
Assertion Checking with PSL and
High-Level Decision Diagrams

Maksim Jenihhin, Jaan Raik, Anton Chepurov, Raimund Ubar

Department of Computer Engineering, Tallinn University of Technology
E-mail: { maksim|jaan|raiub }@pld.ttu.ee, anton.chepurov@gmail.com

Abstract - The paper proposes a novel method for checking PSL
language assertions using a system representation called High-
Level Decision Diagrams (HLDD). Previous works have shown
that HLDDs are an efficient model for simulation and test
pattern generation. We present a technique, where checking of
PSL assertions is integrated into fast HLDD-based simulation.
Current approach applies assertion checker generation software
FoCs by IBM. We show how such VHDL checkers can be
mapped to HLDD constructs.

Index Terms - dynamic verification, assertions, property
specification language (PSL), high-level decision diagrams

1. INTRODUCTION AND MOTIVATION

Verification has become a very important phase in the
state-of-the-art digital systems development process. As it was
estimated in International Technology Roadmap for
Semiconductors report [1], verification takes roughly 70% of
design time, and consequently demands lots of costly
resources such as man-hours or CPU-hours making this part
of complete system development often the most expensive
phase.

According to [1], the problem is caused by a pair of recent
processes: firstly, rapid design complexity increase and
secondly, the historically greater emphasis on other aspects of
the design process what has produced enormous progress
(automated tools for logic synthesis, place-and-route, and test
pattern generation, etc.), leaving verification as the bottleneck.

There are two challenges stated for the verification
research area. The first one is verification methods for higher
levels of abstraction. The second one is new Design-for-
Verifiability (DFV) techniques. The approach proposed in this
paper addresses the both of them.

Among the recently proposed DFVs Assertion-based
Verification (ABV) is one of the most promising. Verification
assertions can be used in both dynamic and static verification.
This paper considers only the first case, when assertions play
role of monitors for particular system behaviour during the
simulation. They can describe either desired or undesired
behaviour and notify user about violations or occurrence of
forbidden sequences consequently.

The research on topic of conversion of PSL assertions to
design representation such as HDL is gaining its popularity.
There are several approaches published in recent time [2, 3,
4]. The most widely known tool for this task is FoCs by IBM
[5].
 In this paper, we present an approach to checking PSL
assertions using High-Level Decision Diagrams (HLDD).
Here, assertion checking is integrated into fast HLDD-based
simulation. Assertion checker generation software FoCs by
IBM is applied and the resulting VHDL checkers are mapped
to HLDD constructs. The work is motivated by our previous
encouraging research results obtained on HLDD based
simulation [6, 7] and test pattern generation [8]. This is the
first attempt to use HLDD models in assertion based
verification.
 The paper is organized as follows. The HLDD based
verification flow is explained in Section 2. Section 3 defines
the HLDD graph model. Section 4 discusses assertion-based
verification and PSL. Section 5 shows how HLDDs can be
used for representing assertion checkers. Finally, Section 6
concludes the paper.

2. HLDD VERIFICATION FLOW

High-Level Decision Diagrams have been proposed and
further developed by the authors in Tallinn University of
Technology (TUT) [17]. For more than a decade this model of
digital design representation has been successfully applied for
design simulation and manufacturing test generation research
areas. However participation of TUT in recently launched by
European Commission research project VERTIGO [16] has
encouraged HLDD usage in verification.

The main areas of interest for VERTIGO research project
are embedded systems verification and validation. It is also
aimed to bridge the gap between system level modelling and
verification performed at the transaction level and the
traditional RTL (register transfer level) description. Tallinn
University of Technology as a partner of the project
contributes by developing HLDD based verification tools and
making research in cooperation with the other partners in the
areas of static (formal), dynamic (simulation-based) and
mixed static-dynamic verification.

The main emphasis of this paper is put on assertion
monitors (Figure 1). However, several other tools working
with HLDD are under development, including dynamic
verification code coverage analysis, formal methods of
verification stimuli generation and model checking. The last
ones reuse the engine of HLDD based ATPG known as
DECIDER [8]. The following section will define HLDD
model.

3. HIGH-LEVEL DECISION DIAGRAMS

Decision Diagrams (DD) have been used in verification for
about two decades. Reduced Ordered Binary Decision
Diagrams (BDD) [9] as canonical forms of Boolean functions
have their application in equivalence checking and in
symbolic model checking. Recently, a higher abstraction level
DD representation, called Assignment Decision Diagrams
(ADD) [10], have been successfully applied to, both, register-
transfer level (RTL) verification and test [11, 12].

The main issue with the BDDs and assignment decision
diagrams is the fact that they allow logic or RTL modeling,
respectively. In this paper we consider a different decision
diagram representation, High-Level Decision Diagrams
(HLDD) that, unlike ADDs can be viewed as a generalization
of BDD. HLDDs can be used for representing different
abstraction levels from RTL to TLM (Transaction Level
Modeling) and behavioral. HLDDs have proven to be an
efficient model for simulation and fault modeling since they
provide for a fast evaluation by graph traversal and for easy
identification of cause-effect relationships [6, 7].

3.1. HLDD data structure
 Definition: A HLDD representing a discrete function

y=f(x) is a directed non-cyclic labeled graph that can be
defined as a quadruple G=(M,E,X,D), where M is a finite set
of vertices (referred to as nodes), E is a finite set of edges, X
is a function which defines the variables labeling the nodes
and the variable domains, and D is a function on E. The
function X(mi) returns a pair (xi,Xi), where xi is the variable
letter, which is labeling node mi and Xi is the domain of xi.
Each node of a HLDD is labeled by a variable. In special
cases, nodes can be labeled by constants or algebraic
expressions. An edge e∈E of a HLDD is an ordered pair
e=(m1,m2)∈E2, where E2 is the set of all the possible ordered
pairs in set E. D is a function on E representing the activating
conditions of the edges for the simulating procedures. The
value of D(e) is a subset of Xi, where e=(mi,mj) and
X(mi)=(xi,Xi). It is required that Pmi={D(e) | e=(mi,mj)∈E } is
a partition of the set Xi. HLDD has only one starting node
(root node), for which there are no preceding nodes. The
nodes, for which successor nodes are missing, are referred to
as terminal nodes.

Figure 2 presents an example of a graphical interpretation
of a HLDD.

3.2. Digital systems simulation using HLDDs
In HLDD models representing digital systems, the non-

terminal nodes correspond to conditions or to control signals,
and the terminal nodes represent operations (functional units).
Register transfers and constant assignments are treated as
special cases of operations. When representing systems by
decision diagram models, in general case, a network of
HLDDs rather than a single HLDD is required. During the
simulation in HLDD systems, the values of some variables
labeling the nodes of a HLDD are calculated by other HLDDs
of the system. Figure 3 presents an example of an HLDD for
two variables, state and RMAX in the ITC99 benchmark b04.

 Assertions Code coverage

D
yn

am
ic

ve

ri
fic

at
io

n

Assertion
monitors

Code coverage
analysis

St
at

ic

Ve
ri

fic
at

io
n

Model
checking

Input
generation for
code coverage

Figure 1. HLDD verification tasks distribution chart

Gy=(M,E,X,D),
M={m1, m2, m3, m4, m5};
E={e1, e2, e3, e4, e5}, e1=(m1, m2), e2=(m1, m4),
e3=(m1, m5), e4=(m2, m3), e5=(m2, m4);
X(m1)=X(m5)=(x2,{0,1,2,…,7}), X(m2)=(x3,{0,1,2,3}),
X(m3)=(x4,…), X(m4)=(x1,…);
D(e1)={0}, D(e2)={1,2,3}, D(e3)={4,5,6,7},
D(e4)={2}, D(e5)={0,1,3}.

0,1,3

2 x2

x2

x1

x4 x3
m1 m2 m3

m4

m5

y 0

1-3

4-7

Figure 2. A HLDD for a function y=f(x1,x2,x3,x4)

The basis for assertion checking approach presented in this
paper is a simulator engine based on HLDDs. We have
implemented an algorithm supporting, both, Register-Transfer
Level (RTL) and behavioral style Hardware Description
Language (HDL) styles. In the RTL style, the algorithm takes
the previous time step value of variable xj labeling a node mi if
xj represents a clocked variable in the corresponding HDL.
Otherwise, the present value of xj will be used.

In the case of behavioral HDL coding style HLDDs are
generated and ranked in a special order. For variables xj
labeling HLDD nodes the previous time step value is used if
the HLDD diagram calculating xj is ranked after current
decision diagram. Otherwise, the present time step value will
be used.

Algorithm 1 presents the HLDD based simulation engine
for RTL, behavioral and mixed HDL description styles (See
Section 3.1 for definitions!):
Algorithm 1. RTL/behavioral simulation on HLDDs

For each diagram G in the model
 mCurrent = m0
 Let xCurrent be the variable labeling mCurrent
 While mCurrent is not a terminal node
 If is xCurrent clocked or its DD is ranked after G then
 Value = previous time-step value of xCurrent
 Else
 Value = present time-step value of xCurrent
 End if
 If Value ∈ D(eactive), eactive =(mCurrent, mNext) then
 mCurrent = mNext
 End if
 End while
 Assign xCurrent to the DD variable xG
End for

The following section will discuss the idea of assertion-
based verification and PSL language. It will also mention the
commercial tool FoCs from IBM for VHDL checkers
generation from PSL properties. Section 4 explains how such
checkers described in VHDL language can be converted into
HLDD models.

4. ASSERTION-BASED VERIFICATION AND PSL

As it was already noticed in the first section ABV can be
classified as Design-for-Verifiability (DFV) technique. The
goal is to assist both formal methods and simulation-based
verification and allow discovering Design under Verification
(DUV) misbehaviour (causing an assertion violation) earlier
and more effective. Another important advantage of ABV is
its aid to debug process.

In case of dynamic verification assertions provide better
observability on the design what allows detecting bugs earlier
and closer to their origin. At the same time in the case of static
verification with model checking, the assertions increase the
controllability of the design and direct verification to the area
of interest. Each assertion violation discovered by model
checking is reported as a counter-example.

The question of the origin of assertions can be formulated
as a separate topic for research itself. An important aspect here
is the problem of completeness. Usually assertions do not
describe all the possible properties of design what would mean
translation of a complete design specification to a formal
assertion description language such as PSL (Property
Specification Language), SVA (System Verilog Assertions) or
CTL (Computation Tree Logic). Instead of this only design
areas of concern, sometimes referred as verification hot spots,
are targeted. In practice they are often provided by design
engineer and require deep knowledge of the DUV behaviour.

...
if RESET = '1' then
 state := sA;
 RMAX := 0;
 ...
 elsif CLOCK'event and
 CLOCK='1' then
 ...
 case state is
 when sA =>
 state := SB;
 when sB =>
 RMAX := DATA_IN;
 ...
 state := sC;
 when sC =>
 ...
 if DATA_IN > RMAX then
 RMAX := DATA_IN;
 ...
 end if;
 ...
 state := sC;
 end case;
 end if;
...

state reset

sA

sB

sC

state

1

0 sA

sB

sC
sC

DATA_IN >RMAX

DATA_IN

state reset

0

RMAX
RMAX

1

0 sA

sB

sC

1

0 RMAX

DATA_IN

Figure 3. b04 example: HLDDs for variables state and RMAX

Assertion-based verification popularity has encouraged a
common Property Specification Language development by
the Functional Verification Technical Committee of Accellera.
After a process in which donations from a number of sources
were evaluated, the Sugar language from IBM was chosen as
the basis for PSL. The latest Language Reference Manual for
PSL version 1.1 was released in 2004 [13]. The language
became an IEEE 1850 Standard in 2005 [14].

An example PSL property reqack structure is shown in

Figure 4. Its Timing diagram is also illustrated by Figure 5-a.
It states that ack must become high next after req being high.
A system behaviour that activates reqack property however
obviously violating it is demonstrated in Figure 5-b. Figure 5-
c shows the case when the property was not activated.

For the convenience of verification engineers PSL is multi-

flavoured language, what means that it supports common
constructs of VHDL, Verilog, IBM’s GDL, SystemVerilog
and SystemC [15].

PSL is also a multi-layered language. The layers are [13]:
• Boolean layer – the lowest one, consists of boolean

expressions in HLD (e.g. a &&(b || c))
• Temporal later – sequences of boolean expressions over

multiple clock cycles, also supports Sequential Extended
Regular Expressions (SERE) (e.g. {A[*3];B} |-> {C})

• Verification layer - it provides directives that tell a
verification tool what to do with specified sequences and
properties.

• Modelling layer - additional helper code to model
auxiliary combinational signals, state machines etc. that
are not part of the actual design but are required to
express the property.

 The temporal layer of PSL language (the main one) has
two constituents [13]:

 Foundation Language (FL), that is Linear Temporal
Logic (LTL) with embedded SERE

 Optional Branching Extension (OBE), that is
Computational Tree Logic (CTL)

The second one considers multiple execution paths and
models design behaviour as execution trees. CTL can only be
used in formal verification, therefore this part of PSL is left
for future work related to HLDD-based model checking
implementation. This paper we will consider only FL part of
PSL. However not even the whole FL is applicable for
translation to HLDD monitors. Only its subset also known as
PSL Simple Subset is suitable for this purpose.

PSL Simple Subset is gaining its popularity and is
supported by many verification and simulation tools. It is
explicitly defined in [13] and loosely speaking it has two
requirements for time: to advance monotonically and be finite
and restrictions on types of operands for several operators.

A verification tool may support PSL or its Simple Subset
directly or require translation of PSL assertions to checkers in
its own format. The most widely known tool for this automatic
translation is FoCs by IBM. The input properties for this
translation can be expressed both in Sugar and PSL (GDL or
Verilog flavour). The target language of the checkers to be
generated can be chosen from VHDL, Verilog or C++. In
frames of the current approach we exploit FoCs to generate
VHDL checkers. Another advantage of FoCs is ability of its
usage without GUI what allows easy translation step
integration to HLDD verification flow.

The next section will describe the conversion process of a
VHDL checker generated from PSL property to HLDD
monitor.

5. PSL ASSERTIONS INTEGRATION TO HLDDS

Let us consider an example of a PSL assertion p as given
bellow:

p: assert always ({a; [*2] ;b} |=> {c})
The precondition of this assertion is the sequence of system
behaviour when at the beginning a becomes high, followed by
a whatever-sequence 2 clock cycles long and then b becoming
high. This precondition activates the assertion and requires c
to become high just after it (non-overlapping implication) in
order for assertion to be satisfied.

Figure 6. VHDL describing the checker for assertion p

Figure 5. Timing diagrams for the property “reqack”

req
ack

a)
req
ack

b)

req
ack

c)

PROCESS (clk)
BEGIN
 IF ((clk = '1')) THEN
 focs_ok <=
 (focs_vout(4) OR NOT(c)) ;
 ELSE
 focs_ok <= '1' ;
 END IF;
END PROCESS;

PROCESS
...
VARIABLE focs_vout : std_logic_vector(4 DOWNTO 0);
BEGIN
 WAIT UNTIL (clk'EVENT AND clk = '1');
 ...
 focs_vout(4 DOWNTO 0) := reverse(((((((
 focs_v(0) AND a)) & ((focs_v(1) AND '1')
)) & ((focs_v(2) AND '1'))) & ((
 focs_v(3) AND b))) & ((focs_v(4) AND
 NOT(c)))));
 ...
END PROCESS;

Figure 4. PSL property “reqack”

reqack: assert always (req -> next ack);

Label

Verification
directive

When to
check

Property to be
checked

The VHDL of the checker generated by FoCs has the form
shown in Figure 6.

The resulting VHDL code can be converted to HLDD
graphs and added on top of the design under verification
(DUV) as shown in Figure 7. In the Figure we used a notation
where trailing quote character after diagram variable denotes
one clock cycle delay. The HLDD variables corresponding to
the inputs and outputs of the checker (i.e. reset, a, b, c and p)
are shown by bold font. Generation of respective HLDDs
from similar checkers described in VHDL can be easily
automated.

Figure 7. HLDD for the assertion checker VHDL in Figure 6

The HLDD of the checker would be seamlessly integrated
and added on top of the design under verification (See Figure
8). This allows uniform model representation for, both, the
DUV and the assertion checker. Simulation of such integrated
HLDD model speeds up the assertion checking process
considerably. Previous experiments comparing HLDD
simulation times to those of state-of-the-art commercial
simulators have shown that it outperforms the commercial
event-driven tools by a factor of 10 [6] and the cycle-based
counterparts by a factor of 3-4 [7].

Figure 8. PSL assertion integration to HLDD model

6. CONCLUSIONS

The paper has proposed a novel method for checking PSL
language assertions using a digital design representation called
High-Level Decision Diagrams (HLDD).

Previous works have shown that HLDDs are an efficient
model for simulation and test pattern generation. The speedup
in simulation which is equal to factors of time and some other
their advantages has encouraged HLDDs application for
verification. At the same time Assertion-based Verification
approach provides obvious benefits for both static and
dynamic verification. This fact and the recent rapid spread of
PSL assertions application and support have motivated PSL
assertions integration into HLDD-based verification flow.

The paper has described in details PSL properties
conversion to HLDD simulation monitors, implying FoCs by
IBM for an intermediate step of VHDL checkers generation.
The approach has been demonstrated on example of a real life
type PSL temporal property.

ACKNOWLEDGMENTS

The work has been supported partly by EC FP 6 research
project VERTIGO FP6-2005-IST-5-033709 [16], Enterprise
Estonia funded ELIKO Development Centre, Estonian SF
grants 7068 and 5910, Estonian Association of Information
Technology and Telecommunications (ITL), Estonian
Information Technology Foundation (EITSA) and Nations
Support Program for the ICT in Higher Education "Tiger
University".

REFERENCES
[1] International Technology Roadmap for Semiconductors 2006 report

[www.itrs.net]
[2] S. Gheorghita and R. Grigore, “Constructing Checkers from PSL

Properties,” 15th International Conference on Control Systems and
Computer Science (CSCS15), vol. 2, pp. 757–762, 2005.

[3] Bustan D., Fisman D., and Havlicek J. Automata Construction for PSL.
The Weizmann Institute of Science, Technical Report MCS05-04, May
2005

[4] Marc Boulé and Zeljko Zilic. Efficient Automata-Based Assertion-
Checker Synthesis of PSL Properties. In Proceedings of the 2006 IEEE
International High Level Design Validation and Test Workshop
(HLDVT’06), pages 69–76, 2006.

[5] IBM AlphaWorks, “FoCs Property Checkers Generator ver. 2.04,”
[www.alphaworks.ibm.com/tech/FoCs], 2007.

[6] R. Ubar, J. Raik, A. Morawiec, Back-tracing and Event-driven
Techniques in High-level Simulation with Decision Diagrams. ISCAS
2000, Vol. 1, pp. 208-211.

[7] Raimund Ubar, Adam Morawiec, Jaan Raik. Cycle-based Simulation with
Decision Diagrams, Proceedings of the DATE Conference, pp. 454-458,
1999.

[8] J. Raik, R. Ubar, Fast Test Generation for Sequential Circuits Using
Decision Diagrams Representations. Journal of Electronic Testing:
Theory and Applications 16, Kluwer Academic Publisher, 2000, pp.
213-226.

[9] R. Bryant. Graph-based algorithms for boolean function manipulation.
IEEE Transactions on Computers, C-35, 8:677-691, 1986

[10] V. Chayakul, D. D. Gajski, L. Ramachandran, “High-Level
Transformations for Minimizing Syntactic Variances”, Proc. of
ACM/IEEE DAC, pp. 413-418, June 1993.

DUV
(HLDD)

Checker
(HLDD)

reset

0

a1’ a
0

1
reset

0

a2’ a1
0

reset

0

a3’ a2
0

reset

0

a4’ a3
0

reset

0

b1’ b
0

a4

b1

p
1

0

c

0

0

1

0

1

1

1 1

1

1

[11] I. Ghosh, M. Fujita, “Automatic Test Pattern Generation for Functional
RTL Circuits Using Assignment Decision Diagrams”, Proc. of
ACM/IEEE DAC, pp. 43-48, 2000.

[12] L. Zhang, I. Ghosh, M. Hsiao, “Efficient Sequential ATPG for
Functional RTL Circuits”, Int. Test Conf., pp.290-298, 2003.

[13] Accellera, “Property Specification Language Reference Manual”, v1.1,
June 9, 2004.

[14] IEEE-Commission, “IEEE standard for Property Specification Language
(PSL),” 2005, IEEE Std 1850-2005.

[15] Cindy Eisner, Dana Fisman, “A Practical Introduction to PSL”, Springer
Science, 2006.

[16] EU’s 6th Framework Programme research project VERTIGO web page
[www.vertigo-project.eu], 2007.

[17] R. Ubar. “Test Synthesis with Alternative Graphs”, In IEEE Design and Test
of Computers, pp. 48–57. 1996.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

