
SystemSystemSystemSystem----Level Design of Level Design of Level Design of Level Design of NoCNoCNoCNoC----Based Based Based Based

Dependable Embedded SystemsDependable Embedded SystemsDependable Embedded SystemsDependable Embedded Systems

Mihkel Tagel, Peeter Ellervee, Gert Jervan
Department of Computer Engineering, Tallinn University of Technology, Estonia

ABSTRACT
Technology scaling into subnanometer range will have impact on the manufacturing yield and
quality. At the same time, complexity and communication requirements of systems-on-chip (SoC)
are increasing, thus making a SoC designer goal to design a fault-free system a very difficult task.
Network-on-chip (NoC) has been proposed as one of the alternatives to solve some of the on-chip
communication problems and to address dependability at various levels of abstraction. This
chapter concentrates on system-level design issues of NoC-based systems. It describes various
methods proposed for NoC architecture analysis and optimization, and gives an overview of
different system-level fault tolerance methods. Finally, the chapter presents a system-level design
framework for performing design space exploration for dependable NoC-based systems.

Introduction
As technologies advance and semiconductor process dimensions shrink into the nanometer and
subnanometer range, the high degree of sensitivity to defects begins to impact the overall yield
and quality. The International Technology Roadmap for Semiconductors (2007) states that
relaxing the requirement of 100% correctness for devices and interconnects may dramatically
reduce costs of manufacturing, verification, and test. Such a paradigm shift is likely forced by the
technology scaling that leads to more transient and permanent failures of signals, logic values,
devices, and interconnects. In consumer electronics, where the reliability has not been a major
concern so far, the design process has to be changed. Otherwise, there is a high loss in terms of
faulty devices due to problems stemming from the nanometer and subnanometer manufacturing
process.

There has been a lot of research made on system reliability in different computing domains by
employing data encoding, duplicating system components or software-based fault tolerance
techniques. This research has mostly had either focus on low level hardware reliability or covered
the distributed systems. Due to future design complexities and technology scaling, it is infeasible
to concentrate only onto low level reliability analysis and improvement. We should fill the gap by
looking at the application level. We have to assume that the manufactured devices might contain
faults and an application, running on the system, must be aware that the underlying hardware is
not perfect.

The advances in design methods and tools have enabled integration of increasing number of
components on a chip. Design space exploration of such many-core systems-on-chip (SoC) has
been extensively studied, whereas the main focus has been so far on the computational aspect.
With the increasing number of on-chip components and further advances in semiconductor
technologies, the communication complexity increases and there is a need for an alternative to the
traditional bus-based or point-to-point communication architectures.

Network-on-chip (NoC) is one of the possibilities to overcome some of the on-chip
communication problems. In such NoC-based systems, the communication is achieved by routing
packets through the network infrastructure rather than routing global wires. However,
communication parameters (inter-task communication volume, link latency and bandwidth, buffer
size) might have major impact to the performance of applications implemented on NoCs.
Therefore, in order to guarantee predictable behaviour and to satisfy performance constraints, a
careful selection of application partitioning, mapping and synthesis algorithms is required. NoC
platform provides also additional flexibility to tolerate faults and guarantees system reliability.
Many authors have addressed these problems but most of the emphasis has been on the systems
based on bus-based or point-to-point communication (Marculescu, Ogras, Li-Shiuan Peh Jerger,
& Hoskote, 2009). However, a complete system-level design flow, taking into account the NoC
network modelling and dependability issues, is still missing.

This chapter first analyzes the problems related to the development of dependable systems-on-
chip. It outlines challenges, specifies problems and examines the work that has been done in
different NoC research areas relevant to this chapter. We will give an overview of the state-of-
the-art in system-level design of traditional and NoC-based systems and describe briefly various
methods proposed for system-level architecture analysis and optimization, such as application
mapping, scheduling, communication analysis and synthesis. The chapter gives also an overview
of different fault-tolerance techniques that have been successfully applied to bus-based systems.
It analyzes their shortcomings and applicability to the network-based systems.

The second part of the chapter describes our system-level design framework for performing
design space exploration for NoC-based systems. It concentrates mainly on the specifics of the
NoC-based systems, such as network modelling and communication synthesis. Finally, the
chapter addresses the dependability issues and provides methods for developing fault-tolerant
NoC-based embedded systems.

BACKGROUND AND RELATED WORK
In this section we first describe the design challenges that have emerged together with the
technology scaling and due to increase of the design complexity. We give an overview of the key
concepts and NoC terminology. The second part of this section is devoted to system-level design
and dependability issues.

Design Challenges of Systems-on-Chip
The advances in design methods and tools have enabled integration of increasing number of
components on the chip. Design space exploration of such many-core SoCs has been extensively
studied, whereas the main focus has been so far on the computational aspect. With the increasing
number of on-chip components and further advances in semiconductor technologies, the
communication complexity increases and there is a need for an alternative to the traditional bus-
based or point-to-point communication architecture. The main challenges in the current SoC
design methodologies are:

• Deep submicron effects and variability – the scaling of feature sizes in semiconductor
industry have given the ability to increase performance while lowering the power
consumption. However, with feature sizes reducing below 40 nm it is getting hard to
achieve favourable cost versus performance/power trade-offs in future CMOS
technologies (International Technology Roadmap for Semiconductors, 2007;

Konstadinidis, 2009). The emergence of deep submicron noise in the form of cross-talk,
leakage, supply noise, as well as process variations is making it increasingly hard to
achieve the desired level of noise-immunity while maintaining the historic improvement
trends in performance and energy-efficiency (Shanbhag, Soumyanath, & Martin, 2000;
Kahng, 2007). Interconnects also add a new dimension to design complexity. As
interconnects also shrink and come closer together, previously negligible physical effects
like crosstalk become significant (Hamilton, 1999; Ho, Mai, & Horowitz, 2001).

• Global synchrony – SoCs are traditionally based on a bus architecture where system
modules exchange data via a synchronous central bus. When number of components
increase rapidly, we have a situation where the clock signal cannot be distributed over the
entire SoC during one clock cycle. Ho et al. (2001) describe that while local wires scale
in performance, global and fixed-length wires do not. The technology scaling is more
rapid for gates than for wires. It affects the design productivity and reliability of the
devices. Optimization techniques, such as optimal wire sizing, buffer insertion, and
simultaneous device and buffer sizing are solving only some of the problems. As feature
size continues to shrink, the interconnect itself becomes complex circuitry in its own
(Hamilton, 1999). Consequently, increased SoC complexity and feature size scaling
below 40 nm requires alternative means for providing scalable and efficient
interconnects. Globally asynchronous locally synchronous (GALS) design approach has
been proposed as a feasible solution for communication intensive complex SoCs. In
2000, Agarwal, Hrishikesh, Keckler, & Burger have examined the effects of technology
scaling on wire delays and clock speeds, and measured the expected performance of a
modern microprocessor core in CMOS technologies down to 35 nm. Their estimation
shows that even under the best conditions the latency across the chip in a top-level metal
wire will be 12-32 cycles (depending on the clock rate). Jason Cong’s simulations at the
70 nm level suggest that delays on local interconnect will decrease by more than 50
percent, whereas delays on non-optimized global interconnect will increase by 150
percent (from 2 ns to 3.5 ns) (Hamilton, 1999). GALS systems contain several
independent synchronous blocks that operate using their own local clocks and
communicate asynchronously with each other. The main feature of these systems is the
absence of a global timing reference and the use of several distinct local clocks (or clock
domains), possibly running at different frequencies (Iyer & Marculescu, 2002).

• Productivity gap – chip design has become so complex that designers need more
education, experience, and exposure to a broad range of fields (device physics, wafer
processing, analogue effects, digital systems) to understand how all these aspects come
together. For the same reasons, designers need smarter tools that comprehend distributed
effects like crosstalk (Hamilton, 1999). The complexity and cost of design and
verification of multi-core products has rapidly increased to the point where developers
devote thousands of engineer-years to a single design, yet processors reach market with
hundreds of bugs (Allan, Edenfeld, Joyner, Kahng, Rodgers, & Zorian, 2002). The
primary focus of consumer-products in CMOS process development is the integration
density. By allowing to pack a greater functionality onto a smaller area of silicon, the
higher integration density and lower cost can be achieved. For consumer applications,
Moore’s law may continue for as long as the cost per function decreases from node to
node (Claasen, 2006). To bridge the technology and productivity gap, the computation
need to be decoupled from the communication. The communication platform should be

scalable and predictable in terms of performance and electrical properties. It should
enable high intellectual property (IP) core reuse by using standard interfaces to connect
IP-s to the interconnect.

• Power and thermal management – interconnect wires account for a significant fraction
(up to 50%) of the energy consumed in an integrated circuit and is expected to grow in
the future (Raghunathan, Srivastava, & Gupta, 2003). Feature size scaling increases
power density on the chip die that in turn can produce an increase in the chip
temperature. The rapidly increasing proportion of the consumer electronics market
represented by handheld, battery-powered, equipment also means that low power
consumption has become a critical design requirement that must be addressed (Claasen,
2006).

• Verification and design for test – the increasing complexity of SoCs and the different set
of tests required by deep submicron process technologies (for example tests for delay
faults) has increased test data volume and test time to the extent that many SoCs no
longer fit comfortably within the capabilities of automated test equipment (ATE)
(Claasen, 2006). As a result, the cost of test has been rapidly increasing. Due to process
variability, the reliability of the devices is not anymore a concern of only safety-critical
applications but also a concern in consumer electronics. The products need to be designed
to tolerate certain number of manufacturing (permanent) or transient faults.

To overcome some of the above challenges the network-on-chip paradigm has been proposed.
While computer networking techniques are well known already from the 80’s, the paradigm shift
reached to the chips in the beginning of this millennium. There were several independent research
groups (Benini & De Micheli, 2002; Dally & Towles, 2001; Guerrier & Greiner, 2000; Hemani et
al., 2000; Rijpkema, Goossens, & Wielage, 2001; Sgroi et al., 2001) introducing networking ideas
to embedded systems.

Network-on-chip as a new design paradigm

In 2000, Guerrier and Greiner proposed a scalable, programmable, integrated network (SPIN) for
packet-switched system-on-chip interconnections. They were using fat-tree topology and
wormhole switching with two one-way 32-bit data paths having credit-based flow control. They
proposed a router design with dedicated input buffers and shared output buffers, estimated the
router cost and network performance. The term “network-on-chip” was first used by Hemani et
al. in November 2000. The authors introduced the concept of reconfigurable network of resources
and its associated methodology as solution to the design productivity problem. In June 2001,
Dally and Towles proposed NoC as general-purpose on-chip interconnection network to connect
IP cores replacing design-specific global on-chip wiring. It was demonstrated that using a
network to replace global wiring has advantages in structure, performance, and modularity. The
GigaScale Research Center suggested a layered approach similar to that defined for
communication networks to address the problem of connecting a large number of IP cores.
Additionally the need for a set of new generation methodologies and tools were described (Sgroi
et al., 2001). In October 2001, researchers from Philips Research presented a quality of service
(QoS) router architecture supporting both best-effort and guaranteed-throughput (Rijpkema et al.,
2001). In January 2002, Benini and De Micheli formulated NoC as a new SoC design paradigm.

During the years many, NoC research platforms have been developed such as Aethereal
(Goossens, Dielissen, & Radulescu, 2005), MANGO (Bjerregaard & Sparso, 2005), Nostrum

(Kumar et al., 2002), SPIN (Guerrier & Greiner, 2000), Xpipes (Bertozzi & Benini, 2004),
CHAIN (Felicijan, Bainbridge, & Furber, 2003). Commercial NoC platforms include Arteris
(Arteris, 2009), STNoC (STMicroelectronics, 2009), Silistix (Silistix, 2009) and Sonics (Sonics,
2009).

Current and future directions of on-chip networks include 3D NoCs (Feero & Pande, 2007;
Pavlidis & Friedman, 2007; Murali, Seiculescu, Benini, & De Micheli, 2009) and optical
interconnects (Haurylau et al., 2006). Both emerged in the middle of 90’s in various forms. 3D
NoCs are having its roots in 2001 (Banerjee, Souri, Kapur, & Saraswat, 2001).

Comparison with bus based systems and macro networks

Point-to-point connections (circuit switching), common to SoC, are replaced in NoC by dividing
the messages into packets (packet switching). Each component stores its state and exchanges data
autonomously with others. Such systems are by their nature GALS systems, containing several
independent synchronous blocks that operate with their own local clocks and communicate
asynchronously with each other (Iyer & Marculescu, 2002). Having multiple different network
routes available for the data transmission makes NoCs to be adaptive – to balance the network
load, for instance.

The communication platform limitations, data throughput, reliability and QoS are more
difficult to address in NoC architectures than in computer networks. The NoC components
(memory, resources) are relatively more expensive, whereas the number of point-to-point links is
larger on-chip than off-chip. On-chip wires are also relatively shorter than the off-chip ones, thus
allowing a much tighter synchronization than off-chip. On one hand, only a minimum design
overhead is allowed that is needed to guarantee the reliable data transfer. On the other hand, the
on-chip network must handle the data ordering and flow control issues (Radulescu & Goossens,
2002). The packets might appear at the destination resource out of order – they need to be
buffered and put into the correct order.

Principles of Networks-on-Chip
In this section we provide an overview of the key concepts and terminology of NoCs. The NoC
design paradigm has two good properties to handle the SoC design complexity – predictability
and reusability. The throughput, electrical properties, design and verification time are easier to
predict due to the regular structure of the NoC. We can connect to the network any IP component
that has the appropriate network interface. The NoC paradigm does not set any limits to the
number of components. The components and also the communication platform are reusable – the
designer needs to design, optimise and verify them once. The layered network architecture
provides the needed communication and network services enabling the functionality reuse
(Jantsch & Tenhunen, 2003).

NoC decouples communication from computation and provides a flexible and reusable
communication platform. The interconnection network is a shared resource that the designer can
utilize. To design an on-chip communication infrastructure and to meet the performance
requirements of an application, the designer has certain design alternatives that are governed by
topology, switching, routing and flow control of the network. NoC provides the communication
infrastructure for resources. Resources can be heterogeneous. A resource can be memory,
processor core, DSP, reconfigurable block or any IP block that conforms to the network interface

(NI). Every resource is connected to switch via resource network interface (RNI). Instead of
dedicated point-to-point channels between two IP cores, the interconnection network is
implemented as set of shared routers and communication links between the routers. The way the
routers are connected with each other defines the network topology. Data to be transferred
between communicating nodes is called a message. As messages can have varying sizes it is
infeasible to design routers to handle unbounded amounts of data. Instead, messages are divided
into smaller bounded flow control units. The way a message is split and transferred through the
routers is called switching. Usually there are alternative paths to deliver a message from source to
destination. An algorithm to choose between such paths is called routing. A good routing
algorithm finds usually minimal paths while avoiding deadlocks. Another alternative would be to
balance the network load. Flow control handles network resource accesses. If a network is not
able to handle the current communication load the flow control might forward more critical
messages while dropping or re-routing the non-critical ones. An effective network design
maximises the throughput and decreases network latency and communication conflicts (Dally &
Towles, 2004).

Topology

Topology refers to the physical structure of the network (how resources and switches are
connected to each other). It defines connectivity and routing possibilities between the nodes
affecting therefore performance of the network and design of the router. Topologies can be
divided into two classes by their regularity – regular and application specific. The regular
topologies can be described in terms of k-ary n-cube, where k is the degree of each dimension and
n is the number of dimensions (Dally, 1990). Regular topology is not the most efficient in terms
of manufacturing but allows easier routing algorithms and better predictability. The regularity
aims for design reuse and scalability while application specific topologies target performance and
power consumption. Most NoCs implement regular forms of network topology that can be laid
out on a chip surface, for example k-ary 2-cube meshes (Kumar et al., 2002) and torus (Dally &
Towles, 2001). The k-ary tree and k-ary n-dimensional fat tree (Adriahantenaina, Charlery,
Greiner, Mortiez, & Zeferino, 2003) are two alternative regular NoC topologies. Recent research
in this area is devoted to 3-dimensional NoCs. Each router in a 2D NoC is connected to a
neighbouring router in one of four directions. Consequently, each router has five ports.
Alternatively, in a 3D NoC, the router typically connects to two additional neighbouring routers
located on the adjacent physical planes (Pavlidis & Friedman, 2007). Figure 1 shows examples of
various regular and application specific topologies, including 3D.

Figure 1. Regular topologies. Examples are (a) 4-ary 2-cube mesh, (b) 4-ary 2-cube torus, (c)

application specific, (d) binary 2-ary tree and (e) 3D mesh

Switching method

Switching method determines how a message traverses its route. There are two main switching
methods – circuit switching and packet switching. Circuit switching is a form of bufferless flow
control that operates by first allocating channels to form a circuit from source to destination and
then sending messages along this circuit. After the data transmission, the circuit can be
deallocated and released for other communication. Circuit switching is connection-oriented,
meaning that there is an explicit connection establishment (Lu, 2007). In packet switching the
messages are split into packets. Depending of switching methods, a packet can be further divided
into smaller flow control units (flits). A packet consists usually of a header, a payload and a tail.
The packet header contains routing information, while the payload carries the actual data. The tail
indicates the end of a packet and can contain also error-checking code. Packet switching can be
either connection-oriented or connection-less. In contrast to the connection-oriented switching, in
the connection-less the packets are routed in a non-guaranteed manner. There is no dedicated
circuit built between the source and destination nodes.

Most common packet switching techniques include store-and-forward, virtual cut-through and
wormhole switching.

• Store-and-forward – when a packet reaches an intermediate node, the entire packet is
stored in a packet buffer. The packet is forwarded to the next selected neighbour router
after the neighbouring router has an available buffer. Store-and-forward is simple to
implement but it has major drawbacks. First, it has to buffer the entire packet before
forwarding it to the downstream router. This has a negative effect on router area
overhead. Second, the network latency is proportional to the distance between the source
and the destination nodes. The network latency of store-and-forward can be calculated
(Ni & McKinley, 1993) as

 Latencystore-and-forward = (L/B)D (1)

 where L is message size, B is channel bandwidth and D is distance in hops. The smallest
flow control unit is a packet.

• Virtual cut-through – to decrease the amount of time spent transmitting data Kermani and
Kleinrock (1979) introduced the virtual cut-through switching method. In the virtual cut-
through a packet is stored at an intermediate node only if the next required channel is
busy. The network latency of the virtual cut-through can be calculated as

 Latencyvirtual cut-through = (Lh /B)D + L/B (2)
 where Lh is size of the header field. Usually the message size is times bigger than header
field and therefore the distance D will produce a negligible effect on the network latency.
The smallest flow control unit is a packet.

• Wormhole – operates like virtual cut-through but with channel and buffers allocated to
flits rather than packets (Dally & Towles, 2004). A packet is divided into smaller flow
control units called flits. There are three types of flits – body, header, and tail. The header
flit governs the route. As the header advances along its specified route, the rest of the flits
follow in a pipeline fashion. If a channel is busy, the header flit gets blocked and waits
the channel to become available. Rather than collecting and buffering the remaining flits
in the current blocked router, the flits stay in flit buffers along the established route. Body
flits carry the data. The tail flit is handled like a body flit but its main purpose is to
release the acquired flit buffers and channels. The network latency of wormhole
switching can be calculated according to Ni & McKinley (1993) as

 Latencywormhole = (Lf /B)D + L/B (3)
where Lf is size of the flit. In similar way to virtual cut-through distance D has not
significant effect on the network latency unless it is very large. Wormhole switching is
more efficient than virtual cut-through in terms of the buffer space. However, this comes
at the expense of some throughput since wormhole flow control may block a channel
mid-packet (Dally & Towles, 2004).

• Virtual channels – associates several virtual channels (channel state and flit buffers) with
a single physical channel. Virtual channels overcome the blocking problems of the
wormhole switching by allowing other packets to use the channel bandwidth that would
otherwise be left idle when a packet blocks (Dally & Towles, 2004). It requires an
effective method to allocate the optimal number of virtual channels. Allocating the virtual
channels uniformly results in a waste of area and significant leakage power, especially at
nanoscale (Huang, Ogras, & Marculescu, 2007).

Routing

Routing algorithm determines the routing paths the packets may follow through the network.
Routing algorithms can be divided in terms of path diversity and adaptivity into deterministic,
oblivious and adaptive routing. Deterministic routing chooses always the same path given the
same source and destination node. An example is source ordered XY routing. In XY routing the
processing cores are numbered by their geographical coordinates. Packets are routed first via X
and then via Y-axis by comparing the source and destination coordinate. Deterministic routing
has small implementation overhead but it can cause load imbalance on network links.
Deterministic routing cannot also tolerate permanent faults in NoC and re-route the packets.
Oblivious routing considers all possible multiple paths from the source node to destination but
does not take the network state into account. Adaptive routing distributes the load dynamically in

response to the network load. For example, it re-routes packets in order to avoid congested area or
failed links. Adaptive routing has been favourable providing high fault tolerance. The drawbacks
include higher modelling and implementation complexity. Deterministic routing algorithms
guarantee in-order delivery while in adaptive routing buffering might be needed at the receiver
side to re-order the packets.

There are two important terms when talking about routing – deadlock and livelock. Deadlock
occurs in an interconnection network when group of packets are unable to progress because they
are waiting on one another to release resources, usually buffers or channels (Dally & Towles,
2004). Deadlocks have fatal effects on a network. Therefore deadlock avoidance or deadlock
recovery should be considered for routing algorithms that tend to deadlock. Another problematic
network phenomenon is livelock. In livelock, packets continue to move through the network, but
they do not make progress toward their destinations (Dally & Towles, 2004). It can happen for
example when packets are allowed to take not the shortest routes. Usually it is being handled by
allowing a certain number of misroutes after which the packet is discarded and need to be re-
submitted.

Flow control

Flow control deals with network load monitoring and congestion resolution. Due to the limited
buffers and throughput, the packets may be blocked and flow control decides how to resolve this
situation. The flow control techniques can be divided into two – bufferless and buffered flow
controls. The bufferless flow control is the simplest in its implementation. In bufferless flow
control there are no buffers in the switches. The link bandwidth is the resource to be acquired and
allocated. There is need for an arbitration to choose between the competing communications.
Unavailable bandwidth means that a message needs to be misrouted or dropped. Dropped
message has to be resent by the source. Misrouting and message dropping both increase latency
and decrease efficiency (throughput) of the network. Deflection routing is an example of the
bufferless flow control. In deflection routing, an arbitrary routing algorithm chooses a routing
path, while deflection policy is handling the resource contentions. In the case of network
contention, the deflection policy grants link bandwidth to the higher priority messages and
misroutes the lower priority messages. Deflection routing allows low overhead switch design
while at the same time provides adaptivity for network load and resilience for permanent link
faults.

In the buffered flow control, a switch has buffers to store the flow control unit(s) until
bandwidth can be allocated to the communication on outgoing link. The granularity of the flow
control unit can be different. In store-and-forward and virtual cut-through both the link bandwidth
and buffers are allocated in terms of packets but in wormhole switching in flits. In buffered flow
control, it is crucial to distribute the buffer availability information between the neighbouring
routers. If buffers of the upstream routers are full, the downstream routers must stop transmitting
any further flow control units. The flow control accounting is done at link level. The most
common flow control accounting techniques are credit-based, on/off and ack/nack (Dally &
Towles, 2004).

Quality of Service

Quality of Service (QoS) gives guarantees on packet delivery. The guarantees include correctness
of the result, completion of the transmission, and bounds on the performance (Lu, 2007). The

network traffic is divided usually into two service classes – best-effort and guaranteed. A best-
effort service is connectionless. Packets are delivered when possible depending on the current
network condition. A guaranteed service is typically connection-oriented. The guaranteed service
class packets are prioritized over the best-effort traffic. In addition, guaranteed service avoids
network congestions by establishing a virtual circuit and reserving the resources. It can be
implemented for example by using multiple timeslots (Time Division Multiple Access, TDMA)
or virtual channels.

Further reading

There is comprehensive survey of research and practices of network-on-chip (Bjerregaard &
Mahadevan, 2006), survey of different NoC implementations (Salminen, Kulmala, &
Hämäläinen, 2008) and overview of outstanding research problems in NoC design (Marculescu et
al., 2009).

System-level design
System-level design starts with the specification of a system to be designed and concludes with
integration of the created hardware and software. Of course, considering the complexity of
systems, a systematic approach is needed and the system-level design methodologies try to take
into account important implementation issues already at higher abstraction levels.

Traditional system-level design flow

Having its roots in the end of the 80’s, system-level design is a hierarchical process that begins
with a high-level description of the complete system and works down to fine grained descriptions
of individual systems modules (Stressing, 1989). Initially, the descriptions of a system are
independent from the implementation technology. There are even no details whether some
component of the system should be implemented in hardware or in software. Therefore, early
system descriptions are more behavioural than structural, focusing on system functionality and
performance specification rather than interconnects and modules. In addition to the system
specification, it is important to have possibility to verify the performance and functional
specification. A specification at the system-level should be created in such a way that its
correctness can be validated by simulation. Such a model is often referred to as simulatable
specification. In addition, a model at the system-level should be expressed in a form that enables
verification that further refinements correctly implement the model (Ashenden & Wilsey, 1998).
Possible approaches include behavioural synthesis (correct by construction), and formal
verification using model checking and equivalence checking (Ashenden & Wilsey, 1998). A third
essential element of system-level design is the exploration of various design alternatives. For
example, whether to implement a function in hardware or in software, whether to solve it with
sequential or parallel algorithm. The analysis of trade-offs between design alternatives is a key
element of system-level design and shows the quality of the particular system-level design flow.
It is important that a system-level design flow is supported by system-level tools –
simulators/verifiers, estimators and partitioners. The first system-level design tools were
introduced in 1980 by Endot, a company formed out of the staff at the Case Western Reserve
University (Stressing, 1989). The need for the system-level design tools was the complexity of
the aerospace and defence systems that were then being developed, but it soon became apparent

that these tools were applicable to design complex digital hardware/software systems of any type
(Stressing, 1989).

At the system-level, a system can be modelled as a collection of active objects that react to
events, including communication of data between objects and stimuli from the surrounding
environment. Abstractions are needed in a number of areas to make the system-level behavioural
modelling tractable in the following views:

• abstraction of data,
• abstraction of concurrency, and
• abstraction of communication and timing (Ashenden & Wilsey, 1998).

Of course, different views can stress on different abstractions, e.g., concurrency is replaced by
calculation, and communication and timing are looked at separately (Jantsch, 2003).

The classical system-level design flow consists of several consecutive design tasks with
loopbacks to previous steps (Lagnese & Thomas, 1989). An input to the system-level design flow
is a system specification that is represented in a formal way, e.g., dataflow or task graph. In the
dataflow graph, the nodes represent operators and the arcs between them represent data and
control dependencies like in task graphs. The operators are scheduled into time slots called
control steps. Scheduling determines the execution order of the operators. The scheduling can be
either static or dynamic. In the dynamic scheduling, the start times are obtained during execution
(online) based on priorities assigned to processes. In the static scheduling, the start times of the
processes are determined at the design time (off-line) and stored in the form of schedule tables.
Scheduling sets lower limits on the hardware because operators scheduled into the same control
step cannot share the hardware. Thus, scheduling has a great impact on the allocation of the
hardware. After scheduling the data-flow operators and values are mapped to allocated hardware.
If the hardware platform is given with the system specification then designer can also start first
with the mapping and then perform the scheduling. Since both, mapping and scheduling, are NP-
hard, the parallel execution of those design phases is extremely difficult. When the results of the
system-level design flow do not satisfy the initial requirements, either the mapping or the
scheduling of application’s components can be changed. If no feasible solution is found, changes
are needed in the system specification or in the architecture. After an acceptable schedule is
found, lower abstraction-levels of hardware/software co-design will follow.

System

specification and

modelling Mapping

Scheduling
Partitioning

Estimation

Analysis

Software

development

Hardware

synthesis

System integration,

verification, testing

HW platform

selection

System-level

design

System

representation

Figure 2. Classical system-level design flow

Refinement to a software implementation is facilitated by a system-level modelling language
that is closely related to programming languages. In principle, both the hardware and software
implementations could be expressed in the same language as the system-level model, thus
avoiding semantic mismatches between different languages in the design flow (Ashenden &
Wilsey, 1998). Some of the most common system-level design languages are StateCharts (Harel,
1987), Estelle (Budkowski & Dembinski, 1987), SDL (Færgemand & Olsen, 1994), CSP (Hoare,
1978) and SystemC (SystemC, 2009). Most recent and prominent of those is SystemC. SystemC
is a C++ class library that can be used to create a cycle-accurate model for software algorithms,
hardware architectures, and interfaces, related to system-level designs (SystemC, 2009).

Most of modern embedded systems have both the hardware and software components. When
designing such a system, it is important that both sides are developed not in an isolated but in an
integrated manner. The generic hardware/software co-design methodology, as a part of the overall
system design flow, supports concurrent development of software and hardware. Important tasks
in such a development are co-simulation and co-verification. It should be noted that in many
cases, systems have also analogue parts that should be designed concurrently with rest of the
system (Gerstlauer, Haubelt, Pimentel, Stefanov, Gajski, & Teich, 2009).

System-level design issues of NoC-based systems

In principle, the system-level design issues for NoC-based systems follow the same principles as
described above. That is, the initial specification is modelled to estimate performance and
resource requirements when using different architectural solutions. This includes platform
selection, task mapping and task scheduling. In addition, because of the rather complex
communication behaviour between resources, communication mapping and scheduling between
tasks should be addressed with care. The reason for that is rather simple – communication
latencies may be unpredictable, especially when trying to apply dynamic task organisation.
Therefore, the traditional scheduling techniques that are applicable to the hard real-time and
distributed systems are not suitable as they address only the bus-based or point-to-point

communication. Also, system-level design for NoCs has one major difference when compared to
the traditional system-level design – hardware platform is either fixed or has limited modification
possibilities (Keutzer, Newton, Rabaey, & Sangiovanni-Vincentelli, 2000). Therefore the main
focus is on the application design and distribution between resources.

NoC communication latency depends on various parameters such as topology, routing,
switching algorithms, etc., and need to be calculated after task mapping and before the task graph
scheduling (Marculescu et al., 2009). In several research papers, the average or the worst case
communication delay has been considered (Lei & Kumar, 2003; Marcon, Kreutz, Susin, &
Calazans, 2005; Hu & Marculescu, 2005; Shin & Kim, 2004; Stuijk, Basten, Geilen, &
Ghamarian, 2006; Shim & Burns, 2008; Shin & Kim, 2008). In many cases, it is an
approximation that can be either too pessimistic (giving the upper bound) or too optimistic (by
not scheduling explicitly the communication or not considering the communication conflicts).
Therefore, an efficient system-level NoC design framework requires an approach for the
communication modelling and synthesis to calculate communication hard deadlines that are
represented by communication delay and guide the system-level synthesis process by taking into
account possible network conflicts.

Dependable Systems-on-Chip
System dependability is a QoS having attributes reliability, availability, maintainability,
testability, integrity and safety (Wattanapongsakorn & Levitan, 2000). Achieving a dependable
system requires combination of a set of methods that can be classified into:

• fault-avoidance – how to prevent (by construction) fault occurrence,
• fault-tolerance – how to provide (by redundancy) service in spite of faults occurred or

occurring,
• error-removal – how to minimize (by verification) the presence of latent errors,
• error-forecasting – how to estimate (by evaluation) the presence, the creation and the

consequences of errors (Laprie, 1985).
In 1997, Kiang has depicted dependability requirements over past several decades showing

shift in the dependability demands from the product reliability into customer demands for total
solutions. The percentage of hardware failures noted in the field is claimed to be minimal, thus
allowing to focus on system architecture design and software integrity through the design process
management and concurrent engineering. Technology scaling, however, brings process variations
and increasing number of transient faults (Constantinescu, 2003) that requires focus together with
system design also on fault-tolerance design. According to Wattanapongsakorn and Levitan
(2000) a design framework that integrates dependability analysis into the system design process
must be implemented. To date, there are very few such system design frameworks, and none of
them provide support at all design levels in the system design process, including evaluations of
system redundancy, and dependency.

Classification of faults

Different sources classify the terms fault, error, failure differently. However, in everyday life we
tend to use them interchangeably. According to IEEE standard 1044-2009 (2009) of software
anomalies, an error is an action which produces an incorrect result. A fault is a manifestation of
the error in software. A failure is a termination of the ability of a component to perform a

required action. A failure may be produced when a fault is encountered. In Koren and Krishna
(2007) view a fault (or a failure) can be either a hardware defect or a software mistake. An error
is a manifestation of the fault or the failure.

Software faults are in general all programming mistakes (bugs). Hardware faults can be
divided into three groups: permanent, intermittent and transient faults according to their duration
and occurrence.

• Permanent faults – the irreversible physical defects in hardware caused by manufacturing
process variations or wearout mechanism. Once a permanent fault occurs it does not
disappear. Manufacturing tests are used to detect permanent faults caused by the
manufacturing process. Fault tolerance techniques can be used to achieve higher yield by
accepting chips with some permanent faults that are then masked by the fault tolerance
methods.

• Intermittent faults – occur because of unstable or marginal hardware. They can be
activated by environmental changes, like higher temperature or voltage. Usually
intermittent faults precede the occurrence of permanent faults (Constantinescu, 2003).

• Transient faults – cause a component to malfunction for some time. Transient faults are
malfunctions caused by some temporary environmental conditions such as neutrons and
alpha particles, power supply and interconnect noise, electromagnetic interference and
electrostatic discharge (Constantinescu, 2003). Transient faults cause no permanent
damage and therefore they are called soft errors. The soft errors are measured by Soft
Error Rate (SER) that is probability of error occurrence.

Fault tolerance

Fault tolerance is an exercise to exploit and manage redundancy. Redundancy is the property of
having more of a resource than is minimally necessary to provide the service. As failures happen,
redundancy is exploited to mask or work around these failures, thus maintaining the desired level
of functionality (Koren & Krishna, 2007).

Usually we speak of four forms of redundancy:
• Hardware – provided by incorporating extra hardware into the design to either detect or

override the effects of a failed component. We can have
o static hardware redundancy – objective to immediately mask a failure;
o dynamic hardware redundancy – spare components are activated upon a failure

of a currently active component;
o hybrid hardware redundancy – combination of the two above.

• Software – protects against software faults. Two or more versions of the software can be
run in the hope that that the different versions will not fail on the same input.

• Information – extra bits are added to the original data bits so that an error in the bits can
be detected and/or corrected. The best-known forms of information redundancy are error
detection and correction coding. Error codes require extra hardware to process the
redundant data (the check bits).

• Time – deals with hardware redundancy, re-transmissions, re-execution of the same
program on the same hardware. Time redundancy is effective mainly against transient
faults (Koren & Krishna, 2007).

Metrics are used to measure the quality and reliability of devices. There are two general
classes of metrics that can be computed with reliability models:

• the expected time to some event, and
• the probability that a system is operating in a given mode by time t.

The expected time to some event is characterized by mean time to failure (MTTF) – the
expected time that a system will operate before a failure occurs. Mean Time To Repair (MTTR)
is an expected time to repair the system. Mean Time Between Failures (MTBF) combines the two
latter measures and is the expected time that a system will operate between two failures:

 MTBF = MTTF + MTTR (4)
The second class is represented by reliability measure. Reliability, denoted by R(t), is the

probability (as a function of the time t) that the system has been up continuously in the time
interval [t0, t], given that the system was performing correctly at time t0 (Smith, DeLong,
Johnson, & Giras, 2000).

While general system measures are useful at system-level, these metrics may overlook
important properties of fault-tolerant NoCs (Grecu, Anghel, Pande, Ivanov, & Saleh, 2007). For
example, even when the failure rate is high (causing undesirable MTBF) recovery can be
performed quickly on packet or even on flit level. Another drawback is related to the fact that
generic metrics represent average values. In a system with hard real-time requirements the NoC
interconnect must provide QoS and meet the performance constraints (latency, throughput).
Therefore specialized measures focusing on network interconnects should be considered when
designing fault-tolerant NoC-based Systems-on-Chip. For example, one has to consider node
connectivity that is defined as the minimum number of nodes and links that have to fail before the
network becomes disconnected or average node-pair distance and the network diameter (the
maximum node-pair distance), both calculated given the probability of node and/or link failure
(Koren & Krishna, 2007). In 2007 Ejlali, Al-Hashimi, Rosinger, and Miremadi proposed
performability metric to measure the performance and reliability of communication in joint view.
Performability P(L, T) of an on-chip interconnect is defined as the probability to transmit L useful
bits during the time T in the presence of noise. In presence of erroneous communication re-
transmission of messages is needed which reduces probability to finish the transmission in a
given time period. Lowering the bit-rate increases time to transmit the messages but also
increases probability to finish the transmission during the time interval. According to authors the
performability of an interconnect which is used for a safety-critical application must be greater
than 1-10-1.

Fault tolerance techniques

Fault tolerance has been extensively studied in the field of distributed systems and bus-based
SoCs. In (Miremadi & Torin, 1995) the impact of transient faults in a microprocessor system is
described. They use three different error detection mechanisms – signature, watchdog timer, and
error capturing instruction (ECI) mechanism. Signature is a technique where each operation or a
set of operations are assigned with a pre-computed checksum that indicates whether a fault has
occurred during those operations. Watchdog Timer is a technique where the program flow is
periodically checked for presence of faults. Watchdog Timer can monitor, for example, execution
time of the processes or to calculate periodically checksums (signatures). In the case of ECI
mechanism, redundant machine-instructions are inserted into the main memory to detect control
flow errors. Once a fault is detected with one of the techniques above, it can be handled by a
system-level fault tolerance mechanism. In 2006, Izosimov described the following software
based fault tolerance mechanisms: re-execution, rollback recovery with checkpointing and

active/passive replication. Re-execution restores the initial inputs of the task and executes it
again. Time penalty depends on the task length. Rollback recovery with checkpointing
mechanism reduces the time overhead – the last non-faulty state (so called checkpoint) of a task
has to be saved in advance and will be restored if the task fails. It requires checkpoints to be
designed into the application that is not a deterministic task. Active and passive replications
utilize spare capacity of other computational nodes. In 2007, Koren and Krishna described fault
tolerant routing schemes in macro-distributed networks.

Similarly to distributed systems, NoC is based on a layered approach. The fault tolerance
techniques can be classified by the layer onto which they are placed in the communication stack.
We are, however, dividing the fault tolerance techniques into two bigger classes – system-level
and network-level techniques. At the network level, the fault tolerance techniques are based, for
example, on hardware redundancy, error detection / correction and fault tolerant routing. By
system-level fault tolerance we mean techniques that take into account application specifics and
can tolerate even unreliable hardware.

One of the most popular generic fault tolerance techniques is n-modular redundancy (NMR)
that consists of n identical components and a voter to detect and mask failures. This structure is
capable of masking (n - 1)/2 errors having n identical components. The most common values for
n are three (triple modular redundancy, TMR), five and seven capable of masking one, two and
three errors, respectively. Because a system with an even number of components may produce an
inconclusive result, the number of components used must be odd (Pan & Cheng, 2007). NMR can
be used to increase both hardware and system-level reliability by either duplicating routers,
physical links or running multiple copies of software components on different NoC processing
cores.

Pande, Ganguly, Feero, Belzer, and Grecu (2006) propose a joint crosstalk avoidance and
error correction code to minimize power consumption and increase reliability of communication
in NoCs. The proposed schemes, Duplicate Add Parity (DAP) and Modified Dual Rail (MDR),
use duplication to reduce crosstalk. Boundary Shift Code (BSC) coding scheme attempts to
reduce crosstalk-induced delay by avoiding shared boundary between successive codewords.
BSC scheme is different from DAP that at each clock cycle, the parity bit is placed on the
opposite side of the encoded flow control unit. Data coding techniques can be used in both inter-
router and end-to-end communication. Dumitras and Marculescu (2003) propose a fast and
computationally lightweight fault tolerant scheme for the on-chip communication, based on an
error-detection and multiple-transmissions scheme. The key observation behind the strategy is
that, at the chip level, the bandwidth is less expensive than in traditional networks because of the
existing high-speed buses and interconnection fabrics that can be used for the implementation of a
NoC. Therefore we can afford to have more packet transmissions than in the previous protocols in
order to simplify the communication scheme and to guarantee low latencies. Dumitras and
Marculescu call this strategy where IPs communicate using probabilistic broadcast scheme – on-
chip stochastic communication. Data is forwarded from a source to destination cores via multiple
paths selected by probability. Similar approach is proposed in (Pirretti, Link, Brooks,
Vijaykrishnan, Kandemir, & Irwin, 2004) and (Murali, Atienza, Benini, & De Micheli, 2006).
Lehtonen, Liljeberg and Plosila (2009) describe turn models for routing to avoid deadlocks and
increase network resilience for permanent faults. Kariniemi and Nurmi (2005) presented a fault
tolerant eXtended Generalized Fat Tree (XGFT) NoC implemented with a fault-diagnosis-and-
repair (FDAR) system. The FDAR system is able to locate faults and reconfigure routing nodes in
such a way that the network can route packets correctly despite the faults. The fault diagnosis and

repair is very important as there is only one routing path available in the XGFTs for routing the
packets downwards from nearest common ancestor to its destination. Frazzetta, Dimartino, Palesi,
Kumar and Catania (2008) describe an interesting approach where partially faulty links are also
used for communication. For example, data can be transmitted via “healthy wires” on a 24-bit
wide channel although the channel is before degrading 32-bit wide. Special method is used to
split and resemble the flow control units. Zhang, Han, Xu, Li and Li (2009) introduce virtual
topology that allows to use spare NoC cores to replace faulty ones and re-configure the NoC to
maintain the logical topology. A virtual topology is isomorphic with the topology of the target
design but is a degraded version. From the viewpoint of programmers and application, they
always see a unified virtual topology regardless of the various underlying physical topologies.
Another approach is to have a fixed topology but remap the tasks on a failed core. Ababei and
Katti (2009) propose a dynamic remapping algorithm to address single and multiple processing
core failures. Remapping is done by a general manager, located on a selected tile of the network.

In Valtonen, Nurmi, Isoaho and Tenhunen (2001) view, reliability problems can be avoided
with physical autonomy, i.e., by constructing the system from simple physically autonomous
cells. The electrical properties and logical correctness of each cell should be subject to
verification by other autonomous cells that could isolate the cell if deemed erroneous (self-
diagnosis is insufficient, because the entire cell, including the diagnostic unit, may be defect). In
2007, Rantala, Isoaho and Tenhunen motivate the shift from low level testing and testability
design into system-level fault tolerance design. They propose an agent-based design methodology
that helps bridging the gap between applications and reconfigurable architectures in order to
address the fault tolerance issues. They add a new functional agent/control layer to the traditional
NoC architecture. The control flow of the agent-based architecture is divided hierarchically to
different levels. The granularity of functional units on the lowest level is small and grows
gradually when raised on the levels of abstraction. For example the platform agent at the highest
level controls the whole NoC platform while a cell agent monitors and reports status of a
processing unit to higher level agents. Rusu, Grecu and Anghel (2008) propose a coordinated
checkpointing and rollback protocol that is aimed towards fast recovery from system or
application level failures. The fault tolerance protocol uses a global synchronization coordinator
Recovery Management Unit (RMU) which is a dedicated task. Any task can initiate a checkpoint
or a rollback but the coordination is done each time by the RMU. The advantages of such an
approach are simple protocol, no synchronization is needed between multiple RMUs, less
hardware overhead and power consumption. The drawback is the single point of failure – the
dedicated RMU itself.

As a conclusion, there are various techniques to increase NoC fault tolerance but most of the
research has been so far dedicated to NoC interconnects or fault tolerant routing. With the
increase of variability the transient faults play more important role. The application running on a
NoC must be aware of the transient faults and be able to detect and recover efficiently from
transient faults. Therefore, a system-level synthesis framework with communication modelling is
needed.

SCHEDULING FRAMEWORK OF NETWORK-ON-CHIP BASED SYSTEMS
In this section we propose an approach for communication modelling and synthesis to calculate
communication hard deadlines that are represented by communication delay and guide the
scheduling process to take into account possible network conflicts.

Design flow
We are employing a traditional system-level design flow (Figure 3) that we have extended to
include NoC communication modelling and dependability issues. Input to the system-level design
flow is an application A, NoC architecture N and application mapping M. Application is specified
by a directed acyclic graph A = (T, C), where T = {t i | i = 1,…,T} is set of vertices representing
non-preemptable tasks and C = {ci,j | (i,j) ∈ {1,…,V} x {1,…,V}} is a set of edges representing
communication between tasks. Each task ti is characterized by the Worst Case Execution Time
(WCET) Wceti and mobility Mobi that are described in more details in the section “Scheduling of
extended task graph”. NoC platform introduces communication latency that depends not only on
message size but also on resource mapping and needs to be taken into account. An edge ci,j that
connects two tasks ti and tj represents control flow dependency in case edge parameter message
size Msizei,j = 0 and communication in case Msizei,j > 0. In addition to the message size, the edge
is characterized by the Communication Delay (CD) Cdi,j that is described in more details in
section “Communication synthesis”. We assume that application has dummy start and end
vertices. Both these vertices have Wcet = 0.

Application task

graph (ETG)
NoC architecture Task mapping

Mapping & Partitioning

Communication

synthesis

Schedule tasks

Lower levels of HW/SW Co-design

Constructive scheduling with

dependability

Figure 3. System-Level design flow

NoC architecture is a directed graph N = (R, L) where R = {rk | k = 1,…,R} is a set of
resources and L = {l k,l | (k,l) ∈ {1,…,R} x {1,…,R}} is a set of links connecting a pair of resources
(k,l). The resources can be routers and computational cores. The architecture is characterized by
operating frequency, topology, routing algorithm, switching method and link bit-width. The
mapping M of an application A is represented by a function M (T → R). According to Marculescu
et al. (2009) the application mapping has a major impact on the schedule length, NoC
performance and power consumption. However, in our work we assume that the application is
already mapped and finding an optimal application mapping is out of the scope of this work.

Once the tasks have been mapped to the architecture, constructive task scheduling starts. It
consists of communication synthesis and task scheduling that are described in more detail in
section “Communication synthesis”. The application and architecture can also contain
information about dependability which is explained in section “Task graph scheduling with
dependability requirements”. If dependability and other design requirements are met the lower
levels of HW/SW co-design processes continue. Otherwise changes are needed in the architecture
or in the mapping.

Communication synthesis
Importance of communication synthesis

One of the key components of the scheduling framework, described in this work, is the
communication synthesis, which main purpose is to calculate communication hard deadlines that
are represented by Communication Delay (CD) and guide the scheduling process to take into
account possible network conflicts. In hard real-time dependable systems the predictable
communication delays are crucial. Once a fault occurs, the system will apply a recovery method
that might finally require re-scheduling of the application. To analyze the fault impact on the
system we need to have information how a fault affects the task execution and communication
delays. In our proposed approach the communication is embedded into extended task graph
(ETG) that allows us to use the fine-grained model during the scheduling and avoid over
dimensioning of the system. Detailed information about communication is also needed for
accurate power model (Marculescu et al., 2009). Another design aspect is the ratio of modelling
speed and accuracy. A communication schedule could be extracted by simulating the application
on a NoC simulator, but the simulation speed will be the limiting factor.

In Figure 4, an example task graph (Figure 4a) and its mapping onto five processing units
(Figure 4b) is presented. Task t0 is mapped onto PU1, t1 onto PU2 etc. It can be seen that
communication c1 (from t0 to t2) takes three links (link1, link2, link3) while c2 (from t1 to t2) takes
two links (link2, link3). We can calculate the communication delays without conflicts for different
switching methods based on formulas below (Ni & McKinley, 1993):

 Cdi,j
store-and-forward = (S/B)D (5)

where S is the packet size, B is the channel bandwidth and D is the length of the path in hops
between source and destination task.

 Cdi,j
virtual cut-through = (Lh /B)D + S/B (6)

where Lh is the size of the header field.
 Cdi,j

wormhole = (Lf /B)D + S/B (7)
where Lf is the maximum size of the flit.
The physical links, which the communication traverses, are shared resources. It means that in

addition to calculating the latencies we need to avoid or have a method to take into account the
network conflicts as well. It should be noted that the actual routes will depend on how tasks are
mapped and which routing approach is being used.

PU3

RNI

R

PU4

RNI

R

PU1

RNI

R

PU2

RNI

R

t0

t3

t1

link2

link1

t0

t2

t3

t4

c1 c3

t1

c2

PU5

RNI

R

PU6

RNI

R

t2t4
link3

link4

Begin

End

link2

t0

t2

t3

t4

t1

Hc1

link1

link3

1
1

Bc

Tc1

Begin

End

c2 c31
1c

2
1c

a)

b) c)

Hc1

Hc1

1
1

Bc

1
1

Bc

Tc1

Tc1

Figure 4. Extended task graph, mapping and partially transformed ETG

Manolache, Eles and Peng (2007) proposed a task graph extension with detailed
communication dependencies employing virtual cut-through switching with deterministic source-
ordered XY routing. The basic idea is to cover with the task graph not only the tasks but also the
flow control units (e.g., packages, flits). That is, all communication edges between tasks are
transformed into sequences of nodes representing flow control units. Edges represent
dependencies between tasks and/or flow control units. Such an approach assumes that both tasks
and communication are already mapped, i.e., it is known which tasks are mapped onto which
resources and which data-transfers are mapped onto which links. Of course, different routing
strategies will give different communication mapping but all information needed for the
scheduling is captured in the task graph. We have generalized the proposed approach and made it
compatible with different switching methods such as store-and-forward, virtual cut-through and
wormhole switching.

Assumptions on architecture

We assume that each computational core is controlled by a scheduler that takes care of task
execution on the core and schedules the message transfer between the tasks. The schedule is
calculated offline and stored in the scheduler memory. Such scheduler acts also as a synchronizer
for data communication. Otherwise a task, which completes earlier of its calculated WCET and
starts message transfer, could lead to an unexpected network congestion and have a fatal effect on
the execution schedule. We assume that the size of an input butter is one packet in the case of

virtual cut-through or store-and-forward and one flit in the case of wormhole switching method.
Input buffer of a flow control unit allows it to be coupled with the incoming link and to look at
them as one shared resource. Multiple input buffers would require extension of the graph model
and the scheduling process. The proposed approach can be extended to be used in wormhole
switching with virtual channels – each virtual channel could be modelled as a separate physical
channel having a separate input buffer of one flow control unit. We assume deterministic routing.
In our experiments we are using dimension ordered XY routing. Our NoC topology is m x n (2D)
mesh with bidirectional links between the switches (Figure 4b).

Communication synthesis for different switching methods

Input for the scheduling is an extended task graph where tasks are mapped onto resources. Once a
communication task is ready to be scheduled, we start the communication synthesis sub-process.
Depending on the selected switching method, some of the flow control units must be scheduled
strictly to the subsequent time slots. In wormhole switching, the header flit contains the routing
information and builds up the communication path, meaning when the header flit goes through a
communication link, the body flits must follow the same path. Also, when the header flit is
temporarily halted, e.g., because of the traffic congestion, the following flits in downstream
routers must be halted too. This sets additional constraints for the communication synthesis. The
constraints – fixed order and delay between some of the nodes – are similar to the restrictions
used in pipe-lined scheduling (De Micheli, 1994).

Figure 4c depicts the communication synthesis sub-process for communication task c1
between tasks t0 and t2 in case of wormhole switching. The variable size message c1 (Figure 4a) is

divided into bounded size packets 1
1c and 2

1c . A packet is further divided into three types of data-

units (flits) – header (H), body (B) and tail (T). Typically there is only one H and one T flit, while
many B flits. The flit pipeline is built for all links the communication traverses. The edges
represent dependencies between two flits. As a result, the body flit c1

B1 on link1 depends on the
header flit c1

H on the link2. Therefore the body flit c1
B1 cannot be sent before the header flit c1

H has
been scheduled (acquired a flit buffer in the next router). Combined with traditional priority
scheduling to handle network resource conflicts (e.g., list scheduling), the body flit will be
scheduled after the header flit has been sent.

Scheduling of extended task graph

Our proposed approach can be used with arbitrary scheduling algorithm, although the schedules
in this paper are produced by using list scheduling. Our goal is to find a schedule S which
minimizes the worst-case end-to-end delay D (application execution time), schedules messages
on communication links and produces information about contentions. First, we will calculate the
priorities of the tasks represented by mobility Mobi. Mobility is defined as difference between
task ASAP (As-Soon-As-Possible) and ALAP (As-Late-As-Possible) schedule. We will schedule
a ready task. Next, we will start the communication synthesis and scheduling for messages
initiated by this task. Figure 5a shows a scheduling state where tasks t0, t3 and communication c1,
c3 (Figure 4a) have been scheduled. The respective extended task graph is depicted in Figure 5d.
As a next step we are going to schedule communication c2 in between tasks t1 and t2. Without any
conflict the schedule looks like depicted in Figure 5b. The respective extended task graph is
shown in Figure 5e. Combining schedules depicted in Figure 5a and Figure 5b show that there is
a communication conflict on link2 and link3. Based on calculated priority we need to delay the

communication c2 and schedule it after c1
T. Figure 5c shows that even if we will delay the c2 start

time there will be a conflict between the c2
H and c3

H flit on link3. Therefore the flit c2
H needs to be

buffered in downstream router and wait for available input buffer in next router. This is done by
finding the maximum schedule time on link3 and scheduling the flit c2

Hstart = max(link3
time). After

the flit c2
H has been scheduled on link3 the schedule end time of the same flit on link2 need to be

updated. Figure 5c shows the schedule for communication c2 after the conflicts have been
resolved. The resulting schedule is depicted in Figure 6.

Hc1 11Bc Tc1

Hc3 13Bc Tc323Bc
Hc1

Hc1
11Bc

11Bc

21Bc

21Bc

21Bc

31Bc

31Bc

31Bc
Tc1

Tc1

Hc3 13Bc 23Bc Tc3

Hc2 12Bc Tc222Bc

Hc2 12Bc 22Bc Tc2

Hc2 12Bc Tc222Bc

Hc2 12Bc 22Bc Tc2

Hc1

1
1

Bc

2
1

Bc

3
1

Bc

Tc1

1c
Hc1

Hc1
1

1
Bc

1

1
Bc

2
1

Bc
2

1
Bc

3
1

Bc
3

1
Bc

Tc1

Tc1

3c Hc3

Hc3

2
3

Bc

2
3

Bc

1
3

Bc
1

3
Bc

Tc3

Tc3

2c Hc2

2
2

Bc

1
2

Bc

Tc2

Hc2

1
2

Bc

2
2

Bc

Tc2

Figure 5. Communication synthesis and scheduling

t1PU2

Hc2 12Bc Tc222Bc

Hc2 12Bc 22Bc Tc2

t0

t3

PU1

PU4

link1

link2

link3

link4

Hc1 11Bc Tc1

Hc3 13Bc Tc323Bc
Hc1

Hc1
11Bc

11Bc

21Bc

21Bc

21Bc

31Bc

31Bc

31Bc
Tc1

Tc1

Hc3 13Bc 23Bc Tc3

time

PU6

t4

t2
PU5

c1

c2

c3

Figure 6. Final schedule of the application

ScheduleCommunication(ci)
1 first vertex of sub-graph = transform communication edge ci into sub-graph
2 add into ReadyToSchedule list the first vertex of sub-graph
3 while ReadyToSchedule ≠ ∅, i = 0 do
4 if current flit being scheded is a head flit from new packet then
5 //ScheduleTimePrev – schedule time from predecessor flit or task
6 if predecessor of current flit is a task then
7 ScheduleTimePrev = store the task schedule end time
8 else
9 //predecessor of current flit was also a flit
10 ScheduleTimePrev = maximum link schedule time where the
11 predecessor flit was mapped
12 end if
13 else
14 //we are scheduling flits from the same packet
15 if flit type of current flit == HEAD then
16 ScheduleTimePrev = schedule end time of predecessor
17 else
18 ScheduleTimePrev = maximum link schedule time where the
19 predecessor flit was mapped
20 end if
21 end if
22
23 LinkTime = get max schedule time from mapped link of current flit
24 //choose the maximum schedule time from predecessor task or a flit on a link
25 if ScheduleTimePrev < LinkTime then
26 TaskStartTime = LinkTime
27 else
28 TaskStartTime = ScheduleTimePrev
29 end if
30
31 TaskEndTime = TaskStartTime + Communication Delay of current flit
32 Back annotate previous head flit schedule end time if applicable
33 Add successor vertexes and remove scheduled flit from ReadyToSchedule
34 end while
end ScheduleCommunication

Figure 7. Communication scheduling algorithm for wormhole switching

For each flow control unit we will calculate its communication delay on corresponding link
that is represented by the formula:

 ci
CD = Sf / Bl (8)

where Sf is the size of the flow control unit (flit or packet) and Bl bandwidth of the
corresponding link. ∑(ci

Endtime – ci
Starttime) gives us the total communication delay of ci. Currently

we take into account only the transmission time between the network links. The start-up latency
(time required for packetization, copying data between buffers) and inter-router delay are static
components and are considered here having 0 delay. Figure 7 depicts the communication
scheduling algorithm for wormhole switching. The approach can be used in similar way also for
virtual cut-through and store-and-forward switching methods.

The benefits of the proposed approach are fine-grained scheduling of control flow data units,
handling network conflicts and the generalization of the communication modelling – the
communication is explicitly embedded in a natural way into the task graph. The flit level
schedules can be used for debug purposes or for power estimation. The proposed approach can be
used for different topologies (including 3D NoC) and different switching methods in relation with
deterministic routing algorithms. The network conflicts can be extracted from the schedule and
the information used for re-mapping and re-scheduling the application. Our approach does not
suffer also from the destination contention problem, thus eliminating the need for buffering at the
destination. The graph complexity depends on number of tasks, NoC size, mapping and flow
control unit size CFUsize. We can represent this by a function Gcomplexity = (A, N, M, CFUsize).
Experimental results show that the approach scales well for store-and-forward and virtual cut-
through. Wormhole switching contains fine-grained flit level communication schedule and
therefore the scaling curve is more sharp than for aforementioned. In the next subsection we will
describe a message-level communication synthesis approach that addresses the scaling problem.

Message-level communication synthesis

If the flow control unit level schedule need to be abstracted then the complexity of the
communication synthesis can be reduced by transforming the communication edge ci,j into a
message sub-graph of traversed links instead of flow control units. In this way we can reduce the
graph complexity into Gcomplexity = (A, N, M). Figure 8 shows on the left flit level and on the right
message level communication synthesis for c1. When compared to each other it can be seen that
for given example the complexity has been reduced almost by 7 times. The lines 4 - 20 in the
wormhole scheduling algorithm in Figure 7 will be replaced in the message-level scheduling by
getting communication ci start time on first link from predecessor task end time. Communication
ci start time on next link is ci start time on previous link added by head flit communication delay.
Similar approach can be applied to virtual-cut-through and store-and-forward switching methods.
Experimental results show equal scaling for all of the three switching methods as communication
synthesis does not depend anymore on the flow control units. In the following section we will
demonstrate the applicability of our approach for scheduling with additional requirements, such
as dependability.

t0

t2

t3

t4

t1

Begin

End

c2 c3

t0

t2

t3

t4

t1

1
1

Linkc

Begin

End

c2 c3

2
1

Linkc

2

1
Linkc

link2Hc1

link1

link3

1
1

Bc

2

1
Bc

3
1

Bc

Tc1

1c
Hc1

Hc1
1

1
Bc

1

1
Bc

2
1

Bc
2

1
Bc

3
1

Bc
3

1
Bc

Tc1

Tc1

1c

Figure 8. Communication c1 detailed and message-level

Task graph scheduling with dependability requirements
Our objective is to extend those aforementioned techniques to the system-level to provide design
support at early stages of the design flow. The application should be able to tolerate transient or
intermittent faults. We are not currently considering permanent faults that need a bit different
approach and can be handled by re-scheduling and re-mapping the application on a NoC. The
work of Izosimov (2006) describes system-level scheduling and optimizations of fault-tolerant
embedded systems in bus based systems. The work considers faults only in computational tasks.
The communication fault tolerance is not taken into account. According to Murali et al. (2005)
shrinking feature sizes towards nanometer scale cause power supply and treshold voltage to
decrease, consequently wires are becoming unreliable because they are increasingly suspectible to
noise sources such as crosstalk, coupling noise, soft errors and process variations. Additionally, in
bus based systems the task mapping does not have such influence on communication delays as in
NoCs. Therefore, we need a method to detect and tolerate transient faults and take possible fault
scenarios into account during scheduling.

In our approach we assume that each NoC processing and communication node is capable of
detecting faults and executing a corrective action. Transient fault in processing node can be
detected with special techniques such as watchdogs or signatures that are easy to implement and
have a low overhead. Once a fault is detected inputs of the process will be restored and the task
will be re-executed. Murali et al. (2005) proposes two error detection and correction schemes,
end-to-end flow control (network level) and switch-to-switch flow control (link level), that can be
used to protect NoC communication links from transient faults. We are using a simple switch-to-
switch re-transmission scheme where the sender adds error detection code (parity, cyclic
redundancy check code (CRC)) to the original message and the receiver checks the received data

for correctness. If a fault is detected the sender is requested to re-transmit the data. Depending of
switching method the error detection code is added either to flits or to packages.

We are assigning the recovery slacks and scheduling the application using shifting-based
scheduling (SBS) (Izosimov, 2006). Shifting-based scheduling is an extension of the transparent
recovery against single faults. A fault occurring on one computation node is masked to other
computation nodes. It has impact only on the same computation node. According to Izosimov
(2006) providing fault containment, transparency can potentially improve testability, debugability
and increase determinism in fault-tolerant applications. In shifting-based scheduling the start time
of communication is fixed (frozen). It means that we do not need a global real-time scheduler or
to synchronize a local recovery event with other cores in the case of fault occurrence. Fixed
communication start time allows shifting-based scheduling to be used with our communication
synthesis and scheduling approach. We can use the contention information from communication
scheduling to be taken into account when trying to find a compromise between the level of
dependability and meeting the deadlines of tasks. A downside is that SBS cannot trade-off
transparency for performance – communication in a schedule is preserved to start at predefined
time.

The scheduling problem we are solving with SBS can be formulated as follows. Given an
application mapped on a network-on-chip we are interested to find a schedule table such that the
worst-case end-to-end delay is minimized and the transparency requirements with frozen
communication are satisfied. In 2006, Izosimov proposed a Fault-Tolerant Conditional Process
Graph (FT-CPG) to represent an application with dependability requirements. FT-CPG captures
alternative schedules in the case of different fault scenarios. Graphically FT-CPG is a directed
acyclic fork-and-join graph where each branch corresponds to a change of condition. In similar
way to Izosimov (2006) we are not explicitly generating a FT-CPG for SBS. Instead, all possible
execution scenarios are considered during scheduling.

The shifting-based scheduling algorithm is depicted in Figure 9. Input for the SBS is
application A, architecture N with mapping M, the number of transient faults k to be tolerated in
any processing core and the number of transient faults r that can appear during data transmission
on communication links. First, priorities of tasks are calculated based on mobility and the first
task is put into the ready list. Scheduling loop is processed until all tasks have been scheduled.
The first task is chosen from the ready list and the work list of ready tasks that are mapped to the
same processor as the selected task is created. The work list is sorted based on mobilities and task
with smallest mobility is chosen to be scheduled. The task start time is maximum time from
mapped processor or predecessor tasks. Next, recovery slack will be calculated for the chosen
task in following three steps:

1. The idle time b between chosen task tchosen and the last scheduled task tlast on the same
processor is calculated

 b = tchosen - tlast (8)
2. Initial recovery slack sl0 of chosen task tchosen is

sl0 = k * (WCETtchosen + RecoveryOverHead) (9)
where k is number of required recovery events, WCETtchosen worst-case execution time of
chosen task and RecoveryOverHead time needed to restore the initial inputs.
RecoveryOverHead has a constant value.

3. The recovery slack sl of chosen task tchosen is changed if recovery slack of previous task tlast
subtracted with the idle time b is larger than the initial slack sl0. Otherwise initial recovery
slack is preserved.

SBS is adjusting recovery slack to accommodate recovery events of tasks mapped to the same
processing core and will schedule communication to the end of the recovery slack.
Communication synthesis and scheduling has been explained in previous sections
“Communication synthesis for different switching methods” and “Scheduling of extended task
graph”. In case of virtual-cut-through and store-and-forward switching methods each packet
contains CRC error detection code and we are re-submitting r packets from a message. In
wormhole switching each flit has CRC error detection code and we are re-submitting r flits from
a package. CRC code increases router complexity and increases slightly amount of transmitted
data but allows to decrease communication latency compared to end-to-end scheme. Re-
submission slack is taken into account when reserving buffers and link bandwidth for
communication. After a task has been scheduled its predecessor tasks, that are ready, are inserted
into ready list and scheduled task removed from ready list.

Figure 9. Shifting-based-scheduling algorithm

At the run-time of an application, local schedulers have a partial schedule table that includes
start time and dependability information of tasks and start time of communication. In the case of a
fault occurrence, corresponding local scheduler will switch to contingency schedule by looking
up how many time a task can be re-executed on given processing core before reserved recovery
slack will be passed and the deadline missed. The event of exceeding number of re-submission of
flits or packages can be catched by local scheduler at the late or missing arrival of incoming data.

Figure 10 depicts an extract of an example of SBS schedule where task t1 can be re-executed
and packet c3 re-transmitted one time in the case of fault occurrence. We can see that
communication c2 has been to the end of the recovery slack of task t1. The schedule produced by
SBS is longer than schedule without dependability but will tolerate a specified amount of
transient faults and the calculated deadline is satisfied. The advantage of our approach is that we
can take into account communication induced latencies and fault effects already at very early
stages of the design flow. Possible solutions to decrease the schedule length due to transparency
would be to introduce check-pointing and replication.

Shifting-based-scheduling(A, N, k, r)
1 Calculate mobility of tasks
2 Put BEGIN task into ready list
3 while ReadyList ≠ ∅ do
4 FirstTask = ReadyList[0]
5 WorkList = Get all ready tasks assigned to same core as FirstTask
6 Sort WorkList based on mobility
7 ChosenTask = WorkList[0]
8
9 TaskStartTime = Get max time from mapped processor of ChosenTask or from predeccessor tasks
10 RecoverySlack = Calculate recovery slack of ChosenTask(k)
11 Schedule ChosenTask(ChosenTask, TaskStartTime, RecoverySlack)
12 Schedule Communication with recovery(r)
13 Add ready successor tasks of ChosenTask into ReadyList
14 Delete ChosenTask from ReadyList
15
16 end while
end Shifting-based-scheduling

t1PU2

Hc2 12Bc Tc222Bc

Hc2 12Bc 22Bc Tc2

t0

t3

PU1

PU4

link1

link2

link3

link4

Hc1 11Bc Tc1

Hc3 13Bc Tc323Bc
Hc1

Hc1
11Bc

11Bc

21Bc

21Bc

21Bc

31Bc

31Bc

31Bc
Tc1

Tc1

Hc3 13Bc 23Bc Tc3

time

c1

c2

c3

copyt1

re-execution slack for t1

Hc3 13Bc Tc323Bc

Hc3 13Bc 23Bc Tc3

re-submission slack for packet c3

Figure 10. Shifting-based-scheduling example

Experimental results
We have built a design environment that supports our system-level design flow and scheduling
framework described in previous sections. To evaluate different aspects of our approach we have
ran tests with synthetic task graphs containing 500, 1000, 5000 and 10000 tasks mapped on
different NoC architectures. The mapping was generated in all cases randomly. The architecture
parameters were varied in together with the application size to show the scaling of the approach.
The NoC architecture parameters, if not written differently under experiments, were specified as
in Table 1. The tests were performed on computer with Intel L2400 CPU (1,66 GHz), 1 GB of
available physical RAM and operating system Microsoft Windows XP.

Table 1 . NoC Architecture Parameters

Parameter name Value
NoC operating frequency 500 MHz

Link bit-width 32 bit
Flit size, packet size 32 bit, 512 bit
Packet header size 20 bit

Link bandwidth 16 Gbit/s
Topology and routing

algorithm
2D Mesh, XY routing

Mapping Random

Our first experiment shows how NoC size impacts the schedule calculation time and length.

From one hand, the more computational units we have available the shorter schedule we are able
to produce. On the other hand, it takes more processor time to model and synthesise the
communication on a bigger NoC. The input task graph of this experiment consists of 1000 tasks
and 9691 edges. Virtual cut-through switching is used. The schedules are calculated with both
communication synthesis methods – detailed and message-level. The results in Figure 11 show
that when NoC size increases the schedule length decreases and schedule calculation time
increases. Figure 12 shows scaling of communication synthesis methods from graph size point of
view – when the NoC size increases the communication ratio also increases. This can be seen
from the number of communication vertices in the extended task graph. However, schedule
calculation time increase for both communication synthesis methods is linear. Therefore, it is
feasible to use our proposed approach in addition to application scheduling also for performance
estimation and design exploration.

The second experiment shows how detailed and message-level communication synthesis
methods, based on wormhole switching, are scaling. Detailed communication synthesis is
performed for wormhole switching at flit level while in message-level synthesis the smallest unit

of communication is a message. Task graphs with different size were mapped and scheduled on a
10 x 10 NoC. To have comparable results the same mapping and NoC size was used for both
communication synthesis methods. The results are depicted in Figure 13. When detailed flit-level
synthesis is not required then reduction in schedule calculation time and graph complexity can be
achieved. However, when detailed flit-level communication schedules are needed, e.g., for power
estimation, the detailed communication synthesis approach should be used.

The third experiment shows results of communication modelling and scheduling when a
relatively big application is mapped on a NoC with different sizes. Input application contains
5000 tasks and 25279 edges. The results are depicted in Table 2. As mentioned earlier, the larger
amount of computational units enables to shorten the schedule, but consequently, the larger
network increases the communication ratio as average number of hops between tasks keeps also
increasing. At the same time we can see that conflicts length keeps decreasing. It is because of the
fact that source-ordered XY routing does no load balancing on the network links by itself.
However, when more communication links are available there is less possibility that two message
transfers between tasks will intersect on the same link and in the same timeframe. The amount of
communication conflicts in the system can be reduced by developing more efficient scheduling
heuristic, taking into account the specifics of on-chip networks. As our modelling approach
provides detailed information about the communication then it is also possible to use different
deterministic routing algorithms during the communication synthesis, in addition to the XY-
routing algorithm, used in this paper.

The last experiment shows performance and dependability trade-off when using shifting-based
scheduling. We are using an application with 1000 tasks mapped to a 10x10 NoC. We are
changing the dependability parameters k and r of SBS. Results are depicted in Table 3. As
explained in previous section SBS cannot trade-off transparency for performance and this can be
seen also in the results. Increasing the processing node fault tolerance parameter k the schedule
length increases roughly k+1 times for given application. Communication fault-tolerance
overhead is marginal compared to computation fault-tolerance. This is due to switch-to-switch
error detection and re-submission scheme which reduces communication and recovery latency
compared to end-to-end scheme. Additionally, we are attaching error detection code either to
each packet or to each flit and re-submit only the faulty flow control unit instead of the whole
message. Checkpointing and task replication could be used to decrease schedule length caused by
computation delay.

Table 2. Results of communication synthesis

NoC size Schedule length (µµµµs) Communication ratio % Communication conflicts length (µµµµs) Calculation time (s)
25 51235 5% 8981 9

100 36449 10% 8238 17
225 32001 14% 6620 21
400 30556 19% 6252 27
625 20446 24% 5553 36
900 28546 29% 4844 50

Table 3. Shifting-based scheduling – performance / dependability trade-off

Level of dependability Schedule length
(µµµµs)

Increase of initial
schedule length

(x times)
k – task

re-execution
r – data

re-submission
Initial schedule length without dependability and no CRC in communication
34 176

0 0 34 177 1.00
1 34 196
2 34 215

3 34 234
1 0 66 899 1.96

1 66 919
2 66 939
3 66 958

2 0 99 782 2.92
1 99 802
2 99 822
3 99 841

3 0 135 182 3.96
1 135 200
2 135 217
3 135 234

32000

33000

34000

35000

36000

37000

38000

39000

40000

41000

25 100 225 400 625 900

NoC size

S
ch

e
du

le
 le

ng
th

 (
µ

s)

0

10

20

30

40

50

60

S
ch

ed
ul

e
 c

al
cu

la
tio

n
tim

e
(s

)
Schedule length Calculation time for detailed Calculation time message-level

Figure 11 . Schedule length versus calculation time for different NoC sizes

0

100000

200000

300000

400000

500000

600000

700000

25 100 225 400 625 900
NoC size

N
um

b
er

 o
f c

om
m

u
ni

ca
tio

n
ve

rte
xe

s

0

10

20

30

40

50

60

S
ch

ed
ul

e
ca

lc
u

la
tio

n
tim

e
(s

)

Number of communication vertexes in detailed
Number of communication vertexes in message-level

Calculation time for detailed

Calculation time message-level

Figure 12 . NoC size impact on Extended Task Graph complexity

0

200 000

400 000

600 000

800 000

1 000 000

1 200 000

1 400 000

1 600 000

1 800 000

500 1 000 5 000

Number of tasks

N
um

be
r

of
 c

om
m

un
ic

at
io

n
ve

rt
ex

es

0

20

40

60

80

100

120

140

S
ch

ed
ul

e
ca

lc
ul

at
io

n
tim

e
(s

)

Communication vertexes detailed Communication vertexes message-level

Schedule calculation time detailed Schedule calculation time message-level

Figure 13 . Reduction on complexity (wormhole switching)

CONCLUSIONS
This chapter described various problems associated with the system-level design of NoC-based
systems. The first part of the chapter gave a background and surveyed the related work. The
second part described a framework for predictable communication synthesis in NoCs with real-
time constraints. The framework models communication at the link level, using traditional task
graph based modelling technique and supports various switching techniques. This communication
synthesis approach can be used for scheduling of real-time dependable NoC-based systems.

REFERENCES
Ababei, C., & Katti, R. (2009). Achieving network on chip fault tolerance by adaptive
remapping. IEEE International Symposium on Parallel & Distributed Processing (IPDPS
‘09) (pp. 1-4).

Adriahantenaina, A., Charlery, H., Greiner, A., Mortiez, L., & Zeferino, C. (2003). SPIN:
a scalable, packet switched, on-chip micro-network. Design, Automation and Test in
Europe Conference and Exhibition (pp. 70-73).

Agarwal, V., Hrishikesh, M., Keckler, S., & Burger, D. (2000). Clock rate versus IPC:
the end of the road for conventional microarchitectures. Proceedings of the 27th
International Symposium on Computer Architecture (pp. 248-259).

Allan, A., Edenfeld, D., Joyner, J. W., Kahng, A. B., Rodgers, M., & Zorian, Y. (2002).
2001 technology roadmap for semiconduc. IEEE Computer, 35 (1), 42-53.

Arteris. (2009). Retrieved from http://www.arteris.com/

Ashenden, P., & Wilsey, P. (1998). Considerations on system-level behavioural and
structural modeling extensions to VHDL. International Verilog HDL Conference and
VHDL International Users Forum (pp. 42-50).

Banerjee, K., Souri, S., Kapur, P., & Saraswat, K. (2001). 3-D ICs: A Novel Chip Design
for Improving Deep-Submicrometer Interconnect Performance and Systems-on-Chip
Integration. Proceedings of the IEEE, 89 (5), pp. 602-633.

Benini, L., & De Micheli, G. (2002). Networks on Chips: A New SoC Paradigm. IEEE
Computer, 35 (1), 70-78.

Bertozzi, D., & Benini, L. (2004). Xpipes: a network-on-chip architecture for gigascale
systems-on-chip. IEEE Circuits and Systems Magazine, 4 (2), 18-31.

Bjerregaard, T., & Mahadevan, S. (2006). A survey of research and practices of Network-
on-chip. ACM Computing Surveys, 38 (1).

Bjerregaard, T., & Sparso, J. (2005). A Router Architecture for Connection-Oriented
Service Guarantees in the MANGO Clockless Network-on-Chip. Design, Automation,
and Test in Europe, 2, pp. 1226-1231.

Budkowski, S., & Dembinski, P. (1987). An Introduction to Estelle: A Specification
Language for Distributed Systems. Computer Networks and ISDN Systems, 14 (1), 3-23.

Claasen, T. (2006). An Industry Perspective on Current and Future State of the Art in
System-on-Chip (SoC) Technology. Proceedings of the IEEE, 94 (6), pp. 1121-1137.

Constantinescu, C. (2003). Trends and challenges in VLSI circuit reliability. IEEE Micro,
23 (4), 14-19.

Dally, W. J., & Towles, B. (2004). Principles and Practices of Interconnection. Morgan
Kaufman Publishers.

Dally, W. J., & Towles, B. (2001). Route packets, not wires: on-chip inteconnection
networks. Design Automation Conference (pp. 684-689).

Dally, W. (1990). Performance analysis of k-ary n-cubeinterconnection networks. IEEE
Transactions on Computers, 39 (6), 775-785.

De Micheli, G. (1994). Synthesis and optimization of digital circuits. McGraw-Hill.

Dumitras, T., & Marculescu, R. (2003). On-chip stochastic communication. Design,
Automation and Test in Europe Conference and Exhibition (DATE ’03) (pp. 790-795).

Ejlali, A., Al-Hashimi, B., Rosinger, P., & Miremadi, S. (2007). Joint Consideration of
Fault-Tolerance, Energy-Efficiency and Performance in On-Chip Networks. Design,
Automation & Test in Europe Conference & Exhibition (DATE '07) (pp. 1-6).

Færgemand, O., & Olsen, A. (1994). Introduction to SDL-92. Computer Networks and
ISDN Systems, 26, 1143-1167.

Feero, B., & Pande, P. (2007). Performance Evaluation for Three-Dimensional Networks-
On-Chip. IEEE Computer Society Annual Symposium on VLSI (ISVLSI '07) (pp. 305-
310).

Felicijan, T., Bainbridge, J., & Furber, S. (2003). An asynchronous low latency arbiter for
Quality of Service (QoS) applications. Proceedings of the 15th International Conference
on Microelectronics (ICM 2003) (pp. 123-126).

Frazzetta, D., Dimartino, G., Palesi, M., Kumar, S., & Catania, V. (2008). Efficient
Application Specific Routing Algorithms for NoC Systems utilizing Partially Faulty
Links. 11th EUROMICRO Conference on Digital System Design Architectures, Methods
and Tools (DSD '08) (pp. 18-25).

Gerstlauer, A., Haubelt, C., Pimentel, A., Stefanov, T., Gajski, D., & Teich, J. (2009).
Electronic System-Level Synthesis Methodologies. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 28 (10), 1517-1530.

Goossens, K., Dielissen, J., & Radulescu, A. (2005). Æthereal Network on
Chip:Concepts, Architectures, and Implementations. IEEE Design and Test of
Computers, 22 (5), 414-421.

Grecu, C., Anghel, L., Pande, P., Ivanov, A., & Saleh, R. (2007). Essential Fault-
Tolerance Metrics for NoC Infrastructures. 13th IEEE International On-Line Testing
Symposium (IOLTS 07) (pp. 37-42).

Grecu, C., Ivanov, A., Pande, R., Jantsch, A., Salminen, E., Ogras, U., et al. (2007).
Towards Open Network-on-Chip Benchmarks. First International Symposium on
Networks-on-Chip (NOCS 2007) (pp. 205-205).

Guerrier, P., & Greiner, A. (2000). A generic architecture for on-chip packet-switched
interconnections. Design, Automation, and Test in Europe (pp. 250-256).

Hamilton, S. (1999). Taking Moore's law into the next century. IEEE Computer, 32 (1),
43-48.

Harel, D. (1987). Statecharts: A Visual Formalism for Computer Systems. Science of
Computer, 8 (3), 231-274.

Haurylau, M., Chen, G., Chen, H., Zhang, J., Nelson, N., Albonesi, D., et al. (2006). On-
Chip Optical Interconnect Roadmap: Challenges and Critical Directions. IEEE Journal of
Selected Topics in Quantum Electronics, 12 (6), 1699-1705.

Hemani, A., Jantsch, A., Kumar, S., Postula, A., Öberg, J., Millberg, M., et al. (2000).
Network on chip: An architecture for billion transistor era. Proceedings of the IEEE
Norchip Conference.

Ho, R., Mai, K., & Horowitz, M. (2001). The future of wires. Proceedings of the IEEE,
89 (4), pp. 490-504.

Hoare, C. A. (1978). Communicating Sequential Processes. Communications of the ACM,
21 (11), 934-941.

Hu, J., & Marculescu, R. (2005). Communication and task scheduling of application-
specific networks-on-chip. Computers and Digital Techniques, 152 (5), 643-651.

Huang, T.-C., Ogras, U., & Marculescu, R. (2007). Virtual Channels Planning for
Networks-on-Chip. 8th International Symposium on Quality Electronic Design (ISQED
2007) (pp. 879-884).

IEEE Standard Classification for Software Anomalies. IEEE Std 1044-2009 (Revision of
IEEE Std 1044-1993). (Jan. 7 2010) (pp. 1-15).

International Technology Roadmap for Semiconductors. (2007). Retrieved from
http://www.itrs.net

Izosimov, V. (2006). Scheduling and optimization of fault-tolerant distributed embedded
systems. Sweden: Tech. Lic. dissertation, Linköping University.

Iyer, A., & Marculescu, D. (2002). Power and performance evaluation of globally
asynchronous locally synchronous processors. 29th Annual International Symposium on
Computer Architecture (pp. 158-168).

Jantsch, A., & Tenhunen, H. (2003). In Networks on Chip (pp. 9-15). Kluwer Academic
Publishers.

Jantsch, A. (2003). Modeling Embedded Systems and SoCs - Concurrency and Time in
Models of Computation. Morgan Kaufmann.

Kahng, A.B. (2007). Key directions and a roadmap for electrical design for
manufacturability. 37th European Solid State Device Research Conference (ESSDERC
2007) (pp. 83-88).

Kariniemi, K., & Nurmi, J. (2005). Fault tolerant XGFT network on chip for multi
processor system on chip circuits. International Conference on Field Programmable
Logic and Applications (pp. 203-210).

Kermani, P., & Kleinrock, L. (1979). Virtual Cut-Through: A New Computer
Communication Switching Technique. Computer Networks, 3, 267-286.

Keutzer, K., Newton, A., Rabaey, J., & Sangiovanni-Vincentelli, A. (2000). System-level
design: orthogonalization of concerns and platform-based design. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 19 (12), pp. 1523-1543.

Kiang, D. (1997). Technology impact on dependability requirements. Third IEEE
International Software Engineering Standards Symposium and Forum (ISESS 97) (pp.
92-98).

Konstadinidis, G. (2009). Challenges in microprocessor physical and power management
design. International Symposium on VLSI Design, Automation and Test, 2009 (VLSI-DAT
'09) (pp. 9-12).

Koren, I., & Krishna, C. (2007). Fault-Tolerant Systems. Morgan Kaufmann.

Kumar, S., Jantsch, A., Millberg, M., Öberg, J., Soininen, J. P., Forsell, M., et al. (2002).
A Network on Chip Architecture and Design Methodology. IEEE Computer Society
Annual Symposium on VLSI (ISVLSI'02) (pp. 105-112).

Lagnese, E., & Thomas, D. (1989). Architectural Partitioning for System Level Design.
26th Conference on Design Automation (pp. 62-67).

Laprie, J.-C. (1985). Dependable Computing and Fault Tolerance: Concepts and
Terminology. Fifteenth International Symposium on Fault-Tolerant Computing (FTCS-
15) (pp. 2-11).

Lehtonen, T., Liljeberg, P., & Plosila, J. (2009). Fault tolerant distributed routing
algorithms for mesh Networks-on-Chip. International Symposium on Signals, Circuits
and Systems (ISSCS 2009) (pp. 1-4).

Lei, T., & Kumar, S. (2003). A two-step genetic algorithm for mapping task graphs to a
network on chip architecture. Proceedings of the Euromicro Symposium on Digital
System Design (DSD’03) (pp. 180-187).

Lu, Z. (2007). Design and Analysis of On-Chip Communication for Network-on-Chip
Platforms. Stockholm, Sweden.

Manolache, S., Eles, P., & Peng, Z. (2007). Fault-Aware Communication Mapping for
NoCs with Guaranteed Latency. Intl. Journal of Parallel Programming, 35 (2), 125-156.

Marcon, C., Kreutz, M., Susin, A., & Calazans, N. (2005). Models for embedded
application mapping onto NoCs: timing analysis. Rapid System Prototyping (pp. 17-23).

Marculescu, R., Ogras, U., Li-Shiuan Peh Jerger, N., & Hoskote, Y. (2009). Outstanding
research problems in NoC design: system, microarchitecture, and circuit perspectives.
IEEE Tran. on Computer-Aided Design of Integrated Circuits and Systems, 28 (1), 3-21.

Miremadi, G., & Torin, J. (1995). Evaluating Processor- Behaviour and Three Error-
Detection Mechanisms Using Physical Fault-Injection. IEEE Trans. on Reliability, 44 (3),
441-454.

Murali, S., Atienza, D., Benini, L., & De Micheli, G. (2006). A multi-path routing
strategy with guaranteed in-order packet delivery and fault-tolerance for networks on
chip. Design Automation Conference (pp. 845-848).

Murali, S., Theocharides, T., Vijaykrishnan, N., Irwin, M., Benini, L., & De Micheli, G.
(2005). Analysis of error recovery schemes for networks on chips. IEEE Design & Test of
Computers, 22 (5), 434-442.

Murali, S., Seiculescu, C., Benini, L., & De Micheli, G. (2009). Synthesis of networks on
chips for 3D systems on chips. Design Automation Conference (pp. 242-247).

Ni, L., & McKinley, P. (1993). A survey of wormhole routing techniques in direct
networks. IEEE Computer, 26 (2), 62-76.

Pan, S.-J., & Cheng, K.-T. (2007). A Framework for System Reliability Analysis
Considering Both System Error Tolerance and Component Test Quality. Design,
Automation & Test in Europe Conference & Exhibition (DATE '07) (pp. 1-6).

Pande, P., Ganguly, A., Feero, B., Belzer, B., & Grecu, C. (2006). Design of Low power
& Reliable Networks on Chip through joint crosstalk avoidance and forward error
correction coding. 21st IEEE International Symposium on Defect and Fault Tolerance in
VLSI Systems (DFT '06) (pp. 466-476).

Pavlidis, V., & Friedman, E. (2007). 3-D Topologies for Networks-on-Chip. IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, 15 (10), 1081-1090.

Pirretti, M., Link, G., Brooks, R., Vijaykrishnan, N., Kandemir, M., & Irwin, M. (2004).
Fault tolerant algorithms for network-on-chip interconnect. IEEE Computer Society
Annual Symposium on VLSI: Emerging Trends in VLSI Systems Design (ISVLSI'04) (pp.
46-51).

Radulescu, A., & Goossens, K. (2002). Communication Services for Networks on Chip.
SAMOS (pp. 275-299).

Raghunathan, V., Srivastava, M., & Gupta, R. (2003). A survey of techniques for energy
efficient on-chip communication. Design Automation Conference (pp. 900-905).

Rantala, P., Isoaho, J., & Tenhunen, H. (2007). Novel Agent-Based Management for
Fault-Tolerance in Network-on-Chip. 10th Euromicro Conference on Digital System
Design Architectures, Methods and Tools (DSD 2007) (pp. 551-555).

Rijpkema, E., Goossens, K., & Wielage, P. (2001). A router architecture for networks on
silicon. In Proceedings of Progress 2001, 2nd Workshop on Embedded Systems.

Rusu, C., Grecu, C., & Anghel, L. (2008). Communication Aware Recovery
Configurations for Networks-on-Chip. 14th IEEE International On-Line Testing
Symposium (IOLTS '08) (pp. 201-206).

Salminen, E., Kulmala, A., & Hämäläinen, T. D. (2008). Survey of Network-on-chip
Proposals. Retrieved from http://www.ocpip.org/uploads/documents/OCP-
IP_Survey_of_NoC_Proposals_White_Paper_April_2008.pdf

Sgroi, M., Sheets, M., Mihal, A., Keutzer, K., Malik, S., Rabaey, J., et al. (2001).
Addressing the system-on-a-chip interconnect woes through communication-based
design. Proceedings of the Design Automation Conference (pp. 667-672).

Shanbhag, N., Soumyanath, K., & Martin, S. (2000). Reliable low-power design in the
presence of deep submicron noise. Proceedings of the 2000 International Symposium on
Low Power Electronics and Design (ISLPED '00) (pp. 295-302).

Shim, Z., & Burns, A. (2008). Real-time communication analysis for on-chip networks
with wormhole switching networks-on-chip. The 2nd IEEE International Symposium on
Networks-on-Chip (NoCS’08) (pp. 161-170).

Shin, D., & Kim, J. (2008). Communication power optimization for network-on-chip
architectures. Journal of Low Power Electronics, 2 (2), 165-176.

Shin, D., & Kim, J. (2004). Power-aware communication optimization for networks-on-
chips with voltage scalable links. CODES + ISSS 2004 (pp. 170-175).

Silistix. (2009). Retrieved from http://www.silistix.com/

Smith, D., DeLong, T., Johnson, B., & Giras, T. (2000). Determining the expected time
to unsafe failure. Fifth IEEE International Symposim on High Assurance Systems
Engineering (HASE 2000) (pp. 17-24).

Sonics. (2009). Retrieved from http://www.sonicsinc.com/

STMicroelectronics. (2009). Retrieved from http://www.st.com

Stressing, J. (1989). System-level design tools. Computer-Aided Engineering Journal, 6
(2), 44-48.

Stuijk, S., Basten, T., Geilen, M., & Ghamarian, A. (2006). Resource-efficient routing
and scheduling of time-constrained streaming communication on networks-on-chip.
Proceedings of the 9th Euromicro Conference on Digital System Design (DSD’06) (pp.
45-52).

SystemC. (2009). Retrieved from http://www.systemc.org

Zhang, L., Han, Y., Xu, Q., Li, X. w., & Li, H. (2009). On Topology Reconfiguration for
Defect-Tolerant NoC-Based Homogeneous Manycore Systems. IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, 17 (9), 1173-1186.

Valtonen, T., Nurmi, T., Isoaho, J., & Tenhunen, H. (2001). An autonomous error-
tolerant cell for scalable network-on-chip architectures. Proceedings of the 19th IEEE
NorChip Conference (pp. 198-203).

Wattanapongsakorn, N., & Levitan, S. (2000). Integrating dependability analysis into the
real-time system design process. Annual Reliability and Maintainability Symposium (pp.
327-334).

KEY TERMS
System-level design – a design methodology that starts from higher abstraction levels and refines
the system-level model down to a hardware/software implementation.

System-on-chip (SoC) – integrating all system components into a single integrated chip.

Network-on-chip (NoC) – a new communication paradigm for systems-on-chip.

Dependability – system dependability is a quality-of-service having attributes reliability,
availability, maintainability, testability, integrity and safety.

Fault-tolerance – is a property that enables a system to provide service even in the case of faults

Communication modelling – explicit modelling of communication in order to enable predictable
design

Communication synthesis – communication refinement. Communication edge in the extended
task graph is converted into communication sub-graph.

Communication scheduling – a step in the system-level design flow. Schedules flow control units
to start at predefined time.

