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Abstract - The paper proposes a novel method for checking PSL 
language assertions using a system representation called High-
Level Decision Diagrams (HLDD). Previous works have shown 
that HLDDs are an efficient model for simulation and test 
pattern generation. We present a technique, where checking of 
PSL assertions is integrated into fast HLDD-based simulation. 
Current approach applies assertion checker generation software 
FoCs by IBM. We show how such VHDL checkers can be 
mapped to HLDD constructs. 

Index Terms - dynamic verification, assertions, property 
specification language (PSL), high-level decision diagrams 
 

1. INTRODUCTION AND MOTIVATION 

Verification has become a very important phase in the 
state-of-the-art digital systems development process. As it was 
estimated in International Technology Roadmap for 
Semiconductors report [1], verification takes roughly 70% of 
design time, and consequently demands lots of costly 
resources such as man-hours or CPU-hours making this part 
of complete system development often the most expensive 
phase.  

According to [1], the problem is caused by a pair of recent 
processes: firstly, rapid design complexity increase and 
secondly, the historically greater emphasis on other aspects of 
the design process what has produced enormous progress 
(automated tools for logic synthesis, place-and-route, and test 
pattern generation, etc.), leaving verification as the bottleneck.  

There are two challenges stated for the verification 
research area. The first one is verification methods for higher 
levels of abstraction. The second one is new Design-for-
Verifiability (DFV) techniques. The approach proposed in this 
paper addresses the both of them. 

Among the recently proposed DFVs Assertion-based 
Verification (ABV) is one of the most promising. Verification 
assertions can be used in both dynamic and static verification. 
This paper considers only the first case, when assertions play 
role of monitors for particular system behaviour during the 
simulation. They can describe either desired or undesired 
behaviour and notify user about violations or occurrence of 
forbidden sequences consequently.  

The research on topic of conversion of PSL assertions to 
design representation such as HDL is gaining its popularity. 
There are several approaches published in recent time [2, 3, 
4]. The most widely known tool for this task is FoCs by IBM 
[5].  
 In this paper, we present an approach to checking PSL 
assertions using High-Level Decision Diagrams (HLDD). 
Here, assertion checking is integrated into fast HLDD-based 
simulation. Assertion checker generation software FoCs by 
IBM is applied and the resulting VHDL checkers are mapped 
to HLDD constructs. The work is motivated by our previous 
encouraging research results obtained on HLDD based 
simulation [6, 7] and test pattern generation [8]. This is the 
first attempt to use HLDD models in assertion based 
verification. 
 The paper is organized as follows. The HLDD based 
verification flow is explained in Section 2. Section 3 defines 
the HLDD graph model. Section 4 discusses assertion-based 
verification and PSL. Section 5 shows how HLDDs can be 
used for representing assertion checkers. Finally, Section 6 
concludes the paper. 
 

2. HLDD VERIFICATION FLOW 

High-Level Decision Diagrams have been proposed and 
further developed by the authors in Tallinn University of 
Technology (TUT) [17]. For more than a decade this model of 
digital design representation has been successfully applied for 
design simulation and manufacturing test generation research 
areas. However participation of TUT in recently launched by 
European Commission research project VERTIGO [16] has 
encouraged HLDD usage in verification.  

The main areas of interest for VERTIGO research project 
are embedded systems verification and validation. It is also 
aimed to bridge the gap between system level modelling and 
verification performed at the transaction level and the 
traditional RTL (register transfer level) description. Tallinn 
University of Technology as a partner of the project 
contributes by developing HLDD based verification tools and 
making research in cooperation with the other partners in the 
areas of static (formal), dynamic (simulation-based) and 
mixed static-dynamic verification. 



The main emphasis of this paper is put on assertion 
monitors (Figure 1). However, several other tools working 
with HLDD are under development, including dynamic 
verification code coverage analysis, formal methods of 
verification stimuli generation and model checking. The last 
ones reuse the engine of HLDD based ATPG known as 
DECIDER [8]. The following section will define HLDD 
model. 

 
3. HIGH-LEVEL DECISION DIAGRAMS 

Decision Diagrams (DD) have been used in verification for 
about two decades. Reduced Ordered Binary Decision 
Diagrams (BDD) [9] as canonical forms of Boolean functions 
have their application in equivalence checking and in 
symbolic model checking. Recently, a higher abstraction level 
DD representation, called Assignment Decision Diagrams 
(ADD) [10], have been successfully applied to, both, register-
transfer level (RTL) verification and test [11, 12].  

The main issue with the BDDs and assignment decision 
diagrams is the fact that they allow logic or RTL modeling, 
respectively. In this paper we consider a different decision 
diagram representation, High-Level Decision Diagrams 
(HLDD) that, unlike ADDs can be viewed as a generalization 
of BDD. HLDDs can be used for representing different 
abstraction levels from RTL to TLM (Transaction Level 
Modeling) and behavioral. HLDDs have proven to be an 
efficient model for simulation and fault modeling since they 
provide for a fast evaluation by graph traversal and for easy 
identification of cause-effect relationships [6, 7]. 

3.1. HLDD data structure 
 Definition: A HLDD representing a discrete function 

y=f(x) is a directed non-cyclic labeled graph that can be 
defined as a quadruple G=(M,E,X,D), where M is a finite set 
of vertices (referred to as nodes), E is a finite set of edges, X 
is a function which defines the variables labeling the nodes 
and the variable domains, and D is a function on E. The 
function X(mi) returns a pair (xi,Xi), where xi is the variable 
letter, which is labeling node mi  and Xi is the domain of xi. 
Each node of a HLDD is labeled by a variable. In special 
cases, nodes can be labeled by constants or algebraic 
expressions. An edge e∈E of a HLDD is an ordered pair 
e=(m1,m2)∈E2, where E2 is the set of all the possible ordered 
pairs in set E. D is a function on E representing the activating 
conditions of the edges for the simulating procedures. The 
value of D(e) is a subset of Xi, where e=(mi,mj) and 
X(mi)=(xi,Xi). It is required that Pmi={D(e) | e=(mi,mj)∈E } is 
a partition of the set Xi. HLDD has only one starting node 
(root node), for which there are no preceding nodes. The 
nodes, for which successor nodes are missing, are referred to 
as terminal nodes.  

Figure 2 presents an example of a graphical interpretation 
of a HLDD. 

3.2. Digital systems simulation using HLDDs 
In HLDD models representing digital systems, the non-

terminal nodes correspond to conditions or to control signals, 
and the terminal nodes represent operations (functional units). 
Register transfers and constant assignments are treated as 
special cases of operations. When representing systems by 
decision diagram models, in general case, a network of 
HLDDs rather than a single HLDD is required. During the 
simulation in HLDD systems, the values of some variables 
labeling the nodes of a HLDD are calculated by other HLDDs 
of the system. Figure 3 presents an example of an HLDD for 
two variables, state and RMAX in the ITC99 benchmark b04. 
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Figure 1. HLDD verification tasks distribution chart 

Gy=(M,E,X,D),  
M={m1, m2, m3, m4, m5};  
E={e1, e2, e3, e4, e5}, e1=(m1, m2), e2=(m1, m4),  
e3=(m1, m5), e4=(m2, m3),  e5=(m2, m4);  
X(m1)=X(m5)=(x2,{0,1,2,…,7}), X(m2)=(x3,{0,1,2,3}),  
X(m3)=(x4,…), X(m4)=(x1,…); 
D(e1)={0}, D(e2)={1,2,3}, D(e3)={4,5,6,7},  
D(e4)={2}, D(e5)={0,1,3}. 
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Figure 2. A HLDD for a function y=f(x1,x2,x3,x4) 
 



The basis for assertion checking approach presented in this 
paper is a simulator engine based on HLDDs. We have 
implemented an algorithm supporting, both, Register-Transfer 
Level (RTL) and behavioral style Hardware Description 
Language (HDL) styles. In the RTL style, the algorithm takes 
the previous time step value of variable xj labeling a node mi if 
xj represents a clocked variable in the corresponding HDL. 
Otherwise, the present value of xj will be used.  

In the case of behavioral HDL coding style HLDDs are 
generated and ranked in a special order. For variables xj 
labeling HLDD nodes the previous time step value is used if 
the HLDD diagram calculating xj is ranked after current 
decision diagram. Otherwise, the present time step value will 
be used. 

Algorithm 1 presents the HLDD based simulation engine 
for RTL, behavioral and mixed HDL description styles (See 
Section 3.1 for definitions!): 
Algorithm 1. RTL/behavioral simulation on HLDDs 
 
For each diagram G in the model 
 mCurrent = m0 
 Let xCurrent be the variable labeling mCurrent  
 While mCurrent is not a terminal node 
  If  is xCurrent clocked or its DD is ranked after G then 
   Value = previous time-step value of xCurrent 
  Else 
   Value = present time-step value of xCurrent 
  End if 
  If Value ∈ D(eactive), eactive =( mCurrent, mNext) then 
   mCurrent = mNext 
  End if 
 End while 
 Assign xCurrent to the DD variable xG  
End for 
 

The following section will discuss the idea of assertion-
based verification and PSL language. It will also mention the 
commercial tool FoCs from IBM for VHDL checkers 
generation from PSL properties. Section 4 explains how such 
checkers described in VHDL language can be converted into 
HLDD models. 

 
4. ASSERTION-BASED VERIFICATION AND PSL 

As it was already noticed in the first section ABV can be 
classified as Design-for-Verifiability (DFV) technique. The 
goal is to assist both formal methods and simulation-based 
verification and allow discovering Design under Verification 
(DUV) misbehaviour (causing an assertion violation) earlier 
and more effective. Another important advantage of ABV is 
its aid to debug process.  

In case of dynamic verification assertions provide better 
observability on the design what allows detecting bugs earlier 
and closer to their origin. At the same time in the case of static 
verification with model checking, the assertions increase the 
controllability of the design and direct verification to the area 
of interest. Each assertion violation discovered by model 
checking is reported as a counter-example. 

The question of the origin of assertions can be formulated 
as a separate topic for research itself. An important aspect here 
is the problem of completeness. Usually assertions do not 
describe all the possible properties of design what would mean 
translation of a complete design specification to a formal 
assertion description language such as PSL (Property 
Specification Language), SVA (System Verilog Assertions) or 
CTL (Computation Tree Logic). Instead of this only design 
areas of concern, sometimes referred as verification hot spots, 
are targeted. In practice they are often provided by design 
engineer and require deep knowledge of the DUV behaviour.  

... 
if RESET = '1' then 
      state := sA; 
      RMAX := 0; 
 ... 
    elsif CLOCK'event and  
            CLOCK='1' then 
 ... 
      case state is 
        when sA => 
          state := SB; 
        when sB => 
          RMAX := DATA_IN; 
          ... 
   state := sC; 
        when sC => 
     ... 
          if DATA_IN > RMAX then 
            RMAX := DATA_IN; 
  ... 
          end if; 
    ... 
   state := sC; 
      end case; 
    end if; 
... 

state reset 
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Figure 3. b04 example: HLDDs for variables state and RMAX 



Assertion-based verification popularity has encouraged a 
common Property Specification Language development by 
the Functional Verification Technical Committee of Accellera. 
After a process in which donations from a number of sources 
were evaluated, the Sugar language from IBM was chosen as 
the basis for PSL. The latest Language Reference Manual for 
PSL version 1.1 was released in 2004 [13].  The language 
became an IEEE 1850 Standard in 2005 [14].  

 
An example PSL property reqack structure is shown in 

Figure 4. Its Timing diagram is also illustrated by Figure 5-a. 
It states that ack must become high next after req being high. 
A system behaviour that activates reqack property however 
obviously violating it is demonstrated in Figure 5-b. Figure 5-
c shows the case when the property was not activated. 

 
For the convenience of verification engineers PSL is multi-

flavoured language, what means that it supports common 
constructs of VHDL, Verilog, IBM’s GDL, SystemVerilog 
and SystemC [15].  

PSL is also a multi-layered language. The layers are [13]: 
• Boolean layer – the lowest one, consists of boolean 

expressions in HLD (e.g. a &&(b || c)) 
• Temporal later – sequences of boolean expressions over 

multiple clock cycles, also supports Sequential Extended 
Regular Expressions (SERE) (e.g. {A[*3];B} |-> {C}) 

• Verification layer - it provides directives that tell a 
verification tool what to do with specified sequences and 
properties. 

• Modelling layer - additional helper code to model 
auxiliary combinational signals, state machines etc. that 
are not part of the actual design but are required to 
express the property. 

 The temporal layer of PSL language (the main one) has 
two constituents [13]:  

 Foundation Language (FL), that is Linear Temporal 
Logic (LTL) with embedded SERE 

 Optional Branching Extension (OBE), that is 
Computational Tree Logic (CTL) 

The second one considers multiple execution paths and 
models design behaviour as execution trees. CTL can only be 
used in formal verification, therefore this part of PSL is left 
for future work related to HLDD-based model checking 
implementation. This paper we will consider only FL part of 
PSL. However not even the whole FL is applicable for 
translation to HLDD monitors. Only its subset also known as 
PSL Simple Subset is suitable for this purpose.  

PSL Simple Subset is gaining its popularity and is 
supported by many verification and simulation tools. It is 
explicitly defined in [13] and loosely speaking it has two 
requirements for time: to advance monotonically and be finite 
and restrictions on types of operands for several operators. 

A verification tool may support PSL or its Simple Subset 
directly or require translation of PSL assertions to checkers in 
its own format. The most widely known tool for this automatic 
translation is FoCs by IBM. The input properties for this 
translation can be expressed both in Sugar and PSL (GDL or 
Verilog flavour). The target language of the checkers to be 
generated can be chosen from VHDL, Verilog or C++. In 
frames of the current approach we exploit FoCs to generate 
VHDL checkers. Another advantage of FoCs is ability of its 
usage without GUI what allows easy translation step 
integration to HLDD verification flow.  

The next section will describe the conversion process of a 
VHDL checker generated from PSL property to HLDD 
monitor.  

5. PSL ASSERTIONS INTEGRATION TO HLDDS  

Let us consider an example of a PSL assertion p as given 
bellow: 

p: assert always ({a; [*2] ;b} |=> {c}) 
The precondition of this assertion is the sequence of system 
behaviour when at the beginning a becomes high, followed by 
a whatever-sequence 2 clock cycles long and then b becoming 
high. This precondition activates the assertion and requires c 
to become high just after it (non-overlapping implication) in 
order for assertion to be satisfied.  

 
Figure 6. VHDL describing the checker for assertion p 

Figure 5. Timing diagrams for the property “reqack” 

req 
ack 

a) 
req 
ack 

b) 

req 
ack 

c) 

PROCESS (clk) 
BEGIN 
  IF ( ( clk = '1' ) ) THEN 
    focs_ok <= 
    ( focs_vout(4) OR NOT( c ) ) ; 
  ELSE 
    focs_ok <= '1' ; 
  END IF; 
END PROCESS; 
 
PROCESS 
... 
VARIABLE focs_vout : std_logic_vector(4 DOWNTO 0); 
BEGIN 
  WAIT UNTIL (clk'EVENT AND clk = '1'); 
  ... 
  focs_vout(4 DOWNTO 0) := reverse( ( ( ( ( ( ( 
    focs_v(0) AND a ) ) & ( ( focs_v(1) AND '1' ) 
    ) ) & ( ( focs_v(2) AND '1' ) ) ) & ( ( 
    focs_v(3) AND b ) ) ) & ( ( focs_v(4) AND 
    NOT( c ) ) ) ) ); 
  ... 
END PROCESS; 

Figure 4. PSL property “reqack” 

reqack: assert always (req -> next ack); 
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The VHDL of the checker generated by FoCs has the form 
shown in Figure 6.  

The resulting VHDL code can be converted to HLDD 
graphs and added on top of the design under verification 
(DUV) as shown in Figure 7. In the Figure we used a notation 
where trailing quote character after diagram variable denotes 
one clock cycle delay. The HLDD variables corresponding to 
the inputs and outputs of the checker (i.e. reset, a, b, c and p) 
are shown by bold font. Generation of respective HLDDs 
from similar checkers described in VHDL can be easily 
automated. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7. HLDD for the assertion checker VHDL in Figure 6 

 

The HLDD of the checker would be seamlessly integrated 
and added on top of the design under verification (See Figure 
8). This allows uniform model representation for, both, the 
DUV and the assertion checker. Simulation of such integrated 
HLDD model speeds up the assertion checking process 
considerably. Previous experiments comparing HLDD 
simulation times to those of state-of-the-art commercial 
simulators have shown that it outperforms the commercial 
event-driven tools by a factor of 10 [6] and the cycle-based 
counterparts by a factor of 3-4 [7]. 
 

 

Figure 8. PSL assertion integration to HLDD model 

6. CONCLUSIONS  

The paper has proposed a novel method for checking PSL 
language assertions using a digital design representation called 
High-Level Decision Diagrams (HLDD).  

Previous works have shown that HLDDs are an efficient 
model for simulation and test pattern generation. The speedup 
in simulation which is equal to factors of time and some other 
their advantages has encouraged HLDDs application for 
verification. At the same time Assertion-based Verification 
approach provides obvious benefits for both static and 
dynamic verification. This fact and the recent rapid spread of 
PSL assertions application and support have motivated PSL 
assertions integration into HLDD-based verification flow. 

The paper has described in details PSL properties 
conversion to HLDD simulation monitors, implying FoCs by 
IBM for an intermediate step of VHDL checkers generation. 
The approach has been demonstrated on example of a real life 
type PSL temporal property.   
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