HLDD graph describing this property is
shown in Figure 8.

5. HLDD-BASED SIMULATOR EXTENSION

The basis for assertion coverage analysis in this paper is a
simulator engine relying on HLDD models. In our earlier
works [7], we have implemented an algorithm supporting,
both, Register-Transfer Level (RTL) and behavioral design
abstraction levels. This algorithm is briefly explained below
and it will be used for simulating the system model.

In the RTL style, the algorithm takes the previous time step
value of variable xj labeling a node mi if xj represents a
clocked variable in the corresponding HDL. Otherwise, the
present value of xj will be used. In the case of behavioral HDL

coding style HLDDs are generated and ranked in a specific
order to ensure causality. For variables xj labeling HLDD
nodes the previous time step value is used if the HLDD
diagram calculating xj is ranked after current decision
diagram. Otherwise, the present time step value will be used.

Algorithm 1 presents the HLDD based simulation engine
for RTL, behavioral and mixed HDL description styles. (Refer
to Section 3.1 for HLDD data structure definition).

Algorithm 1. RTL/behavioral simulation on HLDDs

For each diagram G in the model

 mCurrent = m0
 Let xCurrent be the variable labeling mCurrent
 While mCurrent is not a terminal node
 If is xCurrent clocked or its DD is ranked after G then
 Value = previous time-step value of xCurrent
 Else
 Value = present time-step value of xCurrent
 End if
 If Value ∈ D(eactive), eactive =(mCurrent, mNext) then
 mCurrent = mNext
 End if
 End while
 Assign xCurrent to the DD variable xG

End for
In order to understand assertion checking on T-HLDDs

consider the PSL assertion example P1 provided in Figure 8.
The assertion represents a property to be checked against the
GCD implementation given in Figure 5. It states that always
when ready is low and a is equal to b then after 1 to 3 time-
steps (clock cycles) ready will be asserted.

Let us introduce the concept of time-window of an
assertion. We say that a time window is the maximum number
of time steps from current step to the end step when assertion
has to be evaluated. Assertion’s time-window is denoted by
wmax. For example, the assertion shown in Fig. 8 has a time
window of wmax = 4 because its evaluation starts at current
time moment and ends 3 time-steps later.

The procedure of assertion checking should be preceeded
by executing Algorithm 1 which calculates the simulation
trace that is a starting point for assertion checking. The
procedure is an extension of HLDD simulation as it takes into
account temporal information at the nodes and has an exit
condition in order to avoid eternal loops that are due to the
cyclic nature of the general case of THLDDs. The main task
of the procedure is assertions diagrams traversal till terminal
nodes with strict consideration of time windows which gives
the evaluation result.

However, event-driven evaluation of assertions to speed up
the checking process has not been considered in current work
and there lies the focus of our future research. While there
already exists commercial assertion checking tools taking
advantage of events the core benefits of developing an event-
driven HLDD based solution lies in fast evaluation by graph
traversal and for easy identification of cause-effect
relationships provided by the model that is especially useful in
debug and diagnosis.

0 a=b

CHK.

P1

ready ready’[1..3]_e

PASS FAIL

F

T

F 1 T

Fig. 8. T-HLDD for property P1

TABLE 2. DD AND HDL-BASED SIMULATION COMPARISON

Circuit
Simulation time [s] Ratio

HLDD
simulation

HDL
cycle-based

HDL/HLDD

gcd 0.20 0.51 2.55
mult8x8 0.32 1.00 3.13
diffeq 0.25 1.26 5.04

huff_enc 0.34 1.40 4.12
circ1 0.14 2.05 14.64

Currently the T-HLDD based assertion checking is not yet
implemented. However, we have compared HLDD model
simulation (Algorithm 1) to a state-of-the-art HDL simulator.
Table 2 presents run-times of the HLDD models and
corresponding VHDL models simulation. The simulators
compared include the HLDD-based simulator [7] and an
efficient commercial cycle-based HDL simulation tool
Cyclone (Synopsys). The experiment was run on a 366 MHz
SUN UltraSPARC 60 workstation with 512 MB RAM under
Solaris 2.5.1 operating system. During the experiments, real
test stimuli generated by test generator DECIDER [8] were
used in order to activate all possible states of the circuit
behavior (in contrast to random simulation vectors, which in
reality do not allow to simulate all possible behaviors). In
order to achieve a better timing resolution all the test sets were
multiplied by ten. For optimal performance, Synopsys tools
cylab and cysim were run with -perf and -2state options. The
decision diagram event-driven cycle-based simulation tool
implementation offers the gain in simulation time between 2.5
and more than 14 times in comparison to the cycle-based HDL
simulator.

6. CONCLUSIONS

The paper proposed a novel method for Property
Specification Language (PSL) assertions simulation-based
checking. The method uses a digital design representation
called Temporally extended High-Level Decision Diagrams
(T-HLDDs). Previous works have shown that HLDDs are an
efficient model for simulation and diagnosis since they
provide for a fast evaluation by graph traversal and for easy
identification of cause-effect relationships. In this paper, the
model was extended to support temporal operations inherent
in PSL properties and also to directly support assertion
checking. We presented a hierarchical approach to generate T-
HLDDs based on a library of Primitive Property Graphs
(PPG). Basic algorithms for T-HLDD based assertion
checking were discussed.

As a future work we see development of event-driven
assertion checking methods on T-HLDDs and their integration
to design error diagnosis and debug solutions.

ACKNOWLEDGMENTS

The work has been supported partly by EC FP 6 research
project VERTIGO FP6-2005-IST-5-033709 [16], Enterprise
Estonia funded ELIKO Development Centre, Estonian SF
grants 7068 and 7483, Estonian Information Technology
Foundation (EITSA) and Nations Support Program for the
ICT in Higher Education "Tiger University".

REFERENCES

[1] International Technology Roadmap for Semiconductors 2006 report
[www.itrs.net]

[2] S. Gheorghita and R. Grigore, “Constructing Checkers from PSL
Properties,” 15th International Conference on Control Systems
and Computer Science (CSCS15), vol. 2, pp. 757–762, 2005.

[3] Bustan D., Fisman D., and Havlicek J. Automata Construction
for PSL. The Weizmann Institute of Science, Technical Report
MCS05-04, May 2005

[4] Marc Boulé and Zeljko Zilic. Efficient Automata-Based
Assertion-Checker Synthesis of PSL Properties. In Proceedings
of the 2006 IEEE International High Level Design Validation and
Test Workshop (HLDVT’06), pages 69–76, 2006.

[5] IBM AlphaWorks, “FoCs Property Checkers Generator ver.
2.04,” [www.alphaworks.ibm.com/tech/FoCs], 2007.

[6] R. Ubar, J. Raik, A. Morawiec, Back-tracing and Event-driven
Techniques in High-level Simulation with Decision Diagrams.
ISCAS 2000, Vol. 1, pp. 208-211.

[7] Raimund Ubar, Adam Morawiec, Jaan Raik. Cycle-based
Simulation with Decision Diagrams, Proceedings of the DATE
Conference, pp. 454-458, 1999.

[8] J. Raik, R. Ubar, Fast Test Generation for Sequential Circuits
Using Decision Diagrams Representations. Journal of Electronic
Testing: Theory and Applications 16, Kluwer Academic
Publisher, 2000, pp. 213-226.

[9] R. Bryant. Graph-based algorithms for boolean function
manipulation. IEEE Transactions on Computers, C-35, 8:677-
691, 1986

[10] V. Chayakul, D. D. Gajski, L. Ramachandran, “High-
Level Transformations for Minimizing Syntactic Variances”,
Proc. of ACM/IEEE DAC, pp. 413-418, June 1993.

[11] I. Ghosh, M. Fujita, “Automatic Test Pattern Generation
for Functional RTL Circuits Using Assignment Decision
Diagrams”, Proc. of ACM/IEEE DAC, pp. 43-48, 2000.

[12] L. Zhang, I. Ghosh, M. Hsiao, “Efficient Sequential ATPG for
Functional RTL Circuits”, Int. Test Conf., pp.290-298, 2003.

[13] Accellera, “Property Specification Language Reference
Manual”, v1.1, June 9, 2004.

[14] IEEE-Commission, “IEEE standard for Property
Specification Language (PSL),” 2005, IEEE Std 1850-2005.

[15] Cindy Eisner, Dana Fisman, “A Practical Introduction to
PSL”, Springer Science, 2006.

[16] EU’s 6th Framework Programme research project
VERTIGO web page [www.vertigo-project.eu], 2007.

[17] R. Ubar. “Test Synthesis with Alternative Graphs”, In IEEE
Design and Test of Computers, pp. 48–57. 1996.

[18] Maksim Jenihhin, Jaan Raik, Anton Chepurov, Raimund
Ubar. Assertion Checking with PSL and High-Level Decision
Diagrams. IEEE 8th Workshop on RTL and High Level Testing
(WRTLT'07), October 12-13, 2007.

[19] K. Morin-Allory, D. Borrione. Proven correct monitors from
PSL specifications, Proc. DATE, 2006.

