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ABSTRACT

Technology scaling into subnanometer range willehampact on the manufacturing yield and
guality. At the same time, complexity and commutig@arequirements of systems-on-chip (SoC)
are increasing, thus making a SoC designer ga#smn a fault-free system a very difficult task.
Network-on-chip (NoC) has been proposed as onkeoélternatives to solve some of the on-chip
communication problems and to address dependalatityarious levels of abstraction. This
chapter concentrates on system-level design issudloC-based systems. It describes various
methods proposed for NoC architecture analysis @gtimization, and gives an overview of
different system-level fault tolerance methodsahin the chapter presents a system-level design
framework for performing design space exploratimndependable NoC-based systems.

Introduction

As technologies advance and semiconductor prodessndions shrink into the nanometer and
subnanometer range, the high degree of sensitwiefects begins to impact the overall yield
and quality. The International Technology Roadmap $emiconductors (2007) states that
relaxing the requirement of 100% correctness foria#s and interconnects may dramatically
reduce costs of manufacturing, verification, argd. t8uch a paradigm shift is likely forced by the
technology scaling that leads to more transient @arinanent failures of signals, logic values,
devices, and interconnects. In consumer electromibere the reliability has not been a major
concern so far, the design process has to be ctia@gkerwise, there is a high loss in terms of
faulty devices due to problems stemming from theonaeter and subnanometer manufacturing
process.

There has been a lot of research made on systahilig} in different computing domains by
employing data encoding, duplicating system comptmer software-based fault tolerance
techniques. This research has mostly had eitheisfon low level hardware reliability or covered
the distributed systems. Due to future design cerifi¢s and technology scaling, it is infeasible
to concentrate only onto low level reliability aysib and improvement. We should fill the gap by
looking at the application level. We have to asstina¢ the manufactured devices might contain
faults and an application, running on the systemstrbbe aware that the underlying hardware is
not perfect.

The advances in design methods and tools haveezhatibgration of increasing number of
components on a chip. Design space exploratioruct snany-core systems-on-chip (SoC) has
been extensively studied, whereas the main focasbkan so far on the computational aspect.
With the increasing number of on-chip componentd &urther advances in semiconductor
technologies, the communication complexity increas®d there is a need for an alternative to the
traditional bus-based or point-to-point communimatarchitectures.



Network-on-chip (NoC) is one of the possibilitiee tvercome some of the on-chip
communication problems. In such NoC-based systdmas;ommunication is achieved by routing
packets through the network infrastructure rathkant routing global wires. However,
communication parameters (inter-task communicata@ome, link latency and bandwidth, buffer
size) might have major impact to the performanceapplications implemented on NoCs.
Therefore, in order to guarantee predictable behmvand to satisfy performance constraints, a
careful selection of application partitioning, magpand synthesis algorithms is required. NoC
platform provides also additional flexibility tolevate faults and guarantees system reliability.
Many authors have addressed these problems butaohtst emphasis has been on the systems
based on bus-based or point-to-point communicgfiterculescu, Ogras, Li-Shiuan Peh Jerger,
& Hoskote, 2009). However, a complete system-leledign flow, taking into account the NoC
network modelling and dependability issues, i$ stissing.

This chapter first analyzes the problems relatatieadevelopment of dependable systems-on-
chip. It outlines challenges, specifies problemd aramines the work that has been done in
different NoC research areas relevant to this @rapVe will give an overview of the state-of-
the-art in system-level design of traditional anoONbased systems and describe briefly various
methods proposed for system-level architectureyaisabnd optimization, such as application
mapping, scheduling, communication analysis andhggis. The chapter gives also an overview
of different fault-tolerance techniques that haeerbsuccessfully applied to bus-based systems.
It analyzes their shortcomings and applicabilitytte network-based systems.

The second part of the chapter describes our syisesh design framework for performing
design space exploration for NoC-based systenmmntentrates mainly on the specifics of the
NoC-based systems, such as network modelling amdmemication synthesis. Finally, the
chapter addresses the dependability issues anddpsomethods for developing fault-tolerant
NoC-based embedded systems.

BACKGROUND AND RELATED WORK

In this section we first describe the design clmgiéss that have emerged together with the
technology scaling and due to increase of the desdgnplexity. We give an overview of the key
concepts and NoC terminology. The second partisfsction is devoted to system-level design
and dependability issues.

Design Challenges of Systems-on-Chip

The advances in design methods and tools have eshatlegration of increasing number of
components on the chip. Design space exploratiGucti many-core SoCs has been extensively
studied, whereas the main focus has been so fdreocomputational aspect. With the increasing
number of on-chip components and further advancesseémiconductor technologies, the
communication complexity increases and there isetdrfor an alternative to the traditional bus-
based or point-to-point communication architectifree main challenges in the current SoC
design methodologies are:

o Deep submicron effects and variability — the seplii feature sizes in semiconductor
industry have given the ability to increase perfange while lowering the power
consumption. However, with feature sizes reducietplv 40 nm it is getting hard to
achieve favourable cost versus performance/poweadetoffs in future CMOS
technologies (International Technology Roadmap f&emiconductors, 2007;



Konstadinidis, 2009). The emergence of deep sulmminbise in the form of cross-talk,
leakage, supply noise, as well as process varatisrmaking it increasingly hard to
achieve the desired level of noise-immunity whilaimtaining the historic improvement
trends in performance and energy-efficiency (Shagbhlsoumyanath, & Martin, 2000;
Kahng, 2007). Interconnects also add a new dimangio design complexity. As
interconnects also shrink and come closer togefhevjously negligible physical effects
like crosstalk become significant (Hamilton, 19999, Mai, & Horowitz, 2001).

Global synchrony — SoCs are traditionally basedaobus architecture where system
modules exchange data via a synchronous centralWhen number of components
increase rapidly, we have a situation where thekctignal cannot be distributed over the
entire SoC during one clock cycle. Ho et al. (20843cribe that while local wires scale
in performance, global and fixed-length wires dd. Athe technology scaling is more
rapid for gates than for wires. It affects the desproductivity and reliability of the
devices. Optimization techniques, such as optimia¢ wizing, buffer insertion, and
simultaneous device and buffer sizing are solvinly some of the problems. As feature
size continues to shrink, the interconnect itsel€dmes complex circuitry in its own
(Hamilton, 1999). Consequently, increased SoC ceriyl and feature size scaling
below 40 nm requires alternative means for progdiacalable and efficient
interconnects. Globally asynchronous locally synobus (GALS) design approach has
been proposed as a feasible solution for commuaitahtensive complex SoCs. In
2000, Agarwal, Hrishikesh, Keckler, & Burger haveamined the effects of technology
scaling on wire delays and clock speeds, and meddhe expected performance of a
modern microprocessor core in CMOS technologiesndtav35 nm. Their estimation
shows that even under the best conditions thedgteaross the chip in a top-level metal
wire will be 12-32 cycles (depending on the cloate). Jason Cong's simulations at the
70 nm level suggest that delays on local interconméll decrease by more than 50
percent, whereas delays on non-optimized globardéonnect will increase by 150
percent (from 2 ns to 3.5 ns) (Hamilton, 1999). GRAlsystems contain several
independent synchronous blocks that operate ushmgr town local clocks and
communicate asynchronously with each other. Thenrfesture of these systems is the
absence of a global timing reference and the usewsdral distinct local clocks (or clock
domains), possibly running at different frequen¢lgsr & Marculescu, 2002).
Productivity gap — chip design has become so comphat designers need more
education, experience, and exposure to a broackerahdields (device physics, wafer
processing, analogue effects, digital systems)nerstand how all these aspects come
together. For the same reasons, designers neetesitimamls that comprehend distributed
effects like crosstalk (Hamilton, 1999). The comxile and cost of design and
verification of multi-core products has rapidly ieased to the point where developers
devote thousands of engineer-years to a singlgleget processors reach market with
hundreds of bugs (Allan, Edenfeld, Joyner, Kahngdders, & Zorian, 2002). The
primary focus of consumer-products in CMOS procgsgelopment is the integration
density. By allowing to pack a greater functionalinto a smaller area of silicon, the
higher integration density and lower cost can beiea®d. For consumer applications,
Moore’s law may continue for as long as the costfpaction decreases from node to
node (Claasen, 2006). To bridge the technology moductivity gap, the computation
need to be decoupled from the communication. Thenzonication platform should be



scalable and predictable in terms of performancg electrical properties. It should
enable high intellectual property (IP) core rebgaising standard interfaces to connect
IP-s to the interconnect.

e Power and thermal management — interconnect wiresuat for a significant fraction
(up to 50%) of the energy consumed in an integratexliit and is expected to grow in
the future (Raghunathan, Srivastava, & Gupta, 2068gpture size scaling increases
power density on the chip die that in turn can posd an increase in the chip
temperature. The rapidly increasing proportion loé tconsumer electronics market
represented by handheld, battery-powered, equipraést means that low power
consumption has become a critical design requiréitineth must be addressed (Claasen,
2006).

o Verification and design for test — the increasingplexity of SoCs and the different set
of tests required by deep submicron process teobied (for example tests for delay
faults) has increased test data volume and test tomthe extent that many SoCs no
longer fit comfortably within the capabilities ofummated test equipment (ATE)
(Claasen, 2006). As a result, the cost of testile@s rapidly increasing. Due to process
variability, the reliability of the devices is nahymore a concern of only safety-critical
applications but also a concern in consumer eleittso The products need to be designed
to tolerate certain number of manufacturing (pereménor transient faults.

To overcome some of the above challenges the netmechip paradigm has been proposed.
While computer networking techniques are well knadneady from the 80’s, the paradigm shift
reached to the chips in the beginning of this miliem. There were several independent research
groups (Benini & De Micheli, 2002; Dally & Towle2001; Guerrier & Greiner, 2000; Hemani et
al., 2000; Rijpkema, Goossens, & Wielage, 2001pSgfral., 2001) introducing networking ideas
to embedded systems.

Network-on-chip as a new design paradigm

In 2000, Guerrier and Greiner proposed a scalahbbgrammable, integrated network (SPIN) for
packet-switched system-on-chip interconnectionseyThvere using fat-tree topology and
wormhole switching with two one-way 32-bit datalmhaving credit-based flow control. They
proposed a router design with dedicated input bsiffend shared output buffers, estimated the
router cost and network performance. The term “neétvon-chip” was first used by Hemani et
al. in November 2000. The authors introduced thrcept of reconfigurable network of resources
and its associated methodology as solution to #®gd productivity problem. In June 2001,
Dally and Towles proposed NoC as general-purposehgninterconnection network to connect
IP cores replacing design-specific global on-chiping. It was demonstrated that using a
network to replace global wiring has advantagestincture, performance, and modularity. The
GigaScale Research Center suggested a layered aspprsimilar to that defined for
communication networks to address the problem ofeoting a large number of IP cores.
Additionally the need for a set of new generaticetindologies and tools were described (Sgroi
et al., 2001). In October 2001, researchers froitipBHResearch presented a quality of service
(QoS) router architecture supporting both bestretind guaranteed-throughput (Rijpkema et al.,
2001). In January 2002, Benini and De Micheli folaed NoC as a new SoC design paradigm.
During the years many, NoC research platforms Hasen developed such as Aethereal
(Goossens, Dielissen, & Radulescu, 2005), MANGCe(ggaard & Sparso, 2005), Nostrum



(Kumar et al.,, 2002), SPIN (Guerrier & Greiner, @)0Xpipes (Bertozzi & Benini, 2004),
CHAIN (Felicijan, Bainbridge, & Furber, 2003). Comangial NoC platforms include Arteris
(Arteris, 2009), STNoC (STMicroelectronics, 2008)listix (Silistix, 2009) and Sonics (Sonics,
20009).

Current and future directions of on-chip networkslide 3D NoCs (Feero & Pande, 2007;
Pavlidis & Friedman, 2007; Murali, Seiculescu, Beni& De Micheli, 2009) and optical
interconnects (Haurylau et al., 2006). Both emerigetthe middle of 90’s in various forms. 3D
NoCs are having its roots in 2001 (Banerjee, S#lapur, & Saraswat, 2001).

Comparison with bus based systems and macro networks

Point-to-point connections (circuit switching), cormn to SoC, are replaced in NoC by dividing
the messages into packets (packet switching). Eaciponent stores its state and exchanges data
autonomously with others. Such systems are by theilre GALS systems, containing several
independent synchronous blocks that operate widir twn local clocks and communicate
asynchronously with each other (lyer & Marcules2002). Having multiple different network
routes available for the data transmission makeSs\Nto be adaptive — to balance the network
load, for instance.

The communication platform limitations, data thrbpgt, reliability and QoS are more
difficult to address in NoC architectures than immputer networks. The NoC components
(memory, resources) are relatively more expensitereas the number of point-to-point links is
larger on-chip than off-chip. On-chip wires areoalslatively shorter than the off-chip ones, thus
allowing a much tighter synchronization than offechOn one hand, only a minimum design
overhead is allowed that is needed to guaranteecttadle data transfer. On the other hand, the
on-chip network must handle the data ordering éod €ontrol issues (Radulescu & Goossens,
2002). The packets might appear at the destinatsource out of order — they need to be
buffered and put into the correct order.

Principles of Networks-on-Chip

In this section we provide an overview of the keyeepts and terminology of NoCs. The NoC
design paradigm has two good properties to harmieSoC design complexity — predictability
and reusability. The throughput, electrical projesttdesign and verification time are easier to
predict due to the regular structure of the NoC. dAfe connect to the network any IP component
that has the appropriate network interface. The a@adigm does not set any limits to the
number of components. The components and alscotmenanication platform are reusable — the
designer needs to design, optimise and verify tloeroe. The layered network architecture
provides the needed communication and network cesvienabling the functionality reuse
(Jantsch & Tenhunen, 2003).

NoC decouples communication from computation andvides a flexible and reusable
communication platform. The interconnection netwisria shared resource that the designer can
utilize. To design an on-chip communication infrasture and to meet the performance
requirements of an application, the designer hasicedesign alternatives that are governed by
topology, switching, routing and flow control ofetmetwork. NoC provides the communication
infrastructure for resources. Resources can berdgeeeous. A resource can be memory,
processor core, DSP, reconfigurable block or anlyldlek that conforms to the network interface



(NI). Every resource is connected to switch vieouese network interface (RNI). Instead of
dedicated point-to-point channels between two IReg0 the interconnection network is
implemented as set of shared routers and commionidatks between the routers. The way the
routers are connected with each other defines #tevank topology. Data to be transferred
between communicating nodes is called a messagenéssages can have varying sizes it is
infeasible to design routers to handle unboundeduats of data. Instead, messages are divided
into smaller bounded flow control units. The wagnassage is split and transferred through the
routers is called switching. Usually there areraliéive paths to deliver a message from source to
destination. An algorithm to choose between sucthspés called routing. A good routing
algorithm finds usually minimal paths while avoigideadlocks. Another alternative would be to
balance the network load. Flow control handles ndtwesource accesses. If a network is not
able to handle the current communication load tbes fcontrol might forward more critical
messages while dropping or re-routing the nonealitiones. An effective network design
maximises the throughput and decreases netwonkchai@nd communication conflicts (Dally &
Towles, 2004).

Topology

Topology refers to the physical structure of thawaek (how resources and switches are
connected to each other). It defines connectivitgd aouting possibilities between the nodes
affecting therefore performance of the network aedign of the router. Topologies can be
divided into two classes by their regularity — reguand application specific. The regular
topologies can be described in term&-afyn-cube, wheré is the degree of each dimension and
n is the number of dimensions (Dally, 1990). Regtiqology is not the most efficient in terms
of manufacturing but allows easier routing algarithand better predictability. The regularity
aims for design reuse and scalability while appiicaspecific topologies target performance and
power consumption. Most NoCs implement regular fowh network topology that can be laid
out on a chip surface, for examptary 2-cube meshes (Kumar et al., 2002) and torus (Zally
Towles, 2001). Thek-ary tree andk-ary n-dimensional fat tree (Adriahantenaina, Charlery,
Greiner, Mortiez, & Zeferino, 2003) are two alteima regular NoC topologies. Recent research
in this area is devoted to 3-dimensional NoCs. Eamlier in a 2D NoC is connected to a
neighbouring router in one of four directions. Cemsently, each router has five ports.
Alternatively, in a 3D NoC, the router typicallyrmoects to two additional neighbouring routers
located on the adjacent physical planes (Pavlidizri&dman, 2007). Figure 1 shows examples of
various regular and application specific topologiesluding 3D.
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Figure 1. Regular topologies. Examples are (a) y-2scube mesh, (b) 4-ary 2-cube torus, (c)
application specific, (d) binary 2-ary tree and @) mesh

Switching method

Switching method determines how a message travéssesute. There are two main switching
methods — circuit switching and packet switchingcdt switching is a form of bufferless flow
control that operates by first allocating channelform a circuit from source to destination and
then sending messages along this circuit. After dlaga transmission, the circuit can be
deallocated and released for other communicatidrcuif switching is connection-oriented,
meaning that there is an explicit connection ehbient (Lu, 2007). In packet switching the
messages are split into packets. Depending of Binganethods, a packet can be further divided
into smaller flow control units (flits). A packebuwsists usually of a header, a payload and a tail.
The packet header contains routing informationJemtie payload carries the actual data. The talil
indicates the end of a packet and can containeatsw-checking code. Packet switching can be
either connection-oriented or connection-less.dmti@st to the connection-oriented switching, in
the connection-less the packets are routed in agnaranteed manner. There is no dedicated
circuit built between the source and destinatiodeso

Most common packet switching techniques includeesamd-forward, virtual cut-through and

wormhole switching.

e Store-and-forward — when a packet reaches an ietliate node, the entire packet is
stored in a packet buffer. The packet is forwarttethe next selected neighbour router
after the neighbouring router has an available dsufStore-and-forward is simple to
implement but it has major drawbacks. First, it @aduffer the entire packet before
forwarding it to the downstream router. This hamemative effect on router area
overhead. Second, the network latency is propatitmthe distance between the source
and the destination nodes. The network latencytamesand-forward can be calculated
(Ni & McKinley, 1993) as

Latencyiore-and-forward= (L/B)D (1)



wherelL is message siz8, is channel bandwidth aridl is distance in hops. The smallest
flow control unit is a packet.

e Virtual cut-through — to decrease the amount oétspent transmitting data Kermani and
Kleinrock (1979) introduced the virtual cut-througitching method. In the virtual cut-
through a packet is stored at an intermediate mude if the next required channel is
busy. The network latency of the virtual cut-thrbumn be calculated as

Latencyinual cut-through= (Lh/B)D +L/B (2)
whereL,, is size of the header field. Usually the messameis times bigger than header
field and therefore the distanBewill produce a negligible effect on the networkelacy.
The smallest flow control unit is a packet.

e Wormhole — operates like virtual cut-through buthnéchannel and buffers allocated to
flits rather than packets (Dally & Towles, 2004).pAcket is divided into smaller flow
control units called flits. There are three typéflits — body, header, and tail. The header
flit governs the route. As the header advancesgalsrspecified route, the rest of the flits
follow in a pipeline fashion. If a channel is buslye header flit gets blocked and waits
the channel to become available. Rather than d¢wieand buffering the remaining flits
in the current blocked router, the flits stay iibiuffers along the established route. Body
flits carry the data. The tail flit is handled like body flit but its main purpose is to
release the acquired flit buffers and channels. Tieévork latency of wormhole
switching can be calculated according to Ni & Mcl€in(1993) as

Latencyormnole= (Lt /B)D + L/B (3)
where L is size of the flit. In similar way to virtual ctitrough distancd has not
significant effect on the network latency unlesssivery large. Wormhole switching is
more efficient than virtual cut-through in termstbé buffer space. However, this comes
at the expense of some throughput since wormhole dontrol may block a channel
mid-packet (Dally & Towles, 2004).

o Virtual channels — associates several virtual chnfthannel state and flit buffers) with
a single physical channel. Virtual channels overeatie blocking problems of the
wormhole switching by allowing other packets to ttse channel bandwidth that would
otherwise be left idle when a packet blocks (DdllyTowles, 2004). It requires an
effective method to allocate the optimal numbevidtial channels. Allocating the virtual
channels uniformly results in a waste of area agwificant leakage power, especially at
nanoscale (Huang, Ogras, & Marculescu, 2007).

Routing

Routing algorithm determines the routing paths phekets may follow through the network.
Routing algorithms can be divided in terms of pdiversity and adaptivity into deterministic,
oblivious and adaptive routing. Deterministic rogtichooses always the same path given the
same source and destination node. An example iesa@udered XY routing. In XY routing the
processing cores are numbered by their geograpticatinates. Packets are routed first via X
and then via Y-axis by comparing the source andirdg®n coordinate. Deterministic routing
has small implementation overhead but it can calasel imbalance on network links.
Deterministic routing cannot also tolerate permarfanlts in NoC and re-route the packets.
Oblivious routing considers all possible multiplatiis from the source node to destination but
does not take the network state into account. Adapbuting distributes the load dynamically in



response to the network load. For example, it teepackets in order to avoid congested area or
failed links. Adaptive routing has been favouraiteviding high fault tolerance. The drawbacks
include higher modelling and implementation comjilexDeterministic routing algorithms
guarantee in-order delivery while in adaptive mgtbuffering might be needed at the receiver
side to re-order the packets.

There are two important terms when talking abouting — deadlock and livelock. Deadlock
occurs in an interconnection network when groupaxkets are unable to progress because they
are waiting on one another to release resourcesllydbuffers or channels (Dally & Towles,
2004). Deadlocks have fatal effects on a netwotieréfore deadlock avoidance or deadlock
recovery should be considered for routing algorghtrat tend to deadlock. Another problematic
network phenomenon is livelock. In livelock, packebntinue to move through the network, but
they do not make progress toward their destinat{@adly & Towles, 2004). It can happen for
example when packets are allowed to take not tbeest routes. Usually it is being handled by
allowing a certain number of misroutes after whibk packet is discarded and need to be re-
submitted.

Flow control

Flow control deals with network load monitoring atwhgestion resolution. Due to the limited
buffers and throughput, the packets may be bloeketiflow control decides how to resolve this
situation. The flow control techniques can be ddddnto two — bufferless and buffered flow
controls. The bufferless flow control is the singblén its implementation. In bufferless flow
control there are no buffers in the switches. Tihie bandwidth is the resource to be acquired and
allocated. There is need for an arbitration to cleobetween the competing communications.
Unavailable bandwidth means that a message needi® tmisrouted or dropped. Dropped
message has to be resent by the source. Misroatidgnessage dropping both increase latency
and decrease efficiency (throughput) of the netw@é&flection routing is an example of the
bufferless flow control. In deflection routing, ambitrary routing algorithm chooses a routing
path, while deflection policy is handling the resmi contentions. In the case of network
contention, the deflection policy grants link bardhlv to the higher priority messages and
misroutes the lower priority messages. Deflectionting allows low overhead switch design
while at the same time provides adaptivity for rakwload and resilience for permanent link
faults.

In the buffered flow control, a switch has buffaos store the flow control unit(s) until
bandwidth can be allocated to the communicatiomuigoing link. The granularity of the flow
control unit can be different. In store-and-forwardd virtual cut-through both the link bandwidth
and buffers are allocated in terms of packets butarmhole switching in flits. In buffered flow
control, it is crucial to distribute the buffer @edility information between the neighbouring
routers. If buffers of the upstream routers ark foke downstream routers must stop transmitting
any further flow control units. The flow control @mnting is done at link level. The most
common flow control accounting techniques are ¢#edsed, on/off and ack/nack (Dally &
Towles, 2004).

Quality of Service

Quality of Service (Qo0S) gives guarantees on pad&ktery. The guarantees include correctness
of the result, completion of the transmission, &odinds on the performance (Lu, 2007). The



network traffic is divided usually into two servicdasses — best-effort and guaranteed. A best-
effort service is connectionless. Packets are eediv when possible depending on the current
network condition. A guaranteed service is typicalbnnection-oriented. The guaranteed service
class packets are prioritized over the best-etf@affic. In addition, guaranteed service avoids

network congestions by establishing a virtual éirand reserving the resources. It can be
implemented for example by using multiple timesl@tame Division Multiple Access, TDMA)

or virtual channels.

Further reading

There is comprehensive survey of research andipeacof network-on-chip (Bjerregaard &
Mahadevan, 2006), survey of different NoC impleragohs (Salminen, Kulmala, &

Hamalainen, 2008) and overview of outstanding meseproblems in NoC design (Marculescu et
al., 2009).

System-level design

System-level design starts with the specificatiba gsystem to be designed and concludes with
integration of the created hardware and softwarec@irse, considering the complexity of
systems, a systematic approach is needed and stenslevel design methodologies try to take
into account important implementation issues alyestchigher abstraction levels.

Traditional system-level design flow

Having its roots in the end of the 80's, systeneladesign is a hierarchical process that begins
with a high-level description of the complete systend works down to fine grained descriptions
of individual systems modules (Stressing, 1989)tialty, the descriptions of a system are
independent from the implementation technology. réhare even no details whether some
component of the system should be implemented idwere or in software. Therefore, early
system descriptions are more behavioural thantstialc focusing on system functionality and
performance specification rather than interconnestd modules. In addition to the system
specification, it is important to have possibility verify the performance and functional
specification. A specification at the system-lewdlould be created in such a way that its
correctness can be validated by simulation. Suchodel is often referred to as simulatable
specification. In addition, a model at the systewel should be expressed in a form that enables
verification that further refinements correctly ilament the model (Ashenden & Wilsey, 1998).
Possible approaches include behavioural synthesisreCct by construction), and formal
verification using model checking and equivalenigecking (Ashenden & Wilsey, 1998). A third
essential element of system-level design is thdoexfion of various design alternatives. For
example, whether to implement a function in haréwar in software, whether to solve it with
sequential or parallel algorithm. The analysisrafle-offs between design alternatives is a key
element of system-level design and shows the guaflithe particular system-level design flow.
It is important that a system-level design flow ssipported by system-level tools —
simulators/verifiers, estimators and partitionefithe first system-level design tools were
introduced in 1980 by Endot, a company formed duthe staff at the Case Western Reserve
University (Stressing, 1989). The need for the @yskevel design tools was the complexity of
the aerospace and defence systems that were thepndeveloped, but it soon became apparent



that these tools were applicable to design comgigital hardware/software systems of any type
(Stressing, 1989).

At the system-level, a system can be modelled edllaction of active objects that react to
events, including communication of data betweereabj and stimuli from the surrounding
environment. Abstractions are needed in a numbareds to make the system-level behavioural
modelling tractable in the following views:

e abstraction of data,
e abstraction of concurrency, and
e abstraction of communication and timing (AshendeWwdsey, 1998).

Of course, different views can stress on diffeaddtractions, e.g., concurrency is replaced by
calculation, and communication and timing are labaeseparately (Jantsch, 2003).

The classical system-level design flow consistsse¥eral consecutive design tasks with
loopbacks to previous steps (Lagnese & Thomas,)1280input to the system-level design flow
is a system specification that is represented formal way, e.g., dataflow or task graph. In the
dataflow graph, the nodes represent operators lamdaitcs between them represent data and
control dependencies like in task graphs. The apeyaare scheduled into time slots called
control steps. Scheduling determines the executidar of the operators. The scheduling can be
either static or dynamic. In the dynamic schedylthg start times are obtained during execution
(online) based on priorities assigned to procedsethe static scheduling, the start times of the
processes are determined at the design time (&fJ-nd stored in the form of schedule tables.
Scheduling sets lower limits on the hardware bexaygerators scheduled into the same control
step cannot share the hardware. Thus, schedulisgatgreat impact on the allocation of the
hardware. After scheduling the data-flow operatord values are mapped to allocated hardware.
If the hardware platform is given with the systepedification then designer can also start first
with the mapping and then perform the schedulimgcesboth, mapping and scheduling, are NP-
hard, the parallel execution of those design phasestremely difficult. When the results of the
system-level design flow do not satisfy the initr@lquirements, either the mapping or the
scheduling of application’s components can be cbdntf no feasible solution is found, changes
are needed in the system specification or in tlohitcture. After an acceptable schedule is
found, lower abstraction-levels of hardware/sofeven-design will follow.
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Figure 2. Classical system-level design flow

Refinement to a software implementation is fad#ithby a system-level modelling language
that is closely related to programming languagesprinciple, both the hardware and software
implementations could be expressed in the sameudmyey as the system-level model, thus
avoiding semantic mismatches between differentuaggs in the design flow (Ashenden &
Wilsey, 1998). Some of the most common system-ldesign languages are StateCharts (Harel,
1987), Estelle (Budkowski & Dembinski, 1987), SCHargemand & Olsen, 1994), CSP (Hoare,
1978) and SystemC (SystemC, 2009). Most recenpammiinent of those is SystemC. SystemC
is a C++ class library that can be used to creatgcke-accurate model for software algorithms,
hardware architectures, and interfaces, relatsgdtem-level designs (SystemC, 2009).

Most of modern embedded systems have both the haedand software components. When
designing such a system, it is important that Isidles are developed not in an isolated but in an
integrated manner. The generic hardware/softwagesggn methodology, as a part of the overall
system design flow, supports concurrent developroeabftware and hardware. Important tasks
in such a development are co-simulation and cdigation. It should be noted that in many
cases, systems have also analogue parts that sheulésigned concurrently with rest of the
system (Gerstlauer, Haubelt, Pimentel, Stefanojsk & Teich, 2009).

System-level design issues of NoC-based systems

In principle, the system-level design issues foCNmased systems follow the same principles as
described above. That is, the initial specificatisnmodelled to estimate performance and
resource requirements when using different architat solutions. This includes platform
selection, task mapping and task scheduling. Initiadd because of the rather complex
communication behaviour between resources, commatioic mapping and scheduling between
tasks should be addressed with care. The reasothdoris rather simple — communication
latencies may be unpredictable, especially whemndryo apply dynamic task organisation.
Therefore, the traditional scheduling techniquest thre applicable to the hard real-time and
distributed systems are not suitable as they addoedy the bus-based or point-to-point



communication. Also, system-level design for Ndf@2s one major difference when compared to
the traditional system-level design — hardwarefgiat is either fixed or has limited modification
possibilities (Keutzer, Newton, Rabaey, & Sangiouavincentelli, 2000). Therefore the main
focus is on the application design and distribubetween resources.

NoC communication latency depends on various paemesuch as topology, routing,
switching algorithms, etc., and need to be caledlatfter task mapping and before the task graph
scheduling (Marculescu et al., 2009). In sevezakarch papers, the average or the worst case
communication delay has been considered (Lei & Kurn2@03; Marcon, Kreutz, Susin, &
Calazans, 2005; Hu & Marculescu, 2005; Shin & KigQ04; Stuijk, Basten, Geilen, &
Ghamarian, 2006; Shim & Burns, 2008; Shin & Kim,08D In many cases, it is an
approximation that can be either too pessimisticirig the upper bound) or too optimistic (by
not scheduling explicitly the communication or mansidering the communication conflicts).
Therefore, an efficient system-level NoC designmieavork requires an approach for the
communication modelling and synthesis to calculaenmunication hard deadlines that are
represented by communication delay and guide teesylevel synthesis process by taking into
account possible network conflicts.

Dependable Systems-on-Chip

System dependability is a QoS having attributesabiity, availability, maintainability,
testability, integrity and safety (Wattanapongsak&r Levitan, 2000). Achieving a dependable
system requires combination of a set of methodsctmabe classified into:

o fault-avoidance — how to prevent (by constructi@ujit occurrence,

o fault-tolerance — how to provide (by redundancyvise in spite of faults occurred or

occurring,

e error-removal — how to minimize (by verificatiomet presence of latent errors,

e error-forecasting — how to estimate (by evaluatith® presence, the creation and the

consequences of errors (Laprie, 1985).

In 1997, Kiang has depicted dependability requireism@ver past several decades showing
shift in the dependability demands from the prodediability into customer demands for total
solutions. The percentage of hardware failureschtehe field is claimed to be minimal, thus
allowing to focus on system architecture design softlvare integrity through the design process
management and concurrent engineering. Technokeging, however, brings process variations
and increasing number of transient faults (Constastu, 2003) that requires focus together with
system design also on fault-tolerance design. Aliogrto Wattanapongsakorn and Levitan
(2000) a design framework that integrates depefijahnalysis into the system design process
must be implemented. To date, there are very fesh system design frameworks, and none of
them provide support at all design levels in thsteay design process, including evaluations of
system redundancy, and dependency.

Classification of faults

Different sources classify the terms fault, erfailure differently. However, in everyday life we
tend to use them interchangeably. According to IEEhdard 1044-2009 (2009) of software
anomalies, an error is an action which producemeorrect result. A fault is a manifestation of
the error in software. A failure is a terminatioh the ability of a component to perform a



required action. A failure may be produced wherawdtfis encountered. In Koren and Krishna
(2007) view a fault (or a failure) can be eithdraadware defect or a software mistake. An error
is a manifestation of the fault or the failure.

Software faults are in general all programming akst (bugs). Hardware faults can be
divided into three groups: permanent, intermiti@md transient faults according to their duration
and occurrence.

e Permanent faults — the irreversible physical defechardware caused by manufacturing
process variations or wearout mechanism. Once magrent fault occurs it does not
disappear. Manufacturing tests are used to deteongment faults caused by the
manufacturing process. Fault tolerance technigaase used to achieve higher yield by
accepting chips with some permanent faults thatteea masked by the fault tolerance
methods.

e Intermittent faults — occur because of unstablemarginal hardware. They can be
activated by environmental changes, like higher perature or voltage. Usually
intermittent faults precede the occurrence of peenafaults (Constantinescu, 2003).

e Transient faults — cause a component to malfundborsome time. Transient faults are
malfunctions caused by some temporary environmeatiadlitions such as neutrons and
alpha particles, power supply and interconnectejoiédectromagnetic interference and
electrostatic discharge (Constantinescu, 2003)nsieat faults cause no permanent
damage and therefore they are called soft errdre. Sbft errors are measured by Soft
Error Rate (SER) that is probability of error oceunce.

Fault tolerance

Fault tolerance is an exercise to exploit and marragundancy. Redundancy is the property of
having more of a resource than is minimally neagstsaprovide the service. As failures happen,
redundancy is exploited to mask or work arounddHtesures, thus maintaining the desired level
of functionality (Koren & Krishna, 2007).

Usually we speak of four forms of redundancy:

o Hardware — provided by incorporating extra hardwate the design to either detect or
override the effects of a failed component. We ltawe

0 static hardware redundancy — objective to immeljiateask a failure;

0 dynamic hardware redundancy — spare componentacéikated upon a failure
of a currently active component;

0 hybrid hardware redundancy — combination of the &ivove.

e Software — protects against software faults. Twanore versions of the software can be
run in the hope that that the different versioni mat fail on the same input.

o Information — extra bits are added to the origisaia bits so that an error in the bits can
be detected and/or corrected. The best-known fafmsformation redundancy are error
detection and correction coding. Error codes regektra hardware to process the
redundant data (the check bits).

e Time — deals with hardware redundancy, re-transamiss re-execution of the same
program on the same hardware. Time redundancyféstie®e mainly against transient
faults (Koren & Krishna, 2007).

Metrics are used to measure the quality and réitialwf devices. There are two general

classes of metrics that can be computed with ritiamodels:



o the expected time to some event, and

o the probability that a system is operating in a&gimode by timé

The expected time to some event is characterizethégn time to failure (MTTF) - the
expected time that a system will operate beforailaré occurs. Mean Time To Repair (MTTR)
is an expected time to repair the system. Mean Beteveen Failures (MTBF) combines the two
latter measures and is the expected time thattaraysill operate between two failures:

MTBF = MTTF + MTTR 4

The second class is represented by reliability omeasReliability, denoted b¥R(t), is the
probability (as a function of the tim# that the system has been up continuously in ithe t
interval fto, ], given that the system was performing correctiytime to (Smith, DelLong,
Johnson, & Giras, 2000).

While general system measures are useful at systesh- these metrics may overlook
important properties of fault-tolerant NoCs (Grednghel, Pande, Ilvanov, & Saleh, 2007). For
example, even when the failure rate is high (causindesirable MTBF) recovery can be
performed quickly on packet or even on flit lev&hother drawback is related to the fact that
generic metrics represent average values. In &rmysiith hard real-time requirements the NoC
interconnect must provide QoS and meet the perfecmaconstraints (latency, throughput).
Therefore specialized measures focusing on netidekconnects should be considered when
designing fault-tolerant NoC-based Systems-on-ChRir. example, one has to consider node
connectivity that is defined as the minimum numtifemnodes and links that have to fail before the
network becomes disconnected or average node-pdande and the network diameter (the
maximum node-pair distance), both calculated gitren probability of node and/or link failure
(Koren & Krishna, 2007). In 2007 Ejlali, Al-HashimRosinger, and Miremadi proposed
performability metric to measure the performance aatiability of communication in joint view.
PerformabilityP (L, T) of an on-chip interconnect is defined as the podivato transmitL useful
bits during the timeT in the presence of noise. In presence of erroneousmunication re-
transmission of messages is needed which reducdmlglity to finish the transmission in a
given time period. Lowering the bit-rate increaggse to transmit the messages but also
increases probability to finish the transmissionimyuthe time interval. According to authors the
performability of an interconnect which is used &osafety-critical application must be greater
than 1-10.

Fault tolerance techniques

Fault tolerance has been extensively studied infitdd of distributed systems and bus-based
SoCs. In (Miremadi & Torin, 1995) the impact ofriséent faults in a microprocessor system is
described. They use three different error deteati@ehanisms — signature, watchdog timer, and
error capturing instruction (ECI) mechanism. Signatis a technique where each operation or a
set of operations are assigned with a pre-compeitedksum that indicates whether a fault has
occurred during those operations. Watchdog Timea technique where the program flow is
periodically checked for presence of faults. Watghd@imer can monitor, for example, execution
time of the processes or to calculate periodicaligcksums (signatures). In the case of ECI
mechanism, redundant machine-instructions aretggénto the main memory to detect control
flow errors. Once a fault is detected with one o techniques above, it can be handled by a
system-level fault tolerance mechanism. In 2006sitmov described the following software
based fault tolerance mechanisms: re-executiodbaak recovery with checkpointing and



active/passive replication. Re-execution restoles ihitial inputs of the task and executes it
again. Time penalty depends on the task lengthlb&K recovery with checkpointing
mechanism reduces the time overhead — the lasfautty-state (so called checkpoint) of a task
has to be saved in advance and will be restoréigeiftask fails. It requires checkpoints to be
designed into the application that is not a detsistic task. Active and passive replications
utilize spare capacity of other computational nodies2007, Koren and Krishna described fault
tolerant routing schemes in macro-distributed netgaio

Similarly to distributed systems, NoC is based olayered approach. The fault tolerance
technigues can be classified by the layer onto kwtiiey are placed in the communication stack.
We are, however, dividing the fault tolerance teéghes into two bigger classes — system-level
and network-level technigues. At the network letle¢ fault tolerance techniques are based, for
example, on hardware redundancy, error detectioarrection and fault tolerant routing. By
system-level fault tolerance we mean techniquesstétk@ into account application specifics and
can tolerate even unreliable hardware.

One of the most popular generic fault tolerancénigies is n-modular redundancy (NMR)
that consists ofi identical components and a voter to detect andk falsires. This structure is
capable of maskin@n - 1)/2errors having identical components. The most common values for
n are three (triple modular redundancy, TMR), fivel &even capable of masking one, two and
three errors, respectively. Because a system wiavan number of components may produce an
inconclusive result, the number of components usest be odd (Pan & Cheng, 2007). NMR can
be used to increase both hardware and system-teliability by either duplicating routers,
physical links or running multiple copies of soft@acomponents on different NoC processing
cores.

Pande, Ganguly, Feero, Belzer, and Grecu (2006)osm a joint crosstalk avoidance and
error correction code to minimize power consumpton increase reliability of communication
in NoCs. The proposed schemes, Duplicate Add PEDiBP) and Modified Dual Rail (MDR),
use duplication to reduce crosstalk. Boundary S@idde (BSC) coding scheme attempts to
reduce crosstalk-induced delay by avoiding sharegnbtary between successive codewords.
BSC scheme is different from DAP that at each clogkle, the parity bit is placed on the
opposite side of the encoded flow control unit. Dedding techniques can be used in both inter-
router and end-to-end communication. Dumitras anmarcMescu (2003) propose a fast and
computationally lightweight fault tolerant schenmg the on-chip communication, based on an
error-detection and multiple-transmissions schente key observation behind the strategy is
that, at the chip level, the bandwidth is less agpa than in traditional networks because of the
existing high-speed buses and interconnectiondalthiat can be used for the implementation of a
NoC. Therefore we can afford to have more paclkeitstmissions than in the previous protocols in
order to simplify the communication scheme and tmargntee low latencies. Dumitras and
Marculescu call this strategy where IPs commueicaing probabilistic broadcast scheme — on-
chip stochastic communication. Data is forwardednfia source to destination cores via multiple
paths selected by probability. Similar approach pioposed in (Pirretti, Link, Brooks,
Vijaykrishnan, Kandemir, & Irwin, 2004) and (Muraltienza, Benini, & De Micheli, 2006).
Lehtonen, Liljeberg and Plosila (2009) describen timodels for routing to avoid deadlocks and
increase network resilience for permanent faulatirdemi and Nurmi (2005) presented a fault
tolerant exXtended Generalized Fat Tree (XGFT) No@lémented with a fault-diagnosis-and-
repair (FDAR) system. The FDAR system is able tate faults and reconfigure routing nodes in
such a way that the network can route packets cyréespite the faults. The fault diagnosis and



repair is very important as there is only one mgifpath available in the XGFTs for routing the
packets downwards from nearest common ancestts tiestination. Frazzetta, Dimartino, Palesi,
Kumar and Catania (2008) describe an interestipgogeh where partially faulty links are also
used for communication. For example, data can destnitted via “healthy wires” on a 24-bit
wide channel although the channel is before degga@R-bit wide. Special method is used to
split and resemble the flow control units. ZhangnHXu, Li and Li (2009) introduce virtual
topology that allows to use spare NoC cores toampfaulty ones and re-configure the NoC to
maintain the logical topology. A virtual topology isomorphic with the topology of the target
design but is a degraded version. From the viewpoinprogrammers and application, they
always see a unified virtual topology regardlesghef various underlying physical topologies.
Another approach is to have a fixed topology bmtap the tasks on a failed core. Ababei and
Katti (2009) propose a dynamic remapping algoritonaddress single and multiple processing
core failures. Remapping is done by a general nenégrated on a selected tile of the network.

In Valtonen, Nurmi, Isoaho and Tenhunen (2001) viesliability problems can be avoided
with physical autonomy, i.e., by constructing thestem from simple physically autonomous
cells. The electrical properties and logical camess of each cell should be subject to
verification by other autonomous cells that couddlate the cell if deemed erroneous (self-
diagnosis is insufficient, because the entire getlluding the diagnostic unit, may be defect). In
2007, Rantala, Isoaho and Tenhunen motivate tHe fsbin low level testing and testability
design into system-level fault tolerance desigreyTbropose an agent-based design methodology
that helps bridging the gap between applicatiors @tonfigurable architectures in order to
address the fault tolerance issues. They add dunastional agent/control layer to the traditional
NoC architecture. The control flow of the agentdzharchitecture is divided hierarchically to
different levels. The granularity of functional tsiion the lowest level is small and grows
gradually when raised on the levels of abstracti@r.example the platform agent at the highest
level controls the whole NoC platform while a cajent monitors and reports status of a
processing unit to higher level agents. Rusu, Grewdl Anghel (2008) propose a coordinated
checkpointing and rollback protocol that is aimexdrds fast recovery from system or
application level failures. The fault tolerance tpaml uses a global synchronization coordinator
Recovery Management Unit (RMU) which is a dedicatesk. Any task can initiate a checkpoint
or a rollback but the coordination is done eachetiny the RMU. The advantages of such an
approach are simple protocol, no synchronizatiomégded between multiple RMUs, less
hardware overhead and power consumption. The dickmsathe single point of failure — the
dedicated RMU itself.

As a conclusion, there are various techniquesdrease NoC fault tolerance but most of the
research has been so far dedicated to NoC inteectswror fault tolerant routing. With the
increase of variability the transient faults plagreimportant role. The application running on a
NoC must be aware of the transient faults and lbe tbdetect and recover efficiently from
transient faults. Therefore, a system-level syngigamework with communication modelling is
needed.

SCHEDULING FRAMEWORK OF NETWORK-ON-CHIP BASED SYSTEMS

In this section we propose an approach for comnatioic modelling and synthesis to calculate
communication hard deadlines that are represenyedonmunication delay and guide the
scheduling process to take into account possililgark conflicts.



Design flow

We are employing a traditional system-level dedigw (Figure 3) that we have extended to
include NoC communication modelling and dependafigisues. Input to the system-level design
flow is an applicatiorA, NoC architectur® and application mappingl. Application is specified
by a directed acyclic graph = (T, C) whereT = {ti | i = 1,...,T}is set of vertices representing
non-preemptable tasks amd= {ci; | (i,j) e {1,...,V} x {1,...,V}}is a set of edges representing
communication between tasks. Each task characterized by the Worst Case Execution Time
(WCET) Wcet and mobilityMoh that are described in more details in the se¢tsmmeduling of
extended task graph”. NoC platform introduces comication latency that depends not only on
message size but also on resource mapping and tebdstaken into account. An edggethat
connects two taskis andt; represents control flow dependency in case edggnpEder message
sizeMsize; = 0 and communication in cadésize; > 0. In addition to the message size, the edge
is characterized by the Communication Delay (CGI?); that is described in more details in
section “Communication synthesis”. We assume thmilieation has dummy start and end
vertices. Both these vertices hadeet = 0

Application task / )
. I . I
araph (ETG) NoC architecture | Task mapping }

/

R —

:
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v

Constructive scheduling with
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Figure 3. System-Level design flow

NoC architecture is a directed graph= (R, L) whereR = {rc | k = 1,...,R}is a set of
resources antd = {l, | (k,]) e {1,...,R} x {1,...,R}}s a set of links connecting a pair of resources
(k,I). The resources can be routers and computatiomas.cbhe architecture is characterized by
operating frequency, topology, routing algorithmyitshing method and link bit-width. The
mappingM of an applicatiord is represented by a functidh (T — R). According to Marculescu
et al. (2009) the application mapping has a majopact on the schedule length, NoC
performance and power consumption. However, inwark we assume that the application is
already mapped and finding an optimal applicati@pping is out of the scope of this work.



Once the tasks have been mapped to the architectomstructive task scheduling starts. It
consists of communication synthesis and task sdimgdthat are described in more detail in
section “Communication synthesis”. The applicatiamd architecture can also contain
information about dependability which is explainied section “Task graph scheduling with
dependability requirements”. If dependability arttiev design requirements are met the lower
levels of HW/SW co-design processes continue. @tiserchanges are needed in the architecture
or in the mapping.

Communication synthesis
Importance of communication synthesis

One of the key components of the scheduling framkewdescribed in this work, is the
communication synthesis, which main purpose isatoutate communication hard deadlines that
are represented by Communication Delay (CD) andeytihe scheduling process to take into
account possible network conflicts. In hard reaei dependable systems the predictable
communication delays are crucial. Once a fault mx;ciine system will apply a recovery method
that might finally require re-scheduling of the hggttion. To analyze the fault impact on the
system we need to have information how a faultctéfehe task execution and communication
delays. In our proposed approach the communicdioembedded into extended task graph
(ETG) that allows us to use the fine-grained modeting the scheduling and avoid over
dimensioning of the system. Detailed informatiorowathb communication is also needed for
accurate power model (Marculescu et al., 2009).therodesign aspect is the ratio of modelling
speed and accuracy. A communication schedule dmuleiktracted by simulating the application
on a NoC simulator, but the simulation speed veltle limiting factor.

In Figure 4, an example task graph (Figure 4a) isdnapping onto five processing units
(Figure 4b) is presented. Taskis mapped ontdPU;, t; onto PU, etc. It can be seen that
communicatiorc; (fromto to ty) takes three linkslifiky, links, links) while c; (fromt; to ty) takes
two links (inka, links). We can calculate the communication delays witlvonflicts for different
switching methods based on formulas below (Ni & Md#&y, 1993):

Cd’jstore—and—forward: (S/B)D (5)

whereSis the packet siz& is the channel bandwidth aldis the length of the path in hops

between source and destination task.

Cd’jvirtual cut-through: (Lh /B)D +S/B (6)
whereL, is the size of the header field.
Cd;"°™" "= (L /B)D + S/B (7)

whereL; is the maximum size of the flit.

The physical links, which the communication traestsare shared resources. It means that in
addition to calculating the latencies we need toicdhor have a method to take into account the
network conflicts as well. It should be noted ttte actual routes will depend on how tasks are
mapped and which routing approach is being used.
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Figure 4. Extended task graph, mapping and pastiathnsformed ETG

Manolache, Eles and Peng (2007) proposed a taskhgextension with detailed
communication dependencies employing virtual cutdbh switching with deterministic source-
ordered XY routing. The basic idea is to cover wfta task graph not only the tasks but also the
flow control units (e.g., packages, flits). That &l communication edges between tasks are
transformed into sequences of nodes representiog ftontrol units. Edges represent
dependencies between tasks and/or flow contros.uBiich an approach assumes that both tasks
and communication are already mapped, i.e., itnewk which tasks are mapped onto which
resources and which data-transfers are mappedvanitth links. Of course, different routing
strategies will give different communication mappitut all information needed for the
scheduling is captured in the task graph. We hanemglized the proposed approach and made it
compatible with different switching methods suchstwe-and-forward, virtual cut-through and
wormhole switching.

Assumptions on architecture

We assume that each computational core is cordrdiie a scheduler that takes care of task
execution on the core and schedules the messausfearebetween the tasks. The schedule is
calculated offline and stored in the scheduler nrgn®uch scheduler acts also as a synchronizer
for data communication. Otherwise a task, which gietes earlier of its calculated WCET and

starts message transfer, could lead to an unexpaetevork congestion and have a fatal effect on
the execution schedule. We assume that the siam @fiput butter is one packet in the case of



virtual cut-through or store-and-forward and orieifi the case of wormhole switching method.
Input buffer of a flow control unit allows it to bmupled with the incoming link and to look at
them as one shared resource. Multiple input buffersid require extension of the graph model
and the scheduling process. The proposed appraatibe extended to be used in wormhole
switching with virtual channels — each virtual chahcould be modelled as a separate physical
channel having a separate input buffer of one ftowtrol unit. We assume deterministic routing.
In our experiments we are using dimension ordergédaoguting. Our NoC topology imx n (2D)
mesh with bidirectional links between the switcligigure 4b).

Communication synthesis for different switching methods

Input for the scheduling is an extended task gralpbre tasks are mapped onto resources. Once a
communication task is ready to be scheduled, we thta communication synthesis sub-process.
Depending on the selected switching method, sombeoflow control units must be scheduled
strictly to the subsequent time slots. In wormhelatching, the header flit contains the routing
information and builds up the communication patlkearing when the header flit goes through a
communication link, the body flits must follow tleame path. Also, when the header flit is
temporarily halted, e.g., because of the traffingastion, the following flits in downstream
routers must be halted too. This sets additionastzaints for the communication synthesis. The
constraints — fixed order and delay between sominefodes — are similar to the restrictions
used in pipe-lined scheduling (De Micheli, 1994).

Figure 4c depicts the communication synthesis sobgss for communication task
between taskg andt; in case of wormhole switching. The variable sizssage; (Figure 4a) is
divided into bounded size packeft% and cf A packet is further divided into three types afat

units (flits) — headerH), body B) and tail ). Typically there is only onkl and oneT flit, while
many B flits. The flit pipeline is built for all links tb communication traverses. The edges
represent dependencies between two flits. As dtreba body flitc,®* on link; depends on the
header flitc," on thelink.. Therefore the bodly flit,®! cannot be sent before the headercilithas
been scheduled (acquired a flit buffer in the nextter). Combined with traditional priority
scheduling to handle network resource conflictg.(dist scheduling), the body flit will be
scheduled after the header flit has been sent.

Scheduling of extended task graph

Our proposed approach can be used with arbitrdrgdsding algorithm, although the schedules
in this paper are produced by using list schedull@gr goal is to find a schedul® which
minimizes the worst-case end-to-end ddlayapplication execution time), schedules messages
on communication links and produces informationwlmmntentions. First, we will calculate the
priorities of the tasks represented by mobiNiph. Mobility is defined as difference between
task ASAP (As-Soon-As-Possible) and ALAP (As-Late{Rossible) schedule. We will schedule
a ready task. Next, we will start the communicatgymthesis and scheduling for messages
initiated by this task. Figure 5a shows a scheduitate where tasksg t; and communication,

cs (Figure 4a) have been scheduled. The respectiem@ad task graph is depicted in Figure 5d.
As a next step we are going to schedule communitefiin between taskis andt.. Without any
conflict the schedule looks like depicted in Figlte. The respective extended task graph is
shown in Figure 5e. Combining schedules depicteeignre 5a and Figure 5b show that there is
a communication conflict otink, andlinks. Based on calculated priority we need to delay the



communicatiorc, and schedule it aftex’. Figure 5¢c shows that even if we will delay thestart
time there will be a conflict between thé' andcs™ flit on links. Therefore the flit,™ needs to be
buffered in downstream router and wait for ava#aipiput buffer in next router. This is done by
finding the maximum schedule time tnks and scheduling the flit,™®" = max(link"™). After
the flit ;" has been scheduled binks the schedule end time of the same flitliok, need to be
updated. Figure 5¢ shows the schedule for commiimic&, after the conflicts have been
resolved. The resulting schedule is depicted inifeig.

A ‘ ‘
| | |
link, 1 l ] 3] o3 |
|
links ! el | c1®| c1*| o1 | el | e8| c3"| c32| T
link, ol | c1®| | c1®| el |
link; M| c® | | |l ! |
PU, ts l 1 1
| | |
| | |
PU, to } | |
| | ! i
m
a) | | : time
I I I
: communication conflict : }
A | on link; and links | |
| | |
| |
links ! c2| c2*| c2%2| c2' !
linkz c2" | c2*| c2%2| 2" | 1
| |
PU, t, ! |
I I | R =
time
b) | | |
| | |
| | |
| | communication |
A ! } conflict on link; !
links ! ! c2" | c2*| c2%| c2
link, } I c2" c2%| c2| c2r
| ——
PU; '(1—‘ | initial placement |
| ! ‘ time
c)

~—_—— e -




Figure 5. Communication synthesis and scheduling
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Figure 6. Final schedule of the application

ScheduleCommunicatioi(c;)

1 first vertex of sub-graph = transform communaaedge cinto sub-graph
2 add into ReadyToSchedule list the first verte guif-graph

3 while ReadyToSchedulg &, i = 0do

4 if current flit being scheded is a head flit from neacketthen

5 /IScheduleTimePrev — schedule time from presteneflit or task
6 if predecessor of current flit is a tatblen

7 ScheduleTimePrev = store the task scheduldired

8 else

9 /predecessor of current flit was also a flit

10 ScheduleTimePrev = maximum link schedule tivhere the
11 predecessor flit was mapped

12 end if

13 else

14 /lwe are scheduling flits from the same packet

15 if flit type of current flit == HEADthen

16 ScheduleTimePrev = schedule end time of predecessor
17 else

18 ScheduleTimePrev = maximum link schedule tivhere the
19 predecessor flit was mapped

20 end if

21  endif

22

23 LinkTime = get max schedule time from mappel bf current flit
24 [Ichoose the maximum schedule time from presteretask or a flit on a link
25  if ScheduleTimePrev < LinkTimien

26 TaskStartTime = LinkTime

27  else

28 TaskStartTime = ScheduleTimePrev
29 end if

30

31 TaskEndTime = TaskStartTime + Communication Delagurent flit

32 Back annotate previous head flit schedule enel € applicable

33 Add successor vertexes and remove scheduldbfti ReadyToSchedule
34 end while

end ScheduleCommunicati

Figure 7. Communication scheduling algorithm formbole switching

For each flow control unit we will calculate itsmmunication delay on corresponding link
that is represented by the formula:
c°P = Sf/ Bl (8)



where Sf is the size of the flow control unit (flit or pasty and Bl bandwidth of the
corresponding linky (cF"™ — ¢3¥"™y gives us the total communication delaycofCurrently
we take into account only the transmission timeveen the network links. The start-up latency
(time required for packetization, copying data hestw buffers) and inter-router delay are static
components and are considered here having 0 d€ligure 7 depicts the communication
scheduling algorithm for wormhole switching. Thepegach can be used in similar way also for
virtual cut-through and store-and-forward switchingthods.

The benefits of the proposed approach are finarxgdascheduling of control flow data units,
handling network conflicts and the generalizatioh tke communication modelling — the
communication is explicitly embedded in a naturaywinto the task graph. The flit level
schedules can be used for debug purposes or faergEstimation. The proposed approach can be
used for different topologies (including 3D NoCYatiifferent switching methods in relation with
deterministic routing algorithms. The network c@ifi can be extracted from the schedule and
the information used for re-mapping and re-schaduthe application. Our approach does not
suffer also from the destination contention prohléms eliminating the need for buffering at the
destination. The graph complexity depends on nunafegasks, NoC size, mapping and flow
control unit sizeCFUsi,e We can represent this by a functi®mpiexiy = (A, N, M, CFUsize)
Experimental results show that the approach scaddlsfor store-and-forward and virtual cut-
through. Wormhole switching contains fine-graindid fevel communication schedule and
therefore the scaling curve is more sharp thamfmrementioned. In the next subsection we will
describe a message-level communication synthepiagh that addresses the scaling problem.

Message-level communication synthesis

If the flow control unit level schedule need to dlstracted then the complexity of the
communication synthesis can be reduced by trangfgrihe communication edge; into a
message sub-graph of traversed links instead wf dlantrol units. In this way we can reduce the
graph complexity int@Gcompiexity= (A, N, M) Figure 8 shows on the left flit level and on tight
message level communication synthesiscfoMVhen compared to each other it can be seen that
for given example the complexity has been redudewst by 7 times. The lines 4 - 20 in the
wormhole scheduling algorithm in Figure 7 will beplaced in the message-level scheduling by
getting communication; start time on first link from predecessor task &énte. Communication
G start time on next link is; start time on previous link added by head flit canmication delay.
Similar approach can be applied to virtual-cut-thylo and store-and-forward switching methods.
Experimental results show equal scaling for alhaf three switching methods as communication
synthesis does not depend anymore on the flow a@ounhits. In the following section we will
demonstrate the applicability of our approach fthesluling with additional requirements, such
as dependability.
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Figure 8. Communicatiom detailed and message-level

Task graph scheduling with dependability requirements

Our objective is to extend those aforementionetrtiepies to the system-level to provide design
support at early stages of the design flow. Thdiegmn should be able to tolerate transient or
intermittent faults. We are not currently considgripermanent faults that need a bit different
approach and can be handled by re-scheduling anthpping the application on a NoC. The
work of lzosimov (2006) describes system-level defiag and optimizations of fault-tolerant
embedded systems in bus based systems. The wosldeanfaults only in computational tasks.
The communication fault tolerance is not taken iamtoount. According to Murali et al. (2005)
shrinking feature sizes towards nanometer scalsecaower supply and treshold voltage to
decrease, consequently wires are becoming unrelimdause they are increasingly suspectible to
noise sources such as crosstalk, coupling noi$iegisors and process variations. Additionally, in
bus based systems the task mapping does not helvéndlwence on communication delays as in
NoCs. Therefore, we need a method to detect aedatel transient faults and take possible fault
scenarios into account during scheduling.

In our approach we assume that each NoC proceasth@gommunication node is capable of
detecting faults and executing a corrective actibransient fault in processing node can be
detected with special techniques such as watchdiogignatures that are easy to implement and
have a low overhead. Once a fault is detected snplithe process will be restored and the task
will be re-executed. Murali et al. (2005) propos@s error detection and correction schemes,
end-to-end flow control (network level) and switithswitch flow control (link level), that can be
used to protect NoC communication links from transifaults. We are using a simple switch-to-
switch re-transmission scheme where the sender adus detection code (parity, cyclic
redundancy check code (CRC)) to the original messagl the receiver checks the received data



for correctness. If a fault is detected the seiglezquested to re-transmit the data. Depending of
switching method the error detection code is adstr to flits or to packages.

We are assigning the recovery slacks and schedttiegapplication using shifting-based
scheduling (SBS) (Izosimov, 2006). Shifting-baselesiuling is an extension of the transparent
recovery against single faults. A fault occurring @ane computation node is masked to other
computation nodes. It has impact only on the saompatation node. According to Izosimov
(2006) providing fault containment, transparenay patentially improve testability, debugability
and increase determinism in fault-tolerant appiicet In shifting-based scheduling the start time
of communication is fixed (frozen). It means tha do not need a global real-time scheduler or
to synchronize a local recovery event with otheresoin the case of fault occurrence. Fixed
communication start time allows shifting-based sciiag to be used with our communication
synthesis and scheduling approach. We can useotiterttion information from communication
scheduling to be taken into account when tryindind a compromise between the level of
dependability and meeting the deadlines of tasksdlotvnside is that SBS cannot trade-off
transparency for performance — communication ichedule is preserved to start at predefined
time.

The scheduling problem we are solving with SBS banformulated as follows. Given an
application mapped on a network-on-chip we areré@sted to find a schedule table such that the
worst-case end-to-end delay is minimized and tlensparency requirements with frozen
communication are satisfied. In 2006, Izosimov psmal a Fault-Tolerant Conditional Process
Graph (FT-CPG) to represent an application withedejability requirements. FT-CPG captures
alternative schedules in the case of differenttfagénarios. Graphically FT-CPG is a directed
acyclic fork-and-join graph where each branch @pomds to a change of condition. In similar
way to Izosimov (2006) we are not explicitly genemga FT-CPG for SBS. Instead, all possible
execution scenarios are considered during schedulin

The shifting-based scheduling algorithm is depictedFigure 9. Input for the SBS is
application A, architecture N with mapping M, themmber of transient faultsto be tolerated in
any processing core and the number of transieftisfathat can appear during data transmission
on communication links. First, priorities of tasi®e calculated based on mobility and the first
task is put into the ready list. Scheduling loogpiecessed until all tasks have been scheduled.
The first task is chosen from the ready list arelwlork list of ready tasks that are mapped to the
same processor as the selected task is createdvdrkeist is sorted based on mobilities and task
with smallest mobility is chosen to be schedulede Task start time is maximum time from
mapped processor or predecessor tasks. Next, mycehaek will be calculated for the chosen
task in following three steps:

1. The idle timeb between chosen taskosenand the last scheduled tafsk: on the same

processor is calculated

b = tehosen- tiast (8)
2. Initial recovery slaclsly of chosen tasknosenis
sl = k * (WCETchosent RecoveryOverHead) (9)

wherek is number of required recovery eventéCE TchosenWOrst-case execution time of
chosen task andRecoveryOverHeadtime needed to restore the initial inputs.
RecoveryOverHealas a constant value.

3. The recovery slackl of chosen tasknosenis changed if recovery slack of previous tagk
subtracted with the idle tinteis larger than the initial slac#,. Otherwise initial recovery
slack is preserved.



SBS is adjusting recovery slack to accommodatevesgaevents of tasks mapped to the same
processing core and will schedule communication the end of the recovery slack.
Communication synthesis and scheduling has beenlaiegd in previous sections
“Communication synthesis for different switching threds” and “Scheduling of extended task
graph”. In case of virtual-cut-through and store-éorward switching methods each packet
contains CRC error detection code and we are ranittihg r packets from a message. In
wormhole switching each flit has CRC error detatitode and we are re-submittingits from
a package. CRC code increases router complexityiramdases slightly amount of transmitted
data but allows to decrease communication latermypared to end-to-end scheme. Re-
submission slack is taken into account when resgriuffers and link bandwidth for
communication. After a task has been schedulegrédecessor tasks, that are ready, are inserted
into ready list and scheduled task removed frordydiat.

Shifting-basec-scheduling(A, N, k, r)
1 Calculate mobility of tasks
2 Put BEGIN task into ready list
3 while ReadyListt & do
FirstTask = ReadyList[0]
WorkList = Get all ready tasks assigned to saare as FirstTask

Sort WorkList based on mobility
ChosenTask = WorkList[0]

©oo~NOO OGN

TaskStartTime = Get max time from mapped pramestChosenTask or from predeccessor tasks
10 RecoverySlack = Calculate recovery slack ofsehdask(k)

11 Schedule ChosenTask(ChosenTask, TaskStartRemmverySlack)

12 Schedule Communication with recovery(r)

13 Add ready successor tasks of ChosenTask irddyRést

14 Delete ChosenTask from ReadyList

15

16 end while

end Shifting-based-scheduling

Figure 9. Shifting-based-scheduling algorithm

At the run-time of an application, local schedulkese a partial schedule table that includes
start time and dependability information of taskd atart time of communication. In the case of a
fault occurrence, corresponding local schedulel svilitch to contingency schedule by looking
up how many time a task can be re-executed on givecessing core before reserved recovery
slack will be passed and the deadline missed. Vart@f exceeding number of re-submission of
flits or packages can be catched by local schedilitre late or missing arrival of incoming data.

Figure 10 depicts an extract of an example of S8fedule where tadk can be re-executed
and packetcs re-transmitted one time in the case of fault omnge. We can see that
communicatiorc, has been to the end of the recovery slack oftiagkhe schedule produced by
SBS is longer than schedule without dependability Wwill tolerate a specified amount of
transient faults and the calculated deadline isfs&d. The advantage of our approach is that we
can take into account communication induced latmneind fault effects already at very early
stages of the design flow. Possible solutions twradese the schedule length due to transparency
would be to introduce check-pointing and replicatio
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Figure 10. Shifting-based-scheduling example

Experimental results

We have built a design environment that supportssgatem-level design flow and scheduling
framework described in previous sections. To evealdi#ferent aspects of our approach we have
ran tests with synthetic task graphs containing, 3@D0, 5000 and 10000 tasks mapped on
different NoC architectures. The mapping was gdedra all cases randomly. The architecture
parameters were varied in together with the apijitinasize to show the scaling of the approach.
The NoC architecture parameters, if not writterfiedé@ntly under experiments, were specified as
in Table 1. The tests were performed on computén atel L2400 CPU (1,66 GHz), 1 GB of
available physical RAM and operating system Micfogdindows XP.

Table 1 . NoC Architecture Parameters

Parameter name Value
NoC operating frequency 500 MHz
Link bit-width 32 bit
Flit size, packet size 32 bit, 512 bit
Packet header size 20 bit
Link bandwidth 16 Gbit/s
Topology and routing 2D Mesh, XY routing
algorithm
Mapping Random

Our first experiment shows how NoC size impactsdtigedule calculation time and length.
From one hand, the more computational units we haedable the shorter schedule we are able
to produce. On the other hand, it takes more psmetme to model and synthesise the
communication on a bigger NoC. The input task grafpthis experiment consists of 1000 tasks
and 9691 edges. Virtual cut-through switching isdusThe schedules are calculated with both
communication synthesis methods — detailed and agedevel. The results in Figure 11 show
that when NoC size increases the schedule lengtheases and schedule calculation time
increases. Figure 12 shows scaling of communicayothesis methods from graph size point of
view — when the NoC size increases the communitatitio also increases. This can be seen
from the number of communication vertices in theeaged task graph. However, schedule
calculation time increase for both communicationtBgsis methods is linear. Therefore, it is
feasible to use our proposed approach in additaapplication scheduling also for performance
estimation and design exploration.

The second experiment shows how detailed and medsegl communication synthesis
methods, based on wormhole switching, are scalietailed communication synthesis is
performed for wormhole switching at flit level wliln message-level synthesis the smallest unit



of communication is a message. Task graphs witkrdifit size were mapped and scheduled on a
10 x 10 NoC. To have comparable results the sanmpimg and NoC size was used for both
communication synthesis methods. The results gieteel in Figure 13. When detailed flit-level
synthesis is not required then reduction in scheedalculation time and graph complexity can be
achieved. However, when detailed flit-level comnuation schedules are needed, e.g., for power
estimation, the detailed communication synthesjgs@gch should be used.

The third experiment shows results of communicatioodelling and scheduling when a
relatively big application is mapped on a NoC witifferent sizes. Input application contains
5000 tasks and 25279 edges. The results are depiciable 2. As mentioned earlier, the larger
amount of computational units enables to shorten dthedule, but consequently, the larger
network increases the communication ratio as aeenagnber of hops between tasks keeps also
increasing. At the same time we can see that ctsfength keeps decreasing. It is because of the
fact that source-ordered XY routing does no loathrim@ng on the network links by itself.
However, when more communication links are avaddbere is less possibility that two message
transfers between tasks will intersect on the slimkeand in the same timeframe. The amount of
communication conflicts in the system can be redunge developing more efficient scheduling
heuristic, taking into account the specifics of ahiip networks. As our modelling approach
provides detailed information about the commundgatihen it is also possible to use different
deterministic routing algorithms during the comnuoation synthesis, in addition to the XY-
routing algorithm, used in this paper.

The last experiment shows performance and depditgatzade-off when using shifting-based
scheduling. We are using an application with 1086k$ mapped to a 10x10 NoC. We are
changing the dependability paramet&randr of SBS. Results are depicted in Table 3. As
explained in previous section SBS cannot traddraffsparency for performance and this can be
seen also in the results. Increasing the proceswidg fault tolerance parametethe schedule
length increases roughlk+1 times for given application. Communication fauwllerance
overhead is marginal compared to computation faldtrance. This is due to switch-to-switch
error detection and re-submission scheme whichcesdgommunication and recovery latency
compared to end-to-end scheme. Additionally, we ataching error detection code either to
each packet or to each flit and re-submit only féadty flow control unit instead of the whole
message. Checkpointing and task replication coelldded to decrease schedule length caused by
computation delay.

Table 2. Results of communication synthesis

NoC size | Schedule length gs) | Communication ratio % | Communication conflicts length @1s) | Calculation time (s)
25 51235 5% 8981 E
100 36449 10% 823 1y
225 32001 14% 662 21
400 30556 19% 6251 2y
625 20446 24% 555 36
900 28546 29% 4844 50

Table 3. Shifting-based scheduling — performardependability trade-off

Level of dependability

Increase of initial

Schedule length

k — task r — data (us) schedule length
re-execution | re-submission ps (x times)
Initial schedule length without dependability aradl@RC in communication
34 17¢

0 0 34177 1.0Q
1 34 196
2

34 215




3 34 234
1 0 66 899 1.96
1 66 919
2 66 93¢
3 66 958
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Figure 11 . Schedule length versus calculation tionalifferent NoC sizes
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CONCLUSIONS

This chapter described various problems associatédthe system-level design of NoC-based
systems. The first part of the chapter gave a backgl and surveyed the related work. The
second part described a framework for predictablanaunication synthesis in NoCs with real-
time constraints. The framework models communicatib the link level, using traditional task

graph based modelling technique and supports v&@gwaitching techniques. This communication
synthesis approach can be used for schedulingabfinee dependable NoC-based systems.
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KEY TERMS

System-level design — a design methodology thatsstiam higher abstraction levels and refines
the system-level model down to a hardware/softwaptementation.

System-on-chip (SoC) — integrating all system comemis into a single integrated chip.
Network-on-chip (NoC) — a new communication paradfgr systems-on-chip.

Dependability — system dependability is a qualiyservice having attributes reliability,
availability, maintainability, testability, intedyi and safety.

Fault-tolerance — is a property that enables a&sysb provide service even in the case of faults

Communication modelling — explicit modelling of comanication in order to enable predictable
design

Communication synthesis — communication refinem@ummunication edge in the extended
task graph is converted into communication sub{grap

Communication scheduling — a step in the systeraHdgsign flow. Schedules flow control units
to start at predefined time.



