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ABSTRACT 
Technology scaling into subnanometer range will have impact on the manufacturing yield and 
quality. At the same time, complexity and communication requirements of systems-on-chip (SoC) 
are increasing, thus making a SoC designer goal to design a fault-free system a very difficult task. 
Network-on-chip (NoC) has been proposed as one of the alternatives to solve some of the on-chip 
communication problems and to address dependability at various levels of abstraction. This 
chapter concentrates on system-level design issues of NoC-based systems. It describes various 
methods proposed for NoC architecture analysis and optimization, and gives an overview of 
different system-level fault tolerance methods. Finally, the chapter presents a system-level design 
framework for performing design space exploration for dependable NoC-based systems. 

Introduction 
As technologies advance and semiconductor process dimensions shrink into the nanometer and 
subnanometer range, the high degree of sensitivity to defects begins to impact the overall yield 
and quality. The International Technology Roadmap for Semiconductors (2007) states that 
relaxing the requirement of 100% correctness for devices and interconnects may dramatically 
reduce costs of manufacturing, verification, and test. Such a paradigm shift is likely forced by the 
technology scaling that leads to more transient and permanent failures of signals, logic values, 
devices, and interconnects. In consumer electronics, where the reliability has not been a major 
concern so far, the design process has to be changed. Otherwise, there is a high loss in terms of 
faulty devices due to problems stemming from the nanometer and subnanometer manufacturing 
process. 

There has been a lot of research made on system reliability in different computing domains by 
employing data encoding, duplicating system components or software-based fault tolerance 
techniques. This research has mostly had either focus on low level hardware reliability or covered 
the distributed systems. Due to future design complexities and technology scaling, it is infeasible 
to concentrate only onto low level reliability analysis and improvement. We should fill the gap by 
looking at the application level. We have to assume that the manufactured devices might contain 
faults and an application, running on the system, must be aware that the underlying hardware is 
not perfect.  

The advances in design methods and tools have enabled integration of increasing number of 
components on a chip. Design space exploration of such many-core systems-on-chip (SoC) has 
been extensively studied, whereas the main focus has been so far on the computational aspect. 
With the increasing number of on-chip components and further advances in semiconductor 
technologies, the communication complexity increases and there is a need for an alternative to the 
traditional bus-based or point-to-point communication architectures. 



Network-on-chip (NoC) is one of the possibilities to overcome some of the on-chip 
communication problems. In such NoC-based systems, the communication is achieved by routing 
packets through the network infrastructure rather than routing global wires. However, 
communication parameters (inter-task communication volume, link latency and bandwidth, buffer 
size) might have major impact to the performance of applications implemented on NoCs. 
Therefore, in order to guarantee predictable behaviour and to satisfy performance constraints, a 
careful selection of application partitioning, mapping and synthesis algorithms is required. NoC 
platform provides also additional flexibility to tolerate faults and guarantees system reliability. 
Many authors have addressed these problems but most of the emphasis has been on the systems 
based on bus-based or point-to-point communication (Marculescu, Ogras, Li-Shiuan Peh Jerger, 
& Hoskote, 2009). However, a complete system-level design flow, taking into account the NoC 
network modelling and dependability issues, is still missing. 

This chapter first analyzes the problems related to the development of dependable systems-on-
chip. It outlines challenges, specifies problems and examines the work that has been done in 
different NoC research areas relevant to this chapter. We will give an overview of the state-of-
the-art in system-level design of traditional and NoC-based systems and describe briefly various 
methods proposed for system-level architecture analysis and optimization, such as application 
mapping, scheduling, communication analysis and synthesis. The chapter gives also an overview 
of different fault-tolerance techniques that have been successfully applied to bus-based systems. 
It analyzes their shortcomings and applicability to the network-based systems.  

The second part of the chapter describes our system-level design framework for performing 
design space exploration for NoC-based systems. It concentrates mainly on the specifics of the 
NoC-based systems, such as network modelling and communication synthesis. Finally, the 
chapter addresses the dependability issues and provides methods for developing fault-tolerant 
NoC-based embedded systems. 
 
BACKGROUND AND RELATED WORK 
In this section we first describe the design challenges that have emerged together with the 
technology scaling and due to increase of the design complexity. We give an overview of the key 
concepts and NoC terminology. The second part of this section is devoted to system-level design 
and dependability issues. 

Design Challenges of Systems-on-Chip 
The advances in design methods and tools have enabled integration of increasing number of 
components on the chip. Design space exploration of such many-core SoCs has been extensively 
studied, whereas the main focus has been so far on the computational aspect. With the increasing 
number of on-chip components and further advances in semiconductor technologies, the 
communication complexity increases and there is a need for an alternative to the traditional bus-
based or point-to-point communication architecture. The main challenges in the current SoC 
design methodologies are: 

• Deep submicron effects and variability – the scaling of feature sizes in semiconductor 
industry have given the ability to increase performance while lowering the power 
consumption. However, with feature sizes reducing below 40 nm it is getting hard to 
achieve favourable cost versus performance/power trade-offs in future CMOS 
technologies (International Technology Roadmap for Semiconductors, 2007; 



Konstadinidis, 2009). The emergence of deep submicron noise in the form of cross-talk, 
leakage, supply noise, as well as process variations is making it increasingly hard to 
achieve the desired level of noise-immunity while maintaining the historic improvement 
trends in performance and energy-efficiency (Shanbhag, Soumyanath, & Martin, 2000; 
Kahng, 2007). Interconnects also add a new dimension to design complexity. As 
interconnects also shrink and come closer together, previously negligible physical effects 
like crosstalk become significant (Hamilton, 1999;  Ho, Mai, & Horowitz, 2001). 

• Global synchrony – SoCs are traditionally based on a bus architecture where system 
modules exchange data via a synchronous central bus. When number of components 
increase rapidly, we have a situation where the clock signal cannot be distributed over the 
entire SoC during one clock cycle. Ho et al. (2001) describe that while local wires scale 
in performance, global and fixed-length wires do not. The technology scaling is more 
rapid for gates than for wires. It affects the design productivity and reliability of the 
devices. Optimization techniques, such as optimal wire sizing, buffer insertion, and 
simultaneous device and buffer sizing are solving only some of the problems. As feature 
size continues to shrink, the interconnect itself becomes complex circuitry in its own 
(Hamilton, 1999). Consequently, increased SoC complexity and feature size scaling 
below 40 nm requires alternative means for providing scalable and efficient 
interconnects. Globally asynchronous locally synchronous (GALS) design approach has 
been proposed as a feasible solution for communication intensive complex SoCs. In 
2000, Agarwal, Hrishikesh, Keckler, & Burger have examined the effects of technology 
scaling on wire delays and clock speeds, and measured the expected performance of a 
modern microprocessor core in CMOS technologies down to 35 nm. Their estimation 
shows that even under the best conditions the latency across the chip in a top-level metal 
wire will be 12-32 cycles (depending on the clock rate). Jason Cong’s simulations at the 
70 nm level suggest that delays on local interconnect will decrease by more than 50 
percent, whereas delays on non-optimized global interconnect will increase by 150 
percent (from 2 ns to 3.5 ns) (Hamilton, 1999). GALS systems contain several 
independent synchronous blocks that operate using their own local clocks and 
communicate asynchronously with each other. The main feature of these systems is the 
absence of a global timing reference and the use of several distinct local clocks (or clock 
domains), possibly running at different frequencies (Iyer & Marculescu, 2002). 

• Productivity gap – chip design has become so complex that designers need more 
education, experience, and exposure to a broad range of fields (device physics, wafer 
processing, analogue effects, digital systems) to understand how all these aspects come 
together. For the same reasons, designers need smarter tools that comprehend distributed 
effects like crosstalk (Hamilton, 1999). The complexity and cost of design and 
verification of multi-core products has rapidly increased to the point where developers 
devote thousands of engineer-years to a single design, yet processors reach market with 
hundreds of bugs (Allan, Edenfeld, Joyner, Kahng, Rodgers, & Zorian, 2002). The 
primary focus of consumer-products in CMOS process development is the integration 
density. By allowing to pack a greater functionality onto a smaller area of silicon, the 
higher integration density and lower cost can be achieved. For consumer applications, 
Moore’s law may continue for as long as the cost per function decreases from node to 
node (Claasen, 2006). To bridge the technology and productivity gap, the computation 
need to be decoupled from the communication. The communication platform should be 



scalable and predictable in terms of performance and electrical properties. It should 
enable high intellectual property  (IP) core reuse by using standard interfaces to connect 
IP-s to the interconnect. 

• Power and thermal management – interconnect wires account for a significant fraction 
(up to 50%) of the energy consumed in an integrated circuit and is expected to grow in 
the future (Raghunathan, Srivastava, & Gupta, 2003). Feature size scaling increases 
power density on the chip die that in turn can produce an increase in the chip 
temperature. The rapidly increasing proportion of the consumer electronics market 
represented by handheld, battery-powered, equipment also means that low power 
consumption has become a critical design requirement that must be addressed (Claasen, 
2006). 

• Verification and design for test – the increasing complexity of SoCs and the different set 
of tests required by deep submicron process technologies (for example tests for delay 
faults) has increased test data volume and test time to the extent that many SoCs no 
longer fit comfortably within the capabilities of automated test equipment (ATE) 
(Claasen, 2006). As a result, the cost of test has been rapidly increasing. Due to process 
variability, the reliability of the devices is not anymore a concern of only safety-critical 
applications but also a concern in consumer electronics. The products need to be designed 
to tolerate certain number of manufacturing (permanent) or transient faults.  

To overcome some of the above challenges the network-on-chip paradigm has been proposed. 
While computer networking techniques are well known already from the 80’s, the paradigm shift 
reached to the chips in the beginning of this millennium. There were several independent research 
groups (Benini & De Micheli, 2002; Dally & Towles, 2001; Guerrier & Greiner, 2000; Hemani et 
al., 2000; Rijpkema, Goossens, & Wielage, 2001; Sgroi et al., 2001) introducing networking ideas 
to embedded systems.  
 

Network-on-chip as a new design paradigm 

In 2000, Guerrier and Greiner proposed a scalable, programmable, integrated network (SPIN) for 
packet-switched system-on-chip interconnections. They were using fat-tree topology and 
wormhole switching with two one-way 32-bit data paths having credit-based flow control. They 
proposed a router design with dedicated input buffers and shared output buffers, estimated the 
router cost and network performance. The term “network-on-chip” was first used by Hemani et 
al. in November 2000. The authors introduced the concept of reconfigurable network of resources 
and its associated methodology as solution to the design productivity problem. In June 2001, 
Dally and Towles proposed NoC as general-purpose on-chip interconnection network to connect 
IP cores replacing design-specific global on-chip wiring. It was demonstrated that using a 
network to replace global wiring has advantages in structure, performance, and modularity. The 
GigaScale Research Center suggested a layered approach similar to that defined for 
communication networks to address the problem of connecting a large number of IP cores. 
Additionally the need for a set of new generation methodologies and tools were described (Sgroi 
et al., 2001). In October 2001, researchers from Philips Research presented a quality of service 
(QoS) router architecture supporting both best-effort and guaranteed-throughput (Rijpkema et al., 
2001). In January 2002, Benini and De Micheli formulated NoC as a new SoC design paradigm.  

During the years many, NoC research platforms have been developed such as Aethereal 
(Goossens, Dielissen, & Radulescu, 2005), MANGO (Bjerregaard & Sparso, 2005), Nostrum 



(Kumar et al., 2002), SPIN (Guerrier & Greiner, 2000), Xpipes (Bertozzi & Benini, 2004), 
CHAIN (Felicijan, Bainbridge, & Furber, 2003). Commercial NoC platforms include Arteris 
(Arteris, 2009), STNoC (STMicroelectronics, 2009), Silistix (Silistix, 2009) and Sonics (Sonics, 
2009). 

Current and future directions of on-chip networks include 3D NoCs (Feero & Pande, 2007; 
Pavlidis & Friedman, 2007; Murali, Seiculescu, Benini, & De Micheli, 2009) and optical 
interconnects (Haurylau et al., 2006). Both emerged in the middle of 90’s in various forms. 3D 
NoCs are having its roots in 2001 (Banerjee, Souri, Kapur, & Saraswat, 2001). 

 
Comparison with bus based systems and macro networks 

Point-to-point connections (circuit switching), common to SoC, are replaced in NoC by dividing 
the messages into packets (packet switching). Each component stores its state and exchanges data 
autonomously with others. Such systems are by their nature GALS systems, containing several 
independent synchronous blocks that operate with their own local clocks and communicate 
asynchronously with each other (Iyer & Marculescu, 2002). Having multiple different network 
routes available for the data transmission makes NoCs to be adaptive – to balance the network 
load, for instance. 

The communication platform limitations, data throughput, reliability and QoS are more 
difficult to address in NoC architectures than in computer networks. The NoC components 
(memory, resources) are relatively more expensive, whereas the number of point-to-point links is 
larger on-chip than off-chip. On-chip wires are also relatively shorter than the off-chip ones, thus 
allowing a much tighter synchronization than off-chip. On one hand, only a minimum design 
overhead is allowed that is needed to guarantee the reliable data transfer. On the other hand, the 
on-chip network must handle the data ordering and flow control issues (Radulescu & Goossens, 
2002). The packets might appear at the destination resource out of order – they need to be 
buffered and put into the correct order. 

 

Principles of Networks-on-Chip 
In this section we provide an overview of the key concepts and terminology of NoCs. The NoC 
design paradigm has two good properties to handle the SoC design complexity – predictability 
and reusability. The throughput, electrical properties, design and verification time are easier to 
predict due to the regular structure of the NoC. We can connect to the network any IP component 
that has the appropriate network interface. The NoC paradigm does not set any limits to the 
number of components. The components and also the communication platform are reusable – the 
designer needs to design, optimise and verify them once. The layered network architecture 
provides the needed communication and network services enabling the functionality reuse 
(Jantsch & Tenhunen, 2003). 

NoC decouples communication from computation and provides a flexible and reusable 
communication platform. The interconnection network is a shared resource that the designer can 
utilize. To design an on-chip communication infrastructure and to meet the performance 
requirements of an application, the designer has certain design alternatives that are governed by 
topology, switching, routing and flow control of the network. NoC provides the communication 
infrastructure for resources. Resources can be heterogeneous. A resource can be memory, 
processor core, DSP, reconfigurable block or any IP block that conforms to the network interface 



(NI). Every resource is connected to switch via resource network interface (RNI). Instead of 
dedicated point-to-point channels between two IP cores, the interconnection network is 
implemented as set of shared routers and communication links between the routers. The way the 
routers are connected with each other defines the network topology. Data to be transferred 
between communicating nodes is called a message. As messages can have varying sizes it is 
infeasible to design routers to handle unbounded amounts of data. Instead, messages are divided 
into smaller bounded flow control units. The way a message is split and transferred through the 
routers is called switching. Usually there are alternative paths to deliver a message from source to 
destination. An algorithm to choose between such paths is called routing. A good routing 
algorithm finds usually minimal paths while avoiding deadlocks. Another alternative would be to 
balance the network load. Flow control handles network resource accesses. If a network is not 
able to handle the current communication load the flow control might forward more critical 
messages while dropping or re-routing the non-critical ones. An effective network design 
maximises the throughput and decreases network latency and communication conflicts (Dally & 
Towles, 2004). 

 
Topology 

Topology refers to the physical structure of the network (how resources and switches are 
connected to each other). It defines connectivity and routing possibilities between the nodes 
affecting therefore performance of the network and design of the router. Topologies can be 
divided into two classes by their regularity – regular and application specific. The regular 
topologies can be described in terms of k-ary n-cube, where k is the degree of each dimension and 
n is the number of dimensions (Dally, 1990). Regular topology is not the most efficient in terms 
of manufacturing but allows easier routing algorithms and better predictability. The regularity 
aims for design reuse and scalability while application specific topologies target performance and 
power consumption. Most NoCs implement regular forms of network topology that can be laid 
out on a chip surface, for example k-ary 2-cube meshes (Kumar et al., 2002) and torus (Dally & 
Towles, 2001). The k-ary tree and k-ary n-dimensional fat tree (Adriahantenaina, Charlery, 
Greiner, Mortiez, & Zeferino, 2003) are two alternative regular NoC topologies. Recent research 
in this area is devoted to 3-dimensional NoCs. Each router in a 2D NoC is connected to a 
neighbouring router in one of four directions. Consequently, each router has five ports. 
Alternatively, in a 3D NoC, the router typically connects to two additional neighbouring routers 
located on the adjacent physical planes (Pavlidis & Friedman, 2007). Figure 1 shows examples of 
various regular and application specific topologies, including 3D. 



 

Figure 1. Regular topologies. Examples are (a) 4-ary 2-cube mesh, (b) 4-ary 2-cube torus, (c) 

application specific, (d) binary 2-ary tree and (e) 3D mesh 

Switching method 

Switching method determines how a message traverses its route. There are two main switching 
methods – circuit switching and packet switching. Circuit switching is a form of bufferless flow 
control that operates by first allocating channels to form a circuit from source to destination and 
then sending messages along this circuit. After the data transmission, the circuit can be 
deallocated and released for other communication. Circuit switching is connection-oriented, 
meaning that there is an explicit connection establishment (Lu, 2007). In packet switching the 
messages are split into packets. Depending of switching methods, a packet can be further divided 
into smaller flow control units (flits). A packet consists usually of a header, a payload and a tail. 
The packet header contains routing information, while the payload carries the actual data. The tail 
indicates the end of a packet and can contain also error-checking code. Packet switching can be 
either connection-oriented or connection-less. In contrast to the connection-oriented switching, in 
the connection-less the packets are routed in a non-guaranteed manner. There is no dedicated 
circuit built between the source and destination nodes. 

Most common packet switching techniques include store-and-forward, virtual cut-through and 
wormhole switching.  

• Store-and-forward – when a packet reaches an intermediate node, the entire packet is 
stored in a packet buffer. The packet is forwarded to the next selected neighbour router 
after the neighbouring router has an available buffer. Store-and-forward is simple to 
implement but it has major drawbacks. First, it has to buffer the entire packet before 
forwarding it to the downstream router. This has a negative effect on router area 
overhead. Second, the network latency is proportional to the distance between the source 
and the destination nodes. The network latency of store-and-forward can be calculated 
(Ni & McKinley, 1993) as 

 Latencystore-and-forward = (L/B)D (1) 



 where L is message size, B is channel bandwidth and D is distance in hops. The smallest 
flow control unit is a packet. 

• Virtual cut-through – to decrease the amount of time spent transmitting data Kermani and 
Kleinrock (1979) introduced the virtual cut-through switching method. In the virtual cut-
through a packet is stored at an intermediate node only if the next required channel is 
busy. The network latency of the virtual cut-through can be calculated as 

 Latencyvirtual cut-through = (Lh /B)D + L/B (2) 
 where Lh is size of the header field. Usually the message size is times bigger than header 
field and therefore the distance D will produce a negligible effect on the network latency. 
The smallest flow control unit is a packet. 

• Wormhole – operates like virtual cut-through but with channel and buffers allocated to 
flits rather than packets (Dally & Towles, 2004). A packet is divided into smaller flow 
control units called flits. There are three types of flits – body, header, and tail. The header 
flit governs the route. As the header advances along its specified route, the rest of the flits 
follow in a pipeline fashion. If a channel is busy, the header flit gets blocked and waits 
the channel to become available. Rather than collecting and buffering the remaining flits 
in the current blocked router, the flits stay in flit buffers along the established route. Body 
flits carry the data. The tail flit is handled like a body flit but its main purpose is to 
release the acquired flit buffers and channels. The network latency of wormhole 
switching can be calculated according to Ni & McKinley (1993) as 

 Latencywormhole = (Lf  /B)D + L/B (3) 
where Lf is size of the flit. In similar way to virtual cut-through distance D has not 
significant effect on the network latency unless it is very large. Wormhole switching is 
more efficient than virtual cut-through in terms of the buffer space. However, this comes 
at the expense of some throughput since wormhole flow control may block a channel 
mid-packet (Dally & Towles, 2004). 

• Virtual channels – associates several virtual channels (channel state and flit buffers) with 
a single physical channel. Virtual channels overcome the blocking problems of the 
wormhole switching by allowing other packets to use the channel bandwidth that would 
otherwise be left idle when a packet blocks (Dally & Towles, 2004). It requires an 
effective method to allocate the optimal number of virtual channels. Allocating the virtual 
channels uniformly results in a waste of area and significant leakage power, especially at 
nanoscale (Huang, Ogras, & Marculescu, 2007). 

 
Routing 

Routing algorithm determines the routing paths the packets may follow through the network. 
Routing algorithms can be divided in terms of path diversity and adaptivity into deterministic, 
oblivious and adaptive routing. Deterministic routing chooses always the same path given the 
same source and destination node. An example is source ordered XY routing. In XY routing the 
processing cores are numbered by their geographical coordinates. Packets are routed first via X 
and then via Y-axis by comparing the source and destination coordinate. Deterministic routing 
has small implementation overhead but it can cause load imbalance on network links. 
Deterministic routing cannot also tolerate permanent faults in NoC and re-route the packets. 
Oblivious routing considers all possible multiple paths from the source node to destination but 
does not take the network state into account. Adaptive routing distributes the load dynamically in 



response to the network load. For example, it re-routes packets in order to avoid congested area or 
failed links. Adaptive routing has been favourable providing high fault tolerance. The drawbacks 
include higher modelling and implementation complexity. Deterministic routing algorithms 
guarantee in-order delivery while in adaptive routing buffering might be needed at the receiver 
side to re-order the packets. 

There are two important terms when talking about routing – deadlock and livelock. Deadlock 
occurs in an interconnection network when group of packets are unable to progress because they 
are waiting on one another to release resources, usually buffers or channels (Dally & Towles, 
2004). Deadlocks have fatal effects on a network. Therefore deadlock avoidance or deadlock 
recovery should be considered for routing algorithms that tend to deadlock. Another problematic 
network phenomenon is livelock. In livelock, packets continue to move through the network, but 
they do not make progress toward their destinations (Dally & Towles, 2004). It can happen for 
example when packets are allowed to take not the shortest routes. Usually it is being handled by 
allowing a certain number of misroutes after which the packet is discarded and need to be re-
submitted. 

 
Flow control 

Flow control deals with network load monitoring and congestion resolution. Due to the limited 
buffers and throughput, the packets may be blocked and flow control decides how to resolve this 
situation. The flow control techniques can be divided into two – bufferless and buffered flow 
controls. The bufferless flow control is the simplest in its implementation. In bufferless flow 
control there are no buffers in the switches. The link bandwidth is the resource to be acquired and 
allocated. There is need for an arbitration to choose between the competing communications. 
Unavailable bandwidth means that a message needs to be misrouted or dropped. Dropped 
message has to be resent by the source. Misrouting and message dropping both increase latency 
and decrease efficiency (throughput) of the network. Deflection routing is an example of the 
bufferless flow control. In deflection routing, an arbitrary routing algorithm chooses a routing 
path, while deflection policy is handling the resource contentions. In the case of network 
contention, the deflection policy grants link bandwidth to the higher priority messages and 
misroutes the lower priority messages. Deflection routing allows low overhead switch design 
while at the same time provides adaptivity for network load and resilience for permanent link 
faults. 

In the buffered flow control, a switch has buffers to store the flow control unit(s) until 
bandwidth can be allocated to the communication on outgoing link. The granularity of the flow 
control unit can be different. In store-and-forward and virtual cut-through both the link bandwidth 
and buffers are allocated in terms of packets but in wormhole switching in flits. In buffered flow 
control, it is crucial to distribute the buffer availability information between the neighbouring 
routers. If buffers of the upstream routers are full, the downstream routers must stop transmitting 
any further flow control units. The flow control accounting is done at link level. The most 
common flow control accounting techniques are credit-based, on/off and ack/nack (Dally & 
Towles, 2004). 

 
Quality of Service 

Quality of Service (QoS) gives guarantees on packet delivery. The guarantees include correctness 
of the result, completion of the transmission, and bounds on the performance (Lu, 2007). The 



network traffic is divided usually into two service classes – best-effort and guaranteed. A best-
effort service is connectionless. Packets are delivered when possible depending on the current 
network condition. A guaranteed service is typically connection-oriented. The guaranteed service 
class packets are prioritized over the best-effort traffic. In addition, guaranteed service avoids 
network congestions by establishing a virtual circuit and reserving the resources. It can be 
implemented for example by using multiple timeslots (Time Division Multiple Access, TDMA) 
or virtual channels. 
 
Further reading 

There is comprehensive survey of research and practices of network-on-chip (Bjerregaard & 
Mahadevan, 2006), survey of different NoC implementations (Salminen, Kulmala, & 
Hämäläinen, 2008) and overview of outstanding research problems in NoC design (Marculescu et 
al., 2009). 
 

System-level design 
System-level design starts with the specification of a system to be designed and concludes with 
integration of the created hardware and software. Of course, considering the complexity of 
systems, a systematic approach is needed and the system-level design methodologies try to take 
into account important implementation issues already at higher abstraction levels. 
 
Traditional system-level design flow 

Having its roots in the end of the 80’s, system-level design is a hierarchical process that begins 
with a high-level description of the complete system and works down to fine grained descriptions 
of individual systems modules (Stressing, 1989). Initially, the descriptions of a system are 
independent from the implementation technology. There are even no details whether some 
component of the system should be implemented in hardware or in software. Therefore, early 
system descriptions are more behavioural than structural, focusing on system functionality and 
performance specification rather than interconnects and modules. In addition to the system 
specification, it is important to have possibility to verify the performance and functional 
specification. A specification at the system-level should be created in such a way that its 
correctness can be validated by simulation. Such a model is often referred to as simulatable 
specification. In addition, a model at the system-level should be expressed in a form that enables 
verification that further refinements correctly implement the model (Ashenden & Wilsey, 1998). 
Possible approaches include behavioural synthesis (correct by construction), and formal 
verification using model checking and equivalence checking (Ashenden & Wilsey, 1998). A third 
essential element of system-level design is the exploration of various design alternatives. For 
example, whether to implement a function in hardware or in software, whether to solve it with 
sequential or parallel algorithm. The analysis of trade-offs between design alternatives is a key 
element of system-level design and shows the quality of the particular system-level design flow. 
It is important that a system-level design flow is supported by system-level tools – 
simulators/verifiers, estimators and partitioners. The first system-level design tools were 
introduced in 1980 by Endot, a company formed out of the staff at the Case Western Reserve 
University (Stressing, 1989). The need for the system-level design tools was the complexity of 
the aerospace and defence systems that were then being developed, but it soon became apparent 



that these tools were applicable to design complex digital hardware/software systems of any type 
(Stressing, 1989). 

At the system-level, a system can be modelled as a collection of active objects that react to 
events, including communication of data between objects and stimuli from the surrounding 
environment. Abstractions are needed in a number of areas to make the system-level behavioural 
modelling tractable in the following views: 

• abstraction of data, 
• abstraction of concurrency, and 
• abstraction of communication and timing (Ashenden & Wilsey, 1998). 

Of course, different views can stress on different abstractions, e.g., concurrency is replaced by 
calculation, and communication and timing are looked at separately (Jantsch, 2003).  

The classical system-level design flow consists of several consecutive design tasks with 
loopbacks to previous steps (Lagnese & Thomas, 1989). An input to the system-level design flow 
is a system specification that is represented in a formal way, e.g., dataflow or task graph. In the 
dataflow graph, the nodes represent operators and the arcs between them represent data and 
control dependencies like in task graphs. The operators are scheduled into time slots called 
control steps. Scheduling determines the execution order of the operators. The scheduling can be 
either static or dynamic. In the dynamic scheduling, the start times are obtained during execution 
(online) based on priorities assigned to processes. In the static scheduling, the start times of the 
processes are determined at the design time (off-line) and stored in the form of schedule tables. 
Scheduling sets lower limits on the hardware because operators scheduled into the same control 
step cannot share the hardware. Thus, scheduling has a great impact on the allocation of the 
hardware. After scheduling the data-flow operators and values are mapped to allocated hardware. 
If the hardware platform is given with the system specification then designer can also start first 
with the mapping and then perform the scheduling. Since both, mapping and scheduling, are NP-
hard, the parallel execution of those design phases is extremely difficult. When the results of the 
system-level design flow do not satisfy the initial requirements, either the mapping or the 
scheduling of application’s components can be changed. If no feasible solution is found, changes 
are needed in the system specification or in the architecture. After an acceptable schedule is 
found, lower abstraction-levels of hardware/software co-design will follow. 
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Figure 2. Classical system-level design flow 

Refinement to a software implementation is facilitated by a system-level modelling language 
that is closely related to programming languages. In principle, both the hardware and software 
implementations could be expressed in the same language as the system-level model, thus 
avoiding semantic mismatches between different languages in the design flow (Ashenden & 
Wilsey, 1998). Some of the most common system-level design languages are StateCharts (Harel, 
1987), Estelle (Budkowski & Dembinski, 1987), SDL (Færgemand & Olsen, 1994), CSP (Hoare, 
1978) and SystemC (SystemC, 2009). Most recent and prominent of those is SystemC. SystemC 
is a C++ class library that can be used to create a cycle-accurate model for software algorithms, 
hardware architectures, and interfaces, related to system-level designs (SystemC, 2009). 

Most of modern embedded systems have both the hardware and software components. When 
designing such a system, it is important that both sides are developed not in an isolated but in an 
integrated manner. The generic hardware/software co-design methodology, as a part of the overall 
system design flow, supports concurrent development of software and hardware. Important tasks 
in such a development are co-simulation and co-verification. It should be noted that in many 
cases, systems have also analogue parts that should be designed concurrently with rest of the 
system (Gerstlauer, Haubelt, Pimentel, Stefanov, Gajski, & Teich, 2009). 
 
System-level design issues of NoC-based systems 

In principle, the system-level design issues for NoC-based systems follow the same principles as 
described above. That is, the initial specification is modelled to estimate performance and 
resource requirements when using different architectural solutions. This includes platform 
selection, task mapping and task scheduling. In addition, because of the rather complex 
communication behaviour between resources, communication mapping and scheduling between 
tasks should be addressed with care. The reason for that is rather simple – communication 
latencies may be unpredictable, especially when trying to apply dynamic task organisation. 
Therefore, the traditional scheduling techniques that are applicable to the hard real-time and 
distributed systems are not suitable as they address only the bus-based or point-to-point 



communication.  Also, system-level design for NoCs has one major difference when compared to 
the traditional system-level design – hardware platform is either fixed or has limited modification 
possibilities (Keutzer, Newton, Rabaey, & Sangiovanni-Vincentelli, 2000). Therefore the main 
focus is on the application design and distribution between resources.   

NoC communication latency depends on various parameters such as topology, routing, 
switching algorithms, etc., and need to be calculated after task mapping and before the task graph 
scheduling   (Marculescu et al., 2009). In several research papers, the average or the worst case 
communication delay has been considered (Lei & Kumar, 2003; Marcon, Kreutz, Susin, & 
Calazans, 2005; Hu & Marculescu, 2005; Shin & Kim, 2004; Stuijk, Basten, Geilen, & 
Ghamarian, 2006; Shim & Burns, 2008; Shin & Kim, 2008). In many cases, it is an 
approximation that can be either too pessimistic (giving the upper bound) or too optimistic (by 
not scheduling explicitly the communication or not considering the communication conflicts). 
Therefore, an efficient system-level NoC design framework requires an approach for the 
communication modelling and synthesis to calculate communication hard deadlines that are 
represented by communication delay and guide the system-level synthesis process by taking into 
account possible network conflicts. 

 

Dependable Systems-on-Chip 
System dependability is a QoS having attributes reliability, availability, maintainability, 
testability, integrity and safety (Wattanapongsakorn & Levitan, 2000). Achieving a dependable 
system requires combination of a set of methods that can be classified into: 

• fault-avoidance – how to prevent (by construction) fault occurrence, 
• fault-tolerance – how to provide (by redundancy) service in spite of faults occurred or 

occurring, 
• error-removal – how to minimize (by verification) the presence of latent errors, 
• error-forecasting – how to estimate (by evaluation) the presence, the creation and the 

consequences of errors (Laprie, 1985). 
In 1997, Kiang has depicted dependability requirements over past several decades showing 

shift in the dependability demands from the product reliability into customer demands for total 
solutions. The percentage of hardware failures noted in the field is claimed to be minimal, thus 
allowing to focus on system architecture design and software integrity through the design process 
management and concurrent engineering. Technology scaling, however, brings process variations 
and increasing number of transient faults (Constantinescu, 2003) that requires focus together with 
system design also on fault-tolerance design. According to Wattanapongsakorn and Levitan 
(2000) a design framework that integrates dependability analysis into the system design process 
must be implemented. To date, there are very few such system design frameworks, and none of 
them provide support at all design levels in the system design process, including evaluations of 
system redundancy, and dependency. 
 
Classification of faults 

Different sources classify the terms fault, error, failure differently. However, in everyday life we 
tend to use them interchangeably. According to IEEE standard 1044-2009 (2009) of software 
anomalies, an error is an action which produces an incorrect result. A fault is a manifestation of 
the error in software. A failure is a termination of the ability of a component to perform a 



required action. A failure may be produced when a fault is encountered. In Koren and Krishna 
(2007) view a fault (or a failure) can be either a hardware defect or a software mistake. An error 
is a manifestation of the fault or the failure.  

Software faults are in general all programming mistakes (bugs). Hardware faults can be 
divided into three groups: permanent, intermittent and transient faults according to their duration 
and occurrence. 

• Permanent faults – the irreversible physical defects in hardware caused by manufacturing 
process variations or wearout mechanism. Once a permanent fault occurs it does not 
disappear. Manufacturing tests are used to detect permanent faults caused by the 
manufacturing process. Fault tolerance techniques can be used to achieve higher yield by 
accepting chips with some permanent faults that are then masked by the fault tolerance 
methods. 

• Intermittent faults – occur because of unstable or marginal hardware. They can be 
activated by environmental changes, like higher temperature or voltage. Usually 
intermittent faults precede the occurrence of permanent faults (Constantinescu, 2003). 

• Transient faults – cause a component to malfunction for some time. Transient faults are 
malfunctions caused by some temporary environmental conditions such as neutrons and 
alpha particles, power supply and interconnect noise, electromagnetic interference and 
electrostatic discharge (Constantinescu, 2003). Transient faults cause no permanent 
damage and therefore they are called soft errors. The soft errors are measured by Soft 
Error Rate (SER) that is probability of error occurrence. 

 
Fault tolerance 

Fault tolerance is an exercise to exploit and manage redundancy. Redundancy is the property of 
having more of a resource than is minimally necessary to provide the service. As failures happen, 
redundancy is exploited to mask or work around these failures, thus maintaining the desired level 
of functionality (Koren & Krishna, 2007). 

Usually we speak of four forms of redundancy: 
• Hardware – provided by incorporating extra hardware into the design to either detect or 

override the effects of a failed component. We can have 
o static hardware redundancy – objective to immediately mask a failure; 
o dynamic hardware redundancy – spare components are activated upon a failure 

of a currently active component; 
o hybrid hardware redundancy – combination of the two above. 

• Software – protects against software faults. Two or more versions of the software can be 
run in the hope that that the different versions will not fail on the same input. 

• Information – extra bits are added to the original data bits so that an error in the bits can 
be detected and/or corrected. The best-known forms of information redundancy are error 
detection and correction coding. Error codes require extra hardware to process the 
redundant data (the check bits). 

• Time – deals with hardware redundancy, re-transmissions, re-execution of the same 
program on the same hardware. Time redundancy is effective mainly against transient 
faults (Koren & Krishna, 2007). 

Metrics are used to measure the quality and reliability of devices. There are two general 
classes of metrics that can be computed with reliability models:  



• the expected time to some event, and 
• the probability that a system is operating in a given mode by time t. 

The expected time to some event is characterized by mean time to failure (MTTF)  – the 
expected time that a system will operate before a failure occurs. Mean Time To Repair (MTTR) 
is an expected time to repair the system. Mean Time Between Failures (MTBF) combines the two 
latter measures and is the expected time that a system will operate between two failures: 

 MTBF = MTTF + MTTR (4) 
The second class is represented by reliability measure. Reliability, denoted by R(t), is the 

probability (as a function of the time t) that the system has been up continuously in the time 
interval [t0, t], given that the system was performing correctly at time t0 (Smith, DeLong, 
Johnson, & Giras, 2000). 

While general system measures are useful at system-level, these metrics may overlook 
important properties of fault-tolerant NoCs (Grecu, Anghel, Pande, Ivanov, & Saleh, 2007). For 
example, even when the failure rate is high (causing undesirable MTBF) recovery can be 
performed quickly on packet or even on flit level. Another drawback is related to the fact that 
generic metrics represent average values. In a system with hard real-time requirements the NoC 
interconnect must provide QoS and meet the performance constraints (latency, throughput). 
Therefore specialized measures focusing on network interconnects should be considered when 
designing fault-tolerant NoC-based Systems-on-Chip. For example, one has to consider node 
connectivity that is defined as the minimum number of nodes and links that have to fail before the 
network becomes disconnected or average node-pair distance and the network diameter (the 
maximum node-pair distance), both calculated given the probability of node and/or link failure 
(Koren & Krishna, 2007). In 2007 Ejlali, Al-Hashimi, Rosinger, and Miremadi proposed 
performability metric to measure the performance and reliability of communication in joint view. 
Performability P(L, T) of an on-chip interconnect is defined as the probability to transmit L useful 
bits during the time T in the presence of noise. In presence of erroneous communication re-
transmission of messages is needed which reduces probability to finish the transmission in a 
given time period. Lowering the bit-rate increases time to transmit the messages but also 
increases probability to finish the transmission during the time interval. According to authors the 
performability of an interconnect  which is used for a safety-critical application must be greater 
than 1-10-1. 
 
Fault tolerance techniques 

Fault tolerance has been extensively studied in the field of distributed systems and bus-based 
SoCs. In (Miremadi & Torin, 1995) the impact of transient faults in a microprocessor system is 
described. They use three different error detection mechanisms – signature, watchdog timer, and 
error capturing instruction (ECI) mechanism. Signature is a technique where each operation or a 
set of operations are assigned with a pre-computed checksum that indicates whether a fault has 
occurred during those operations. Watchdog Timer is a technique where the program flow is 
periodically checked for presence of faults. Watchdog Timer can monitor, for example, execution 
time of the processes or to calculate periodically checksums (signatures). In the case of ECI 
mechanism, redundant machine-instructions are inserted into the main memory to detect control 
flow errors. Once a fault is detected with one of the techniques above, it can be handled by a 
system-level fault tolerance mechanism. In 2006, Izosimov described the following software 
based fault tolerance mechanisms: re-execution, rollback recovery with checkpointing and 



active/passive replication. Re-execution restores the initial inputs of the task and executes it 
again. Time penalty depends on the task length. Rollback recovery with checkpointing 
mechanism reduces the time overhead – the last non-faulty state (so called checkpoint) of a task 
has to be saved in advance and will be restored if the task fails. It requires checkpoints to be 
designed into the application that is not a deterministic task. Active and passive replications 
utilize spare capacity of other computational nodes. In 2007, Koren and Krishna described fault 
tolerant routing schemes in macro-distributed networks. 

Similarly to distributed systems, NoC is based on a layered approach. The fault tolerance 
techniques can be classified by the layer onto which they are placed in the communication stack. 
We are, however, dividing the fault tolerance techniques into two bigger classes – system-level 
and network-level techniques. At the network level, the fault tolerance techniques are based, for 
example, on hardware redundancy, error detection / correction and fault tolerant routing. By 
system-level fault tolerance we mean techniques that take into account application specifics and 
can tolerate even unreliable hardware. 

One of the most popular generic fault tolerance techniques is n-modular redundancy (NMR) 
that consists of n identical components and a voter to detect and mask failures. This structure is 
capable of masking (n - 1)/2 errors having n identical components. The most common values for 
n are three (triple modular redundancy, TMR), five and seven capable of masking one, two and 
three errors, respectively. Because a system with an even number of components may produce an 
inconclusive result, the number of components used must be odd (Pan & Cheng, 2007). NMR can 
be used to increase both hardware and system-level reliability by either duplicating routers, 
physical links or running multiple copies of software components on different NoC processing 
cores.  

Pande, Ganguly, Feero, Belzer, and Grecu (2006) propose a joint crosstalk avoidance and 
error correction code to minimize power consumption and increase reliability of communication 
in NoCs. The proposed schemes, Duplicate Add Parity (DAP) and Modified Dual Rail (MDR), 
use duplication to reduce crosstalk. Boundary Shift Code (BSC) coding scheme attempts to 
reduce crosstalk-induced delay by avoiding shared boundary between successive codewords. 
BSC scheme is different from DAP that at each clock cycle, the parity bit is placed on the 
opposite side of the encoded flow control unit. Data coding techniques can be used in both inter-
router and end-to-end communication. Dumitras and Marculescu (2003) propose a fast and 
computationally lightweight fault tolerant scheme for the on-chip communication, based on an 
error-detection and multiple-transmissions scheme. The key observation behind the strategy is 
that, at the chip level, the bandwidth is less expensive than in traditional networks because of the 
existing high-speed buses and interconnection fabrics that can be used for the implementation of a 
NoC. Therefore we can afford to have more packet transmissions than in the previous protocols in 
order to simplify the communication scheme and to guarantee low latencies. Dumitras and 
Marculescu call this strategy where  IPs communicate using probabilistic broadcast scheme – on-
chip stochastic communication. Data is forwarded from a source to destination cores via multiple 
paths selected by probability. Similar approach is proposed in (Pirretti, Link, Brooks, 
Vijaykrishnan, Kandemir, & Irwin, 2004) and (Murali, Atienza, Benini, & De Micheli, 2006).  
Lehtonen, Liljeberg and Plosila (2009) describe turn models for routing to avoid deadlocks and 
increase network resilience for permanent faults. Kariniemi and Nurmi (2005) presented a fault 
tolerant eXtended Generalized Fat Tree (XGFT) NoC implemented with a fault-diagnosis-and-
repair (FDAR) system. The FDAR system is able to locate faults and reconfigure routing nodes in 
such a way that the network can route packets correctly despite the faults. The fault diagnosis and 



repair is very important as there is only one routing path available in the XGFTs for routing the 
packets downwards from nearest common ancestor to its destination. Frazzetta, Dimartino, Palesi, 
Kumar and Catania (2008) describe an interesting approach where partially faulty links are also 
used for communication. For example, data can be transmitted via “healthy wires” on a 24-bit 
wide channel although the channel is before degrading 32-bit wide. Special method is used to 
split and resemble the flow control units. Zhang, Han, Xu, Li and Li (2009) introduce virtual 
topology that allows to use spare NoC cores to replace faulty ones and re-configure the NoC to 
maintain the logical topology. A virtual topology is isomorphic with the topology of the target 
design but is a degraded version. From the viewpoint of programmers and application, they 
always see a unified virtual topology regardless of the various underlying physical topologies. 
Another approach is to have a fixed topology but remap the tasks on a failed core. Ababei and 
Katti (2009) propose a dynamic remapping algorithm to address single and multiple processing 
core failures. Remapping is done by a general manager, located on a selected tile of the network. 

In Valtonen, Nurmi, Isoaho and Tenhunen (2001) view, reliability problems can be avoided 
with physical autonomy, i.e., by constructing the system from simple physically autonomous 
cells. The electrical properties and logical correctness of each cell should be subject to 
verification by other autonomous cells that could isolate the cell if deemed erroneous (self-
diagnosis is insufficient, because the entire cell, including the diagnostic unit, may be defect). In 
2007, Rantala, Isoaho and Tenhunen motivate the shift from low level testing and testability 
design into system-level fault tolerance design. They propose an agent-based design methodology 
that helps bridging the gap between applications and reconfigurable architectures in order to 
address the fault tolerance issues. They add a new functional agent/control layer to the traditional 
NoC architecture. The control flow of the agent-based architecture is divided hierarchically to 
different levels. The granularity of functional units on the lowest level is small and grows 
gradually when raised on the levels of abstraction. For example the platform agent at the highest 
level controls the whole NoC platform while a cell agent monitors and reports status of a 
processing unit to higher level agents. Rusu, Grecu and Anghel (2008) propose a coordinated 
checkpointing and rollback protocol that is aimed towards fast recovery from system or 
application level failures. The fault tolerance protocol uses a global synchronization coordinator 
Recovery Management Unit (RMU) which is a dedicated task. Any task can initiate a checkpoint 
or a rollback but the coordination is done each time by the RMU. The advantages of such an 
approach are simple protocol, no synchronization is needed between multiple RMUs, less 
hardware overhead and power consumption. The drawback is the single point of failure – the 
dedicated RMU itself. 

As a conclusion, there are various techniques to increase NoC fault tolerance but most of the 
research has been so far dedicated to NoC interconnects or fault tolerant routing. With the 
increase of variability the transient faults play more important role. The application running on a 
NoC must be aware of the transient faults and be able to detect and recover efficiently from 
transient faults. Therefore, a system-level synthesis framework with communication modelling is 
needed.   
 
SCHEDULING FRAMEWORK OF NETWORK-ON-CHIP BASED SYSTEMS 
In this section we propose an approach for communication modelling and synthesis to calculate 
communication hard deadlines that are represented by communication delay and guide the 
scheduling process to take into account possible network conflicts. 



Design flow 
We are employing a traditional system-level design flow (Figure 3) that we have extended to 
include NoC communication modelling and dependability issues. Input to the system-level design 
flow is an application A, NoC architecture N and application mapping M. Application is specified 
by a directed acyclic graph A = (T, C), where T = {t i | i = 1,…,T} is set of vertices representing 
non-preemptable tasks and C = {ci,j | (i,j) ∈ {1,…,V} x {1,…,V}} is a set of edges representing 
communication between tasks. Each task ti is characterized by the Worst Case Execution Time 
(WCET) Wceti and mobility Mobi that are described in more details in the section “Scheduling of 
extended task graph”. NoC platform introduces communication latency that depends not only on 
message size but also on resource mapping and needs to be taken into account. An edge ci,j that 
connects two tasks ti and tj represents control flow dependency in case edge parameter message 
size Msizei,j = 0 and communication in case Msizei,j > 0. In addition to the message size, the edge 
is characterized by the Communication Delay (CD) Cdi,j that is described in more details in 
section “Communication synthesis”. We assume that application has dummy start and end 
vertices. Both these vertices have Wcet = 0. 

Application task 
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Figure 3. System-Level design flow 

NoC architecture is a directed graph N = (R, L) where R = {rk | k = 1,…,R} is a set of 
resources and L = {l k,l | (k,l) ∈ {1,…,R} x {1,…,R}} is a set of links connecting a pair of resources 
(k,l). The resources can be routers and computational cores. The architecture is characterized by 
operating frequency, topology, routing algorithm, switching method and link bit-width. The 
mapping M of an application A is represented by a function M (T → R). According to Marculescu 
et al. (2009) the application mapping has a major impact on the schedule length, NoC 
performance and power consumption. However, in our work we assume that the application is 
already mapped and finding an optimal application mapping is out of the scope of this work.  



Once the tasks have been mapped to the architecture, constructive task scheduling starts. It 
consists of communication synthesis and task scheduling that are described in more detail in 
section “Communication synthesis”. The application and architecture can also contain 
information about dependability which is explained in section “Task graph scheduling with 
dependability requirements”. If dependability and other design requirements are met the lower 
levels of HW/SW co-design processes continue. Otherwise changes are needed in the architecture 
or in the mapping. 

 

Communication synthesis 
Importance of communication synthesis 

One of the key components of the scheduling framework, described in this work, is the 
communication synthesis, which main purpose is to calculate communication hard deadlines that 
are represented by Communication Delay (CD) and guide the scheduling process to take into 
account possible network conflicts. In hard real-time dependable systems the predictable 
communication delays are crucial. Once a fault occurs, the system will apply a recovery method 
that might finally require re-scheduling of the application. To analyze the fault impact on the 
system we need to have information how a fault affects the task execution and communication 
delays. In our proposed approach the communication is embedded into extended task graph 
(ETG) that allows us to use the fine-grained model during the scheduling and avoid over 
dimensioning of the system. Detailed information about communication is also needed for 
accurate power model (Marculescu et al., 2009). Another design aspect is the ratio of modelling 
speed and accuracy. A communication schedule could be extracted by simulating the application 
on a NoC simulator, but the simulation speed will be the limiting factor.  

In Figure 4, an example task graph (Figure 4a) and its mapping onto five processing units 
(Figure 4b) is presented. Task t0 is mapped onto PU1, t1 onto PU2 etc. It can be seen that 
communication c1 (from t0 to t2) takes three links (link1, link2, link3) while c2 (from t1 to t2) takes 
two links (link2, link3). We can calculate the communication delays without conflicts for different 
switching methods based on formulas below (Ni & McKinley, 1993): 

 Cdi,j
store-and-forward = (S/B)D (5) 

where S is the packet size, B is the channel bandwidth and D is the length of the path in hops 
between source and destination task. 

 Cdi,j
virtual cut-through = (Lh /B)D + S/B (6) 

where Lh is the size of the header field. 
 Cdi,j

wormhole = (Lf /B)D + S/B (7) 
where Lf is the maximum size of the flit.  
The physical links, which the communication traverses, are shared resources. It means that in 

addition to calculating the latencies we need to avoid or have a method to take into account the 
network conflicts as well. It should be noted that the actual routes will depend on how tasks are 
mapped and which routing approach is being used.  
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Figure 4. Extended task graph, mapping and partially transformed ETG 

Manolache, Eles and Peng (2007) proposed a task graph extension with detailed 
communication dependencies employing virtual cut-through switching with deterministic source-
ordered XY routing. The basic idea is to cover with the task graph not only the tasks but also the 
flow control units (e.g., packages, flits). That is, all communication edges between tasks are 
transformed into sequences of nodes representing flow control units. Edges represent 
dependencies between tasks and/or flow control units. Such an approach assumes that both tasks 
and communication are already mapped, i.e., it is known which tasks are mapped onto which 
resources and which data-transfers are mapped onto which links. Of course, different routing 
strategies will give different communication mapping but all information needed for the 
scheduling is captured in the task graph. We have generalized the proposed approach and made it 
compatible with different switching methods such as store-and-forward, virtual cut-through and 
wormhole switching. 

 
Assumptions on architecture 

We assume that each computational core is controlled by a scheduler that takes care of task 
execution on the core and schedules the message transfer between the tasks. The schedule is 
calculated offline and stored in the scheduler memory. Such scheduler acts also as a synchronizer 
for data communication. Otherwise a task, which completes earlier of its calculated WCET and 
starts message transfer, could lead to an unexpected network congestion and have a fatal effect on 
the execution schedule. We assume that the size of an input butter is one packet in the case of 



virtual cut-through or store-and-forward and one flit in the case of wormhole switching method. 
Input buffer of a flow control unit allows it to be coupled with the incoming link and to look at 
them as one shared resource. Multiple input buffers would require extension of the graph model 
and the scheduling process. The proposed approach can be extended to be used in wormhole 
switching with virtual channels – each virtual channel could be modelled as a separate physical 
channel having a separate input buffer of one flow control unit. We assume deterministic routing. 
In our experiments we are using dimension ordered XY routing. Our NoC topology is m x n (2D) 
mesh with bidirectional links between the switches (Figure 4b). 
 
Communication synthesis for different switching methods 

Input for the scheduling is an extended task graph where tasks are mapped onto resources. Once a 
communication task is ready to be scheduled, we start the communication synthesis sub-process. 
Depending on the selected switching method, some of the flow control units must be scheduled 
strictly to the subsequent time slots. In wormhole switching, the header flit contains the routing 
information and builds up the communication path, meaning when the header flit goes through a 
communication link, the body flits must follow the same path. Also, when the header flit is 
temporarily halted, e.g., because of the traffic congestion, the following flits in downstream 
routers must be halted too. This sets additional constraints for the communication synthesis. The 
constraints – fixed order and delay between some of the nodes – are similar to the restrictions 
used in pipe-lined scheduling (De Micheli, 1994).  

Figure 4c depicts the communication synthesis sub-process for communication task c1 
between tasks t0 and t2 in case of wormhole switching. The variable size message c1 (Figure 4a) is 

divided into bounded size packets 1
1c  and 2

1c . A packet is further divided into three types of data-

units (flits) – header (H), body (B) and tail (T). Typically there is only one H and one T flit, while 
many B flits. The flit pipeline is built for all links the communication traverses. The edges 
represent dependencies between two flits. As a result, the body flit c1

B1 on link1 depends on the 
header flit c1

H on the link2. Therefore the body flit c1
B1 cannot be sent before the header flit c1

H has 
been scheduled (acquired a flit buffer in the next router). Combined with traditional priority 
scheduling to handle network resource conflicts (e.g., list scheduling), the body flit will be 
scheduled after the header flit has been sent. 

 
Scheduling of extended task graph 

Our proposed approach can be used with arbitrary scheduling algorithm, although the schedules 
in this paper are produced by using list scheduling. Our goal is to find a schedule S which 
minimizes the worst-case end-to-end delay D (application execution time), schedules messages 
on communication links and produces information about contentions. First, we will calculate the 
priorities of the tasks represented by mobility Mobi. Mobility is defined as difference between 
task ASAP (As-Soon-As-Possible) and ALAP (As-Late-As-Possible) schedule. We will schedule 
a ready task. Next, we will start the communication synthesis and scheduling for messages 
initiated by this task. Figure 5a shows a scheduling state where tasks t0, t3 and communication c1, 
c3 (Figure 4a) have been scheduled. The respective extended task graph is depicted in Figure 5d. 
As a next step we are going to schedule communication c2 in between tasks t1 and t2. Without any 
conflict the schedule looks like depicted in Figure 5b. The respective extended task graph is 
shown in Figure 5e. Combining schedules depicted in Figure 5a and Figure 5b show that there is 
a communication conflict on link2 and link3. Based on calculated priority we need to delay the 



communication c2 and schedule it after c1
T. Figure 5c shows that even if we will delay the c2 start 

time there will be a conflict between the c2
H and c3

H flit on link3. Therefore the flit c2
H needs to be 

buffered in downstream router and wait for available input buffer in next router. This is done by 
finding the maximum schedule time on link3 and scheduling the flit c2

Hstart = max(link3
time). After 

the flit c2
H has been scheduled on link3 the schedule end time of the same flit on link2 need to be 

updated. Figure 5c shows the schedule for communication c2 after the conflicts have been 
resolved. The resulting schedule is depicted in Figure 6. 
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Figure 5. Communication synthesis and scheduling 
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Figure 6. Final schedule of the application 

ScheduleCommunication(ci) 
1 first vertex of sub-graph  = transform communication edge ci  into sub-graph 
2 add into ReadyToSchedule list the first vertex of sub-graph  
3 while ReadyToSchedule ≠ ∅, i = 0 do 
4  if current flit being scheded is a head flit from new packet then 
5   //ScheduleTimePrev – schedule time from predecessor flit or task 
6   if predecessor of current flit is a task then 
7    ScheduleTimePrev = store the task schedule end time 
8   else 
9    //predecessor of current flit was also a flit 
10    ScheduleTimePrev = maximum link schedule time where the  
11    predecessor flit was mapped 
12   end if 
13  else 
14   //we are scheduling flits from the same packet 
15   if flit type of current flit == HEAD then 
16    ScheduleTimePrev = schedule end time of predecessor 
17   else 
18    ScheduleTimePrev = maximum link schedule time where the  
19    predecessor flit was mapped 
20   end if 
21  end if 
22 
23  LinkTime = get max schedule time from mapped link of current flit 
24  //choose the maximum schedule time from predecessor task or a flit on a link 
25  if ScheduleTimePrev < LinkTime then 
26   TaskStartTime = LinkTime 
27  else 
28   TaskStartTime = ScheduleTimePrev 
29  end if 
30 
31  TaskEndTime = TaskStartTime + Communication Delay of current flit 
32  Back annotate previous head flit schedule end time if applicable 
33  Add successor vertexes and remove scheduled flit from ReadyToSchedule 
34 end while 
end ScheduleCommunication 

 

Figure 7. Communication scheduling algorithm for wormhole switching 

For each flow control unit we will calculate its communication delay on corresponding link 
that is represented by the formula: 

 ci
CD = Sf / Bl (8) 



where Sf is the size of the flow control unit (flit or packet) and Bl bandwidth of the 
corresponding link. ∑(ci

Endtime – ci
Starttime) gives us the total communication delay of ci. Currently 

we take into account only the transmission time between the network links. The start-up latency 
(time required for packetization, copying data between buffers) and inter-router delay are static 
components and are considered here having 0 delay. Figure 7 depicts the communication 
scheduling algorithm for wormhole switching. The approach can be used in similar way also for 
virtual cut-through and store-and-forward switching methods. 

The benefits of the proposed approach are fine-grained scheduling of control flow data units, 
handling network conflicts and the generalization of the communication modelling – the 
communication is explicitly embedded in a natural way into the task graph. The flit level 
schedules can be used for debug purposes or for power estimation. The proposed approach can be 
used for different topologies (including 3D NoC) and different switching methods in relation with 
deterministic routing algorithms. The network conflicts can be extracted from the schedule and 
the information used for re-mapping and re-scheduling the application. Our approach does not 
suffer also from the destination contention problem, thus eliminating the need for buffering at the 
destination. The graph complexity depends on number of tasks, NoC size, mapping and flow 
control unit size CFUsize. We can represent this by a function Gcomplexity = (A, N, M, CFUsize). 
Experimental results show that the approach scales well for store-and-forward and virtual cut-
through. Wormhole switching contains fine-grained flit level communication schedule and 
therefore the scaling curve is more sharp than for aforementioned. In the next subsection we will 
describe a message-level communication synthesis approach that addresses the scaling problem. 

 
Message-level communication synthesis 

If the flow control unit level schedule need to be abstracted then the complexity of the 
communication synthesis can be reduced by transforming the communication edge ci,j into a 
message sub-graph of traversed links instead of flow control units. In this way we can reduce the 
graph complexity into Gcomplexity = (A, N, M). Figure 8 shows on the left flit level and on the right 
message level communication synthesis for c1. When compared to each other it can be seen that 
for given example the complexity has been reduced almost by 7 times. The lines 4 - 20 in the 
wormhole scheduling algorithm in Figure 7 will be replaced in the message-level scheduling by 
getting communication ci start time on first link from predecessor task end time. Communication 
ci start time on next link is ci start time on previous link added by head flit communication delay. 
Similar approach can be applied to virtual-cut-through and store-and-forward switching methods. 
Experimental results show equal scaling for all of the three switching methods as communication 
synthesis does not depend anymore on the flow control units. In the following section we will 
demonstrate the applicability of our approach for scheduling with additional requirements, such 
as dependability. 
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Figure 8. Communication c1 detailed and message-level 

Task graph scheduling with dependability requirements 
Our objective is to extend those aforementioned techniques to the system-level to provide design 
support at early stages of the design flow. The application should be able to tolerate transient or 
intermittent faults. We are not currently considering permanent faults that need a bit different 
approach and can be handled by re-scheduling and re-mapping the application on a NoC. The 
work of Izosimov (2006) describes system-level scheduling and optimizations of fault-tolerant 
embedded systems in bus based systems. The work considers faults only in computational tasks. 
The communication fault tolerance is not taken into account. According to Murali et al. (2005) 
shrinking feature sizes towards nanometer scale cause power supply and treshold voltage to 
decrease, consequently wires are becoming unreliable because they are increasingly suspectible to 
noise sources such as crosstalk, coupling noise, soft errors and process variations. Additionally, in 
bus based systems the task mapping does not have such influence on communication delays as in 
NoCs. Therefore, we need a method to detect and tolerate transient faults and take possible fault 
scenarios into account during scheduling. 

In our approach we assume that each NoC processing and communication node is capable of 
detecting faults and executing a corrective action. Transient fault in processing node can be 
detected with special techniques such as watchdogs or signatures that are easy to implement and 
have a low overhead. Once a fault is detected inputs of the process will be restored and the task 
will be re-executed. Murali et al. (2005) proposes two error detection and correction schemes, 
end-to-end flow control (network level) and switch-to-switch flow control (link level), that can be 
used to protect NoC communication links from transient faults. We are using a simple switch-to-
switch re-transmission scheme where the sender adds error detection code (parity, cyclic 
redundancy check code (CRC)) to the original message and the receiver checks the received data 



for correctness. If a fault is detected the sender is requested to re-transmit the data. Depending of 
switching method the error detection code is added either to flits or to packages. 

We are assigning the recovery slacks and scheduling the application using shifting-based 
scheduling (SBS) (Izosimov, 2006). Shifting-based scheduling is an extension of the transparent 
recovery against single faults. A fault occurring on one computation node is masked to other 
computation nodes. It has impact only on the same computation node. According to Izosimov 
(2006) providing fault containment, transparency can potentially improve testability, debugability 
and increase determinism in fault-tolerant applications. In shifting-based scheduling the start time 
of communication is fixed (frozen). It means that we do not need a global real-time scheduler or 
to synchronize a local recovery event with other cores in the case of fault occurrence. Fixed 
communication start time allows shifting-based scheduling to be used with our communication 
synthesis and scheduling approach. We can use the contention information from communication 
scheduling to be taken into account when trying to find a compromise between the level of 
dependability and meeting the deadlines of tasks. A downside is that SBS cannot trade-off 
transparency for performance – communication in a schedule is preserved to start at predefined 
time. 

The scheduling problem we are solving with SBS can be formulated as follows. Given an 
application mapped on a network-on-chip we are interested to find a schedule table such that the 
worst-case end-to-end delay is minimized and the transparency requirements with frozen 
communication are satisfied. In 2006, Izosimov proposed a Fault-Tolerant Conditional Process 
Graph (FT-CPG) to represent an application with dependability requirements. FT-CPG captures 
alternative schedules in the case of different fault scenarios. Graphically FT-CPG is a directed 
acyclic fork-and-join graph where each branch corresponds to a change of condition. In similar 
way to Izosimov (2006) we are not explicitly generating a FT-CPG for SBS. Instead, all possible 
execution scenarios are considered during scheduling. 

The shifting-based scheduling algorithm is depicted in Figure 9. Input for the SBS is 
application A, architecture N with mapping M, the number of transient faults k to be tolerated in 
any processing core and the number of transient faults r that can appear during data transmission 
on communication links. First, priorities of tasks are calculated based on mobility and the first 
task is put into the ready list. Scheduling loop is processed until all tasks have been scheduled. 
The first task is chosen from the ready list and the work list of ready tasks that are mapped to the 
same processor as the selected task is created. The work list is sorted based on mobilities and task 
with smallest mobility is chosen to be scheduled. The task start time is maximum time from 
mapped processor or predecessor tasks. Next, recovery slack will be calculated for the chosen 
task in following three steps: 

1. The idle time b between chosen task tchosen and the last scheduled task tlast on the same 
processor is calculated 

 b = tchosen - tlast  (8) 
2. Initial recovery slack sl0 of chosen task tchosen is 

sl0 = k * (WCETtchosen + RecoveryOverHead) (9) 
where k is number of required recovery events, WCETtchosen worst-case execution time of 
chosen task and RecoveryOverHead time needed to restore the initial inputs. 
RecoveryOverHead has a constant value. 

3. The recovery slack sl of chosen task tchosen is changed if recovery slack of previous task tlast 
subtracted with the idle time b is larger than the initial slack sl0. Otherwise initial recovery 
slack is preserved. 



SBS is adjusting recovery slack to accommodate recovery events of tasks mapped to the same 
processing core and will schedule communication to the end of the recovery slack. 
Communication synthesis and scheduling has been explained in previous sections 
“Communication synthesis for different switching methods” and “Scheduling of extended task 
graph”. In case of virtual-cut-through and store-and-forward switching methods each packet 
contains CRC error detection code and we are re-submitting r packets from a message. In 
wormhole switching each flit has CRC error detection code and we are re-submitting r flits from 
a package. CRC code increases router complexity and increases slightly amount of transmitted 
data but allows to decrease communication latency compared to end-to-end scheme. Re-
submission slack is taken into account when reserving buffers and link bandwidth for 
communication. After a task has been scheduled its predecessor tasks, that are ready, are inserted 
into ready list and scheduled task removed from ready list. 

 

Figure 9. Shifting-based-scheduling algorithm 

At the run-time of an application, local schedulers have a partial schedule table that includes 
start time and dependability information of tasks and start time of communication. In the case of a 
fault occurrence, corresponding local scheduler will switch to contingency schedule by looking 
up how many time a task can be re-executed on given processing core before reserved recovery 
slack will be passed and the deadline missed. The event of exceeding number of re-submission of 
flits or packages can be catched by local scheduler at the late or missing arrival of incoming data. 

Figure 10 depicts an extract of an example of SBS schedule where task t1 can be re-executed 
and packet c3 re-transmitted one time in the case of fault occurrence. We can see that 
communication c2 has been to the end of the recovery slack of task t1. The schedule produced by 
SBS is longer than schedule without dependability but will tolerate a specified amount of 
transient faults and the calculated deadline is satisfied. The advantage of our approach is that we 
can take into account communication induced latencies and fault effects already at very early 
stages of the design flow. Possible solutions to decrease the schedule length due to transparency 
would be to introduce check-pointing and replication. 

Shifting-based-scheduling(A, N, k, r) 
1 Calculate mobility of tasks 
2 Put BEGIN task into ready list 
3 while ReadyList ≠ ∅ do 
4  FirstTask = ReadyList[0] 
5  WorkList = Get all ready tasks assigned to same core as FirstTask 
6  Sort WorkList based on mobility 
7   ChosenTask = WorkList[0] 
8 
9  TaskStartTime = Get max time from mapped processor of ChosenTask or from predeccessor tasks 
10  RecoverySlack = Calculate recovery slack of ChosenTask(k) 
11  Schedule ChosenTask(ChosenTask, TaskStartTime, RecoverySlack) 
12  Schedule Communication with recovery(r) 
13  Add ready successor tasks of ChosenTask into ReadyList 
14  Delete ChosenTask from ReadyList 
15 
16 end while 
end Shifting-based-scheduling 
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Figure 10. Shifting-based-scheduling example 

Experimental results 
We have built a design environment that supports our system-level design flow and scheduling 
framework described in previous sections. To evaluate different aspects of our approach we have 
ran tests with synthetic task graphs containing 500, 1000, 5000 and 10000 tasks mapped on 
different NoC architectures. The mapping was generated in all cases randomly. The architecture 
parameters were varied in together with the application size to show the scaling of the approach. 
The NoC architecture parameters, if not written differently under experiments, were specified as 
in Table 1. The tests were performed on computer with Intel L2400 CPU (1,66 GHz), 1 GB of 
available physical RAM and operating system Microsoft Windows XP. 

Table 1 . NoC Architecture Parameters 

Parameter name Value 
NoC operating frequency 500 MHz 

Link bit-width 32 bit 
Flit size, packet size 32 bit, 512 bit 
Packet header size 20 bit 

Link bandwidth 16 Gbit/s 
Topology and routing 

algorithm 
2D Mesh, XY routing 

Mapping Random 

 
Our first experiment shows how NoC size impacts the schedule calculation time and length. 

From one hand, the more computational units we have available the shorter schedule we are able 
to produce. On the other hand, it takes more processor time to model and synthesise the 
communication on a bigger NoC. The input task graph of this experiment consists of 1000 tasks 
and 9691 edges. Virtual cut-through switching is used. The schedules are calculated with both 
communication synthesis methods – detailed and message-level. The results in Figure 11 show 
that when NoC size increases the schedule length decreases and schedule calculation time 
increases. Figure 12 shows scaling of communication synthesis methods from graph size point of 
view – when the NoC size increases the communication ratio also increases. This can be seen 
from the number of communication vertices in the extended task graph. However, schedule 
calculation time increase for both communication synthesis methods is linear. Therefore, it is 
feasible to use our proposed approach in addition to application scheduling also for performance 
estimation and design exploration. 

The second experiment shows how detailed and message-level communication synthesis 
methods, based on wormhole switching, are scaling. Detailed communication synthesis is 
performed for wormhole switching at flit level while in message-level synthesis the smallest unit 



of communication is a message. Task graphs with different size were mapped and scheduled on a 
10 x 10 NoC. To have comparable results the same mapping and NoC size was used for both 
communication synthesis methods. The results are depicted in Figure 13. When detailed flit-level 
synthesis is not required then reduction in schedule calculation time and graph complexity can be 
achieved. However, when detailed flit-level communication schedules are needed, e.g., for power 
estimation, the detailed communication synthesis approach should be used.  

The third experiment shows results of communication modelling and scheduling when a 
relatively big application is mapped on a NoC with different sizes. Input application contains 
5000 tasks and 25279 edges. The results are depicted in Table 2. As mentioned earlier, the larger 
amount of computational units enables to shorten the schedule, but consequently, the larger 
network increases the communication ratio as average number of hops between tasks keeps also 
increasing. At the same time we can see that conflicts length keeps decreasing. It is because of the 
fact that source-ordered XY routing does no load balancing on the network links by itself. 
However, when more communication links are available there is less possibility that two message 
transfers between tasks will intersect on the same link and in the same timeframe. The amount of 
communication conflicts in the system can be reduced by developing more efficient scheduling 
heuristic, taking into account the specifics of on-chip networks. As our modelling approach 
provides detailed information about the communication then it is also possible to use different 
deterministic routing algorithms during the communication synthesis, in addition to the XY-
routing algorithm, used in this paper. 

The last experiment shows performance and dependability trade-off when using shifting-based 
scheduling. We are using an application with 1000 tasks mapped to a 10x10 NoC. We are 
changing the dependability parameters k and r of SBS. Results are depicted in Table 3. As 
explained in previous section SBS cannot trade-off transparency for performance and this can be 
seen also in the results. Increasing the processing node fault tolerance parameter k the schedule 
length increases roughly k+1 times for given application. Communication fault-tolerance 
overhead is marginal compared to computation fault-tolerance. This is due to switch-to-switch 
error detection and re-submission scheme which reduces communication and recovery latency 
compared to end-to-end scheme. Additionally, we are attaching error detection code either to 
each packet or to each flit and re-submit only the faulty flow control unit instead of the whole 
message. Checkpointing and task replication could be used to decrease schedule length caused by 
computation delay. 

Table 2. Results of communication synthesis 

NoC size Schedule length (µµµµs) Communication ratio % Communication conflicts length (µµµµs) Calculation time (s) 
25 51235 5% 8981 9 

100 36449 10% 8238 17 
225 32001 14% 6620 21 
400 30556 19% 6252 27 
625 20446 24% 5553 36 
900 28546 29% 4844 50 

Table 3. Shifting-based scheduling – performance / dependability trade-off 

Level of dependability Schedule length 
(µµµµs) 

Increase of initial 
schedule length  

(x times) 
k – task  

re-execution 
r – data  

re-submission 
Initial schedule length without dependability and no CRC in communication  
34 176 

0 0 34 177 1.00 
1 34 196  
2 34 215  



3 34 234  
1 0 66 899 1.96 

1 66 919  
2 66 939  
3 66 958  

2 0 99 782 2.92 
1 99 802  
2 99 822  
3 99 841  

3 0 135 182 3.96 
1 135 200  
2 135 217  
3 135 234  

 

32000

33000

34000

35000

36000

37000

38000

39000

40000

41000

25 100 225 400 625 900

NoC size

S
ch

e
du

le
 le

ng
th

 (
µ

s)

0

10

20

30

40

50

60

S
ch

ed
ul

e
 c

al
cu

la
tio

n 
tim

e 
(s

)
Schedule length Calculation time for detailed Calculation time message-level

 

Figure 11 . Schedule length versus calculation time for different NoC sizes 
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Figure 12 . NoC size impact on Extended Task Graph complexity 
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Figure 13 . Reduction on complexity (wormhole switching) 

 
CONCLUSIONS 
This chapter described various problems associated with the system-level design of NoC-based 
systems. The first part of the chapter gave a background and surveyed the related work. The 
second part described a framework for predictable communication synthesis in NoCs with real-
time constraints. The framework models communication at the link level, using traditional task 
graph based modelling technique and supports various switching techniques. This communication 
synthesis approach can be used for scheduling of real-time dependable NoC-based systems.  
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KEY TERMS 
System-level design – a design methodology that starts from higher abstraction levels and refines 
the system-level model down to a hardware/software implementation. 
 
System-on-chip (SoC) – integrating all system components into a single integrated chip. 
 
Network-on-chip (NoC) – a new communication paradigm for systems-on-chip. 
 
Dependability – system dependability is a quality-of-service having attributes reliability, 
availability, maintainability, testability, integrity and safety. 
 
Fault-tolerance – is a property that enables a system to provide service even in the case of faults 
 
Communication modelling – explicit modelling of communication in order to enable predictable 
design 
 
Communication synthesis – communication refinement. Communication edge in the extended 
task graph is converted into communication sub-graph. 
 
Communication scheduling – a step in the system-level design flow. Schedules flow control units 
to start at predefined time. 
  


